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Absence of gyratons in the Robinson-Trautman class
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We present the Riemann and Ricci tensors for a fully general nontwisting and shear-free geometry in
arbitrary dimension D. This includes both the nonexpanding Kundt and expanding Robinson—Trautman
family of spacetimes. As an interesting application of these explicit expressions, we then integrate the
Einstein equations and prove a surprising fact that in any D the Robinson—Trautman class does not admit
solutions representing gyratonic sources, i.e., a matter field in the form of a null fluid (or particles
propagating with the speed of light) with an additional internal spin. Contrary to the closely related Kundt
class and pp-waves, the corresponding off-diagonal metric components thus do not encode the angular
momentum of some gyraton. Instead, we demonstrate that in standard D = 4 general relativity they directly
determine two independent amplitudes of the Robinson—Trautman exact gravitational waves.
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I. INTRODUCTION

The Robinson—Trautman class of spacetimes, discovered
more than fifty years ago [1,2], is one of the most funda-
mental families of exact solutions to Einstein’s field equa-
tions. Geometrically, it is defined by admitting a geodesic,
shear-free, twist-free but expanding null congruence. This
group of spacetimes contains many important vacuum
solutions, in particular, Schwarzschild-like static black holes,
accelerating black holes (C metric), and radiative spacetimes
of various algebraic types. It also admits a cosmological
constant, electromagnetic field, or pure radiation, as in the
case of the Vaidya metric or Kinnersley photon rockets. More
details and a substantial list of references can be found in
chapter 28 of Ref. [3] or chapter 19 of Ref. [4].

In Ref. [5], the Robinson—Trautman family of solutions
was extended to higher dimensions D in the case of empty
space (with any value of the cosmological constant) and
for aligned pure radiation. Interestingly, there are great
differences with respect to the usual D = 4 case (see also
Ref. [6]). Aligned electromagnetic fields were subsequently
also incorporated into the Robinson—Trautman higher-
dimensional spacetimes within the Einstein—-Maxwell theory
[7], and an additional Chern—Simons term for D > 5 odd
dimensions was also considered. The results were recently
summarized in the review work [8] on algebraic properties
of spacetimes of higher dimensions.

The complementary nonexpanding Kundt class of
twist-free and shear-free geometries also admits explicit
vacuum solutions with an arbitrary cosmological constant,
electromagnetic fields, and pure radiation (null fluid);
see chapter 31 of Ref. [3] or chapter 18 of Ref. [4] for
summaries concerning the Einstein theory in D = 4. The
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corresponding extensions to higher dimensions were pre-
sented in the work [9]. Interestingly, the whole Kundt class
also admits spacetimes representing null fields of gyratonic
matter with internal spin/helicity. It turns out that the
angular momentum of such rotating sources is encoded
in the nondiagonal metric functions.

This observation was made by Bonnor already in 1970
[10,11]. He studied both the interior and the exterior field of a
“spinning null fluid” in the class of axially symmetric p p-
wave spacetimes, which are the simplest representatives of
the Kundt family. In the natural coordinates of nontwisting
geometries (see Sec. II), the energy-momentum tensor in
the interior region is phenomenologically described by the
radiation energy density 7, and by the components T,
representing the spinning character of the source (its nonzero
angular momentum density). Spacetimes with such localized
spinning sources moving at the speed of light were inde-
pendently rediscovered and investigated (in four and higher
dimensions) in 2005 by Frolov and his collaborators, who
called them gyratons [12,13]. These p p-wave-type gyratons
were later studied in greater detail and generalized to include
a negative cosmological constant [14], an electromagnetic
field [15], and various other settings including nonflat back-
grounds. An extensive summary can be found in Ref. [16].
This recent work presents and investigates gyratons in a fully
general class of Kundt spacetimes in any dimension.

In fact, all the so far known spacetimes with gyratonic
sources belong to the Kundt class. The following question
thus arises: Is it possible to find gyratons in other
geometries? The most natural candidate is clearly the
Robinson—Trautman family because it shares the nontwist-
ing and shear-free property and in D = 4 it admits a similar
algebraic structure. It differs only in having a nonvanishing
expansion of the geometrically privileged null congruence.

This is the purpose of the present paper: We systemati-
cally study the possible existence of Robinson—Trautman
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gyratonic solutions (in any dimension), which would be
analogous to those known in the Kundt class. First, in
Sec. II, we present the general form of the nontwisting
shear-free line element and all its components of the
Christoffel symbols and the Riemann and the Ricci tensors.
In subsequent Sec. III, we derive the explicit solutions to
Einstein’s equations in such a setting by performing their
step-by-step integration. We summarize the obtained space-
times and discuss them in Sec. IV. Appendix A contains the
proof of some useful identities.

II. GENERAL ROBINSON-TRAUTMAN
AND KUNDT GEOMETRY

In the most natural coordinates, the line element of a
general nontwisting D-dimensional spacetime is given by [5]

ds? = g,,(r. u, x)dxPdx? 4 2g,.,(r, u, x)dudx?
—2dudr + g,,,(r, u, x)du?, (1)

where x is a shorthand for (D — 2) spatial coordinates x”.'
The nonvanishing contravariant metric components are gP?
(an inverse matrix to g,,), 9" = -1, g7 = g"g,,, and
grr = —Guu + gpqgupguq’ so that

Gup = gpqgrq’ G =—9" + gpqgrpgrq‘ (2)

The geometrically privileged null vector field k = 09,
generates a geodesic and affinely parametrized congruence.
A direct calculation for the metric (1) immediately shows
that the covariant derivative of k is given by
kapy =T% =2 Gap,» so that k., =0 = k,,. The optical
matrix [8] defined as p;; = kopm¢m?, where m; =
m; (9up0, +0,) are (D —2) unit vectors forming the
orthonormal basis in the transverse Riemannian space, is
thus simply given by

1
2

o Pqd_
pij = kpgmim; =

Ipg.mim]. (3)
This can be decomposed into the antisymmetric twist
matrix A;; = pj;;), symmetric traceless shear matrix o;;,
and the trace © determining the expansion such that ¢;; +
From Eq. (3), we immediately see that A;; =0, which
confirms that the metric (1) is nontwisting. If we impose
the additional condition that the metric is shear free,
6;; = 0, we obtain the relation ©5;; = 1g,, ,m! m{. Using

Pd :
Gpgm;mj = 6;;, we thus infer

9pqr=209,,, sothat g,, . =2(0,+20%)g,,. (4)

The first expression can be integrated as

lThroughout this paper, the indices m, n, p, and ¢ label the
spatial coordinates and range from 2 to D — 1.
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Gpg = R?(r, u, x)hpq(u,x),
(5)
where R = exp O(r,u,x)dr |.

When the expansion vanishes, ® = 0, this effectively
reduces to R =1 so that the spatial metric g,,(u,x) is
independent of the affine parameter r. It yields exactly the
Kundt class of nonexpanding, twist-free and shear-free
geometries [3,4,8,9]. The other case ® # 0 gives the
expanding Robinson—Trautman class, which we will study
in this contribution.

The Christoffel symbols for the general nontwisting
spacetime (1) after applying the shear-free condition (4) are

I, =0, (6)

I, = —19 +lg”’g (7)
ru 5 Juur T 5 up,rs
o

Frp = _Egupf + Ggu;w (8)
r 1 rr rp

Fuu = 5 [_g Guu,r — Juuu +g <2gup~u - guu,p)}’ (9)

1
FZp = 5 [_grrgupf ~ Guu,p + grq(2gu[q,p] + gqp,u)]’ (10)

1
g = =097 9pq = Gu(pllg) + 5 9pq.u: (11)
= = Frb‘tp =0, (12)
ru, -1 (13)
uu Zguu,rv
5 1
Fup Egup,n (14)
[hg = ©gpg (15)
=0, (16)
I — 1 mn (17)
ru — 29 Gun.r»
I, = es, (18)
'm 1 rm mn
Fuu = 5 [_g guu,r + g (zgun,u - guu,n)]’ (19)
'm 1 rm nn
Fup = 5 [_g Gup.r + gn (2gu[n,p] + gnp,u)}? (20)
Iy =—0g™g,, +°T},. (21)

where SF’]’}}I =19"" (29u(p.q) — g,,.q’n) are the Christoffel
symbols with respect to the spatial coordinates only, i.e.,
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the coefficients of the covariant derivative on the transverse

: ) ) . 1 1
(D — 2)-dimensional Riemannian space. R __ + = gPa 24
The Riemann curvature tensor components are then e g uwrr g 9 Gup rGug.r 24)
obtained (after straightforward but lengthy calculation)
in the form
Rrpmq = 2gp[m®$q] - 2®zgp[mgq]u + ®gp[mgq]u,r7 (25)
Rrprq = _(G,r + 62)9.0!1’ (22)
1 1 Riupq = Gulp.gl.r + O(GulpIaiur = 29ulp.q))- (26)
Ropry = — Egup-,rr + 3 OGuup.r- (23) rupq ulp.ql.r ulpYqlu,r ulp.q]
|
1 1 1 o
Rrpuq = Egup,qu + Zgup,rguq,r - gpq®,u - EG) Ipq.u + 9pqYuu,r + GugY9up.r = 9pq9  YGun.r + 2gu[p,q] ’ (27)
1 rn 1 mn 1 1
Rruup = gu[u,p],r + Zg Gun.rQup.r — Eg gum,rEnp +0 Gupu — Eguu,p - Egupguu.r ’ (28)
Rmprzq = SRmpnq - ngrr(gmngpq - gmqun> - ®(gmnepq + 9pq€mn — Img€pn — gpnemq)’ (29)
Rupmq = Yp[m.ul|q) + Gulgq.m]||p + €pimYqlu,r + G(ergp[mgq]u,r + Guu,[g9m)p — 2ngn[qgm]p)’ (30)

1 1 1 1 1
Rupuq == 5 (guu)”qu + Gu(p.ullq) — Egpq,uu + Zgrrgup,rguq,r - Eguu.repq + Eguu,(pgq)u.r - ngrz(pgq)u.r + gmnEmpEnq

1
- 5 ®gpq [grrguu,r + Guuu — grn (Zgun,u - guu,n)]' (31)

Finally, the components of the Ricci tensor are

Rrr = _<D - 2><®,r + 62)’ (32)
1 1 ,
Rrp = _Egup,rr - 5 (D - 4)®gup,r + gup®,r - (D - 3)617 + (D - 2)6 Yup» (33)
1 L Lo | ro
Rru = _Eguu,rr + Eg Yup.rr + Eg (gup,qu + gup.rguq,r) - (D - 2)®u - EG[Q 9pqu — (D - 4)9 Gup.r + (D - 2)guu.r]’
(34)

qu = Squ - qu - gpq(grr®,r - 2®,u + 2.gm(a.n> + 2gu(p®,q)+®2 [2gpqgmgun - (D - 2)gpqgrr - 2gupguq]

+ ®[zgu(p|\q) + 29u(pgq)u,r - (D - z)epq + gpq(guu,r - 2grngun.r - gmnemn)]’ (35)
1 rr 1 1 rn 1 rn
Rup = _Eg guﬂ,rr _Eguu.rp +§gup,ru +g gu[n,p],r _Eg (g“P"'H” +gun,rgup.r)

1 1
+ gm” (5 Gum.rGun||p + Gm[p.u|n) + Gulm,pllln — Eemn.gup,r)
1
+ gup®,u + S gupguu,r + E (D - 4) (guugup,r - guu,p) - gup,u

1 1
- gmgun,rgup + (D - 6)gm (gu[n,p] - Egungup,r> + E (D - 2)gmgnp,u:| s (36)
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1 1 1
Ruu = _Egrrguu,rr - gmguu,rn - Egmnemnguu,r + gmgun,ru - Egmngmn.uu
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+ gmn (gumun

1 1
- Eguum|n) + 5 (grrgmn - grmgm)gum.rgun,r

1
+ 2gmngrpgum,rgu[n,p] + 7gmngum,rguu,n + gmngpqumEqn

2

2

and the Ricci scalar is

1
+ _6[(D - 4)grn (2gun$u ~ Guun — gunguu,r) + (D - 2) (guuguu.r - guu,u)]? (37)

3
R = SR + guu,rr - 2gmgun,rr - zgpqgu]l,qu - Egpqguﬁqrgm],r

=+ 2®r[(D - 2)guu -

(D - 3)grngun] + 4(D - Z)G),u - 4<D — 3>grn®ﬁ

—@(D - 1)(D -2)g" —2(2D = 5)9" 9]

+ G[Z(D - 2)guu,r - 2(2D - 7)gmgun,r

In the above expressions, SR,,,,,. *R,,, and *R are the
Riemann tensor, Ricci tensor, and Ricci scalar for the
transverse-space metric g,,, respectively. The symbol ||
denotes the covariant derivative with respect to g, ,

Guplla = Jup.qg — Gum"Upgs (39)

Gup.rllg = Gup.rqg — gum,rSFZlq’ (40)
1 STn n
9p[m.ullq) = 9plm.q).u + 5( Fpingnq,u - qugnm,u)’ (41)

_ S S

Gulglimlllp = ulgml.p — "L pgGuinm) = “TomGuign,  (42)

(guu)Hqu = Guu.pqg — guu,nSF;lyqv (43)
gup.qu = Gupug — gum,usrgqi (44)

and e, E,,, and f,, are convenient shorthands defined as

1

€pa = Ju(pll)) = 5 Ipq.u: (45)
1
Epg = Gulp.q T 5 9pg.u: (46)
1
qu = Gu(p.r||q) + Egup,rguq,w (47)

where, of course, g,(,.4) = Gu[p|jg- It Will also be useful to
rewrite the following r derivatives of the metric functions in
terms of the contravariant components [see Eq. (2)]:

up.r = gpq(grq,r + 2®grq)’ (48)

+ (D - l)gpquq,u - 2(D - 3)gpqgup|\q]' (38)

Guprr = Gpg(§r + 20,91 +40%¢"1 + 409" ), (49)
Guur == 9" +29,4(g7 g . +Og T g"?), (50)

Guu,rr = _grr.rr + ngq (grpgrq,rr + grp’rgrq’r + ®’rgrpgrq
+202%gP g +40g'7g" ,). (51)

The expressions (32)—(37) of the Ricci tensor enable us
to write explicitly the gravitational field equations for
any nontwisting and shear-free geometry of an arbitrary
dimension D, that is, for any Kundt or Robinson—Trautman
spacetime.

III. EINSTEIN’S FIELD EQUATIONS
WITH GYRATONS AND THEIR
COMPLETE INTEGRATION

General Einstein’s equations for the metric g,, have
the form R, — 1 Rgu, + Aguy, = 87T, Where we admit a
nonvanishing cosmological constant A and an arbitrary
matter field given by its energy momentum-tensor 7,
with the trace T = ¢*’T,,. By substituting their trace
R = % (AD — 8xT), we obtain

2 1
Ry = mAgab + 87 (Tab “D_> Tgab)' (52)

Our main aim here is to solve the Einstein field equa-
tions (52) in the case of expanding Robinson—Trautman
geometry with a gyratonic matter, which is a natural
generalization of a pure radiation field to admit a spin
of the null source [10,12,16]. We thus assume that the
only nonvanishing components of the energy-momentum
tensor are T, (r, u, x) corresponding to the classical pure
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radiation component and 7', p(r, u, x), which encodes inner
gyratonic angular momentum. We immediately observe
from Eqgs. (1) and (2) that the trace of such an energy-
momentum tensor vanishes, 7 = 0.

Moreover, the condition 7% .» = 0, which follows from
Bianchi identities, after a straightforward manipulation,
gives the constraints

Tup;r = Ov

Ty = g™T (53)

upiq-
These can be explicitly rewritten using Egs. (6)—(21) as

Typ,—OT,, =0, (54)

up,r
Tuu,r + (D - 2)®Tuu

1
= gquuqu + Egrp.r + (D - 1)®grp Tup' (55)

We can now perform a step-by-step integration of the
Einstein field equations (52).

A. Equation R,. =0
From Eq. (32), we get the explicit form of this equation,

0,+62 =0, (56)

which obviously determines the r dependence of the
expansion scalar ©. Its general solution can be written as
O7! = r + ro(u, x). However, the metric (1) is invariant
under the gauge transformation r — r — ro(u, x), and we
can thus, without loss of generality, set the integration
function ry(u, x) to zero. The expansion simply becomes

0=-. (57)

The integral form (5) of the shear-free condition (4) with
the expansion given by Eq. (57) completely determines the

PHYSICAL REVIEW D 89, 124029 (2014)

r dependence of the (D — 2)-dimensional spatial metric
gpq(r, u, x), namely,

= rzhpq(u,x), (58)
so that gP? = r~2hP4, where hP9 is the inverse matrix of

h,q. The r-independent metric part /,,, will be constrained
by the next Einstein’s equations.

Ipq

B. Equation R,, =0

Using Egs. (33), (48), and (49), we rewrite the Ricci
tensor component R,,, in a more compact way:

1
Rrp - _Eg[%](grq,rr + Dggrq’» - (D - 3)647' (59)

Employing now the restriction given by R, = 0, i.e., the
explicit form of expansion (57), the equation R,, =0
becomes

D
grq,rr + 7grq’r =0. (60)
We easily find its general solution ¢"7(r, u, x) in the form

g9 =el(u,x) + r'=Pfi(u, x), (61)

where e¢? and f? are arbitrary integration functions of u and x.
In view of Egs. (2) and (58), the corresponding covariant
components of the Robinson—Trautman metric are

Gup = r?e,(u,x) + r*7Lf ,(u,x), (62)

where e, = h,,e? and [, = h,,f7.

At this stage, we can also fully integrate the energy-
momentum conservation equations (54) and (55), which
determine the r dependence of the gyratonic energy-
momentum tensor:

T pr. (63)

1 1
Ty=——"M1Tpe+T, epr—i—E(D— DfPr2P Inr| + Nr2P, (64)

D-2

where J ,(u,x) and N (u, x) are integration functions of u and x.

C. Equation R,, = — %5 A

~ D=2

It is convenient to rewrite the general Ricci tensor component (34) using the contravariant metric components,

2Rru = grr,rr + (D - 2)®grr’r - gpq(grpgrq,rr + grp’rgrq’r + D®grpgrq’r)+(grp’r + 2®grp)Hp - ®gpquq,u - 2(D - 2)®u

(65)

Employing the previous results of (57), (58), and (61), the corresponding Einstein equation becomes
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1 4
g+ (D=2)rtgT, ==2 (eP”P - Ehpthq.u> - mA—l—(D =3)fP,r P+ (D= 1)2frf,rP0-P) . (66)

Its homogeneous solution is g = a + br*=", where a(u, x) and b(u, x) are integration functions. The particular solution
: e _ 1 k+2 : k ;
can be obtained as a superposition of terms gf ,€> = wo-o !’ corresponding to all terms of the form yr* on the right-

hand side of Eq. (66). The general solution with an explicit » dependence of the metric component g"" thus becomes

2 1 2A D-3 D-1
o b 3-D _ P, —_hPijh _ 2 p 2-D D 2(2—D)‘ 67
gr=atbr D—2<e ) f"”‘)r D-no=2" To=2!w Tap /e (67)
Notice that g,, is then simply obtained using Eq. (2) as
G = —g" +1?ePe, +2rPel f, + r2(2_D>f"fp. (68)

D. Equation R,, = ;%5 Ag,,
Using Egs. (50), (57), (58), (61), and (62), the general Ricci tensor component (35) becomes

1 1
Ry, =5R,,—[(D=3)g" +rg" Jhy,— [(6 lIn — 2hmlhmn,u> hyg+ (D =2) (e(pq) - zhpq,uﬂ r

1
+ Pl = P nhpg) P =5 (D = 1)2f , fyr27P), (69)
in which, employing Eq. (67),
rr rr n 1 mn 2A D_3 n - (D_1)2 n —
(D=3)g"+rg",=(D=3)a- 2<e I —Eh hmnﬁu)r—D — 2r2 5o 2f H,,rz b —mf fur?@P) o (70)

The corresponding Einstein equations (52) thus take the form

1 1
SRM — (D =3)ah,, + [(enn - Eh mhmn-u> hpg— (D =2) (e(pq) - §hpqsu>] r

h 1 h
P4 n - prq n . _
+ <f(p|q> 5o/ |n) PP -3 (D-1) <f17fq o5/ fn> ri2=P) = 0. (71)
|

Th.e trace of .thls equation explicitly determines the 1 b e _ hyg o 1 o (74)

function a(u, x) introduced in Eq. (67), namely, 5 pau = Clplla) T o\ C lln Ty mn.u | >

R
a=————- (72) Mg o
(D-2)(D -3) folg =5 =7 Ins (75)
where R = h?9R,, is the Ricci scalar curvature of the h

spatial metric /,,,, which is the r-independent part of g,,,. ol = 5 L q2 ' fn (76)

Notice that due to Eq. (58) the corresponding Ricci tensor is
R,, =5R,,, while R = SRr?. Decomposing Eq. (71) into
the terms with different powers of r, we obtain the
following constraints on the metric functions:

Now, if we multiply both sides of Eq. (76) by f4,
we obtain f,(ff,) = 55/,(f9f,). This necessarily
implies

h

R,y = n iqz R. (73) fr=0 (77)
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whenever fif, #0. If fif, =hPif,f, =0, then again
S, =0 for all p because the Riemannian metric 279 is a
positive definite matrix. In such a case, the condition (75) is
trivially satisfied.

At this stage, the most general Robinson—Trautman line
element (possibly admitting the gyratonic matter) takes the
form

ds* = r?h,,dxPdx? + 2r?e,dudx? — 2dudr
+ (rfePe, — g")du?, (78)
where

2

rro__ 3—-D _
g"=a+ br +cr —(D—l)(D—Z)

AP, (79)

PHYSICAL REVIEW D 89, 124029 (2014)
with

1
CcC = —m (6 Hn - 5/’1 hmn.u> . (80)

The functions h,, and e, are constrained by Egs. (73)
and (74). Because of Eq. (73), the transverse (D — 2)-
dimensional Riemannian space must be an FEinstein
space.

E. Equation R, = ;%5 Ag,, + 8xT,,

Using Egs. (57), (58), (61), (62), and (68) with Eq. (77),
the Ricci tensor component R, (36) becomes

1
Rup = _ep[(D - 3)grr + rgrr.r] +3 [grr,rp + (D - 4)r_lgrr.,p] + hm”(hm[p.an] + e[m,p]Hn)

2

2

where

2

1 1 1
+ |:<D - 2) <€n€[n’p] - = (e"e,,)y,, + _enhnp,u) - €p <e"||n - Ehmnhmn,u>:| r, (81)

D-2

(D=3)g" +rg", =5 —5R=2 (e"in - gh’""hmn,u) r—p5 5 A

D-3
grr’rp + (D _ 4)r—1grr.p ]

enn_hmnhmn,u> e 8
D—2< 2 R ED R

(D—4)

R,r ' =b,rP; (82)

see Egs. (67) and (70) with Egs. (72) and (77). The corresponding Einstein equations (52) with Eq. (63) are thus

D-2""" D=2 2

| D3 |
e <e"ln - hmnhm”*“) + B (Rt ] + € pln)
P

(D — 4) -1 1 2-D
———R —=b
TaD-2)p=3) " T
1 1 1
+ {(D -2) (ene[n,p] ) (e"e,) , + Eenhan) tep (enln - Ehmnhmn,u>:| r=_8xzJ,r. (83)
This gives the following conditions:
1
Re, + (D - 3) <€ =5 hmn,u) = (D =2)R"" (Ronfp ufjn] + €[m.p)jjn) = Os (84)
P
|
(D _4)Rp =0, (85) Using Eq. (74), the relation eml|plln = Cm|ln|lp T eq’RZ,,m,
' and Eq. (73), we find that Eq. (84) is satisfied identically.
h —0 (86) Equation (85) clearly restricts the dependence of the spatial
P ' Ricci scalar R on the spatial coordinates x”, namely,
1 1
(D-2) <€ ep) =5 (€"en) p T3¢ hnw) R =7R(u) for D> 4, (88)
1
My —=h"h =8 . 87
+e]1 <€ [|In 2 mn,u> ﬂ'jp ( ) R:R(M,X) for D = 4. (89)
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There is thus a significant difference between the D = 4
case of classical relativity and the extension of Robinson—
Trautman spacetimes to higher dimensions. Similarly,
Eq. (86) gives

b= b(u). (90)

Finally, by substituting the expression (74) into Eq. (87),
we get

(D-2) <enen|,, - % (w,,),,,) —8z7,.  (91)

Since (e"e,) , = (e"e,)),, its left-hand side always
vanishes, and we obtain the condition for the energy-
momentum tensor (63), (64)

J,=0. (92)
|

PHYSICAL REVIEW D 89, 124029 (2014)

Necessarily, in any dimension D, we thus obtain

T, =0,

Ty =NrP, (93)
which is just the well-known pure radiation field (null fluid)
without the “rotational” components T',, of the energy-
momentum tensor. We have thus proved that there are no
solutions with gyratonic sources in the Robinson—Trautman
class of spacetimes.

F. Equation R, = lﬁAguu + 8=T,,

This final equation determines the relation between
the Robinson-Trautman geometry and the pure radiation
matter field represented by the profile A (u,x). Using
Egs. (57), (58), (61), (62), and (68) with Eq. (77), the
Ricci tensor component R, given by Eq. (37) becomes

1 1 1
Rue=3979"m 43 [e”ln =S Ky + (D = 2)g7r ™ = 26"6”] g

2

1
+ el |:grr,r + E (D _ 6)grrr—l:| +

1
— (D =3)e"e, g™ + h™" [em.un ~3 (€”€p) mlin

1 1
5 hmnglr‘cnl‘nr—Z + 5 (D _ 2)9”.“7‘_1

1
——h
2 mn.uu:|

1 1
+ W™ hPd (e[p,m] =+ Ehpm,u) (e[q.n] + thn,u>

1 1
+ [5 (D—=2)(e™e"hpyy,, — e”(epep)’n) —ele, (e",, - Eh’”"hmn.u>] r. (94)

Moreover, employing the explicit form (79) of ¢"" with the help of Eqgs. (74) and (90), we get

2 1 1 5 Lo L
Ruu :mAguu +§(D_2) |:b,u +§(D_l)bc:|r D+Eh A||m||[nT
1
+ 3 [(D=2)(a, + ac)+ (D —6)e"a,, + h""c|j,]r™
1 1
+ > (D=2)(c, +c*)+ "¢+ E(D —4)e"c, — (D =3)ele,a
Jmn lh 1 p hPa
+ Cmulln — E mnuu 5(6 eP)HmHn + €pllm€qln
1
+ 3 (D =2)[e"e" hyy, —€"(ePe,) , — e e,c]r, (95)

where a is given by Eq. (72) and ¢ by Eq. (80). Now, lengthy calculations using the previously derived constraints lead to

the identities (proved in the Appendix)

m,n
e-e hmn,u

N[ =

2

—e"(ele,), —e"e,c =0, (96)

1

1 1
(D - 2)(C.u + Cz) + eanC +5 (D —4)6”0‘” - (D - 3)€Pepa+hmn €m,ul|n __hmn,uu __(epep)HmHn + hpqepl\meqﬂn =0,

2 2

97)
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(D-2)(a, +ac)+ (D—-6)e"a, + " C|ijn = (D—4)e"a,, (98)

which are exactly the terms in Eq. (95) proportional to r, r°, and r~!, respectively. The corresponding Einstein equation
R.. = 555 Mgy, + 87T, with Eq. (93) thus takes a very simple form

1 1 1 1

3 (D-=2)|b, + 3 (D= 1)bc|r*P + EhmnaHmHnr_Z +5 (D—4)e"a,r™!' =8zNr*P. (99)
It is interesting that also the last term on the left-hand side o R b(u)
always vanishes since (D —4)a, = 0 in any dimension D; g T3

see Eq. (85). Consequently, in any dimension, the last
Einstein equation can be compactly2 written as

Aa —|—%(D —1)(D=2)bc+ (D-2)b, = 167N,
(100)

where Aa = h™"ay|,,|, is the covariant Laplace operator
on the (D — 2)-dimensional transverse Riemannian space.
In particular, this Einstein field equation reads

16
(D=1)bc+b, =—"N forD >4,

55 (101)

N =

1
A (§R> +3bc +2b, =16aN for D=4. (102)

For the special choice e” = 0, Eq. (102) reduces exactly to
the classical Robinson—Trautman equation [3,4] [with the
identification a = 1R = A(log P) = K, b = —2m(u), and
¢ = —2(log P) ,, where K is the Gaussian curvature of the
spatial metric h,, = P‘zépq]. Equation (101) generalizes
the field equation previously derived in Ref. [5] in the sense
that now it also includes the contribution from the off-
diagonal metric components e¢” entering the function ¢ as
their covariant spatial divergence e"|,,; see Eq. (80).

IV. SUMMARY AND CONCLUDING DISCUSSION

The most general D-dimensional Robinson—Trautman
line element in vacuum, with a cosmological constant A
and possibly the pure radiation field T',,, = N'r*~? can thus
be written [in the natural gauge in which the expansion is
® = r7!; see Eq. (57)] as

ds? = r?h,,,(dx? + e?du)(dx? + e9du) — 2dudr — g du?,
(103)

where

“The term proportional to =2 in Eq. (99) is always zero in the
case D > 4 since aj,,,, = 0 due to Eq. (83). In the D = 4 case, it
is combined with the terms proportional to >~ = r~2 into the
expression (100).

" D-2)D-3) " r

2 1
“D-2 (e”|p - Ehpthq-u> r

2 ,
“b-no-2)" (104)

with the functions #,,(u, x) and e”(u,x) constrained by
Egs. (73), (74), and (100), namely,

h

Rpg =55 R (105)
1 h 1
e(qu) - Ehpq,u = D p_q2 (enn - Ehnnhmn,u> s (106)
AR 1
— D — 1 n — _ Jymn
oy ()

+ (D -2)b, = 16zN, (107)
in which b is a function of the null coordinate u only. The
first equation (105) restricts just the Riemannian metric £,
of the transverse (D — 2)-dimensional space covered by
the coordinates x”, with R, and R being its Ricci tensor
and Ricci scalar. Therefore, any Einstein space metric £,
is admitted. The second constraint (106) imposes a
specific coupling between the spatial metric /), and the
off-diagonal metric components represented by (D —2)
functions e”. In addition, there is the Einstein equation
(107), which relates these metric functions and an arbitrary
“mass” function b(u) to the pure radiation profile N. In
the vacuum case, N = 0.

After the step-by-step integration of all Einstein’s equa-
tions, we proved that there are no gyratons in the
Robinson-Trautman class. In any dimension including
D =4, we necessarily obtained J p= 0 so that
T,, = J,r=0;see Eq. (63) with Eq. (92) or (93), which
means that the null matter field cannot have an “internal
spin” (angular momentum).

This is in striking contrast to the closely related Kundt
family of spacetimes, which in general (and in any D)
admits such gyrating sources, as recently demonstrated in
Ref. [16] (there is also a comprehensive list of previous
works studying particular subclasses of the Kundt
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gyratons). Such a conclusion is surprising because the
Robinson—Trautman family of geometries is the closest to
the Kundt family—both are nontwisting and shear free, and
(at least in D = 4) they admit similar algebraic structures
and matter fields.

The questions thus arise about the nature of such a
difference and also concerning the possible physical
interpretation of the off-diagonal metric functions e?”.
In the following two short sections, we will tackle these
two problems.

A. Robinson-Trautman vs gyratonic Kundt spacetimes

Of course, the Robinson—Trautman class of spacetimes is
expanding (® = r~! # 0), while the Kundt class is non-
expanding (® = 0). The absence or presence of the
gyratons thus must be traced to this geometric difference.
In Sec. II, we presented the complete list of all curvature
tensor components for any nontwisting and shear-free
geometry that contains both the Robinson—Trautman and
the Kundt family. We are thus able to trace the point at

|

h

Ro=p 3

D -2

h 1
= <f<p|q>—%f"|n> +§<fpfq—D_2f"fn)-

This imposes a specific coupling between the traceless part
of the Ricci curvature R,, of the (D —2)-dimensional
Riemannian space and the traceless part of the tensor f,,
constructed from the functions f, determining (part of) the
off-diagonal Kundt metric components g,,.

It can now be observed from Eq. (71) that exactly the
same terms occur in the corresponding field equation for
the Robinson—Trautman metric, but with different powers
of r. This is the key point: In the nonexpanding Kundt
class, we have obtained just one condition (108), whereas
in the expanding Robinson-Trautman class, there are
four separate constraints, namely, Eqgs. (73)—(76). It is
the severe constraint (76) that necessarily requires f, = 0,
see Eq. (77), which then fulfills Eq. (75) identically. In the
Robinson—Trautman case, we are thus left with the con-
dition (73), which for f, = 0 is the same as Eq. (108) in the
nonexpanding case. However, in the Robinson—Trautman
case, there is the additional constraint (74), i.e., Eq. (106),
that couples () — 5 /1,4, 1o its trace. It turns out that this
specific restriction on possible functions e, determining
the other part of the off-diagonal metric components g,
forbids—after applying the following Einstein’s equation
for R,,—the presence of gyratonic matter fields in the
Robinson-Trautman geometries; see Eq. (92). In contrast,
there is no such constraint on e, in the nonexpanding
family, which enables gyratons to be included in the Kundt
geometries.
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which the integration of Einstein’s equations with gyratonic
energy-momentum tensor starts to differ significantly.

To be specific, by setting ® = 0 for the Kundt class
in Eq. (4), we immediately obtain g,, = h,, independent
of r, instead of Eq. (58), which reads g,, = r*h pg 10 the
Robinson—Trautman case. The second field equation (59)
for ® = Oyields g,, = e, + rf, instead of Eq. (62), which
is g,, =r’e, +r"Pf,. The third field equation (34)
gives, instead of Egs. (67) and (68), ¢,, =a-+ br+

[ A+3(f7), + fPf,)r? in full agreement with
Egs. (64) and (65) of Ref. [9]. Apart from different powers
of r, the metric coefficients for the Kundt and Robinson—
Trautman spacetimes thus look very similar.

The main difference between these two types of geom-
etries occurs after employing the next field equation for the
spatial Ricci components R,,, given by Eq. (35). For the
Kundt class, this equation is independent of r, namely,
Rpq = 523 Mipg + [ g Where frg = fipq) +3fpf g Tts
trace R = 2A + ™" f,,, enables us to rewrite it as

h
rq R = qu _ Pq hmnfmn

hl’q

(108)

|
B. Robinson-Trautman gravitational waves in D = 4

Finally, we will elucidate the physical meaning of the
functions e,,. Instead of representing the angular momentum
of a gyratonic matter they directly encode amplitudes of
the Robinson-Trautman gravitational waves. In usual
D = 4 dimensions, the transverse Riemannian space is two-
dimensional. If such a 2-space were to have constant curva-
ture, its metric h pg Can be written in the conformally flat form

ds} = h,,dxPdx? = y~2[(dx?)? + (dx*)?],  where

1
W= 14 el + () (109)
with € = 0, +1, or —1. For such a metric, the Christoffel
symbols are

ST2 _ ST3 _ _ST2 2, —1
[5, =Ty = =T33 = —exy ™,

T3, =513, = =513, = —ex’y L. (110)
Nontrivial Riemann and Ricci tensor components read
Rogs = 2ep™ and R, = Ry = 2eyp ™2, so that the
Ricci scalar is R = 4e¢ = 2K, where K is the (constant)
Gaussian curvature. This obviously satisfies the constraint
(105). It remains to fulfill the constraint (106). Since h,,
given by Eq. (109) is independent of u, it reduces to

e(pllg) = %h[,qe”Hn, which is, using Eq. (110),
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€@lpR) = wret ) —ey T (xe? + xPe?),
eqp) =W e 3 —ep T (xPe? + xPe?),

1
e = 5w (€ + ),

ey = (24 e 3) —2ep~ ! (XPe? +xe?).  (111)
The constraint is thus equivalent to very simple two
conditions:

‘32.2 = 93,3

and €3 =-¢,. (112)
Clearly, these are just the Cauchy—Riemann conditions for
the complex function f constructed from the real functions
e?(u,x*,x%) and e*(u, x?, x*), which depend on an external
parameter u and the complex variable £ composed from the
spatial coordinates x> and x>. In particular, introducing the
complex quantities

¢

%()c2 +ix}) and f= —%(62 +ie?),

we obtain that f is a holomorphic function of the complex
variable ¢ since Eq. (112) is equivalent to f: =0,
while f ¢ = —(e?, +ie’5). Any complex function f(u, &)
holomorphic in ¢ thus automatically satisfies the
constraint (106).

Therefore, in Einstein’s D = 4 general relativity, it is
convenient to adopt the complex representation & of the
spatial coordinates in the transverse 2-space and the
complex function f(&) to represent the off-diagonal metric
functions e and e3. Performing the transformation (113),
the general vacuum Robinson—Trautman solution (103),
(104) (possibly with a cosmological constant A and/or
pure radiation field) for which the transverse 2-space has
constant curvature takes the form

(113)

2
51d& — f(u, &)dul* — 2dudr — g""du?,

a2 =2
"%

(114)
w=1+eEE with e =0, +1, or —1, and

b - 2¢ - - A
g =2+ 74 (UerTo - lr+en)r-5r
(115)

Here, b = b(u) is an arbitrary function, and we used the
fact that

S 2.
ey =—(fet+rz) +5(§f+ &f). (116)

3They imply that e? and ¢? are harmonic conjugate functions in
flat 2-space, Ae* =0 = ae’.
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The field equation (107) is now reduced to a simple relation
2b, —3ber), = 16z, which in the vacuum case is just

2b, = 3be? (117)

llp-

For b =0, this vacuum field equation is identically
satisfied. In such a case, we obtain the complete family of
Robinson-Trautman gravitational waves of algebraic type N.
Indeed, the metric (114), (115) with b = 0 is exactly the
line element written in Sec. 4 of Ref. [17] above Eq. (16).
This is related to the Garcia Diaz—Plebanski 1981 form [18]
of these exact radiative spacetimes,

ds? = 202dEdE + 2vAdédu + 2vAdédu + 2wdudv

+2(AA + wB)du?, (118)
where A=ef—vf, B=—e+3v(fe+fz) +iAv%y,
via a simple transformation r = —ovy; see also Ref. [19].
The corresponding gravitational wave amplitudes A,
and A, of the two independent polarizations are directly
determined by the second covariant derivatives of the
Junction ¢ = —e?,, cf. Eq. (80), namely, by the symmetric
traceless 2 x 2 matrix

Wpq = Clipllg ~ % Rpgh™ € imjn- (119)
Indeed, using Eq. (110), it follows that
1
W = Wi =5 (can—c33) +ey™ (¥, —xcs),
wyy =Wy = Co3 + ey (Fen 4+ x7cy), (120)

which can be rewritten in the complex notation (113) as
wi3 = —2ReW, wyy = —2Zm¥, where U = Sy~ (yc) ..
Substituting for ¢ = —e? ||, from Eq. (116), we immediately
obtain ¥ = % f zee- This yields very simple explicit relations:
(121)

wiz = —Ref eee. Woz = =Imf gz

By comparing with the expressions (34) of Ref. [20]
determining the two amplitudes of the Robinson—
Trautman gravitational waves (measured by a geodesic
deviation in a suitable orthonormal frame), we observe that
AJr X W33 and AX X W3,

We thus conclude that although the off-diagonal metric
components g,, = r’e » can be locally removed from the
metric (103) by a gauge transformation x’(x, u) such that
dx'? = dx? + ePdu, it is in fact convenient to keep e” (or,
equivalently, the complex function f) nontrivial because
these functions directly encode the amplitudes of the
Robinson—Trautman gravitational waves. The physical
meaning of these metric components in higher dimensions
remains an open question since various independent results
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indicate that there are no Robinson—Trautman gravitational
waves in D > 4 [5,8,21].
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APPENDIX: PROOF OF THE
USEFUL IDENTITIES

Here, we present the steps that enable us to prove the
nontrivial identities (96)—(98).

1. Identity (96)

This identity immediately follows from the constraint
(74), which, in view of the definition (80), can be written as

hmn,u = 2e(mHn) + Rypnc. (Al)

Multiplying this equation by e™e”, we obtain
e"e hy,, = 2e"e" ey, + €"e,c, which is equal to

e"e"hy, , =e'(e"e,), +e"e,c. (A2)

2. Identity (97)
First, it can be shown using Egs. (80) and (A1) and the

relation K™, = —h™Ph"%h,,, , that
1 2 n mn 1
E (D - 2)(C,u +c ) +e [|[n€ +h |:em~u\|n - Ehmmuu}
= hmn[em.an - emHn.u]' (A3)

Moreover, using the explicit expressions for the spatial
covariant derivatives

Cmulln = €mun — ep,usrgm, (A4)
Cm||nu = (em,n - epsrlf:m)_w (AS)
e(plm)lin = €(plim).n — (gllm) Lon = €(pllg) Tnn,  (A6)
we obtain
h™" [em,an - emHn,u]
1
= —5 (D — 4)€nC’n + €phmn€p”m”n
+ e R [eniplln = €mnlp]- (A7)

Simple calculation yields
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pq — = p mn
il T P9 plimeq)in ePR™ e -

(A8)

1
Rt —i(epep)

Putting Eqgs. (A3), (A7), and (A8) together, applying the
definition e€,),(jn = €m|n|p = —R%mnp€q> and using the
constraint R ,, = (D —3)h,,a, which follow from

Pq
Egs. (72) and (73), we thus prove

1
(D - 2)(C.u + 62) + eanC =+ E (D - 4)enc.n

N =

1
- (D - 3)epepa + hmt |:em.un - Ehmn.uu

1
- E(epep)HmHn + hpqep|meqn:| =0,
which is the identity (97).

3. Identity (98)

Using the explicit form (72) of a, where R = h”quq,
with (73) and (80) it can be shown that

1
(D-2)(a, +ac) = D—hqu

M Ry (A10)

_ n
2ae [

It remains to evaluate the term AP9R which (from the

definition of the Ricci tensor) is

pq.u>

hqupq,u = hpq[srlr;lq.mu - Srl;)lm,qu + Sl—v;}q,usrzn
ST T = 2T, 5T (AL1)
Direct calculation using the identity /™" , = —h"Ph"4h,,, ,
followed by relations (A1), (A6), and €,),(jn = €m|jn||p =
—R4,,,pe, reveals that
5y = Thqu = """ [eni(pllg) = € Rty
1
+80,¢9 Eh’””hpqc,n. (A12)

It is important to observe that the quantity 77, is a tensor
in the transverse (D — 2)-dimensional space. Therefore,
reexpressing Eq. (All) using the covariant derivative
T ;}qu, we get the tensor relation

hPIR,, = hP9[T

pq.u =T

palm ~ Tomijg) (A13)

Substituting Eq. (A12) into Eq. (A13), we obtain
PR pg. = W™ P4 e pijglim

+ thn(epRpm)Hn - (D - 3)hmnCHmHn.
(A14)

= €4)|p|jmlq]
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Now, the contraction of the identity (3.2.21) of Ref. [22]
yields the identity

W™ P4 ey pliglim = €niiplimllq] = O (A15)
while the direct evaluation using Egs. (72) and (73) gives

20" (ePR ) jp = 2(D = 3)[e"a,, + ae™,].  (Al6)

PHYSICAL REVIEW D 89, 124029 (2014)
Putting Eq. (Al14) with Egs. (Al15) and (A16) into
Eq. (A10), we finally obtain the identity

(D-2)(a, +ac)+ (D —-6)e"a, + B C |

=(D—-4)e"a,, (A17)

which completes the proof.
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