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By applying scaling transformations to distance and time, we obtain the first post-Newtonian
equations of motion for a relativistic circular restricted three-body problem, where the Newtonian terms
do not depend on the separation of a parent binary, though the post-Newtonian terms do. The post-
Newtonian contributions consist of the relativistic effects from the circular orbital frequencies between
the primaries and those from the primaries to a third body. When the former post-Newtonian
contribution and the nonrelativistic terms are considered, the post-Newtonian dynamics are qualitatively
different from the Newtonian dynamics if the separation between the two primaries is insufficiently
large. When the latter post-Newtonian contribution is also included, some orbits become unstable. By
scanning the dependence of the dynamics on the separation with fast Lyapunov indicators, the
separation is classified into three domains for dynamically unstable, bounded chaotic, and bounded
regular dynamics.
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I. INTRODUCTION

In the early 20th century, Einstein’s general relativity
successfully accounted for the previously unexplained
discrepancy between observations of the advance of the
perihelion of Mercury’s orbit and the predictions of
Newtonian mechanics. Since then, it has been regarded
as a more accurate theory of gravity than that of Newton.
As mentioned in Refs. [1–4], the influence exerted by
general relativity upon the dynamics of the bodies in our
Solar System should not be neglected. In particular, Wanex
[2] demonstrated that the difference between the final
positions of Newtonian and relativistic trajectories in the
restricted three-body problem made of a space probe, the
Earth, and the Moon becomes considerably larger for
bounded chaotic orbits than for bounded regular orbits.
This is the so-called “chaotic amplification effect” in the
relativistic problem. Note that post-Newtonian (PN)
approximations of general relativistic systems were mainly
used because Einstein’s field equations cannot be rigor-
ously solved in most cases.
The onset of strong chaos in compact objects, including

neutron stars and black holes, can be found in many
references (see, e.g., Refs. [5–8]). The chaotic dynamics
of PN conservative systems of binary spinning compact
objects are clearly understood [9–12]. Moreover, there are
several authors [9,10,13,14] who have tried to use extreme
sensitivity to initial spin angles in fractal basin boundaries
to signal the onset of chaos during the final orbits before the
merger of the binary when 2.5PN radiation reaction effects
are included. However, whether the chaotic behavior found

in the nondissipative 2PN dynamics can leave an imprint on
the dissipative 2.5PN dynamics remains unclear since the
fractal basin boundary method itself is built on an unstable,
fractal set of orbits. Other methods, such as surface of
section and Lyapunov exponents, are not useful for a
dissipative system. The method of surface of section is
effective for a conservative system whose phase space has
four dimensions, but a two-dimensional surface of section
cannot be obtained because of energy loss that leads to a
shrinking orbital radius, and Lyapunov exponents cannot
distinguish instability caused by the onset of chaos from
instability because of merger caused by energy emission.
As claimed in Ref. [10], “There is no clear way to identify
irregular behavior in merging binaries when dissipation is
included.”
Recently, the PN effects on Lagrange’s collinear sol-

utions and the equilateral triangular solution of the three-
body problem were investigated [15,16]. The compact
three-body dynamics with gravitational-wave emission
was also considered. For example, Wardell [17,18] studied
resonance behaviors between the binary and third-mass
orbits when the effects of gravitational radiation reaction
were included in a classical three-body system. Schnittman
[19] discussed the location and stability of the Lagrange
equilibrium points, L4 and L5, in the circular restricted
three-body problem with gravitational radiation losses from
two massive bodies. There were similar conclusions when
the 1PN terms were further added [20]. However, chaos in
the PN three-body problems was never discussed in these
studies.
It is worth emphasizing that the separation of the

primaries and angular speeds of the primaries with respect
to an inertial frame in the PN equations of motion for the*xwu@ncu.edu.cn
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circular restricted three-body problem were directly con-
sidered as one geometric unit in Ref. [1]. Therefore, the
PN contributions seem to be independent of the separa-
tion and angular speed. In this study, we let the PN
contributions appear in the PN system and apply scaling
transformations to distance and time so that the
Newtonian terms do not depend on the separation, but
the post-Newtonian terms do. Since it is difficult to
identify chaotic behavior in merging orbits with radiative
reaction, we shall look for chaotic behavior when the
system is conservative and the radiation reaction is turned
off. Thus, we shall investigate how the separation affects
the dynamics of order and chaos in the PN circular
restricted three-body problem.

II. POST-NEWTONIAN EQUATIONS

On the basis of the PN gravitational theory of Einstein,
Infeld, and Hoffmann [21], the Lagrangian Lkþ1 for a
single body m, with position r and velocity u, in a
gravitational field produced by k other bodies is

Lkþ1 ¼ −mc2 þ 1

2
mu2 þ Gm

Xk
i¼1

mi

jr − rij

þ 1

8c2
mu4 −

G2m
2c2

�Xk
i¼1

mi

jr − rij
�

2

−
Gm
2c2

Xk
i¼1

mi

jr − rij
·

�
7ðu · uiÞ

þ ðni · uÞðni · uiÞ − 3ðu2 þ u2
i Þ

þ 2G
Xk
j≠i

mj

jri − rjj
�
þOðc−4Þ; ð1Þ

where m and mi are the masses of these bodies, c denotes
the velocity of light, G stands for the gravitational constant,
and the unit vector from body i to body kþ 1
is ni ¼ ðr − riÞ=jr − rij.
Let us consider a planar circular restricted three-body

problem in which two primaries, having a separation a,
move in circular orbits around their center of mass with an
angular speed ω relative to an inertial frame, and a third
mass, m, is so small that it does not perturb the circular
motions of the binary; in other words, the two primaries
affect the third body gravitationally, but the third body does
not have any gravitational effect upon the two primaries
[22]. We take m1 þm2 ¼ M, dimensionless masses μ1 ¼
m1=M and μ2 ¼ m2=M, and the geometrized unit G ¼ 1.
Note that we continue to use c so as to clearly show the PN
contributions in this section, and take c ¼ 1 in our later
numerical simulations. To adopt dimensionless variables,
we assume that the distance and time t are measured in
terms ofM. Because of the circular motions, bodies 1 and 2
have position coordinates r1 ¼ ðX̄1 cosωt; X̄1 sinωtÞ and

r2¼ðX̄2cosωt;X̄2sinωtÞ, with X̄1 ¼ −aμ2 and X̄2 ¼ aμ1,
and velocities u1 ¼ ð−X̄1ω sinωt; X̄1ω cosωtÞ and
u2 ¼ ð−X̄2ω sinωt; X̄2ω cosωtÞ in the inertial frame. In
the rotating frame, their positions and velocities become
R̄1 ¼ ðX̄1; 0Þ, R̄2 ¼ ðX̄2; 0Þ, Ū1 ¼ ð0; X̄1ωÞ, and Ū2 ¼
ð0; X̄2ωÞ. For the third body as a test particle, the position
r ¼ ðx; yÞ and velocity u ¼ ð_x; _yÞ in the inertial frame can
be transformed into the position R̄ ¼ ðX̄; ȲÞ and the
velocity Ū ¼ ð _̄X; _̄YÞ in the rotating frame,

x ¼ X̄ cosωt − Ȳ sinωt;

y ¼ X̄ sinωtþ Ȳ cosωt;

_x ¼ ð _̄X − ωȲÞ cosωt − ð _̄Y þ ωX̄Þ sinωt;
_y ¼ ð _̄X − ωȲÞ sinωtþ ð _̄Y þ ωX̄Þ cosωt: ð2Þ

The Lagrangian of the third body in the rotating frame is
L̄ ¼ ðL3 þmc2Þ=m, i.e.,

L̄ ¼ μ1
d1

þ μ2
d2

þ 1

2
ðŪ2 þ 2Āωþ R̄2ω2Þ þ 1

c2
L̄2;

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX̄ − X̄1Þ2 þ Ȳ2

q
;

d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX̄ − X̄2Þ2 þ Ȳ2

q
;

Ū2 ¼ _̄X
2 þ _̄Y

2
;

Ā ¼ _̄Y X̄− _̄X Ȳ;

R̄2 ¼ X̄2 þ Ȳ2: ð3Þ

The PN part L̄2 has a long expression given by the
following equation:

L̄2 ¼
1

8
ðŪ2 þ 2Āωþ R̄2ω2Þ2 − μ1μ2

a

�
1

d1
þ 1

d2

�

−
�
μ21
2d21

þ μ22
2d22

þ μ1μ2
d1d2

�
þ 3

2

�
μ1
d1

þ μ2
d2

�

· ðŪ2 þ 2Āωþ R̄2ω2Þ þ 3

2
ω2

�
μ1X̄2

1

d1
þ μ2X̄2

2

d2

�

−
7

2
ωð _̄Y þ ωX̄Þ

�
μ1X̄1

d1
þ μ2X̄2

d2

�
−
1

2
ωȲð _̄X − ωȲÞ

·

�
μ1X̄1ðX̄ − X̄1Þ

d31
þ μ2X̄2ðX̄ − X̄2Þ

d32

�

−
1

2
ωȲ2ð _̄Y þ ωX̄Þ

�
μ1X̄1

d31
þ μ2X̄2

d32

�
: ð4Þ

The angular speed ω of the primaries in the first line of
Eq. (3) (which was given in Ref. [1]) is

ω ¼ ω0ð1þ ω1=c2Þ; ð5Þ
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ω0 ¼ a−3=2; ð6Þ

ω1 ¼ ðμ1μ2 − 3Þ=ð2aÞ; ð7Þ

ω2 ¼ ω2
0ð1þ 2ω1=c2Þ: ð8Þ

Here, ω0 and ω0ω1 are the Newtonian angular speeds of the
primaries and the PN angular velocity, respectively.
However, ω ¼ ω0 in Eq. (4) because L̄2 is accurate to
the 1PN level. Substituting Eqs. (5) and (8) into the first line
of Eq. (3), we split the Lagrangian into three parts,

L̄ ¼ L̄0 þ c−2L̄1 þ c−2L̄2; ð9Þ

L̄0 ¼
μ1
d1

þ μ2
d2

þ 1

2
ðŪ2 þ 2Āω0 þ R̄2ω2

0Þ; ð10Þ

L̄1 ¼ ω0ω1ðĀþ R̄2ω0Þ: ð11Þ

Obviously, L̄0 represents the Newtonian restricted three-
body problem [22]. L̄1 is a PN contribution to the circular
orbital frequency between the primaries, and L̄2, with
ω ¼ ω0, is another PN contribution from the primaries
to the third body. In other words, the 1PN terms between
bodies 1 and 2, those from body 1 to body 3, and those from
body 2 to body 3 are all considered, whereas the 1PN terms
from body 3 to bodies 1 and 2 are neglected. This
consideration for incorporating these fully 1PN-accurate
equations is based on the case of the two primaries having
comparable masses. If m1 ≫ m2, we are interested only in
the cross PN terms between the central body 1 and body 2

and those between the central body 1 and body 3, and not in
the PN terms between bodies 2 and 3, because the former
PN contributions are more important than the latter ones.
The PN terms between bodies 2 and 3 have no effect on the
results and are computationally troublesome. Therefore,
they can be neglected; that is, neither L̄2 with ω ¼ ω0 in
Eq. (4) nor ω1 in Eq. (7) contains any term associated with
the factor μ2. This suggestion was borrowed from a recent
paper by Will [23].
The Lagrangian equations of motion derived from

Eq. (9), as the PN equations of motion for body 3, are
given by the following equation:

d
dt

∂L̄
∂ _̄X

¼ ∂L̄
∂X̄ ;

d
dt

∂L̄
∂ _̄Y ¼ ∂L̄

∂Ȳ : ð12Þ

Their detailed expressions are

̈X̄ ¼
�
ω0ð2 _̄Y þ ω0X̄Þ −

μ1ðX̄ − X̄1Þ
d31

−
μ2ðX̄ − X̄2Þ

d32

�

þ 2ω0ω1ð _̄Y þ ω0X̄Þc−2 þ P̄c−2; ð13Þ

̈Ȳ ¼
�
ω0ðω0Ȳ − 2 _̄XÞ − Ȳ

�
μ1
d31

þ μ2
d32

��

þ 2ω0ω1ðω0Ȳ − _̄XÞc−2 þ Q̄c−2; ð14Þ

where P̄ and Q̄ are derived from L̄2 and are given by the
following equations:

P̄ ¼ 6ω0

�
μ1
d1

þ μ2
d2

��
_̄Y þ 1

2
ω0X̄

�
þ μ1μ2

a
·

�
X̄ − X̄1

d31
þ X̄ − X̄2

d32

�
þ ω0

�
4 _̄Y þ 7

2
ω0X̄

�
·

�
μ1X̄1ðX̄ − X̄1Þ

d31
þ μ2X̄2ðX̄ − X̄2Þ

d32

�

þ
�
μ1ðX̄ − X̄1Þ

d31
þ μ2ðX̄ − X̄2Þ

d32

��
μ1
d1

þ μ2
d2

−
3

2
ðŪ2 þ 2Āω0 þ R̄2ω2

0Þ þ 3 _̄Xð _̄X − ω0ȲÞ
�
− 3ω0ð2 _̄Y þ ω0X̄Þ

�
μ1
d1

þ μ2
d2

�

þ
�
μ1ðX̄ − X̄1Þ

d31
þ μ2ðX̄ − X̄2Þ

d32

��
3

�
μ1
d1

þ μ2
d2

�
þ 1

2
ðŪ2 þ 2Āω0 þ R̄2ω2

0Þ þ ð _̄X − ω0ȲÞ2
�

þ 3

�
μ1
d31

þ μ2
d32

�
_̄Y · ð _̄X − ω0ȲÞȲ −

7

2
ω2
0

�
μ1X̄1

d1
þ μ2X̄2

d2

�
−
3

2
ω2
0

�
μ1X̄2

1ðX̄ − X̄1Þ
d31

þ μ2X̄2
2ðX̄ − X̄2Þ
d32

�

þ 3

2
ω2
0Ȳ

2

�
μ1X̄2

1ðX̄ − X̄1Þ
d51

þ μ2X̄2
2ðX̄ − X̄2Þ
d52

�
−
�
μ1
d31

þ μ2
d32

�
ð _̄Y þ ω0X̄Þðω0Ȳ − _̄XÞȲ; ð15Þ

Q̄¼ −
�
μ1X̄1

d31
þ μ2X̄2

d32

��
3 _̄X _̄Yþ7ω0X̄

�
_̄X −

1

2
ω0Ȳ

��
þω0

�
μ1X̄2

1

d31
þ μ2X̄2

2

d32

��
4 _̄X −

5

2
ω0Ȳ

�
þ μ1μ2

a
Ȳ

�
1

d31
þ 1

d32

�
þ 3

2
ω2
0Ȳ

3

·

�
μ1X̄2

1

d51
þ μ2X̄2

2

d52

�
− ð _̄Y þω0X̄Þðω0Ȳ − _̄XÞ

�
μ1ðX̄ − X̄1Þ

d31
þ μ2ðX̄ − X̄2Þ

d32

�
þ
�
μ1
d31

þ μ2
d32

��
Ȳ

�
4

�
μ1
d1

þ μ2
d2

�

− ðŪ2 þ 2Āω0 þ R̄2ω2
0Þ þ ð _̄Y þω0X̄Þ2

�
þ 3ð _̄Y þω0X̄Þ · ð _̄X X̄þ _̄Y ȲÞ

�
: ð16Þ
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It should be pointed out that P̄ and Q̄ are functions of a and
ω0, labeled as P̄ða;ω0Þ and Q̄ða;ω0Þ. In addition, the PN
equations of motion given by Eqs. (13)–(16) are slightly
different from those given in Ref. [1], where a and ω0 were
either set to 1 or were missing entirely.
To guarantee that both the distance of the binary and the

angular velocity of the binary with respect to the inertial
frame in the Newtonian restricted three-body problem are
set to one geometric unit, we transform the distance and
time as X̄ ¼ aX, Ȳ ¼ aY, and t ¼ τ=ω0. In other words, the
units of the new space and time variables are a and 1=ω0,
respectively. In this case, we have _̄X ¼ aω0X0, _̄Y ¼ aω0Y 0,
̈X̄ ¼ aω2

0X
″, and ̈Ȳ ¼ aω2

0Y
″, where a prime denotes a

derivative with respect to the new time variable τ. On the
basis of Eqs. (15) and (16), we obtain P ¼ P̄ð1; 1Þ and
Q ¼ Q̄ð1; 1Þ by dropping all bars over the letters like A and
replacing _̄X and _̄Y with X0 and Y 0. Using these scaling
transformations to distance, time, velocity, and accelera-
tion, we can readjust Eqs. (13) and (14) as follows:

X″ ¼
�
2Y 0 þ X −

μ1ðX − X1Þ
D3

1

−
μ2ðX − X2Þ

D3
2

�

þ 2ω1ðY 0 þ XÞc−2 þ ðP=aÞc−2; ð17Þ

Y″ ¼
�
Y − 2X0 − Y

�
μ1
D3

1

þ μ2
D3

2

��

þ 2ω1ðY − X0Þc−2 þ ðQ=aÞc−2; ð18Þ

where X1 ¼ −μ2, X2 ¼ μ1, and

D1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX − X1Þ2 þ Y2

q
;

D2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX − X2Þ2 þ Y2

q
: ð19Þ

Here are three points of illustration. (i) The terms in the
square brackets, the ω1 terms, and the P and Q terms in
Eqs. (17) and (18) are derived from the Newtonian
Lagrangian L0, the PN Lagrangian L1 caused by the
relativistic effects between the primaries, and the PN
Lagrangian L2 from the relativistic effects on the primaries
to the third body, respectively. Thus, there is the total
Lagrangian L ¼ L0 þ L1 þ L2. (ii) Maindl and Dvorak [1]
directly used the customary units of a ¼ ω0 ¼ 1; however,
we adopt scaling transformations that can completely
satisfy this requirement. In particular, an explicit difference
between the two treatments lies in the fact that our PN
Lagrangians, L1 and L2, depend on the separation a, unlike
theirs. This lets us investigate how the separation affects the
dynamics of the PN restricted three-body problem L.
(iii) L0 corresponds to the Jacobian constant [22]

CJ ¼ X2 þ Y2 þ 2

�
μ1
D1

þ μ2
D2

�
− X02 − Y 02; ð20Þ

similarly, L also holds its PN Jacobian constant, which can
be found in Ref. [1]. However, the PN Jacobian constant is
not exactly conserved, but it is approximately conserved in
the 1PN level.

III. THE PN LAGRANGIAN DYNAMICS

An eighth- and ninth-order Runge-Kutta-Fehlberg algo-
rithm [RKF8(9)] with a variable time step is used to
integrate Eqs. (17) and (18). First, we consider its appli-
cation to the Newtonian problem, L0, and take the
Newtonian Jacobian constant CJ ¼ 3.07, the mass param-
eter μ2 ¼ 10−3, orbit 1 with initial values X ¼ 0.55, Y ¼ 0,
X0 ¼ 0, and Y 0 > 0 given by Eq. (20), and orbit 2 with only
slightly different initial values of X ¼ 0.56, and Y and X0
unchanged. RKF8(9) performs well because it can give a
value for the Jacobian constant that is accurate to a
magnitude of order 10−12 or so for both orbit 1 and orbit
2 when the integration time τ reaches 106. In fact, orbit 1,
made of three islands, is ordered, but orbit 2 is chaotic, as
shown by the Poincaré surface of section in Fig. 1. The
features of the two orbits can also be found in Ref. [22]. It is
not easy to find the onset of chaos for a > 1 if the
nonscaling Newtonian problem, L̄0, which depends on
the separation and angular speed of the primaries, is solved
numerically. This is why we used the scaled equations (17)
and (18). Besides the two orbits, chaotic orbit 3 with two
unstable hyperbolic fixed points and a regular orbit 4 with a
quasiperiodic Kolmogorov-Arnold-Moser (KAM) torus are

FIG. 1 (color online). Poincaré surface of section on the plane
Y ¼ 0 with Y 0 > 0 for four trajectories in the Newtonian circular
restricted three-body problem, L0, with the Jacobian constant
CJ ¼ 3.07 and the mass μ2 ¼ 0.001. Orbits 1, 2, 3, and 4 have
initial values Y ¼ 0 and X0 ¼ 0 and their starting values of X are
0.55, 0.56, 0.60, and 0.68, respectively. Orbit 1 (consisting of
three islands) and orbit 4 (with a torus) are typically regular, but
orbits 2 and 3—with many points covering a larger region—turn
out to be chaotic.
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plotted clearly. Let us focus on the dynamical evolution of
the four orbits when the PN effects are included.

A. The L0 þ L1 system

When the PN term L1 is added to the Newtonian part
L0, the obtained system L0 þ L1 is dependent upon
the separation a of the primaries. It can be seen from
Fig. 2(a) that no chaos exists for a ¼ 50. Here are some
details of the orbital dynamical features: orbit 1 is varied
from three islands to many, but originally chaotic orbit 2
or 3 evolves into a KAM torus; orbit 4 remains a torus.
When a ¼ 100, orbit 1 also becomes chaotic, and the
chaos is stronger for orbit 1 than for orbit 2; orbit 3 turns
out to have three islands. See Fig. 2(b) for more
information. For a ¼ 150, the dynamics differ.
Figure 2(c) shows that the strength of the chaos in orbit
1 increases further, whereas three islands occur for orbit
2, and orbit 3 becomes one torus.
It can be concluded from these numerical simulations

that the PN contribution from the angular speeds of the
primaries is important in the orbital dynamics of the third
body. In other words, the dynamics are closely related to
the separation a of the primaries if a is insufficiently large.
Regular single-island orbits in the Newtonian case evolve
into regular multi-island orbits in the PN approximation,
and even change to have strong chaoticity. On the other
hand, chaotic orbits may be varied as ordered single- or
multi-island orbits. In addition, the PN effect does not
destroy the orbital stability at all; namely, a bounded orbit
in the Newtonian counterpart cannot run to infinity and still
remain bounded in the PN case. Of course, if a is extremely
large, then the relativistic effect becomes too weak to affect
the dynamics. This shows that the dynamics in the
relativistic case are basically the same as that in the

nonrelativistic case. What about the evolution of the four
orbits when the PN term L2 is also included? We explain
this in subsequent sections.

B. The L system

Now, all PN contributions, L1 and L2, are considered.
As shown in Figs. 2(d)–2(f), the dynamical properties of
these orbits in the L system are completely different
from those in the L0 þ L1 system for the same sepa-
ration a.
Taking a small separation, such as a ¼ 50, we find that

these orbits seem to be chaotic. However, whether they
are indeed chaotic is unclear because they are unstable
and the method of Poincaré section is valid only in
diagnosing the dynamics of two-dimensional bounded,
conservative systems. The mechanism of instability in
this case is inconsistent with that of the scattering
behavior of the test particle around the dynamically
unstable point L5 [20]. In our problem, such a small
separation gives rise to strong relativistic effects that
make the orbits unstable when the radiation reaction is
turned off; however, in Ref. [20] gravitational wave
losses caused the orbital instability of the test particle.
In addition, the speed of the escape of orbits for the
former is much slower than that for the latter.
With increased separation—for example, a ¼ 100—the

escape of orbits dies out. It is easy to see from Fig. 2(e)
that regular orbit 1, consisting of three islands in the
Newtonian case, becomes bounded and chaotic in the
PN case, but chaotic orbits 2 and 3 become bounded
and ordered orbits. When the separation further increases—
for instance, a ¼ 150—the boundedness of orbits remains.
In Fig. 2(f), both orbits 1 and 2 are chaotic, but orbit 4 is
almost periodic.

a a a

aa

a

FIG. 2 (color online). Poincaré surfaces of section for the four trajectories in Fig. 1 when the PN contributions are included. Three
distinct separations a ¼ 50, 100, and 150 between the primary bodies are considered.
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C. Dependence of the dynamics on a

Besides the method of Poincaré section, the method of
Lyapunov exponents that characterize the average expo-
nential deviation of two nearby orbits is a common tool to
distinguish chaos from order. For convenience, the two-
particle method [24,25] (in place of the variational method)
is often used to calculate the largest Lyapunov exponent,

λ ¼ lim
τ→∞

1

τ
log

dðτÞ
dð0Þ ; ð21Þ

where dðτÞ and dð0Þ denote the distances between two
nearby trajectories at times τ and 0, respectively. One had
better use the initial distance dð0Þ ≈ 10−8 in the double
precision of machine and should adopt appropriate renorm-
alization from time to time. A bounded orbit is said to be
chaotic for λ > 0, but regular for λ ¼ 0. In light of this, the
Lyapunov exponents in Fig. 3(a) can undoubtedly indicate
the regularity of orbit 1 and the chaoticity of orbit 2 in the
Newtonian problem. Unfortunately, sufficiently long inte-
gration times are necessary to get these stabilizing, reliable
values of Lyapunov exponents. Thus, it is computationally
extremely expensive to integrate a large number of orbits.
Instead, fast Lyapunov indicators (FLIs) are a quicker

method to find chaos than the method of Lyapunov
exponents. They were first proposed by Froeschlé et al.
[26], and then developed into the two-nearby-trajectories
method [25] by the following equation:

FLIðtÞ ¼ log10
dðtÞ
dð0Þ : ð22Þ

The choice of dð0Þ ¼ 10−9 is good. The saturation of orbits
occurs due to the chaotic boundary in the case of dðtÞ ¼ 1.

Numerical integration does not last unless renormalization
is implemented. If the sequential number of renormaliza-
tion is k, then the indicator is practically computed by the
following equation:

FLI ¼ −ðkþ 1Þlog10dð0Þ þ log10dðtÞ: ð23Þ

A bounded orbit is chaotic if its indicator grows with time
according to an exponential law, while it is regular if it does
so according to an algebraic law. Through this criterion, we
can know from Fig. 3(b) that orbits 1 and 2 of Fig. 1 are
ordered and chaotic, respectively. Only the integration time,
τ ¼ 3000, is needed to complete this task.
Since the method of FLI is superior to that of Lyapunov

exponents in efficiency, it is used to trace how the dynamics
of orbits 1 and 2 depend on the separation a under the PN
interactions. This operation is performed for varying
distances a, running from 10 to 200 with a span of
Δa ¼ 1, and the value of FLI is obtained after the
integration time is added up to τ ¼ 3000 for each separa-
tion a. During this time, 5 is regarded as a threshold value
of FLI between order and chaos/instability. Any orbit
whose FLI is larger than the threshold is chaotic or
unstable, while all orbits whose FLIs are less than the
threshold are bounded and regular.
Figure 3(c) shows the relationship between the FLI and

the separation a when orbit 1 in the system L0 þ L1 is
chosen as a test orbit. It can be shown that the orbit is
always bounded in all tested cases. There are three ordered
intervals of a: [10, 82], [159, 165], and [174, 200]. The
FLIs at the critical values of a involving 82, 159, 165, and
174 are 2.5, 2.7, 2.4, and 4.2, respectively. As some
examples to check the orbital features, the orbit consists
of five islands for a ¼ 82 in Fig. 4(a), and it becomes three
islands for a ¼ 174 in Fig. 4(b). In practice, the three

FIG. 3 (color online). (a) and (b): The Lyapunov exponents λ and FLIs of orbits 1 and 2 in Fig. 1. (c)–(f): The dependence of FLI on the
separation a from 10 to 200 for orbits 1 and 2 with the PN contributions included.
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islands—like those in the Newtonian counterpart—can
remain when a spans 174. The remaining intervals of a,
[83, 158] and [166, 173], are chaotic. The chaotic features
for a ¼ 83 with FLI ¼ 19.1, a ¼ 157 with FLI ¼ 11, a ¼
166 with FLI ¼ 7.8, and a ¼ 173 with FLI ¼ 12.7 are
similar to those in Figs. 2(b) and 2(c). On the other hand,
when orbit 1 is replaced by orbit 2, the dynamical evolution
as a function of a is displayed in Fig. 3(d). The dynamics
are ordered for a ∈ ½10; 71�∪½126; 200�, a ¼ 122 or

a ¼ 123, while they are chaotic when a ∈ ½72; 121�, a ¼
124 or a ¼ 125. The critical values of a are 71, 72, 121,
122, 123, 124, 125, and 126, which correspond to FLI
values of 2.2, 13.8, 23.5, 1.8, 1.3, 24.5, 10.7, and 4.8,
respectively. For a ¼ 71, orbit 2 is made of many islands,
which are shown in Fig. 4(c). However, the orbit for a ¼ 72
resembles chaotic orbit 2 in Fig. 2(b). In the case of
a ¼ 126, the dynamics are similar to orbit 2 with three
islands in Fig. 2(c).

a
a a

aaa

a a
a
a

FIG. 4. Poincaré surfaces of section in certain cases of Figs. 3(c)–3(f).

FIG. 5. Maximum values of R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
when the integration time is 10000 for each separation a. The maximum values of R larger

than 20 will dramatically increase while the computations last, whereas those less than 1.5 are almost invariant. This implies that the
former dynamics are unbounded and unstable, whereas the latter dynamics are bounded and stable. It is clear that the dynamics of orbit 1
becomes unstable for a ∈ ½10; 88� or a ¼ 108, and that of orbit 2 becomes unstable for a ∈ ½10; 86� or a ¼ 107.

DYNAMICS OF THE POST-NEWTONIAN CIRCULAR … PHYSICAL REVIEW D 89, 124034 (2014)

124034-7



The dynamics of orbit 1 depending on a when the PN
term L2 is also included are shown in Fig. 3(e). The regions
of separation for the FLIs beyond 5 are a ∈ ½10; 89�∪
½99; 105�∪½147; 161�∪f93; 94; 108g. Maximum values of
R beyond 20 during the integration time τ ¼ 10000 in
Fig. 5(a) show that the values of a for the unbounded,
unstable dynamics of orbit 1 are 108 and ½10; 88�. As an
example, the orbit for a ¼ 108 with FLI ¼ 6.9 is an
unstable orbit, which is shown in Fig. 4(i) [resembling
that in Fig. 2(d)]. As mentioned above, the occurrence of
chaos is unclear because an unstable, unbounded orbit does
not necessarily mean chaos even if an orbit and its nearby
orbit diverge exponentially. In addition, in the method of
FLIs—as in the methods of Lyapunov exponents and
Poincaré section—it is very difficult to distinguish the
exponential deviation of a chaotic orbit from that of an
unstable orbit. This being the case, these chaos indicators
are mainly used to diagnose the dynamics of bounded
systems. Of course, bounded chaos exists for
a ∈ ½99; 105�∪½147; 161�∪f89; 93; 94g; see Fig. 4(d) or
orbit 1 of Figs. 2(e) and 2(f) for reference. For the
rest of the values in the interval [10, 200], i.e.,
a ∈ ½109; 146�∪½62; 200�∪f90; 91; 92; 95; 96; 97; 98; 106;
107g, the dynamics are regular. The orbits in Figs. 4(e),
4(f), and 4(h) are some examples of the regular dynamics.
When we use orbit 2 rather than orbit 1 as a test orbit, the
dependence of the dynamics on a in Fig. 3(f) seems to be
slightly different from that in Fig. 3(e). The unstable
domains of a are ½10; 86�∪f107g, which are shown in
Fig. 5(b). In addition, ½91; 95�∪½150; 166�∪f87; 98; 99;
101; 103; 104g and ½108; 149�∪½167; 200�∪f88; 89; 90;
96; 97; 100; 102; 105; 106g are bounded chaotic and
bounded ordered domains of a, respectively. For instance,
the dynamics in Figs. 4(g) and 4(h) are regular, whereas
those in Fig. 4(i) are unstable.
For the reader’s convenience, Table 1 lists thevalues of the

separation a for the dynamically unstable, bounded chaotic,
and bounded regular dynamics in Figs. 3(c)–3(f) and Fig. 5.

IV. SUMMARY

By means of applying scaling transformations to dis-
tance, time, velocity, and acceleration, we worked out the
dynamical equations of the PN circular restricted three-
body problem, derived from the PN Lagrangian. The two
PN contributions, including the relativistic effects from the
circular orbital frequencies between the primaries and those
from the primaries to the third body, are explicitly depen-
dent on the separation a of the parent binary. This is helpful
for studying how the separation affects the dynamics of
order and chaos in the PN system.
When the PN contribution from the angular speeds of the

primaries is included in the Newtonian problem, the PN
dynamics display a qualitatively different behavior com-
pared with the Newtonian dynamics if the separation a of
the primaries is insufficiently large. Regular single-island
orbits in the Newtonian case may evolve as regular multi-
island or strong chaotic orbits in the PN approximation;
however, chaotic orbits may vary as ordered single- or
multi-island orbits. In particular, the boundedness of orbits
in the nonrelativistic case can still be maintained in the
relativistic case. On the contrary, the boundedness can be
destroyed when the PN contribution from the primaries to
the third body is also included and the separation a is small.
By investigating the dependence of the dynamics on the
separation a with the FLIs, we classified the separation a
into three domains for the dynamically unstable, bounded
chaotic, and bounded regular dynamics. Of course, the
dynamics with all PN contributions included are almost the
same as that in the classic case if a is extremely large.
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TABLE I. Values of the separation a ∈ ½10; 200� for the dynamically unstable, bounded chaotic, and bounded regular dynamics.

Approximation Orbit Unstable Order Chaos

L0 þ L1 1 [10,82], [159,165], [174,200] [83,158], [166,173]
L0 þ L1 2 [10,71], [126,200], 122, 123 [72,121], 124, 125
L0 þ L1 þ L2 1 [10,88], 108 [109,146], [62,200], 90, 91 [99,105], [147,161]

92, 95, 96, 97, 98, 106, 107 89, 93, 94
L0 þ L1 þ L2 2 [10,86], 107 [108,149], [167,200], 88, 89 [91,95], [150,166], 87

90, 96, 97, 100, 102, 105, 106 98, 99, 101, 103, 104
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