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Transfer of quantum information from the interior of a black hole to its atmosphere is described, in
models based on effective field theory. This description illustrates that such transfer need not be
violent to the semiclassical geometry or to infalling observers, and in particular can avoid producing a
singular horizon or “firewall”. One can specifically quantify the rate of information transfer and show
that a rate necessary to unitarize black hole evaporation produces a relatively mild modification to the
stress tensor near the horizon. In an exterior description of the transfer, the new interactions
responsible for it are approximated by “effective sources” acting on fields in the black hole
atmosphere. If the necessary interactions couple to general modes in the black hole atmosphere,
one also finds a straightforward mechanism for information transfer rates to increase when a black hole
is mined, avoiding paradoxical behavior. Correspondence limits are discussed, in the presence of such
new interactions, for both small black holes and large ones; the near-horizon description of the latter is
approximately that of Rindler space.
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I. INTRODUCTION

Black hole evaporation [1] reveals an apparent
conflict1 among the foundational principles of our
description of nature via local quantum field theory:
the principles of quantum mechanics, the principles of
relativity, and the principle of locality. Possible resolutions
including the abandonment of quantum mechanics [7,8]
have been considered, but continued exploration of con-
straints on consistent scenarios and properties of quantum
gravity strongly suggest that locality is a more likely
candidate for revision. Different proposals have been made
for modifications to locality, ranging from complementar-
ity/holography [9,10], which represents a significant modi-
fication to the notion of localization of information, to the
possibility that information escapes a black hole due to
new effects with superluminal or nonlocal transfer of
information, when described with respect to the semi-
classical black hole geometry [11–16].
If the answer is that information leaks out of a black hole

due to such new “nonlocal" effects, this raises a number of
questions. Foremost among them is the question of what
more fundamental framework is responsible; spacetime
itself may only be emergent from this framework.2 Another,
more modest, question is how to describe such effects
as a correction or modification to the usual semiclassical

description of a large black hole.3 Once a black hole has
reached a sufficient age, of order its half-life, a very general
argument due to Page [18] indicates that the new effects
must transfer information at a minimum rate of order one
qubit per time R, where R denotes the black hole radius.
Such an effect could be comparable in magnitude to the
Hawking radiation, which is itself a very small correction to
the evolution of a large black hole; this suggests that such
modifications are not necessarily implausible.
However, even such “small" effects have the potential to

be dangerous. It has long been recognized that the Hawking
radiation is characterized by the condition that infalling
observers crossing the horizon see a near-vacuum state, and
this implies specific entanglement between excitations on
the two sides of the horizon. If information is to escape the
black hole via some modification of this state that affects
the outgoing modes only right at the horizon, then that
destroys this entanglement and produces a state that the
infalling observer perceives to contain many high-energy
particles (this argument was sharpened in [4,5,12,14,19]) or
that even destroys the horizon [15]. Such a picture was
advocated as a serious alternative by [20], who argue that a
sufficiently old but arbitrarily large black hole consequently
becomes shrouded in a violent high-energy “firewall,"
behind which classical spacetime ceases to exist.
The simplest version of this firewall scenario assumes

nonlocal transfer of information: initially a black hole can
form from collapse, but subsequently information transfers

*giddings@physics.ucsb.edu
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1For some reviews, see [2–6].
2For one proposed outline of some features of such dynamics,

see [15]; also see [17].

3Though, note that such a description may be no more
fundamentally correct than an attempt to parametrize the evolu-
tion of the quantum atom within classical physics.
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from deep within its interior to the horizon, producing the
firewall. In fact, the basic scenario is a limit of the general
massive remnant scenario proposed in [11], in which the
starlike remnant surface that ultimately replaces the horizon
lies essentially at the would-be horizon. The reason for the
singular behavior of [20] is that while such nonlocality is
apparently needed, Ref. [20] assumes it stops sharply at the
would-be horizon: information can nonlocally transfer a
distance 10 times the radius of the solar system, for the largest
known black holes, but not more than a Planck distance
further.
Even before [20], this problem was recognized, and a

solution was proposed [14,15] (see also [12]): if some
effective nonlocality is operative on a scale ∼R, then it
plausibly allows quantum information to transfer into
modes farther from the horizon than a Planck distance,
and potentially to modes out to a few times R, which form
the black hole atmosphere. The transfer need not sharply
stop at the stretched horizon. This suggests a nonviolent
alternative to the firewall proposal advanced in [20].
Specifically, if the information content/entanglement of
modes is modified in such a soft, long-distance fashion, this
does not necessarily produce particles that the infalling
observer sees as damaging, or that destroy the horizon. The
basic underlying assumption of this scenario is thus that the
unitarity-restoring corrections preserve the classical picture
of the near-horizon spacetime, to a good approximation, but
may modify the outgoing radiation, in order to transfer
information, in a manner that does not do violence to this
picture. This is specifically a violation of axiom 2 of black
hole complementarity [21], stating that evolution outside the
horizon is described by local quantum field theory. This
scenario is less radical than that of [20] both in being
nonviolent and in not requiring fine-tuning of the nonlocal
transfer. The latter is plausible, particularly given that we may
not know precisely where the horizon is; instead the nonlocal
information transfer ranges over a characteristic scale ∼R.
To be believed, such a scenario needs to be subject to

some consistency tests. The problem of describing restora-
tion of unitarity is remarkably constrained—so much so
that, as we have outlined, certain assumptions lead to
unphysical behavior [20]. An important—and sharp—
question is thus whether there is “room" for consistent
modification of local quantum field theory that describes
the quantum information transfer necessary to save quan-
tum mechanics, while at the same time also preserving an
approximate semiclassical picture.
A first step regarding such tests was giving more detailed

models for the proposed behavior [22,23]. Reference [23]
in particular suggested modeling the physics in an effective
field theory framework, but with additional interactions that
accomplish the transfer of quantum information needed to
save unitary evolution. Such a model gives a way to check
various possible features of such a scenario. One aspect to
be checked is that of nonviolence—if the new interactions

are sufficiently large to transfer the needed information, for
example at the minimum rate described above, we would
like to verify that they do not lead to large effects unduly
damaging infalling observers or the horizon. One would
also like to check that such a picture also gives a non-
problematic story in the presence of black hole mining
[24,25], which provides an important test by enhancing
black hole decay rates. Another question regards corre-
spondence: in the large-R limit, where the vicinity of a
black-hole horizon approaches flat space, one expects the
description of observations of stationary observers to match
the usual field-theory description of accelerated observers
[26]. Yet another set of constraints comes from the need
for a consistent statistical/thermodynamic description
[22,27,28], where one in particular finds that generic
enhancement of the black hole disintegration rate due to
the extra interactions indicates a black hole entropy smaller
than that given by Bekenstein [29] and Hawking [1].
Responses to the first two questions—regarding non-

violence and mining—were outlined in [23] and will be
provided in further detail here. Specifically, after giving a
more detailed description of models for the proposed
interactions and of black hole metrics and modes,
Sec. II demonstrates the effect of a simple example of
such interactions on fields surrounding a black hole.
Section III then investigates the asymptotics of the result-
ing excitations, and the resulting stress tensor, both at null
infinity and in the vicinity of the horizon. The latter shows
that for a wide class of interactions, the effect near the
horizon is indeed nonviolent. Specifically, Sec. IV shows
that if the asymptotic flux of excitations is the benchmark
size to unitarize black hole disintegration, there is a
corresponding modest increase in the energy density in
modes near the horizon. This energy density decreases
with increasing R—providing a test of correspondence.
Moreover, the new interactions are generically expected

to couple to modes with various angular momenta. If they
do so with roughly uniform strength for higher partial
waves, there is very little effect on the black hole decay rate,
due to large gray-body suppression factors for asymptotic
radiation. But, if mining apparatus are introduced into the
black hole atmosphere, providing an additional channel for
excitations to escape [24,25], there is a commensurate
increase in the rate that the interactions can transfer
information to outgoing modes [23]. Further details of
this important consistency check in the presence of
mining—which demonstrates a natural mechanism to avoid
the potential problem of “overfilling” black holes with
information—are also provided in Sec. IV. Section V closes
with a discussion of generalizations of the simplified
models explicitly treated in this paper and with a brief
discussion of the generic extra energy flux, and then returns
to elaborate on the important question of correspondence.
Appendix B gives a Wentzel–Kramers–Brillouin (WKB)
estimate of relevant black hole gray-body factors.
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II. NEW INTERACTIONS AND THEIR EFFECTS

A. The effective-source approximation

It has seemed increasingly apparent that local quantum
field theory (LQFT) cannot give a unitary description of black
hole evolution, and that we must seek a different, and more
fundamental, framework. If that framework respects the
principles of quantum mechanics, one promising approach
to its formulation is through a structure of nested and over-
lapping quantum subsystems, giving a version of localization
that might approximate that of LQFT [15]. For example, the
Hilbert space describing a black hole and its environment
might be contained in a product of the form [14,15]

H ⊂ Hbh ⊗ Hnear ⊗ Hfar; (2.1)

where we have separate subsystems for the black hole, the
near black hole “atmosphere,” and states asymptotically far
from the black hole. Further refinement of the subsystem
structure is also expected to be possible (see e.g. [28]). For a
big black hole and formanypurposes, the states of thisHilbert
space and evolution should be well approximated by LQFT.
Of course, a departure from LQFT that apparently must

become important for even a large black hole is the transfer of
information [14–16] from the internal states of the black hole
to degrees of freedom that escape to infinity. For a sufficiently
old black hole, of radius R, such transfer must take place at a
minimumrateofat leastonequbitper timeR.Such transfercan
bedescribed in termsofunitaryevolutionwithan infinitesimal
generator including terms of the form [22]

Htrans ∼
1

R
a†nearN abh þ H:c:; (2.2)

with operators acting to annihilate excitations in Hbh and
create those in Hnear, or vice versa (N is a transfer matrix).
Alternatively, such dynamics could be described by introduc-
ing bilocal4 contributions to the action [23],

SNL ¼
X
AB

OAGABOB; (2.3)

whereOA areoperators actingonHbh,OB areoperators acting
onHnear, andGAB are coefficients describing the propagation
between the two.5

For a big black hole over sufficiently short times, we
expect that the states Hnear of the atmosphere can be well
approximated via LQFT, and in particular that the operators
in (2.3) acting on Hnear can be replaced by local operators
of the theory, OB → ObðxÞ. While terms like (2.2) or (2.3)
need to give an Oð1Þ perturbation to the Hawking process,
the latter is a very small effect for a large black hole. This
suggests that interactions of the required size can be treated
as a perturbative correction to the description of the
dynamics via LQFT in a semiclassical background [23].
This evolution is in particular nonlocal with respect to the
causal structure defined by the semiclassical background
geometry.
While understanding the full unitary quantum dynamics

is clearly very important, there are also important questions
that largely depend only on how the dynamics act on states
near the horizon. In particular, there has been a long-
standing awareness, sharpened in [4,5,12,14,15], that
interactions that transfer information from the black hole
interior to short-wavelength excitations near the horizon
produce high-energy particles as seen by the infalling
observer, and are typically expected to destroy the horizon.
To avoid such violence, Refs. [14,15,22] postulated that the
information transfer (which can be characterized in terms of
entanglement transfer [30,16,31]) is instead to excitations
at longer wavelengths, up to scales6 ∼R.
The question of whether nonviolent information transfer

to such longer-wavelength modes can be accomplished,
with sufficient magnitude to restore unitarity to black
hole disintegration, and without destroying the horizon
or infalling observers, is largely dependent on how inter-
actions such as (2.3) act on the state outside the black hole.
For the purposes of investigating this question, one may
make an additional approximation and replace the oper-
ators in (2.3) that depend on the internal state of the black
hole by sources in the external field-theory action,

SNL →
X
Ab

Z
dV4OAGAbðxÞObðxÞ

→
X
b

Z
dV4JbðxÞObðxÞ; (2.4)

where dV4 is the volume element and ObðxÞ acts on fields
near the black hole. While in the more fundamental
description (2.3) the sources Jb correspond to operators
dependent on the black hole internal state and dynamics,
for investigating the information-relaying capacity of
such interactions, and characterizing their effects on
modes and observers near a black hole horizon, these
sources may for many purposes be approximated as

4Higher-order terms may also be present.
5A possible straightforward generalization is transfer to

Hfar, but this involves a more significant departure from usual
locality and will not be developed in this paper. Note in particular
that there are many more low-energy modes available at long
distance that could carry the information, and that these could be
e.g. populated at low temperature. These are not ordinarily
accessed near the black hole, due to the centrifugal barrier.
But, nonlocal transfer to scales ≫ R—if present—would avoid
this restriction. Also, OB in (2.3) may be generalized to act on
“degrees of freedom” just inside the horizon, in a more refined
description [28].

6More generally the relevant wavelengths could be of size Rp,
with 0 < p ≤ 1.
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external, classical sources. We refer to this as the effective-
source approximation.
Ultimately the unitary mechanics underlying quantum

gravity should determine the interactions (2.3) and which
operators they couple to in an effective description (2.4).
Given the universality of gravity—and the need to conserve
gauge charges—one interesting possibility is a coupling of
the form JμνTμν. However, to investigate basic features of
such interactions, for present purposes we consider linear
couplings to field operators. As we will find, such cou-
plings illustrate important points of principle, and in
particular the possibility of transmitting the necessary
information without doing violence to the horizon or to
infalling observers.
For simplicity, let us consider a single massless scalar

field with action

Sϕ ¼ − 1

2

Z
dV4ð∇ϕÞ2: (2.5)

In this paper we will consider the simple model of an
effective source that couples linearly to this scalar field,
through a term in the Lagrangian

SJ ¼ −
Z

dV4JðxÞϕðxÞ: (2.6)

Important questions will include the following: (1) what
JðxÞ would produce sufficient excitation to carry out the
quantum information necessary to unitarize black hole
disintegration, including in the possible presence of black
hole mining [24,25,20], and (2) what effects does such a
JðxÞ have on the atmosphere of the black hole, and on
observers falling through that atmosphere?

B. Stress tensor from J

A first approach to answering the preceding questions is
to find the quantum stress tensor resulting from a source
like (2.6). The stress tensor for the scalar field ϕ takes
the form

Tμν¼− 2ffiffiffiffiffiffi−gp δS½ϕ�
δgμν

¼∂μϕ∂νϕ−gμν
2
½ð∂ϕÞ2þ2 Jϕ�: (2.7)

Before the source (2.6) is introduced, we assume that the
black hole is in a state j0i which could be either the Unruh
or the Hartle-Hawking vacuum. Such a vacuum results in
an outgoing Hawking flux, which can be seen by calculat-
ing, with a careful regulator,

h0jTμνj0i ¼ T μν: (2.8)

The effect of the source (2.6) can be described by treating it
as a perturbation and working in the interaction picture. In
its presence, the state outside the black hole becomes

jJ; ti ¼ T exp

�
−i

Z
t
dV 0

4Jðx0Þϕðx0Þ
�
j0i; (2.9)

where time ordering is performed with respect to a choice
of time slicing of the exterior geometry of the black hole.
For such a linear coupling in the field, the time ordering can
be removed at the price of a c-number phase βðtÞ (see
Appendix A):

jJ; ti ¼ eiβðtÞ exp
�
−i

Z
t
dV 0

4Jðx0Þϕðx0Þ
�
j0i: (2.10)

For both the Unruh and the Hartle-Hawking vacua, the
field has a vanishing expectation value, h0jϕðxÞj0i ¼ 0.
However, with the source the field picks up an expectation
value,

ϕJðxÞ≡ hJ; tjϕðxÞjJ; ti

¼ h0jϕðxÞj0i þ h0j
�
ϕðxÞ;−i

Z
t
dV 0

4Jðx0Þϕðx0Þ
�
j0i

¼
Z

dV 0
4GRðx; x0ÞJðx0Þ; (2.11)

where the retarded Green function is

GRðx; x0Þ≡−iθðt − t0Þ½ϕðxÞ;ϕðx0Þ�: (2.12)

Note that ϕJ behaves like a classical field; in particular,
because of vanishing equal-time commutators, ∂μϕJðxÞ is
equal to hJ; tj∂μϕðxÞjJ; ti. The two-point functions in (2.7)
then have a simple form, following from

ei
R

t Jϕ∂μϕðxÞ∂νϕðxÞe−i
R

t Jϕ

¼ ½ei
R

t Jϕ∂μϕðxÞe−i
R

t Jϕ�½ei
R

t Jϕ∂νϕðxÞe−i
R

t Jϕ�
¼ ½∂μϕðxÞ þ ∂μϕJðxÞ�½∂νϕðxÞ þ ∂νϕJðxÞ�: (2.13)

The change of the expectation value of the stress tensor
(2.7) due to J then follows

hJ;tjTμνjJ;ti

¼h0jei
R

t Jϕ½∂μϕ∂νϕ−1

2
gμνðgρσ∂ρϕ∂σϕþ2JϕÞ�e−i

R
t Jϕj0i

¼T μνþTμν½ϕJ�; (2.14)

whereTμν½ϕJ� is (2.7)evaluatedwithϕ ¼ ϕJ givenby (2.11).
This gives the extra flux resulting from J, which is similar
to that of a classical field on top of a quantum background.
Equation (2.14) has an important implication.

Specifically, such a classical field produces a positive flux
of energy at infinity. This means that extra interactions like
(2.6) would increase the decay rate of the black hole above
the Hawking rate [15,16,22,23]. Such an extra flux has
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potentially important consequences for black hole statis-
tical mechanics [28].

C. Black hole metric and modes

To describe the properties of the state (2.9) and its
energy-momentum (2.14) in a very explicit example, we
consider the Schwarzschild geometry and modes propa-
gating on this background. The metric is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2: (2.15)

Specifically, considering a four-dimensional black hole7

with Schwarzschild radius R,

f ¼ 1 − R
r
: (2.16)

Modes propagating in this background are simply under-
stood by introducing tortoise coordinates, in which the
metric takes the form

ds2 ¼ fðr�Þð−dt2 þ dr2�Þ þ r2ðr�ÞdΩ2: (2.17)

The tortoise coordinate is thus defined by

r� ¼
Z

dr
fðrÞ : (2.18)

There is an arbitrary integration constant, chosen for later
simplicity; this choice differs slightly from the traditional
one, and specifically is defined via

er�=R ¼
�
r
R
− 1

�
er=R−1;

r
R
− 1 ¼ Wðer�=RÞ; (2.19)

where W is Lambert’s W function.8 For later convenience,
we may also introduce null coordinates x� ¼ t� r�, in
which the metric is

ds2 ¼ −fðr�Þdxþdx− þ r2ðr�ÞdΩ2: (2.20)

Solutions to the equation of motion ∇2ϕ ¼ 0 for a free
scalar field in the coordinates (2.17) can be expanded in a
mode expansion of the form

ϕðxÞ ¼
X
Alm

Z
∞

0

dω
2π2ω

½UA
ωlmðxÞbAωlm þ H:c:�; (2.21)

UA
ωlm ¼ uAωlðr�Þe−iωt

YlmðΩÞ
r

: (2.22)

In this expansion, bAωlm are arbitrary coefficients, and the
radial wave functions uAωlðr�Þ arise from solutions of a
(1þ 1)-dimensional flat-space wave equation in r� and t,
with an effective potential,

� ∂2

∂r2� þ ω2

�
uAωl ¼ VluAωl; (2.23)

Vl ¼ fðr�Þ
�
lðlþ 1Þ

r2
þ R
r3

�
: (2.24)

Different bases for solutionsof (2.23), labeledby the index
A,may be chosen [32,33], as illustrated in Fig. 1.Onebasis is
thepastmodes (with simple behavior in the asymptotic past),
for which A ∈ ðp →; p←Þ, and another basis is the future
modes (with simple behavior in the asymptotic future), with
A ∈ ðf →; f←Þ. Specifically, these bases have asymptotic
behavior (with names as in [32])

(2.25)

Different bases are useful depending on the physical
question being asked.
Quantization of ϕ is performed with the following

conventions. The modes (2.22) have been chosen to have
Klein-Gordon norm

ðUA
ωlm; U

A0
ω0l0m0 Þ ¼ i

Z
r2dr�dΩUA�

ωlm∂
↔

tUA0
ω0l0m0

¼ 2π2ωδðω − ω0Þδll0δmm0δAA0 ; (2.26)

as seen e.g. from the asymptotic behavior in (2.25), where
A, A0 are chosen to range either over past modes or over
future modes. The canonical commutation relations are

½∂tϕðxÞ;ϕðx0Þ� ¼ −iδðr� − r0�Þ
δ2ðΩ −Ω0Þ

r2
; (2.27)

and result in commutators

7Most of our results are readily generalized to higher-
dimensional Schwarzschild.

8WðzÞ is the principal branch of z ¼ WðzÞeWðzÞ.
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½bAωlm; bA
0†

ω0l0m0 � ¼ 2π2ωδðω − ω0Þδll0δmm0δAA0 : (2.28)

D. Calculating ϕJ

We next calculate ϕJ, using these mode expansions; this
in turn determines the stress tensor, through (2.14).
Specifically, from the mode expansion (2.21) and the

commutators (2.28), Eq. (2.12) determines the retarded
Green function as

GRðx; x0Þ ¼ −iθðt − t0Þ
X
Alm

Z
dω
2π2ω

× ½UA
ωlmðxÞUA�

ωlmðx0Þ − c:c:� (2.29)

(Unless otherwise noted, ω integrals are over the positive
reals, and all other integrals are over the full domain—e.g.
reals for one-dimensional integrals or R4 for volume
integrals.) Thus, from (2.11), ϕJ becomes

ϕJðxÞ ¼ −i
Z

t
dV 0

4Jðx0Þ
X
Alm

Z
dω
2π2ω

× ½UA
ωlmðxÞUA�

ωlmðx0Þ − c:c:�

¼ −iX
Alm

Z
dω
2π2ω

½αAωlmðtÞUA
ωlmðxÞ − c:c:�; (2.30)

with coefficients α defined as

αAωlmðtÞ ¼
Z

t
dV 0

4U
A�
ωlmðx0ÞJðx0Þ: (2.31)

Let J be given by the mode expansion

JðxÞ ¼
X
lm

Z
dω
2π

jωlmðrÞe−iωt
YlmðΩÞ

r
þ c:c:; (2.32)

and introduce the notation

haðrÞ; bðrÞi ¼
Z

∞

−∞
fa�ðrÞbðrÞdr� ¼

Z
∞

R
dra�ðrÞbðrÞ:

(2.33)

Then, the coefficients become

αAωlmðtÞ ¼
Z

t
dt0

Z
dω0

2π
½huAωl; jω0lmieiðω−ω0Þt0 þ ð−1ÞmhuAωl; j�ω0l−mieiðωþω0Þt0 �

¼
Z

dω0

2π

�
huAωl; jω0lmi

eiðω−ω0Þt

iðω − ω0Þ þ ϵ
þ ð−1ÞmhuAωl; j�ω0l−mi

eiðωþω0Þt

iðωþ ω0Þ þ ϵ

�
; (2.34)

where in the last equality we introduce the small convergence factor ϵ > 0 to regulate the integrals. Thus, the expression
(2.30) for ϕJ becomes

ϕJðxÞ ¼ −X
Alm

Z
dω

2π2ω

dω0

2π

� huAωl; jω0lmi
ω − ω0 − iϵ

uAωlðrÞe−iω
0t YlmðΩÞ

r
þ ð−1Þm huAωl; j�ω0l−mi

ωþ ω0 − iϵ
uAωlðrÞeiω

0t YlmðΩÞ
r

þ c:c:

�
: (2.35)

FIG. 1 (color online). Schematic of the different bases for modes. The black curve represents the potential. Past modes are purely
incoming from r� ¼ �∞ in the asymptotic past; in the future, they have both reflected and transmitted parts from the potential barrier.
Future modes are likewise purely outgoing to r� ¼ �∞ in the asymptotic future. The past and future bases are related by complex
conjugation.
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III. ASYMPTOTICS

A. ϕJ

We would next like to determine the asymptotic form of ϕJ, and the corresponding stress tensor, both at r, r� → ∞ and
near the horizon, r� → −∞. First consider r� → ∞. The asymptotic form can be found by using the future basis. Inserting
its asymptotic behavior (2.25) into (2.35) and using the coordinates x� of (2.20) gives

ϕJ → −X
lm

Z
dω
2π2ω

dω0

2π

�
Ylm

r

�
ðhu⃖fωl; jω0lmiT�

ωl þ hu⃗fωl; jω0lmiR⃖�
ωlÞ

eiðω−ω0Þð−r�Þe−iω0xþ

ω − ω0 − iϵ

þ ð−1Þmðhu⃖fωl; j�ω0l−miT�
ωl þ hu⃗fωl; j�ω0l−miR⃖�

ωlÞ
eiðωþω0Þð−r�Þeiω0xþ

ωþ ω0 − iϵ

þ hu⃗fωl; jω0lmi
eiðω−ω0Þr�e−iω0x−

ω − ω0 − iϵ
þ ð−1Þmhu⃗fωl; j�ω0l−mi

eiðωþω0Þr�eiω0x−

ωþ ω0 − iϵ

�
þ c:c:

�
: (3.1)

This expression is simplified using the distributional
identities,

2πδðωÞ ¼ lim
t→∞

−ieiωt
ω − iϵ

0 ¼ lim
t→−∞

−ieiωt
ω − iϵ

: (3.2)

The second of these implies vanishing of the first and second
rows of (3.1), and the first, together with ω, ω0 > 0, implies
vanishing of the last term of (3.1), giving the r� → ∞ result

ϕJ → −iX
lm

Z
dω
2π2ω

�
Ylm

r
hu⃗fωl; jωlmie−iωx

− − c:c:

�
:

(3.3)

Similar steps can be applied to derive the behavior as
r� → −∞:

ϕJ → −iX
lm

Z
dω

2π2ω

�
Ylm

R
hu⃖ f

ωl; jωlmie−iωx
þ − c:c:

�
:

(3.4)

B. Stress tensor

Let us first consider the asymptotic form of the stress
tensor T½ϕJ� at infinity, r� → ∞. Specifically, the outgoing
flux is given by the components T−−, in the coordinates x�.
The integrated flux follows from (2.14) and (3.3),

Z
dtT−−→

Z
dt

�X
lm

Z
dω
4π

�
Ylm

r
hu⃗fωl;jωlmie−iωx

−þc.c.�
�

2

¼
X
ll0mm0

YlmY�
l0m0

r2

Z
dω
4π

hu⃗fωl;jωlmihu⃗fωl0 ;jωl0m0 i�;

(3.5)

and integrating over angles yields the total radiated energy

E ¼
Z
r≫R

dt r2dΩT−− ¼
X
lm

Z
dω
4π

jhu⃗fωl; jωlmij2: (3.6)

The source J also produces a flux into the black hole,
which may be found by similarly computing the r� → −∞
behavior of Tþþ, using (3.4). This gives integrated flux

Z
dtTþþ→

Z
dt

�X
lm

Z
dω
4π

�
Ylm

R
hu⃖fωl;jωlmie−iωx

þþ c:c:

��
2

¼
X
ll0mm0

YlmY�
l0m0

R2

Z
dω
4π

hu⃖fωl;jωlmihu⃖fωl0 ;jωl0m0 i�;

(3.7)

and total absorbed energy

E ¼
Z
r¼R

dtR2dΩTþþ ¼
X
lm

Z
dω
4π

jhu⃖ f
ωl; jωlmij2: (3.8)

We will investigate the size of these fluxes in the next
section, in scenarios where the outward flux is large enough
to carry the needed information away from the black
hole. But, before doing that, there is another important
check. Specifically, if there is an outward flux present that
is traceable back to the horizon, because of infinite blue-
shift that flux becomes singular at the horizon, as described
in [4,5,12,14,15,20]. Thus, to parametrize a “nonviolent”
scenario where the horizon is regular, as seen by infalling
observers, we need to check that the J’s we consider do not
produce such a singular flux.

C. Nonviolent horizon

The infinite blueshift witnessed by infalling observers is
readily understood by transforming from the x� coordi-
nates to Kruskal coordinates X�, through the relation

X� ¼ �2Re
�x�
2R : (3.9)
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While the x− coordinates are singular at the future horizon,
the Kruskal coordinates are nonsingular coordinates for
observers falling through the horizon. From (3.9), we find
∂X−=∂x− ¼ e−x−=2R ¼ −X−=2R. Thus,

TKrusk−− ¼
�
2R
X−

�
2

T−− (3.10)

will be singular unless the outward flux T−− vanishes at
least as rapidly as ðX−Þ2 at the horizon, X− ¼ 0.
To check this, we examine the behavior of

∂X−ϕJ ¼ ex
−=2R∂−ϕJ (3.11)

near the horizon. ϕJ satisfies the classical equation of
motion,

∇2ϕJ ¼ J: (3.12)

Expanding in partial waves,

ϕJ ¼
X
lm

ϕlmðt; r�Þ
YlmðΩÞ

r
; J ¼

X
lm

jlm
YlmðΩÞ

r
;

(3.13)

this becomes

½−∂2
t þ ∂2

r� − VlðrÞ�ϕlm ¼ fðrÞjlm; (3.14)

withf given in (2.16) andVl given in (2.24). This reduces the
problem to a collection of (1þ 1)-dimensional problems. To
reduceclutter,wewill fix l,m for the remainderof this section
and suppress these subscripts. Thus (3.14) becomes

−4∂þ∂−ϕ − Vϕ ¼ fj: (3.15)

With the problem rewritten in terms of the potential (3.14)
and (3.15), the basic idea is that at a fixed point ðt; r�0Þ near
the horizon, the right-moving piece ∂−ϕ receives contribu-
tions from twoplaces: the sourceJ that is located to the left of
r�0, and left-moving waves coming from the right of r�0 that
then reflect off of the potential V and become right moving.
Since the potential is small near the horizon [see (2.24)],
we will treat it perturbatively and correspondingly
expand ϕ ¼ Φ0 þ Φ1 þ � � �.
To zeroth order in V, Eq. (3.15) has the solution

∂−Φ0 ¼ − 1

4

Z
xþ

−∞
dxþfj ¼ − 1

4
e
−x−
2R

Z
xþ

−∞
dxþ

R
r
e1−r=Rexþ

2Rj;

(3.16)

where we have used (2.19). This implies

∂X−Φ0ðx−; xþÞ ¼ − 1

4

Z
xþ

−∞
dxþ

R
r
e1−r=Rexþ

2Rjðx−; xþÞ
(3.17)

is finite; i.e. the horizon is regular, as long as the latter
integral is finite, which will be true if Jðx−; xþÞ is smaller
than expf−xþ=ð2RÞg as xþ → −∞.
The first-order equation is

−4∂þ∂−Φ1 ¼ VΦ0; (3.18)

which likewise implies

∂X−Φ1 ¼ − 1

4

Z
xþ

−∞
dxþ

R
r
e1−r=Rexþ

2R
V
f
Φ0: (3.19)

In this equation, the r-dependent factors are approximately
finite constants near the horizon [see (2.24)], and the
integral converges for any finite Φ0. One may likewise
proceed to find finite higher-order contributions to the
solution.9 We see from (3.13) that ∂X−ϕJ has an additional
term,

∂X−ϕJ ¼
X
lm

�
∂X−ϕlm þ ϕlm

f
2r

∂x−
∂X−

�
Ylm

r

→
X
lm

∂X−ϕlm
Ylm

R
þ ϕJ

2R
ex

þ=2R; (3.20)

but this is also finite near the horizon.
In summary, we find that there are explicit factors in each

of the contributions to ϕJ, which cancel the potentially
divergent behavior at the horizon, x− → ∞. As a result, for
sufficiently regular J, the outward flux T−− near the horizon
is finite, and the configuration is nonviolent to infalling
observers.10 Regularity of Tþ− can likewise be checked.
Note that one obtains a finite stress tensor near the

horizon even though a generic J of the form (2.32) is
singular at the horizon. To see this, note that

e−iωt ¼
�

Xþ

−X−
�−iωR

: (3.21)

Thus, ∂X−e−iωt is divergent at the horizon, X− ¼ 0. This
behavior may be improved if jωlmðrÞ are chosen so that J
vanishes at the horizon, say as a power ðX−Þp, though even
then (3.21) shows that the source is singular. While such
singular but simple sources are nonetheless useful for
illustrating the general results of couplings (2.6), an

9These include contributions of a size comparable to (3.19),
due to the reflection from V at r > r0.

10Note that violence to infalling observers is relative—even
Hawking radiation is violent, for a sufficiently small black hole.
But effects scaling to zero as a power of R will be taken to be
nonviolent.
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additional condition of regularity in the Kruskal coordi-
nates X� may be imposed. Of course, as explained in
Sec. II, these classical sources are merely parametrizations
of the effects that arise from the couplings (2.2) and (2.3)
between the modes in the black hole atmosphere and the
internal black hole states. These are likewise expected to be
regular.
An alternate way to characterize the absence of violence

at the horizon is in terms of a condition on the state that is
created by the nonlocal interactions. In particular, we can
write a “no-firewall condition” as

aijJi≃ 0 (3.22)

[with obvious generalization to states created by the more
basic interactions (2.3)], where ai is any annihilation
operator corresponding to a Kruskal mode that an infalling
observer would see as a high-energy mode when crossing
the horizon.

IV. EXAMPLES AND MAGNITUDES

To understand the size of effects due to effective sources,
consider the simple illustrative example

JðxÞ ¼
X
lm

j0lmθð2R − rÞe−iωlmt
YlmðΩÞ

r
þ c:c:; (4.1)

where j0lm are constants; the step function cuts off the
source at r ¼ 2R. The resulting asymptotic flux is given by
(3.5) and (3.6), with coefficients hu⃗fωl; jωlmi given by (2.33)
and modes as pictured as in Fig. 1. The mode u⃗fωl in the
range r < 2R has size governed by the transmission factor
Tωl. For Rω ≪ l, this factor is very small; we return to this
case shortly. For Rω≳ l the potential barrier has much less
effect, jTωlj ∼ 1.
To make order-of-magnitude estimates at small l, we

thus simply approximate the potential as vanishing, and so
take Tωl ¼ 1. Then,

hu⃗fωl; jωlmi ∼ j0lm
e−iωlmR

−iωlm
2πδðω − ωlmÞ: (4.2)

From (3.6), this corresponds to a total radiated energy per
unit time

dE
dt

∼
�
j0lm
ωlm

�
2

: (4.3)

A. Outgoing flux: Energy and information

As described previously, the source J is really a
placeholder for the more complicated interactions respon-
sible for transferring and emitting quantum information
from the black hole. For black hole evaporation to be

unitary, a basic benchmark rate for such a transfer is one
qubit emitted per time R, corresponding to the rate of
emission of Hawking quanta,

1

TH

dE
dt

����
bench

∼
1

R
; (4.4)

where TH is the Hawking temperature. Thus, excitations
are created with sufficient bandwidth to carry the needed
information if

j0lm ∼
ωlm

R
(4.5)

for the relevant modes. In particular, note that if quanta are
emitted with ωlm appreciably different from 1=R, but with
the same energy flux, the rate of emission is dE=ðωlmdtÞ
but each quantum carries ωlmR times more entropy in
timing information, so the rate of information transfer is
essentially unchanged.
Specifically, suppose as an example that ωlm ∼ 1=R.

Then only a few of the lowest-l modes have significant
transmission, and with

j0lm ∼ 1=R2; (4.6)

they can carry enough information to restore unitarity. If we
suppose that interactions of size (4.6) are present even for
modes with l ≫ 1 and frequency ∼1=R, they have very
little effect on the energy and information that can be
transmitted to infinity. Indeed, through hu⃗fωl; jωlmi, the flux
(3.6) in such high-l modes will be suppressed by an extra
factor jTωlj2 relative to (4.3); this is easily seen from Fig. 1
and the assumption that jωlm is insignificant except near the
left side of the barrier. For Rω ≪ l, the transmission factors
have approximate size11 [34]

jTωlj ∼ 2ðRωÞlþ1
l!2

ð2lÞ!ð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYl
n¼1

�
1þ

�
2 Rω
n

�
2
�vuut :

(4.7)

UsingStirling’s approximation and ignoring the square root,12

these are approximately

jTωlj ∼ Rω

ffiffiffiffi
π

2l

r �
e
8

�
l
�
Rω
l

�
l
; (4.8)

11This expression is valid only for Rω ≪ 1, but WKB

gives a comparably small estimate of ½e
8

Rωffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p �
ffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
e
3π
2
Rω×

½1þOð R2ω2ffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p Þ�, valid for Rω ≫ 1=4—see Appendix B. The two

estimates approximately match at Rω ∼ 1.
12The square root is bounded from above by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð2 πRωÞ

2 πRω

q
.
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and they thus give contributions to (4.3) suppressed by a
large power of Rω=l.
For a somewhat different example, suppose that

hu⃗fωl; jωlmi ¼ jðωÞTωl; (4.9)

with jðωÞ independent of l and m. In this case, the radiated
energy (3.6) can be written in terms of the absorption cross
section at frequency ω,

σabsðωÞ ¼
π

ω2

X∞
l¼0

ð2lþ 1ÞjTωlj2: (4.10)

Specifically,

E ¼
Z

dω
4π2

ω2jjðωÞj2σabsðωÞ: (4.11)

The Hawking flux is of the same form, with the replace-
ment jjðωÞj2 → 4πωδð0Þ=ðeω=TH − 1Þ. For Rω≳ 1

2
[35]

σ ∼
27πR2

4
½1 − 8πe−πsincð

ffiffiffiffiffi
27

p
πRωÞ�; (4.12)

and for Rω≲ 1
2
[36],

σ ∼ 4πR2: (4.13)

Modes with l ≫ Rω again make a relatively small
contribution.

B. Ingoing flux and R → ∞ correspondence

Sources like those we have described also contribute to
an ingoing radiation flux raining down on observers just
outside the horizon,13 described by (3.8). Inspection of
Fig. 1 shows that, taking the representative example (4.1),
this flux has, for each l, m, a similar magnitude to (4.3),
with no suppression from the transmission factor Tωl. This
corresponds to an energy density E per mode of size
ðj0lm=ωlmRÞ2, or, in the example ωlm ∼ 1=R, with a rate
from (4.6), E ∼ 1=R4 per mode—the rain is red, in the
large-R limit. Again, as an example, if interactions are
present for all l ≤ lmax, the total resulting local energy
density near the black hole is of size

E ∼
l2max

R4
: (4.14)

This result is important in order to derive a correct
correspondence limit for the nonlocal mechanics respon-
sible for the information transfer. Specifically, we might
expect that effects that depart from the LQFT description
should vanish in the R → ∞ limit, since this limit is

conventionally viewed as yielding flat space with the black
hole exterior corresponding to Rindler space. For lmax ∼ Rk

with k < 2, the local energy density (4.14) vanishes in this
limit. In particular, note that the maximal mining rate [37]
(for more on mining, see below) corresponds to introducing
∼R cosmic strings, and a benchmark for this is

lmax ∼
ffiffiffiffi
R

p
: (4.15)

The resulting [23] extra energy density from (4.14) is then
∼1=R3. Correspondingly, both T−− and Tþþ scale to zero
as R → ∞.
It is true that an accelerated observer hovering just

outside the horizon sees a blueshifted version of the energy
density (4.14); specifically, the transformation of the stress
tensor to orthonormal coordinates for an observer at r0
gives an energy density of size

Ē ∼
l2max

fðr0ÞR4
: (4.16)

However, such an observer has proper acceleration a and
experiences an Unruh temperature TH=

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p ¼ a=ð2πÞ,
with a corresponding energy density [24]

ĒUn ∼
1

f2ðr0ÞR4
∼ a4: (4.17)

Thus, in the large-R limit, the size of (4.16) relative to this
characteristic energy density is

Ē ∼
l2max

R2a2
ĒUn: (4.18)

For lmax ≪ R, as in (4.15), and R → ∞ with a fixed, this
contribution is thus negligible by comparison to the effects
of the Unruh radiation.

C. Mining and avoiding overfull black holes

The phenomenon of black hole mining [24,25] poses a
challenge [20] to scenarios for unitary black hole evolution,
since it allows a black hole to shrink faster than found by
Hawking. In particular, suppose that a black hole has
reached a time where the entropy of its radiation equals that
describing the number of its internal states; if the latter is
SBH this is the Page time [18].14 If a mining apparatus is
introduced—a very concrete example is a cosmic string—
the resulting enhancement of the black hole evaporation

13We thank R. Bousso for discussions on this point.

14As described in [14–16,22,23], the interactions describing
information transfer from the black hole (as necessary to restore
unitarity) typically imply extra flux and thus [28] Sbh < SBH ,
where Sbh is the actual black hole entropy and SBH is the
Bekenstein-Hawking entropy, making the corresponding time
earlier than the Page time.

STEVEN B. GIDDINGS AND YINBO SHI PHYSICAL REVIEW D 89, 124032 (2014)

124032-10



suggests the possibility of arriving at the inconsistent
situation where the entropy of the black hole is smaller
than its entanglement entropy with the outgoing radiation;
we refer to this as an “overfull” black hole [23]. Of course,
what this would really mean, in a quantum mechanical
scenario, is that the black hole has more than the expected
number of internal states; the final outcome, once the black
hole finishes evaporating, would be a Planck-scale rem-
nant, with the resulting inconsistencies [2,38–40]. To avoid
this, we expect that, in a consistent scenario, the flux of
quantum information out of the black hole should increase
commensurately with the increased rate of black hole decay
due to mining.
The presence of interactions modeled by sources like

those described earlier in this section directly addresses this
problem. Mining corresponds to introducing an additional
channel for Hawking radiation to flow out of the black hole.
In the concrete example with a cosmic string, it changes the
spectrum of the theory such that there are additional modes
whose potential barriers to escaping the black hole are
suppressed. If there are couplings of the form (2.6) [or more
generally, (2.2) and (2.3)] to all such fields that can be
mined, and these include in particular the higher-l cou-
plings described above, then opening the extra channel also
allows an additional flux of information-bearing excitations
created by the source J. In particular, couplings with
strengths corresponding to effective sources of size (4.5)
are parametrically large enough to yield sufficient infor-
mation transfer, to match the enhanced decay rate of the
black hole. Thus the presence of such couplings gives an in-
principle way to avoid the potential problem of overfull
black holes resulting from mining. These couplings to
higher-l modes provide a straightforward mechanism to
enhance information flow precisely when mining is per-
formed. This at least partially addresses the “implausible
conspiracy” objections of [27].
Note also that higher-l interactions like those we have

described only create appreciable excitation of outgoing
modes when a mining channel is opened, e.g. by intro-
ducing a cosmic string. This may be relevant to discussions
[41] that suggest a special role for “mineable modes.”
Before the mining apparatus is introduced, such modes are
not excited and play no obvious special role in the
dynamics; in particular, they do not “carry” the extra
quantum information that escapes once mining actually
does take place.
It also can be noted that the methods of this paper

provide a way to evaluate putative scenarios involving
manipulation of mined energy/information [20].
Specifically, such manipulations are described, in LQFT,
in terms of interactions of the form (2.4), which parametrize
the interaction between an experimental apparatus
(“external source”) and the modes being manipulated.
This provides a means to assess the considerable inherent
limitations of such scenarios.

V. GENERALIZATIONS, EXTRA FLUX,
CORRESPONDENCE, AND CAUSALITY

While explicit calculations have been performed using
an effective source of the form (2.6), we stress that this
merely serves to illustrate some basic features of the
possible information transfer from a black hole. Again,
we expect that this transfer could arise in a more funda-
mental description of quantum gravity, which may well not
be based on a fundamental spacetime picture. We do expect
that a spacetime picture gives a good approximate descrip-
tion of a large black hole, for many purposes. However,
transfer of information from the black hole states to
excitations that escape to infinity is not described by
LQFT. We may attempt to parametrize it, as a departure
from the LQFT dynamics, in terms of interactions of the
form (2.3). Then, for the purposes of considering the effects
of such interactions on the region exterior to the horizon,
we make a further approximation of replacing the inter-
actions by effective sources of the general form (2.4).
In a complete description of the black hole dynamics, we

might expect couplings of such interactions to other
operators in the theory, which are more general than those
to the fundamental field operators in (2.6) (indeed, care is
needed to enforce charge conservation for couplings of the
latter form). As noted, a specific and potentially interesting
example, given the universal nature of gravitational phe-
nomena, is a coupling to the stress tensor. A coupling of the
form JμνTμν would excite modes in all fields. Indeed, one
way to regard the Hawking radiation is as induced from
such a coupling between the nontrivial metric of the black
hole and the stress tensor. If additional such couplings are
present and responsible for the information transfer from
the black hole, we may even think of them as analogous to
couplings to extra fluctuations of the metric, e.g. reminis-
cent of horizon fluctuations. We expect important features
of such couplings to be represented by the behavior of the
Jϕ couplings we have investigated. These in particular
include the possibility of transmitting, via such couplings,
information from the black hole states, at a sufficient rate,
without producing singular behavior at the horizon.
An important point [15,16,22,23] is that generically such

couplings produce extra energy flux, beyond that of
Hawking, increasing the black hole disintegration rate.
Specifically, the change in the asymptotic flux for our
present example (2.6) is, from (2.14),

T−−½ϕJ� ¼ ð∂−ΦJÞ2: (5.1)

Such an increased decay rate has important consequences
for the statistical mechanics and thermodynamics of black
holes [28], and in particular indicates a smaller number of
black hole states, with corresponding entropy Sbh, than
given by the Bekenstein-Hawking entropy SBH. A question
is whether this conclusion can be avoided, due to special
such couplings that do not produce extra flux [42].
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A key question, in pursuing a more basic description of
the quantum physics incorporating gravity, is that of
correspondence [43]: specifically, if such mechanics
departs from LQFT, it should be well-approximated by
LQFT in appropriate limits, including, e.g. regimes probed
so far by experiment. For a black hole of size R, there are at
least two such limits of interest.
In the first, we consider phenomena at a large distance

from the black hole. For these, we might anticipate that
LQFT gives a good description, as long as we do not for
example consider states where strong gravitational effects
become relevant to longer scales than R. This in particular
motivates the assumption that quantum information transfer
from the black hole involves effects departing from LQFT
on scales of size R, but not at much larger distances—in
contrast to other proposals. The latter include proposals
with delocalization on enormous scales, such as A ¼ RB
[44–46] or ER ¼ EPR [47]. If departures from standard
locality are only operative on scales R, this also indicates
how the new effects could contribute to virtual processes,
without leading to larger-scale violations of locality which
could be problematic for causality. Specifically, nonlocal-
ities on scale R do not necessarily imply violation of
causality at scales large as compared to the black hole [13],
providing a way to avoid possible paradoxes due to such
real or virtual black hole effects.
In a second such limit we investigate the vicinity of a large

black hole, on scales small as compared to the black hole.
Here, in classical gravity the equivalence principlewould tell
us that a small region near the black hole is only distinguish-
able from flat space if we measure effects sensitive to the
scale R, such as tidal effects. If the new mechanics are not
based on a classical geometrical description, the correct
formulation of the equivalence principle is not clear though it
mayarise fromadeeper symmetryprincipleof themorebasic
theory. This means that we do not necessarily expect its
classical formulation to hold as an exact statement in
quantum gravity. However, correspondence does suggest
that departures from LQFT should likewise vanish para-
metrically in R for smaller-scale observations near a large
black hole—in contrast to assertions of [20,27] and to
expected properties of other scenarios [48].We have shown,
in Sec. IV, that it is possible to introduce interactions with
sufficient information carrying capacity to transfer the
necessary quantum information, and which also have this
property of scaling away in the large-R limit.
Thus, scenarios such as those of [20] and [48] make the

would-be horizon a special—and likely violent—place,
implying a major departure from the equivalence principle,
and also calling into question the derivation of the Hawking
radiation and black hole thermodynamics. In a nonviolent
scenario the deviations from field theory evolution in a
semiclassical background only lead to a departure from the
equivalence principle which makes the black hole atmos-
phere a special place. Moreover, the departure is only

through “dilute” effects that scale away in the limit of large
black holes. If this picture is correct, the equivalence
principle as currently formulated remains true in an
approximate sense—as might be expected of a statement
about classical spacetime.
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Note added in proof.—Initial investigation of effective
couplings to the stress tensor has now been carried out
in [42].

APPENDIX A: TIME ORDERING

For operators whose commutator is central, a time-
ordered product like (2.9) can be reexpressed without time
ordering. Specifically, using

eA1eA2 ¼ e
1
2
½A1;A2�eA1þA2 ; (A1)

a time-ordered product can be rewritten as

Te
R

t

−∞ Aðt0Þdt0 ¼ e
1
2

R
t

−∞ dt0
R

t0
−∞ dt00½Aðt0Þ;Aðt00Þ�e

R
t

−∞ Aðt0Þdt0 : (A2)

By assumption of centrality, the extra factor is a complex
number; for anti-Hermitan A, it is a pure phase.

APPENDIX B: WKB ESTIMATE
OF GRAY-BODY FACTORS

Consider a solution of (2.23) with ω below the barrier
given by Vl, Eq. (2.24). According to the WKB approxi-
mation, the transmission coefficient is

jTωlj≃ e−I ; (B1)

with I being the integral between the turning points
r�− and r�þ,

I ≡
Z

r�þ

r�−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vl − ω2

q
dr�: (B2)

For large l, the R=r3 term in (2.24) is negligible, and Vl
can be approximated by

~Vl ≡ fðrÞ
�
lðlþ 1Þ

r2

�
: (B3)

Note that ~Vl < Vl < ~V ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ1

2
Þ2þ1

p −1
2

< ~Vlþ 1
2l
, which is a tight

bound for moderately sized l. Similar considerations
apply for the deformed turning points. These bounds
imply that the transmission coefficients calculated with
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the actual potential Vl can be bounded by those of the
modified potential with slightly different l: jTω;lþ 1

2l
j ~V <

jTωljV < jTωlj ~V .
Since we are interested in the regime Rω ≪ l, it is natural

to define a variable whose size characterizes this limit,

A≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
Rω

≫ 1: (B4)

For convenience, also define

B≡ lðlþ 1Þ: (B5)

Using dimensionless parameters, μ≡ r=R, the integral I
with potential ~Vl can be rearranged as

~I ¼
ffiffiffiffi
B

p Z
μþ

μ−

ffiffiffiffiffiffiffiffiffi
fðrÞp
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

A2

μ2

fðrÞ

s
dμ
fðrÞ : (B6)

Between the two turning points,

0 <
1

A2

μ2

fðrÞ ≤ 1; (B7)

which is the regime in which the Taylor series for the square
root converges. The end points also converge, though para-
metrically slower. Thus,

~I ¼ − ffiffiffiffi
B

p X∞
n¼0

an

Z
μþ

μ−

1

μ
ffiffiffiffiffiffiffiffiffi
fðrÞp �

μ2

A2fðrÞ
�
n

dμ; (B8)

where

an ¼
4−n

2n − 1

ð2nÞ!
ðn!Þ2 : (B9)

Because of (B7), each integral is smaller than the previous.
This fact coupled with the fact that an ∼ 1=n3=2 means that
the series does indeed converge if the first integral is finite.
The left and right turning points for the modified potential ~Vl
are, respectively,

μ− ¼ r−=R ¼ 1þ 1

A2
þO

�
1

A4

�
; (B10)

μþ ¼ rþ=R ¼ A − 1

2
þO

�
1

A

�
: (B11)

The integral for n ¼ 0 of (B8) is

cosh−1ð2μ − 1Þjμþμ− ¼ ln 4A − 3

A
þO

�
1

A2

�
: (B12)

A closed form expression for the integrals in (B8) also exists
for each n > 0, but practically, these terms quickly become
unwieldy. Instead, we find leading-order contributions to
them in 1=A. These integrals can be written as the difference
of the function

FðμÞ ¼ 1

A2n

Z
μ

a
dμ

μ2n−1

ð1 − 1
μÞnþ1=2 (B13)

evaluated at μþ and μ−; a is arbitrary. For the former, we
expand the integrand of (B13) in 1=μ, and integrate term by
term, using (B11), to find

FðμþÞ ¼
1

2n
þ 1

2n − 1

1

A
þO

�
1

A2

�
: (B14)

For the latter, the expansion is in μ − 1, and using (B10) gives

Fðμ−Þ ¼ − 2

2n − 1

1

A
þO

�
1

A2

�
: (B15)

Adding all the terms of (B8) that are nonzero as A → ∞
gives

ffiffiffiffi
B

p �
ln 4A −X∞

n¼1

an
2n

�
¼

ffiffiffiffi
B

p
ln
8A
e
; (B16)

and the sum of terms at order 1=A gives

−3
ffiffiffiffi
B

p

A

�
1þ

X∞
n¼1

an
2n − 1

�
¼ − 3π

2

ffiffiffiffi
B

p

A
: (B17)

Combining these gives an estimate for the transmission
factor (B1), via (B6) and (B8),

jTωlj ∼
�
e
8

Rωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp � ffiffiffiffiffiffiffiffiffiffi

lðlþ1Þ
p

e
3π
2
Rω

�
1þO

�
R2ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ��

:

(B18)

To understand when the WKB estimate (B18) is good,
note that the change of the potential in a wavelength should
be small compared to the inverse squared wavelength,

1

4

���� V 0

ðV − ω2Þ3=2
���� ≪ 1: (B19)

This condition holds asymptotically, where both V and V 0
approach zero. For (B18) to be a reasonable estimate of
the transmission coefficient, (B19) should hold inside the
classically forbidden region. There, for large l, and
Rω ≪ l, the condition holds as long as f ≈ 1. To check
the behavior at the lower end of the potential, note that with
ω2 ≪ V, (B19) becomes

���� V 0

V3=2

���� ≈ j1 − 3fjffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ≪ 4: (B20)

Above the turning point, r=R > 1þ 1=A2, so f > 1=A2.
Then, (B19) is still satisfied as long as Rω ≫ 1=4.
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