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In symmetry-based approaches to black hole entropy, we calculate the central charge of the Virasoro
algebra in the first order formulation of gravity for both Palatini and Holst actions. In these calculations, we
make use of the near-horizon extremal Kerr metric and the Kerr/conformal field theory correspondence. For
the Palatini action the results obtained in the second order formulation are reproduced. We also argue that
the Holst term does not contribute to the charge algebra no matter what geometry/boundary conditions one
is considering.
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I. INTRODUCTION

The symmetry-based approaches or the dual holographic
description of the black hole entropy has its origin in the
work of Brown and Henneaux [1]. The essential point is to
argue that the quantum theory of black holes should be a
holographic dual of a 2D conformal field theory (CFT)
living at the spacetime boundary. One then expects that
the states in some unitary representation of the CFT are the
microstates of the black hole. The actual construction of the
CFT is still elusive. So far, one has been able to only count
the microstates rather than explicitly construct a dual CFT.
Even the location of the boundary is debatable. In [1], the
boundary is taken at asymptotic infinity, while in some
other calculations the boundary is taken as the black hole
horizon (see [2] and references therein). The main idea
behind this approach is to identify the 2D conformal
symmetry group, isomorphic to DiffðS1Þ, that is expected
to be the symmetry group of the holographic quantum
theory of black holes. The states of this quantum theory,
which are possibly the black hole microstates in question,
would then furnish a representation for this symmetry
group. The representation is expected to be characterized
by the appropriate black hole parameters, such as the
horizon area, charges and angular momentum. The black
hole entropy would then be equal to the logarithm of the
dimension of such a representation (for example, the
number of quantum states for a fixed area, angular
momentum and charges). From the outset, the aim is to
calculate only the number of microstates knowing that from
the symmetry group alone it would be impossible to label a
complete set of microstates. When one looks for sym-
metries near the horizon or at asymptotic infinity, the usual
notion of symmetries represented by exact Killing vectors
is not enough. One, therefore, uses an extended notion of
symmetries in terms of approximate Killing vectors that
gives a larger set of vector fields. The set of such

approximate Killing fields is determined by certain falloff
conditions on the metric.
The Kerr/CFT correspondence originally initiated by [3]

is parallel to the idea of Brown and Henneaux except for the
fact that the background spacetime is now the near-horizon
extremal Kerr (NHEK), which is topologically AdS2 × S2,
rather than AdS3 as in the case of Brown and Henneaux.
The appropriate boundary in NHEK is a timelike boundary.
In symmetry-based approaches the issue of the correct

Poisson brackets of charges (in the second order formu-
lation) is not completely resolved and is tied to the choice
of boundary conditions. There exists more than one way of
calculating the Poisson brackets of charges [4–6] and it
seems that their algebra having a central extension in one
calculation may have different or no central extension at all
in some other calculations. On the other hand the sym-
plectic structure in the first order formulation is clean and
studied in detail in the context of asymptotic symmetries
[7,8] and laws of black hole mechanics [9–13]. Therefore, it
seems justified to apply the first order symplectic structure
to a well-studied case—the Kerr/CFT correspondence.
In the first order formulation, apart from studying the bulk

symplectic structure one also studies the boundary symplec-
tic structure. Depending on the boundary conditions, one
may need to add a boundary symplectic current to avoid
leakage of any flux across the boundary. This ensures that the
symplectic structure is hypersurface independent. This subtle
issue is apparently overlooked in the existing calculations of
Poisson brackets of charges in the second order formulation.
This has already been pointed out in [14] for instance.
We also study the effect of adding the Holst term to the

action. It is already known [15] that in presence of the Holst
term different values of the Immirzi parameter yield
nonequivalent quantum gravity theories and a particular
choice is to be made to recover the Bekenstein-Hawking
(BH) entropy from the exact counting of states in the
quantum theory [16]. An intriguing question is does the
semiclassical symmetry-based approach retain any imprint
of the Immirzi parameter?We argue that if one works with a
hypersurface-independent symplectic structure then the*avirup.avi@gmail.com
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Holst term will never contribute, no matter what
geometry/boundary conditions one is considering. This
is in agreement with some recent calculations [17] where it
is claimed that the semiclassical limit of black hole entropy
in loop quantum gravity (LQG) does not depend on
particular choices of the Immirzi parameter.
In the context of Wald entropy the Holst term in the

presence of a negative cosmological constant has been
studied in [18]. It has been shown that the Immirzi
parameter does not play a role for anti–de Sitter (AdS)-
Schwarzschild and AdS-Kerr spacetimes but makes a
nontrivial contribution to the entropy and mass for AdS-
Taub-Nut spacetime (Similar results have been obtained
using Euclidean path integrals in [19]). In the recent past
some attempts have been made to compare the Wald
entropy and the entropy from symmetry-based approaches
from some alternative construction of the Poisson bracket
algebra [6]. Our results show that Wald entropy and entropy
from symmetry-based approaches might not always match.
The Kerr/CFT correspondence has been generalized to

an isolated-horizon CFT correspondence in [20]. In this
case the metric in the neighborhood of an axisymmetric
extremal isolated horizon has been used and a calculation
similar to the one in the Kerr/CFT correspondence has been
carried out. However, a study of the “near-horizon”
symmetries of an isolated horizon is still missing. Since
isolated horizons are studied primarily in the first order
formulation, our exercise might shed some light on a
symmetry-based approach to isolated horizons.
In this note, we start with the NHEK metric and redo the

calculations of the Poisson brackets of charges in the first
order formulation of gravity (all of the calculations that
have appeared till now have been in the second order
formulation). We also study the effect of adding the Holst
term to the action. This gives some insight into what role
the Holst term plays in the semiclassical regime.

II. THE NHEK METRIC AND
BOUNDARY CONDITIONS

A. Boundary conditions

The NHEK geometry which has an SLð2; RÞ ×Uð1Þ
isometry group has been studied in detail in [21]. We would
not go into the details of the NHEK geometry except for the
fact that in some global coordinate system the NHEK
metric takes the form,

ds2 ¼ 2GJΩ2

�
−ð1þ r2Þdt2 þ dr2

1þ r2
þ

þ dθ2 þ Λ2ðdϕ2 þ rdt2Þ
�
: ð1Þ

The tetrads can then be obtained such that they satisfy
gμν ¼ ηIJeIμeJν , where ηIJ is the Minkowski metric. It then
follows that the tetrads can be taken to be

e0 ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
dt; e1 ¼ Ndrffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2
p ;

e2 ¼ Ndθ; e3 ¼ NΛðdϕþ rdtÞ; ð2Þ

N ¼ ð2JGΩ2Þ12; Ω2 ¼ 1þ cos2θ
2

; Λ ¼ 2 sin θ
1þ cos2θ

:

ð3Þ
The range of the coordinates is 0 ≤ θ < π and 0 ≤ ϕ < 2π
and the boundary at r → ∞ is a timelike boundary.
The connection can be calculated from the torsion-free

condition, deI þ ωI
J ∧ eJ ¼ 0. It can be recast in the form,

ωIJ
μ ¼ eIν∇μeJν ; ð4Þ

where ∇μ is the usual covariant derivative compatible with
the metric. It then follows that

ω10 ¼ 1

2
rðΛ2 − 2Þdtþ 1

2
Λ2dϕ;

ω20 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
dN
dθ

N
dt; ω30 ¼ 1

2

Λffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p dr;

ω21 ¼ −
dN
dθ

N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p dr; ω31 ¼ 1
2
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
dt;

ω32 ¼ r
N
dðNΛÞ
dθ

dtþ 1

N
dðNΛÞ
dθ

dϕ: ð5Þ

Under the boundary conditions assumed in [3]:

0
BBBBB@

htt ¼Oðr2Þ htϕ ¼Oð1Þ htθ ¼Oð1rÞ htr ¼Oð 1r2Þ
hϕt ¼ htϕ hϕϕ ¼Oð1Þ hϕθ ¼Oð1rÞ hϕr ¼Oð1rÞ
hθt ¼ htθ hθϕ ¼ hϕθ hθθ ¼Oð1rÞ hθr ¼Oð 1r2Þ
hrt ¼ htr hrϕ ¼ hϕr hrθ ¼ hθr hrr ¼Oð 1r3Þ

1
CCCCCA
:

ð6Þ

The asymptotic symmetry-generating vector fields can be
calculated using

Lξgμν ¼ hμν ð7Þ

and then equating the terms of the same orders in r on both
sides. It then follows that symmetry-generating vector
fields are of the form,

ξA ¼ ð−rϵ0ðϕÞ þOð1ÞÞ∂r þ
�
CþO

�
1

r3

��
∂tþ

þ
�
ϵðϕÞ þO

�
1

r2

��
∂ϕ þO

�
1

r

�
∂θ; ð8Þ
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where the higher order terms generate trivial diffeomor-
phisms. The relevant subalgebra isomorphic to a DiffðS1Þ
is then

ξ ¼ ϵ
∂
∂ϕ − rϵ0

∂
∂r ; ð9Þ

with ϵðϕÞ ¼ −e−imϕ.

B. Asymptotic expansion of tetrads

The tetrads and the connection can be expanded in a
power series:

eI ¼ 0eI þ
1eI

r
þ

2eI

r2
þ � � � ;

ωIJ ¼ 0ωIJ þ
1ωIJ

r
þ

2ωIJ

r2
þ � � � . ð10Þ

Unlike the asymptotically flat case [7] where 0eI is just the
Minkowski tetrad and fixed in the phase space, here it does
vary because of the boundary conditions imposed. So rather
than taking the ANHEK (from here on ANHEK would
mean the asymptotic form of the NHEK metric) tetrad as
the zeroth order one, we take the following:

0e0 ¼ NAðt; θ;ϕÞrdt; 0e1 ¼ Ndr
r

þ NBðt; θ;ϕÞdϕ;

0e2 ¼ Ndθ; 0e3 ¼ NΛ
Cðt; θ;ϕÞ dϕþ NΛCðt; θ;ϕÞrdt:

ð11Þ

We retain the terms that go like rdt; drr ; dϕ; dθ at the zeroth
order. We assume certain regularity conditions to hold on
A;B;C to ensure that the tetrads do not become degenerate
for any values of θ and ϕ. We note that the asymptotic
metric calculated with this is

ds2 ¼ 2GJΩ2

�
−ðAðt; θ;ϕÞ2 − Λ2Cðt; θ;ϕÞ2Þr2dt2 þ dr2

r2

þ 2
Bðt; θ;ϕÞ

r
drdϕþ dθ2 þ 2rΛ2dtdϕ

þ
�

Λ2

Cðt; θ;ϕÞ2 þ Bðt; θ;ϕÞ2
�
dϕ2

�
; ð12Þ

which is in agreement with the falloff conditions. Moreover
with the replacement,

Cðt; θ;ϕÞ ¼ Aðt; θ;ϕÞ ¼ 1þ ηFðt;ϕÞ;
Bðt; θ;ϕÞ ¼ η∂ϕFðt;ϕÞ ð13Þ

correctly reproduces the asymptotic constraints [3] at linear
order in η and leading order in r. For completeness we spell

out these conditions. For perturbations hμν about the NHEK
metric the asymptotic constraints imply

hϕϕ ¼ Λ2Ω2fðt; r;ϕÞ;
htt ¼ r2ð1 − Λ2ÞΩ2fðt; r;ϕÞ;

hrϕ ¼ −
Ω2

2r
∂ϕfðt; r;ϕÞ: ð14Þ

Any other contribution to the tetrad consistent with the
boundary conditions enter 1eI and higher order terms in the
asymptotic expansion. A typical form of 1eI would be

1e0 ¼ A1ðt; θ;ϕÞrdtþ A2ðt; θ;ϕÞdϕ;
1e1 ¼ B1ðt; θ;ϕÞ

dr
r
þ B2ðt; θ;ϕÞdθ þ B3ðt; θ;ϕÞdϕ;

1e2 ¼ C1ðt; θ;ϕÞ
dr
r
þ C2ðt; θ;ϕÞdθ þ C3ðt; θ;ϕÞdϕ;

1e3 ¼ D1ðt; θ;ϕÞrdtþD2ðt; θ;ϕÞdϕ: ð15Þ

One can check that this in agreement with the boundary
conditions.

III. PALATINI ACTION

A. Symplectic structure

The Palatini action in first order gravity is given by

S ¼ −
1

16πG

Z
M

ðΣIJ ∧ FIJÞ; ð16Þ

where ΣIJ ¼ 1
2
ϵIJKLeK ∧ eL, ωIJ is a Lorentz SOð3; 1Þ

connection and FIJ is a curvature 2-form corresponding to
the connection given by FIJ ¼ dωIJ þ ωI

K ∧ ωKJ. The
action might have to be supplemented with boundary
terms to make the variation well defined. But that does
not affect the symplectic structureΩðδ1; δ2Þ, since δ1; δ2 are
independent variations (i.e. they commute).
On shell the variation of the Lagrangian gives δL ¼

dΘðδÞ where 16πGΘðδÞ ¼ −ΣIJ ∧ δωIJ. One then con-
structs the symplectic structure Ω on the space of solutions.
One first constructs the symplectic current Jðδ1;δ2Þ¼
δ1Θðδ2Þ−δ2Θðδ1Þ, which is closed on shell. The symplec-
tic structure is then given by

Ωðδ1; δ2Þ ¼
Z
M
Jðδ1; δ2Þ ¼ −

1

8πG

Z
M
ðδ½1ΣIJ ∧ δ2�ωIJÞ;

ð17Þ

where M is a Cauchy surface.
A point to note here is that there can be nontrivial

contributions from the boundary symplectic structure. We
consider the symplectic current 3-form for the Palatini
action. It follows that on shell
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dJ ¼ 0: ð18Þ

This implies that when integrated over a closed region of
spacetime bounded byM1 ∪ M2 ∪ B (where B is a portion
of the boundary of spacetime given by r → ∞ in our case),

Z
M1

J −
Z
M2

J þ
Z
r→∞

J ¼ 0; ð19Þ

whereM1;M2 are the initial and final Cauchy surfaces that
asymptote to constant time slices.
If the third term vanishes then the bulk symplectic

structure is already hypersurface independent. If the third
term does not vanish and turns out to be exact i.e.

Z
r→∞

J ¼
Z
r→∞

dj; ð20Þ

then the symplectic structure given by
R
M J −

R
S∞

j (where
S∞ is the 2-surface at the intersection of the hypersurfaceM
with the boundary) is hypersurface independent and
jðδ1; δ2Þ is the “boundary symplectic current”. The hyper-
surface-independent symplectic structure is then given by

~Ωðδ1; δ2Þ ¼ −
1

8πG

Z
M
ðδ½1ΣIJ ∧ δ2�ωIJÞ −

Z
S∞

jðδ1; δ2Þ:

ð21Þ

For a vector field X the variation δX acts on the fields like
a Lie derivative LX. One can then show that if the equations
of motion hold in the bulk, then the bulk symplectic
structure Ωðδ; δXÞ contributes only at the boundary ∂M
of the Cauchy surface M. Therefore it follows that

~Ωðδ; δXÞ ¼ Ωðδ; δXÞ −
Z
S∞

jðδ; δXÞ; ð22Þ

where

Ωðδ; δXÞ ¼ −
1

16πG

Z
∂M

½ðX:ωIJÞδΣIJ − ðX:ΣIJÞ ∧ δωIJ�:

ð23Þ

For another vector field X0 it immediately follows that

~ΩðδX0 ; δXÞ ¼ ΩðδX0 ; δXÞ −
Z
S∞

jðδX0 ; δXÞ; ð24Þ

where

ΩðδX0 ;δXÞ¼−
1

16πG

Z
∂M
½ðX:ωIJÞLX0ΣIJ−ðX:ΣIJÞ∧LX0ωIJ�:

ð25Þ

It then implies that if the vector fields are Hamiltonian
(Sec. III D),

�
HX;HX0

�
¼ H½X;X0� þ ~ΩðδX0 ; δXÞ; ð26Þ

where the term H½X;X0� is added to take into account the
nonvanishing of ½δX; δX0 �.

B. The boundary symplectic structure

To go ahead with any calculation we first need to find
the boundary symplectic structure. The only contributions
to the boundary symplectic structure come from δ½1Σ10 ∧
δ2�ω10 and δ½1Σ30 ∧ δ2�ω30. For variations of the form
(which corresponds to variations about the ANHEK back-
ground obeying the linearized asymptotic constraints)

A ¼ C ¼ 1;

B ¼ 0;

δA ¼ δC;

δB ¼ ∂ϕδA; ð27Þ
and using the form of the connection calculated from only
the zeroth order tetrad (Appendix B) one can show that
Z
r→∞

J ¼ 1

4πG

Z ∂
∂t

�
N2Λ
A

δ½1Aδ2�B
�
dt ∧ dθ ∧ dϕ

¼ 1

4πG

Z
S2

�
N2Λ
A

δ½1Aδ2�B
�
dθ ∧ dϕ

−
1

4πG

Z
S1

�
N2Λ
A

δ½1Aδ2�B
�
dθ ∧ dϕ; ð28Þ

where S1; S2 are the intersections of M1;M2 respectively
with the boundary.
To arrive at the above result we first identified the total

time derivative and then used restrictions Eq. (27) to see if
the other terms vanish.
It then follows that the relevant hypersurface-

independent quantity ~Ωðδ; δXÞ is given by

~Ωðδ; δXÞ ¼ −
1

16πG

Z
S∞

½ðX:ωIJÞδΣIJ − ðX:ΣIJÞ ∧ δωIJ�

−
1

8πG

Z
S∞

N2Λ
A

ðδAδXB − δXAδBÞdθ ∧ dϕ:

ð29Þ

In general the boundary symplectic structure can have
nonzero order-one contributions coming from higher order
terms in the asymptotic expansion. Ideally one should do
the asymptotic expansion and check the boundary sym-
plectic structure order by order. We must point out that we
were unable to find a systematic way to isolate the terms of
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different orders in ωIJ. However in this case since we will
be studying perturbations generated by ξ around the
ANHEK background it would suffice to check the zeroth
order tetrad.

C. Algebra of charges

We therefore go ahead and calculate ~Ωðδξ; δξ0 Þ. To
calculate the contribution from the bulk it is enough to
consider only the NHEK tetrad [Eq. (2)] and connection
[Eq. (4)] and not the quantities in the asymptotic expansion.
As can be seen the relevant vector field has a nonzero
interior product ξ:eI for I ¼ 1 and 3,

ξ:e1 ¼ −
Nrϵ0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p ; ξ:e3 ¼ ΛNϵ: ð30Þ

We note that ξ:ðX ∧ YÞ ¼ ðξ:XÞY − Xðξ:YÞ for 1-
forms X and Y. It then follows that ξ:ΣIJ restricted to
the two surfaces spanned by θ and ϕ survive only for

ξ:Σ10 ¼ ΛN2ϵdθ; ξ:Σ20 ¼ Λ2N2ϵdϕ;

ξ:Σ30 ¼ −
N2rϵ0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p dθ: ð31Þ

The nonzero terms for ξ:ωIJ can be readily calculated
from the expression of the connection

ξ:ω10 ¼ 1

2
Λ2ϵ; ξ:ω30 ¼ −

1

2

Λffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p rϵ0;

ξ:ω32 ¼ 2ðΛNÞ0
N

ϵ: ð32Þ

To calculate LξΣIJ one uses the expression for the action
of the Lie derivative on forms

LξΣIJ ¼ dðξ:ΣIJÞ þ ξ:dΣIJ: ð33Þ
On restricting the 2-form to the two surfaces spanned by θ
and ϕ one gets the following nonzero components:

LξΣ10 ¼ ΛN2ϵ0dϕ ∧ dθ;

LξΣ30 ¼ −
N2rϵ00ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p dϕ ∧ dθ: ð34Þ

Lξω
IJ can be similarly calculated and their restrictions to

the two surfaces have the following form:

Lξω
10 ¼ 1

2
Λ2ϵ0dϕ;

Lξω
30 ¼ −

1

2

Λrϵ00ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p dϕ: ð35Þ

Having calculated all the required terms one can go
ahead and calculate Ωðδξ; δξ0 Þ. Putting everything together
one gets

Ωðδξm; δξnÞ

¼ 1

8πG

Z
S∞

½Λ3N2ϵmϵ
0
ndθ ∧ dϕþ N2Λϵ0mϵ00ndθ ∧ dϕ�:

ð36Þ

With the substitution ϵm ¼ −e−imϕ as in [3] we get

Ωðδξm; δξnÞ ¼
iðmÞδmþn;0

4G

Z
S∞

Λ3N2dθ

þ iðmn2Þδmþn;0

4G

Z
S∞

N2Λdθ: ð37Þ

The relevant integrals can be calculated and are given as

Z
Λ3N2dθ ¼ 2JG

Z
π

0

4sin2θ
ð1þ cos2θÞ2 dθ ¼ 8JG;

Z
ΛN2dθ ¼ 2JG

Z
π

0

sin θdθ ¼ 4JG: ð38Þ

Therefore,

Ωðδξm; δξnÞ ¼ iðm3 þ 2mÞJδmþn;0: ð39Þ

We also need to check whether jðδξ; δξ0 Þ contributes to
the central charge. Using the variations in Appendix A we
see that for the ANHEK background,

Z
S∞

jðδξm; δξnÞ ¼
1

8πG

Z
S∞

N2Λðϵ0mϵ00n − ϵ0nϵ00mÞdθ ∧ dϕ

¼ 2Jm3δmþn;0: ð40Þ

Therefore it follows that

~Ωðδξm; δξnÞ ¼ ið−m3 þ 2mÞJδmþn;0: ð41Þ

D. Hamiltonian

To see if the vector fields are Hamiltonian we check
whether ~Ωðδ; δξÞ can be written as a total variation. We do
this in two steps. First we consider only the bulk symplectic
structure Ωðδ1; δ2Þ and then check the contributions
from jðδ1; δ2Þ.
We note that here we need the asymptotic expansions.

The only terms that will contribute to the expression of
Ωðδ; δξÞ are then seen to be I ¼ 1, J ¼ 0 and I ¼ 3, J ¼ 0.
The relevant terms restricted to the 2-surfaces are then of
the form
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ω10 ¼ g1ðt; θ;ϕÞdϕþ g2ðt; θ;ϕÞdθ;
ω30 ¼ h1ðt; θ;ϕÞdϕþ h2ðt; θ;ϕÞdθ;

ξ:ω10 ¼ g1ðt; θ;ϕÞϵðϕÞ;

ξ:ω30 ¼ −
1

2
ðΛÞϵ0ðϕÞ þ h1ðt; θ;ϕÞϵðϕÞ; ð42Þ

where g1;2ðt; θ;ϕÞ; h1;2ðt; θ;ϕÞ are functions which depend
on Λ;Ω; A; B; C and their derivatives. First we consider the
bulk symplectic structure,

Ωðδ; δξÞ ¼ −
1

16πG

Z
∂M

½ðξ:ωIJÞδΣIJ − ðξ:ΣIJÞ ∧ δωIJ�:
ð43Þ

We note that

ðξ:ω10ÞδΣ10 − ðξ:Σ10Þδω10

¼ g1ϵδ

�
N2Λ
A

�
dθ ∧ dϕþ

�
N2Λϵ
A

�
δg1dθ ∧ dϕ; ð44Þ

ðξ:ω30ÞδΣ30 − ðξ:Σ30Þδω30

¼
�
−
1

2
Λϵ0 þ h1ϵ

�
δðN2BÞdϕ ∧ dθ

− ð−N2ϵ0 þ N2BϵÞδh1dθ ∧ dϕ: ð45Þ

It is therefore at once evident that the contribution from
the bulk symplectic structure is integrable provided we
assume δϵ ¼ 0.
For the vector fields ξ in question, we also need to check

if the charges are still integrable with the addition of the
boundary symplectic current. Using the expressions for
δξA; δξB; δξC from Appendix A we see that this contribu-
tion is equal to

1

A
ðδξAδB − δξBδAÞ ¼

1

A
ð−ϵ0Aþ ϵ∂ϕAÞδB

−
1

A
ð−ϵ00 þ ϵ∂ϕBþ ϵ0BÞδA: ð46Þ

We note that the first and the third term are integrable. So
we concentrate on the other terms

ϵ∂ϕðlogAÞδB − ϵ∂ϕBδðlogAÞ − ϵ0BδðlogAÞ
¼ ∂ϕ½ϵðlogAÞδB� − ϵðlogAÞδ∂ϕB − ϵ0ðlogAÞδB
− ϵ∂ϕBδðlogAÞ − ϵ0BδðlogAÞ

≡ −δðϵðlogAÞ∂ϕBÞ − δðϵ0BðlogAÞÞ; ð47Þ

where we have omitted the first term, while going from the
first to the second expression, as it is a total ϕ derivative and
does not contribute to the integral. So it follows that the
charges are still integrable. Moreover for the ANHEK

background (for which A ¼ 1 and B ¼ 0) the boundary
symplectic structure does not contribute to the
Hamiltonian. So, for the given background one can set
the Hamiltonian function to be

Hξ ¼
�
−

1

16πG

Z
∂M

N2Λ3ϵdθ ∧ dϕ

�
: ð48Þ

E. Entropy calculations

To calculate the entropy we choose an approach outlined
in [5] and used in [22]. The charge for the vector field ξ has
been calculated in Sec. III D. It therefore follows that

H½ξm;ξn� ¼ −
1

16πG

Z
∂M

N2Λ3ðϵmϵ0n − ϵnϵ
0
mÞdθ ∧ dϕ

¼ −
1

16πG
iðm − nÞ2πδmþn;0 × 8πG

¼ −2imJδmþn;0: ð49Þ

Putting this in the expression for the Poisson bracket,
we get

½Hξm; Hξn � ¼ −iJm3δmþn;0;

i½Hξm; Hξn � ¼ Jm3δmþn;0: ð50Þ

Comparing this with the Virasoro algebra,

i½Hm;Hn� ¼ ðm − nÞHmþn þ
c
12

ðm3 −mÞδmþn;0: ð51Þ

It then follows that

i½H1; H−1� ¼ 2H0 ¼ J;

i½H2; H−2� ¼ 4H0 þ
c
2
¼ 8J: ð52Þ

One can now solve the above system of linear algebraic
equations for c and H0, which gives

c ¼ 12J; H0 ¼
J
2
: ð53Þ

Now using the Cardy formula:

S ¼ 2π

ffiffiffiffiffiffiffiffiffi
cH0

6

r
¼ 2πJ; ð54Þ

which is in accordance with the Bekenstein-Hawking
entropy formula. The Planck’s constant in the formula
can be recovered by the naive quantization
iℏ½Hm;Hn� → ½Hm;Hn�.
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IV. HOLST ACTION

In the first order formulation, both the Holst and Palatini
actions give the same equations of motion, viz. Einstein’s
equations in spite of the fact that the two actions differ by a
term which is not a total derivative. Therefore, NHEK is a
solution of both these actions. It is therefore legitimate to
check whether under NHEK boundary conditions the use of
the Holst action gives a different result from the Palatini
action.
The Holst action in the bulk is given by

SH ¼ −
1

16πG

Z
M

ΣIJ ∧
�
FIJ þ 1

γ
�FIJ

�
; ð55Þ

where �FIJ ¼ 1
2
ϵIJKLF

KL, γ is the Immirzi parameter.
The symplectic current is then given by

JHðδ1; δ2Þ ¼ −
1

8πG

�
δ½1ΣIJ ∧ δ2�

�
ωIJ þ 1

γ
�ωIJ

��
: ð56Þ

On half-shell i.e. if the torsion-free conditions hold
then the symplectic current simplifies [8] and is then
given by

JHðδ1; δ2Þ ¼ −
1

16πG
ðδ½1ΣIJ ∧ δ2�ωIJÞ

þ 1

8πGγ
dðδ½1eI ∧ δ2�eIÞ: ð57Þ

We first note that the first term in the above expression is
the usual Palatini term (denoted by Jp in the next
expression). To construct the hypersurface-independent
symplectic structure we note that on shell,

dJH ¼ 0: ð58Þ

This implies that when integrated over a closed region
of spacetime bounded by M1 ∪ M2 ∪ B (where B is a
portion of the boundary of spacetime given by r → ∞ in
our case),

�Z
M1

−
Z
M2

þ
Z
r→∞

�
JP

þ
�Z

M1

−
Z
M2

þ
Z
r→∞

�
dðδ½1eI ∧ δ2�eIÞ ¼ 0; ð59Þ

whereM1;M2 are the initial and final Cauchy surfaces that
asymptote to constant time slices.
We note that the second term is always zero. So the

Immirzi parameter can never appear in the hypersurface-
independent symplectic structure calculated from the Holst
action. Therefore the Holst term modifies neither the
Poisson bracket nor the Hamiltonian no matter what
geometry or boundary conditions one is considering.

Thus if one uses the Holst action instead of the Palatini
action the semiclassical entropy is still the same as that
calculated from the Palatini action and is therefore inde-
pendent of the Immirzi parameter.

V. DISCUSSION

Apart from the motivations pointed out in the
Introduction, the first order formalism gives a cleaner
calculation. For example, it is evident that the desired
central extension comes from terms like ðξ:ωIJÞdðξ:ΣIJÞ
and dðξ:ωIJÞ ∧ ξ:ΣIJ. Therefore, from the expressions of
the tetrads and connections it is possible to predict which
vector field will give an m3 term.
It seems that in the second order formulation the

boundary symplectic structure has been studied only in
the context of asymptotically flat geometries. Such studies
have not been made in symmetry-based approaches in the
second order formulation. Therefore, the symplectic struc-
ture given in [4] may not be hypersurface independent for
the boundary conditions appropriate for the NHEK geom-
etry. This has been pointed out for Kerr/CFT in [14].
In this case the boundary symplectic structure does not

vanish. A nonvanishing boundary symplectic structure
implies that the bulk symplectic structure alone is not
hypersurface independent. This would precisely give a
Hamiltonian calculated from the bulk symplectic structure
to be hypersurface dependent. Since for the NHEK back-
ground and the vector fields generating the DiffS1, the
Hamiltonian calculated from the bulk symplectic structure
is already time independent; it was expected that at least for
ξ the boundary symplectic structure should not contribute.
However the results of Sec. III B show that there is a
nontrivial contribution to the central charge from the
boundary symplectic structure.
We show, by explicit calculation, that only if the

boundary symplectic structure is taken into account i.e.
one works with a truly hypersurface-independent symplec-
tic structure, the entropy results match with those obtained
in second order formulation. So even though the results do
not change we think that the relevance and importance of
the boundary symplectic structure has been fully conveyed
in this work.

VI. CONCLUSION

We studied the Kerr/CFT correspondence using the
symplectic structure in the first order formulation of
gravity. The boundary symplectic structure was studied.
It was shown that it does not vanish. The results obtained
are then in agreement with those already obtained in the
second order formulation. We studied the effect of adding
the Holst term and showed that it does not contribute.
It is known that the Immirzi parameter labels the

nonequivalent quantization in LQG. It is also believed that
a fine-tuning of the Immirzi parameter is required in order
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to reproduce the BH entropy formula. However, recently in
[17] it has been argued that the Immirzi parameter is not so
relevant in getting the semiclassical value for BH entropy.
Our result that the entropy formula is independent of the
Immirzi parameter is consistent with the claim that it plays
no fundamental role in the quantum theory.
It will be interesting though to see if the Immirzi

parameter contributes to Wald entropy for NHEK. Wald
prescription for the black hole entropy works only for
bifurcate Killing horizons. Hence, a straightforward imple-
mentation of this method to the case of extremal Kerr is not
possible. A widely accepted approach is to calculate the
entropy for a nonextremal black hole and then take the
extremal limit or along the lines of [23] for instance.
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APPENDIX: A VARIATIONS OF A;B AND C

Note that δξA is not equal to LξA. Rather it has to be
calculated from the action of Lξ on the fields,

Lξe0 ¼ Nð−rϵ0Adtþ rϵ∂ϕAdtÞ: ðA1Þ

It therefore follows that δξA ¼ −ϵ0Aþ ϵ∂ϕA.
Similarly

Lξe3 ¼ NΛ

�
ϵ0

C
−
ϵ∂ϕC

C2

�
dϕþ NΛrð−ϵ0Cþ ϵ∂ϕCÞdt;

ðA2Þ

which implies

δξ

�
1

C

�
¼ ϵ0

C
−
ϵ∂ϕC

C2
: ðA3Þ

Therefore δξC ¼ −ϵ0Cþ ϵ∂ϕC. For consistency one can
check that the dt term gives the same variation,

Lξe1 ¼ NðBϵ0 þ ϵ∂ϕB − ϵ00Þdϕ: ðA4Þ

Therefore δξB ¼ Bϵ0 þ ϵ∂ϕB − ϵ00.

APPENDIX: B FORM OF THE CONNECTION

The form of the connection calculated from the zeroth
order tetrad is of the form,

0ω10 ¼ −
1

2

2Aðt; θ;ϕÞ2 − ΛðθÞ2Cðt; θ;ϕÞ2
Aðt; θ;ϕÞ rdt

−
1

2

Cðt; θ;ϕÞ2 ∂
∂θBðt; θ;ϕÞ

Aðt; θ;ϕÞ dθ þ 1

2

ΛðθÞ2
Aðt; θ;ϕÞ dϕ;

0ω20 ¼ −
ðð ddθNðθÞÞAðt; θ;ϕÞ2 þ NðθÞAðt; θ;ϕÞ ∂

∂θAðt; θ;ϕÞ − NðθÞΛðθÞ2Cðt; θ;ϕÞ ∂
∂θCðt; θ;ϕÞÞ

NðθÞAðt; θ;ϕÞ rdt

−
1

2

Cðt; θ;ϕÞ2 ∂
∂θBðt; θ;ϕÞ

Aðt; θ;ϕÞ
dr
r
þ 1

2

−Bðt; θ;ϕÞð ∂∂θBðt; θ;ϕÞÞCðt; θ;ϕÞ3 þ 2ΛðθÞ2 ∂
∂θCðt; θ;ϕÞ

Aðt; θ;ϕÞCðt; θ;ϕÞ dϕ;

0ω30 ¼ 1

ΛðθÞAðt; θ;ϕÞ
�
Bðt; θ;ϕÞCðt; θ;ϕÞAðt; θ;ϕÞ2 − Bðt; θ;ϕÞCðt; θ;ϕÞ3ΛðθÞ2

− Cðt; θ;ϕÞAðt; θ;ϕÞ ∂
∂ϕAðt; θ;ϕÞ þ Cðt; θ;ϕÞ2ΛðθÞ2 ∂

∂ϕCðt; θ;ϕÞ
�
rdt

þ 1

2

Cðt; θ;ϕÞΛðθÞ2
ΛðθÞAðt; θ;ϕÞ

dr
r
þ ΛðθÞ ∂

∂θCðt; θ;ϕÞ
Aðt; θ;ϕÞ dθ

−
1

2

1

Cðt; θ;ϕÞ2ΛðθÞAðt; θ;ϕÞ
�
−2Cðt; θ;ϕÞ2ΛðθÞ2 ∂

∂ϕCðt; θ;ϕÞ þ Bðt; θ;ϕÞCðt; θ;ϕÞ3ΛðθÞ2
�
dϕ;

0ω21 ¼ −
d
dθNðθÞ
NðθÞr dr −

1

2

2Bðt; θ;ϕÞ d
dθNðθÞ þ NðθÞ ∂

∂θBðt; θ;ϕÞ
NðθÞ dϕ;

0ω31 ¼ 1

2

Cðt; θ;ϕÞΛðθÞ2
ΛðθÞ rdtþ 1

2

Cðt; θ;ϕÞ ∂
∂θBðt; θ;ϕÞ

ΛðθÞ dθ;
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0ω32 ¼ Cðt; θ;ϕÞðΛðθÞ d
dθNðθÞ þ NðθÞ d

dθΛðθÞÞ
NðθÞ rdtþ 1

2

Cðt; θ;ϕÞ ∂
∂θBðt; θ;ϕÞ

ΛðθÞ
dr
r

þ 1

2

1

Cðt; θ;ϕÞ2NðθÞΛðθÞ
�
NðθÞBðt; θ;ϕÞ

� ∂
∂θBðt; θ;ϕÞ

�
Cðt; θ;ϕÞ3 þ 2

�
d
dθ

NðθÞ
�
Cðt; θ;ϕÞΛðθÞ2

þ 2NðθÞΛðθÞ
�
d
dθ

ΛðθÞ
�
Cðt; θ;ϕÞ − 2NðθÞΛðθÞ2 ∂

∂θCðt; θ;ϕÞ
�
dϕ; ðB1Þ

1ω10 ¼ −
1

2

Cðt; θ;ϕÞ2 ∂
∂t Bðt; θ;ϕÞ

Aðt; θ;ϕÞ rdtþ 1

2

− ∂
∂t Bðt; θ;ϕÞ
Aðt; θ;ϕÞ dϕ;

1ω30 ¼ ΛðθÞ ∂
∂t Cðt; θ;ϕÞ

Aðt; θ;ϕÞ rdtþ 1

2

Cðt; θ;ϕÞð− ∂
∂t Bðt; θ;ϕÞÞ

ΛðθÞAðt; θ;ϕÞ
dr
r

−
1

2

1

ðCðt; θ;ϕÞÞ2ΛðθÞAðt; θ;ϕÞ
�
Bðt; θ;ϕÞ

� ∂
∂t Bðt; θ;ϕÞ

�
Cðt; θ;ϕÞ3 − 2ΛðθÞ2 ∂

∂t Cðt; θ;ϕÞ
�
dϕ;

1ω31 ¼ 1

2

Cðt; θ;ϕÞð ∂∂t Bðt; θ;ϕÞÞ
ΛðθÞ rdt: ðB2Þ
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