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We investigate Brownian motions of a particle coupled to vacuum fluctuations of a quantum field.
The Unruh effect predicts that an observer in an accelerated motion sees the Minkowski vacuum as
thermally excited. This addresses the problem of whether or not a thermal property appears in a perturbative
random motion of a particle in an accelerated motion due to the coupling. We revisit this problem by
solving the equation of motion of a particle coupled to vacuum fluctuations including the radiation reaction
force. We compute a Fourier integral for the variance of the random velocity in a rigorous manner.
Similarly, we consider a particle coupled to vacuum fluctuations in de Sitter spacetime motivated by the
argument that an observer in de Sitter spacetime sees the Bunch-Davies vacuum as a thermally excited state
with the Gibbons-Hawking temperature. Our investigation clarifies the condition that the energy
equipartition relation arises in the Brownian motions of a particle.
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I. INTRODUCTION

Vacuum fluctuation is a key concept of quantum physics
in curved spacetime. One of the famous phenomena is the
Hawking radiation, which predicts thermal-like radiation
from black hole spacetime [1]. From the equivalence
principle, the Hawking radiation is closely related with
the Unruh effect that predicts an observer in an accelerated
motion sees the Minkowski vacuum as thermally excited
[2]. It is an interesting question whether or not the Unruh
effect can be tested in a laboratory. The radiation coming
from the Unruh effect is called the Unruh radiation, though
the existence of the Unruh radiation is under debate [3–5].
Motivated by the arguments [3–5], we investigate

Brownian motion of a particle due to the coupling to
quantum vacuum fluctuations. This issue was first formu-
lated in Ref. [5], in which the authors considered the system
that consists of a particle and a quantum field, which are
coupled to each other. They derived a Langevin-like
equation for a particle taking the random force from the
quantum field fluctuations and the radiation reaction force
into account. They applied the formulation to a particle in
an uniformly accelerated motion, and found that the energy
equipartition relation appears in the transverse fluctuations
of a particle, which is perpendicular to the direction of the
acceleration. However, the conclusion is based on a low-
energy approximation, and the investigation is restricted to
the transverse fluctuations in particle motions because of
the limitation of the approximation. Therefore, the longi-
tudinal fluctuations have not been investigated yet.
In the present paper, complementary to the previous work

[5], we focus our investigation on the energy equipartition
relation in random motions of a particle coupled to vacuum
fluctuations of a quantum field. We consider the system that

consists of a particle and a quantum field, which are coupled
to eachother, in curved spacetime.Wepresentbasic formulas
for a particle in random motions as a generalization of the
previous work [5]. As applications, we consider a particle in
de Sitter spacetime as well as a particle in an uniformly
accelerated motion, which is well described by the Rindler
spacetime coordinate. We compute the variance of the
random velocity in a coincidence limit of the two point
function of the random velocity, which we evaluate by
counting all the poles in the Fourier integral, which is
obtained by solving the equation of motion of a particle.
Our results clarify the difference between the transverse and
the longitudinal fluctuations of a particle in an accelerated
motion. The energy equipartition relation appears for the
transverse fluctuations, but it does not appear for the
longitudinal fluctuations when a particle is uniformly
accelerated.
A particle coupled to vacuum fluctuations in de Sitter

spacetime is also considered, motivated by the prediction
that an observer in de Sitter spacetime sees the Bunch-
Davies vacuum as a thermally excited state with the
Gibbons-Hawking temperature. For a particle coupled to
the Bunch-Davies vacuum fluctuations in de Sitter space-
time, we find a similar structure of poles in the Fourier
integral for the variance of the random velocity as that of
the longitudinal fluctuations of a particle in an accelerated
motion. Our rigorous method shows that the energy
equipartition relation does not appear for m ≫ H, where
m is the mass of the particle and H is a Hubble constant
specifying the de Sitter expansion rate. The energy equi-
partition relation only appears for m ≪ H.
This paper is organized as follows: In Sec. II, we first

present basis formulas, which describe the equation of
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motion of a particle coupled to vacuum fluctuations of a
quantum field, as a generalization of the previous work [5]
to those in curved spacetime. We derive the Langevin-like
equation for a particle taking random forces due to the
coupling and the radiation reaction force into account.
In Sec. III, we consider a particle coupled to the
Bunch-Davies vacuum fluctuations in de Sitter spacetime.
In Sec. IV, we consider a particle coupled to the Minkowski
vacuum fluctuations in an accelerated motion. The trans-
verse and the longitudinal random motions are investigated
separately. Section V is devoted to summary and conclu-
sions. We follow the metric convention ð−;þ;þ;þÞ.

II. BASIC FORMULAS

We consider the system consisting of a particle and a
scalar field in curved spacetime, whose action is given by

S ¼ S0ðzÞ þ S0ðϕÞ þ Sintðz;ϕÞ; ð2:1Þ

where S0ðzÞ and S0ðϕÞ are the action for the fee particle
and the field conformally coupled to the curvature,

S0ðzÞ ¼ −m
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _zμ _zν

q
; ð2:2Þ

S0ðϕÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
f−gμν∂μϕ∂νϕ − ξRϕ2g; ð2:3Þ

and Sintðz;ϕÞ describes the interaction,

Sintðz;ϕÞ ¼ e
Z

dτd4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðxÞ_zμ _zν

q
ϕðxÞδ4ðx − zðτÞÞ

¼ e
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðzðτÞÞ_zμ _zν

q
ϕðzðτÞÞ: ð2:4Þ

Note that xμ ¼ zμðτÞ denotes the trajectory of the particle,
which obeys,

m
D_zμ

Dτ
¼ e

�
D_zμ

Dτ
ϕþ _zμ _zα

∂ϕ
∂xα þ gμα

∂ϕ
∂xα

�����
x¼zðτÞ

; ð2:5Þ

where we used the notationD=Dτ ¼ _zμ∇μ. The equation of
motion for the scalar field is

ð−∇μ∇μ þ ξRÞϕðxÞ ¼ effiffiffiffiffiffi−gp
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _zμ _zν

q
δ4ðx − zðτÞÞ:

ð2:6Þ

The field equation has the solution, ϕ ¼ ϕh þ ϕinh, where
ϕh and ϕinh are the homogeneous and inhomogeneous
solutions, respectively. The inhomogeneous solution is
written as

ϕinhðxÞ¼ e
Z

d4x0GRðx;x0Þ
Z

dτ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _zμ _zν

q
δ4ðx0− zðτ0ÞÞ

¼ e
Z

dτ0GRðx;zðτ0ÞÞ; ð2:7Þ

where GRðx; yÞ denotes the retarded Green function, which
satisfies

ffiffiffiffiffiffi−gp ð−∇μ∇μ þ ξRÞGRðx; yÞ ¼ δ4ðx − yÞ.
The terms from the inhomogeneous solution in Eq. (2.5)

give rise to a radiation reaction force for the equation of
motion of the particle [5–9]. We consider the conformally
flat spacetime, in which it is known that the tail term in the
radiation reaction force disappears [10]. The terms from the
homogeneous solution ϕh in Eq. (2.5) give rise to random
forces, and we have the Langevin-like equation of motion

m
D_zμ

Dτ
¼ e2

12π

�
D2 _zμ

Dτ2
− _zμ

�
D_z
Dτ

�
2
�
−

e2

24π
ðgμνþ _zμ _zνÞRνα _zα

þe

�
D_zμ

Dτ
ϕhþ _zμ _zα

∂ϕh

∂xα þgμα
∂ϕh

∂xα
�����

x¼zðτÞ
; ð2:8Þ

where the mass of the particle is redefined. This equation is
a generalization of that derived in [5], in which a particle in
an uniformly accelerated motion in the Minkowski space-
time is considered.1 Using this generalized equation, we
first consider the particle in de Sitter spacetime in Sec. III.

III. A PARTICLE IN DE SITTER SPACETIME

We consider the particle in de Sitter spacetime, whose
line element is written as

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð3:1Þ

where aðtÞ ¼ eHt is the scale factor. The equation of
motion is derived directly from Eq. (2.8). We write the
trajectory of the particle xμ ¼ zμðτÞ ¼ ðtðτÞ; ziðτÞÞ and
derive the linearized equation of motion of ziðτÞ, assuming
that the particle moves around the origin of the spatial
coordinate. Then we have

mð_vi þHviÞ ¼ e2

12π
ðv̈i þH _viÞ þ e

a
∂ϕh

∂xi
����
x¼zðτÞ

; ð3:2Þ

where we defined viðτÞ ¼ aðτÞ_ziðτÞ. This equation is
solved in the Fourier space as

~ViðωÞ ¼ e
~φiðωÞ

ðω − iHÞðe2ω=12π þ imÞ ; ð3:3Þ

where we defined the Fourier expansion,

1A similar problem for a uniformly accelerated quark is
considered in the context of the AdS/CFT correspondence in
Ref. [11].

NARITAKA OSHITA et al. PHYSICAL REVIEW D 89, 124028 (2014)

124028-2



viðτÞ ¼
Z

dω
2π

~ViðωÞe−iωτ; ð3:4Þ

1

aðτÞ
∂ϕ
∂xi

����
x¼zðτÞ

¼
Z

dω
2π

~φiðωÞe−iωτ: ð3:5Þ

As we consider the scalar field conformally coupled to the
curvature in the Bunch-Davies vacuum, we have [12,13]�
0

���� 1

aðtxÞ
∂ϕhðxÞ
∂xi

1

aðtyÞ
∂ϕhðyÞ
∂xj

����0
�����

x¼zðτÞ;y¼zðτ0Þ

¼ H4

32π2
δij

ðsinhHðτ − τ0Þ=2 − iϵÞ4 ; ð3:6Þ

and

hviðτÞvjðτ0ÞiS ¼ δij
6

e2

Z
∞

−∞
dω

ω

ω2 þ ð12πm=e2Þ2
× cothðπω=HÞeiωðτ0−τÞ; ð3:7Þ

where ’h� � �iS’ means the symmetrization with respect to τ
and τ0. The poles of the integrand are ω ¼ �i12πm=e2 and
�inH with n ¼ 1; 2;…. The integration can be performed
exactly. Then we have

hviðτÞvjðτ0ÞiS ¼
6δij
e2

�
e−Hσ−1δτπ cot πσ−1

þ
X∞
n¼1

�
1

nþ σ−1
þ 1

n − σ−1

�
e−nHδτ

�

¼ δij
H

2πm
Ξ½H; σ−1; δτ�; ð3:8Þ

where we defined σ ¼ e2H=12πm, and δτ≡ jτ0 − τj. In the
second line, we introduced the function defined by

Ξ½H; ζ; δτ� ¼ ζ

	
e−Hζδτπ cotðπζÞ

þ
X∞
n¼1

�
1

nþ ζ
þ 1

n − ζ

�
e−nHδτ



: ð3:9Þ

With the use of the mathematical formulas,

X∞
n¼0

e−naδτ

nþ ζ
¼ 2F1ð1; ζ; 1þ ζ; e−aδτÞ 1

ζ
ð3:10Þ

2F1ða; b; aþ b; zÞ ¼ Γðaþ bÞ
ΓðaÞΓðbÞ

X∞
n¼0

ðaÞnðbÞn
ðn!Þ2

× ½2ψðnþ 1Þ − ψðaþ nÞ− ψðbþ nÞ
− lnð1− zÞ�ð1− zÞn; ð3:11Þ

ψðnþ zÞ ¼
Xn−1
m¼0

1

mþ z
þ ψðzÞ; ð3:12Þ

where 2F1ða; b; c; zÞ is the hypergeometric function, ψðzÞ
is the polygamma function and ΓðaÞ is the gamma function,
the symbol ðaÞn is defined as ðaÞn ¼ aðaþ 1Þðaþ 2Þ � � �
ðaþ n − 1Þ, and Ξ½H; ζ; δτ� can be rewritten as

Ξ½H; ζ; δτ� ¼ ζ

	
ðe−Hζδτ þ eHζδτÞð−γ −Hδτ − ψðζÞ

− lnð1 − e−HδτÞÞ − e−Hζδτ

ζ

−
∂
∂c 2F1ð1; ζ; c; 1 − e−HδτÞ

����
c¼1

−
∂
∂c 2F1ð1;−ζ; c; 1 − e−HδτÞ

����
c¼1



; ð3:13Þ

where γ is the Euler constant. In the limit of small δτ, this
function has the asymptotic formula,

Ξ½H; ζ; δτ�≃ −1þ 2ζð− lnðHδτÞ − γ − ψðζÞÞ þOðδτÞ:
ð3:14Þ

Noting the definition σ−1 ¼ 12πm=He2 and using the
asymptotic formula of the polygamma function,

ψðζÞ ¼
(
ln ζ − 1

2ζ −
1

12ζ2
; for ζ ≫ 1;

− 1
ζ − γ; for ζ ≪ 1;

ð3:15Þ

we finally have

hviðτÞvjðτ0ÞiS ¼ δij ×

8<
:

− 12
e2

�
ln 12πmδτ

e2 þ γ
�
þOððH=mÞ2Þ for H ≪ 12πm=e2;

H
2πm − 12

e2 lnðHδτÞ þOðm=HÞ for H ≫ 12πm=e2:
ð3:16Þ

The results show that the variance of velocity has a
logarithmic divergence in the limit that δτ approaches
zero. However, since the coefficient of the divergence
terms are independent of H, these terms don’t contribute

to the thermal nature. Indeed the term − 12
e2 ðln 12πmδτ

e2 þ γÞ
remains in the limit of H → 0, where the de Sitter
spacetime reduces to the Minkowski spacetime. As will
be described in the next section, we also find that the same
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term remains for the case of particle in an uniformly
accelerated motion in the limit that the acceleration con-
stant approaches zero. So one may understand that this
divergence comes from the short-distance motion of the
particle, originated from our formulation based on point
particle. The divergence coming from the short-distance
motion of the particle will be removed by taking a finite
size effect of the particle into account. Therefore, this
suggests that δτ cannot be taken to be zero, and it is natural
to introduce a finite value cutoff [14].
Equation (3.16) means that the energy equipartition

relation does not appear for the case H ≪ 12πm=e2,
where one cannot find a thermal property in the random
motion. On the other hand, the energy equipartition
relation looks to appear when H ≫ 12πm=e2 as the
Gibbons-Hawking temperature is H=2π. It is well known
that the scalar field in de Sitter spacetime has a stochastic
property [15–17]. In particular, the stochastic inflation
approach indicates that the massless scalar field coarse-
grained over the horizon size H−1 follows an equation of
motion with a white noise term. The results (3.16) in the
case H ≫ 12πm=e2 would be closely related to this fact.
However, we should also note that the amplitude of the
velocity is larger than unity, even though the energy
equipartition relation appears. This inconsistency would
come from the fact that H ≫ m means that the particle’s
Compton wavelength is much longer than the horizon
size. This would mean the inconsistency of our descrip-
tion of the point particle in this regime.

IV. A PARTICLE IN AN ACCELERATED
MOTION

Now let us consider the particle in an accelerated
motion with a uniform acceleration a. Equations of
motion around a uniformly accelerated motion are derived
in Ref. [5], which are summarized in the following.
We consider the transverse and the longitudinal random
motions separately.

A. Transverse fluctuations

For the transverse fluctuations perpendicular to the
direction of the uniform acceleration, the equation of
motion is

m _vi ¼ e2

12π
ðv̈i − a2viÞ þ e

∂ϕh

∂xi
����
x¼zðτÞ

; ð4:1Þ

which leads to [5]

hviðτÞvjðτ0ÞiS ¼ δij
e2

6

Z
∞

−∞
dω

ωðω2 þ a2Þ
ðe2ðω2 þ a2ÞÞ2 þ ð12πmωÞ2

× cothðπω=aÞeiωδτ: ð4:2Þ

The integrand has the poles at ω ¼ �iaΩþ;�iaΩ−, and
�ina with n ¼ 2; 3;…, where Ω� are defined as

Ω� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2σ2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 1

2σ2

�
2

− 1

svuut
¼ 1

2σ
ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4σ2

p
Þ; ð4:3Þ

and here σ is defined as σ ¼ e2a=12πm. This integration
can be exactly performed, and we have

hviðτÞvjðτ0ÞiS ¼ δij
a

2πm
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4σ2
p

�
Ωþe−aΩþδτπ cot πΩþ

þΩþ
X∞
n¼2

�
1

nþ Ωþ
þ 1

n −Ωþ

�
e−naδτ

þΩ−e−aΩ−δτπ cot πΩ−

þΩ−

X∞
n¼2

�
1

nþΩ−
þ 1

n −Ω−

�
e−naδτ

�
;

ð4:4Þ

where we used

1 −Ω2
−

Ω2þ −Ω2
−
¼ 1

2

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4σ2

p
�
;

1 −Ω2þ
Ω2

− − Ω2þ
¼ 1

2

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4σ2
p

�
: ð4:5Þ

Then, using the function Ξ½a;Ω�; δτ� defined by Eq. (3.9),
we have

hviðτÞvjðτ0ÞiS ¼ δij
a

2πm
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4σ2
p

× ðΞ½a;Ωþ; δτ� þ Ξ½a;Ω−; δτ�Þ: ð4:6Þ

Using the asymptotic formula (3.14) with replacing H with
a, we have

hδviðτÞδvjðτ0ÞiS ¼ δij
a

2πm
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4σ2
p

× f−1−ΩþψðΩþÞ−Ω−ψðΩ−Þ
þ ðΩþ þΩ−Þð− logðaδτÞ− γÞgþOðδτÞ:

ð4:7Þ

In the limit of small δτ, with the approximate formula
(3.15), expression (4.7) reduces to
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hviðτÞvjðτ0ÞiS ¼ δij ×

8>><
>>:

a
2πm − 12

e2

�
ln 12πmδτ

e2 þ γ
�
þOðða=mÞ2Þ for a ≪ 12πm=e2;

− 12
e2

�
lnðaδτÞ þ 1

2

�
þOðm=aÞ for a ≫ 12πm=e2:

ð4:8Þ

For the case a ≪ 12πm=e2, the equipartition relation
appears as the Unruh temperature is a=2π, which was first
discovered in Ref. [5]. On the other hand, it does not for the
case a ≫ 12πm=e2, however, this case perhaps should not
be considered because the Unruh temperature is much
larger than the particle mass.

B. Longitudinal fluctuations

Now we consider the longitudinal fluctuations, whose
equation of motion is given by (see Appendix in Ref. [5]),

mðδξ̈ − a2δξÞ ¼ e2

12π
ðδξ

:::
− a2δ_ξÞ þ eϑϕhjx¼zðτÞ; ð4:9Þ

where ϑ≡ ðaþ ∂=∂ξÞ, δξðτÞ specifies the position of the
fluctuating particle in the longitudinal direction, and δξ ¼ 0
is the trajectory of the particle without fluctuations. This
equation can be derived from (2.8) with an external force
using the Rindler coordinate,

ds2 ¼ e2aξð−dη2 þ dξ2Þ þ dx21 þ dx22: ð4:10Þ

The use of the Fourier expansion leads to the following
formula for the variance of the random velocity:

hδ_ξðτÞδ_ξðτ0ÞiS ¼
6

e2

Z
∞

−∞
dω

ω3

a2 þ ω2

eiωδτ

ð12πm=e2Þ2 þ ω2

× cothðπω=aÞ: ð4:11Þ

The poles of the integrand are �iσ−1, �ina with
n ¼ 1; 2;…. The poles at �ia are the second order.
The structure of the pole is similar to that of a particle
in de Sitter spacetime. The integration can be exactly
evaluated as

hδ_ξðτÞδ_ξðτ0ÞiS ¼
6

e2

�
e−aδτ=σπ cot πσ−1

þ σ4 − 5σ2 − 2aδτσ4 þ 2aδτσ2

2ð1 − σ2Þ2 e−aδτ

þ
X∞
n¼2

2n3e−naδτ

ðσ−2 − n2Þð1 − n2Þ
�
: ð4:12Þ

By using the function Ξ½a; ζ; δτ� defined by Eq. (3.9) with
replacing variable H and ζ with a and σ−1, respectively, we
may rewrite

hδ_ξðτÞδ_ξðτ0ÞiS ¼
6

e2

�
σ

1 − σ2
Ξ½a; σ−1; δτ� þ 2σ2e−aδτ

ð1 − σ2Þ2

þ σ4ð1 − 5σ−2 − 2ð1 − σ−2ÞaδτÞ
2ð1 − σ2Þ2 e−aδτ

þ σ2

1 − σ2

�
ðeaδτ þ e−aδτÞ lnð1 − e−aδτÞ

þ 1þ 1

2
e−aδτ

��
; ð4:13Þ

which reduces to

hδ_ξðτÞδ_ξðτ0ÞiS¼
6

e2

�
−2 logðaδτÞ−2γþ2ψðσ−1Þþσ−σ2

1−σ2

�
þOðδτÞ; ð4:14Þ

in the limit of small δτ with the use of Eq. (3.14).
Furthermore, the use of the approximate formula (3.15)
leads to

hδ_ξðτÞδ_ξðτ0ÞiS ¼

8>><
>>:

− 12
e2

�
ln 12πmδτ

e2 þ γ
�
þOðða=mÞ2Þ for a ≪ 12πm=e2;

− 12
e2

�
logðaδτÞ þ 1

2

�
þOðm=aÞ for a ≫ 12πm=e2:

ð4:15Þ

Thus, the results indicate that the energy equipartition
relation does not appear in the longitudinal fluctuations,
which is the contrast to the transverse fluctuations. This
difference comes from the second term in the left hand side
of equation of motion (4.9), −ma2δξ. Such a term in a
classical dynamics makes its motion unstable. This pre-
vents the energy equipartition relation in the longitudinal

direction. There is the blocking of the energy equipartition
relation in the direction of the accelerated motion.

V. CONCLUSIONS

In this paper, we investigated Brownian random motions
of a particle coupled to vacuum fluctuations. We consider a

THERMAL PROPERTY IN BROWNIAN MOTION OF A … PHYSICAL REVIEW D 89, 124028 (2014)

124028-5



particle coupled to vacuum fluctuations in de Sitter
spacetime and a particle in a uniformly accelerated motion
in the Minkowski spacetime. A detector coupled to vacuum
fluctuations is excited as if it is exposed to the thermal bath
with the Gibbons-Hawking temperature in de Sitter space-
time or with the Unruh temperature of an acceleration
motion. Then, we may expect that a thermal property may
appear in the random motions of a particle in such
situations. We investigate this problem by solving the
equation of motion of a particle coupled to vacuum
fluctuations including the radiation reaction force. We
found that the energy equipartition relation may appear
in the random motion of a particle. We also found that it
does not always appear. For the particle in de Sitter
spacetime, the energy equipartition relation apparently
appears when H=m ≫ 1, but it does not appear when
H=m ≪ 1. For the particle in an accelerated motion, the
equipartition relation appears in the transverse motion
when a=m ≪ 1. We showed that the energy equipartition
relation does not appear in the longitudinal fluctuations.
In the previous work [5], the authors found that the energy
equipartition relation appears in the transverse motion

when a=m ≪ 1, but the conclusion was derived by evalu-
ating only the pole of the lowest energy scale in the Fourier
integration. In the present paper, our conclusions have been
derived by evaluating all of the poles in the Fourier
integration. The condition that the energy equipartition
appears is that the lowest energy pole in the Fourier integral
for the variance of velocity is smaller than the Unruh
temperature for the particle in the accelerated motion or
the Gibbons-Hawking temperature for the particle in de
Sitter spacetime. It is interesting to investigate whether or
not the randommotions representing a thermal property can
be detected as a signature of radiation, which will be
investigated in a future work.
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