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We present the complete set of analytical solutions of the geodesic equations in the general five-
dimensional Myers-Perry spacetime in terms of the Weierstrass ℘, ζ, and σ functions. We analyze the
underlying polynomials in the polar and radial equations, which depend on the parameters of the metric and
the conserved quantities of a test particle, and characterize the motion by their zeros. We exemplify the
efficiency of the analytical method on the basis of the explicit construction of test particle orbits and by
addressing observables in this spacetime.
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I. INTRODUCTION

A surge of interest in higher-dimensional gravity has
resulted from the search for a theory of quantum gravity.
With string and M theory as candidates, important appli-
cations are found in the AdS/CFT correspondence [1].
Also, the first successful statistical counting of black hole
entropy in string theory was performed for a black hole in
five spacetime dimensions [2].
Discovered in 1986, the Myers-Perry solutions [3] re-

present the higher-dimensional generalizations of the
Kerr solution [4]. Like the Kerr black holes, the Myers-
Perry black holes possess an event horizon with spherical
topology.However, depending on the number of dimensions
D, they may possess N ¼ ½ðD − 1Þ=2� independent angular
momenta, associated with rotation in N orthogonal planes.
Further generalizations of the Myers-Perry solutions

include the general Kerr–de Sitter and Kerr-Newman-
Unti-Tamburino-AdS (Kerr-NUT-AdS), metrics in all
higher dimensions [5,6]. Reviews of higher-dimensional
black hole solutions in vacuum or in supergravity theory
are, for instance, found in [7,8]. Here also black objects
with nonspherical horizon topology are discussed together
with the associated nonuniqueness of higher-dimensional
black holes.
Another motivation for the study of higher-dimensional

black holes was proposed in [9]. Here, the search for stable
rotating black holes—among the various black objects that
higher dimensions offer, such as black holes, black rings,
black strings, etc.—was advocated, in order to see which of
them might be observable in nature. (In this connection see
also, e.g., [10].)

The only way to explore a gravitational field and to study
its properties is through the observation of orbits of test
particles and light rays. Therefore, the related geodesic
equations need to be solved, either numerically or analyti-
cally. If possible, analytical solutions are preferable since
they provide a basis for a systematical study of the spacetime
properties and allow accurate calculations for, e.g., space-
time observables. The method of separation of variables has
proved to be a very useful tool in order to obtain the geodesic
equations of a gravitational field, yielding, if separable, a set
of D ordinary differential equations.
The Hamilton-Jacobi equations of motion in the Kerr

spacetime are separable [11,12]. As discussed in [13–19],
the solutions of the geodesic equations in the Kerr
spacetime can be expressed in terms of elliptic functions.
In contrast, in the Kerr–de Sitter spacetime in four
dimensions, hyperelliptic functions are required.
Separability of the Hamilton-Jacobi equations of motion

in the Myers-Perry and Kerr–de Sitter spacetimes in all
higher dimensions was shown in [20,21] and in [22–26]
(see also [27]). A method for obtaining the general
analytical solution of the geodesic equations in terms of
the hyperelliptic theta and sigma functions in the Myers-
Perry spacetimes with one rotation parameter was pre-
sented in [28]. Geodesic stability of circular orbits in the
singly spinningD-dimensional Myers-Perry spacetime was
studied in [29]. The explicit construction of the general
solutions is, however, still missing.
Here we focus on the construction of geodesics in the

five-dimensional Myers-Perry spacetime, where the extra
dimension leads to the presence of two independent
angular momenta. Some special cases for motion in the
five-dimensional Myers-Perry spacetime were studied in
[30,31], where it was shown that there are no stable circular
orbits in the equatorial plane. In [32], scattering and capture
of particles by five-dimensional rotating black holes were
investigated.
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In a recent work [33], two of us studied the motion of
both massive and massless particles in the special five-
dimensional Myers-Perry spacetime with equal rotation
parameters. In this case, the analytical solutions of the
geodesic equations simplify. The present work shall be
understood as the generalization of this study, elaborating
the fully general case of two independent angular momenta.
After discussing some general features of the five-

dimensional Myers-Perry spacetime in Sec. II, we derive
the equations of motion for test particles in this spacetime.
By analyzing the polar and radial equations for the test
particle motion, we classify the possible types of orbits in
Sec. III and discuss the effective potential in Sec. IV. The
complete set of analytical solutions of the geodesic
equations is given in terms of the Weierstrass ℘, ζ, and
σ functions in Sec. V. In Sec. VI we exhibit orbits of
massive and massless test particles for selected sets of
parameter values. We present some observables for the five-
dimensional Myers-Perry spacetime in Sec. VII, and apply
the results to the found orbits.

II. GEODESIC EQUATIONS

We here briefly recall the general Myers-Perry black hole
solution in five dimensions and the corresponding set of
equations of motion for test particles and light in this
spacetime.

A. Myers-Perry spacetime

The five-dimensional Myers-Perry metric depends on
three parameters [3], where the mass parameter μ is
proportional to the mass M of the black hole,

M ¼ 3πμ

8G5

; ð1Þ

with the five-dimensional gravitational coupling constant
G5, and the two possible rotation parameters a and b are
proportional to the angular momenta Ja and Jb, respectively:

Ja ¼
2

3
Ma; Jb ¼

2

3
Mb: ð2Þ

Without loss of generality, we will choose a ≥ b in the
following.
The line element in Boyer-Lindquist coordinates [34] is

given by [31]

ds2 ¼ − dt2 þ ρ2
�
dx2

4Δ
þ dθ2

�
þ αsin2θdϕ2 þ βcos2θdψ2

þ μ

ρ2
ðdtþ asin2θdϕþ bcos2θdψÞ2; ð3Þ

with

α ≔ xþ a2;

β ≔ xþ b2;

Δ ≔ αβ − μx;

ρ2 ≔ xþ a2cos2θ þ b2sin2θ: ð4Þ

The radial coordinate x ¼ r2 was introduced by Myers and
Perry in order to cover the whole spacetime [3,35]. Note
that the radial coordinate x is then defined for values
x ∈ ½−a2;∞Þ. Although the transformation becomes com-
plex for x < 0, the line element (3) remains real [36]. The
angular coordinates cover the ranges 0 ≤ θ ≤ π=2,
0 ≤ ϕ ≤ 2π, and 0 ≤ ψ ≤ 2π.
The Kretschmann scalar diverges at ρ2 ¼ 0 [35].

Therefore, this condition defines the curvature singularity
ðθs; xsÞ. But this function does not vanish at a single point.
In fact, for each x ∈ ½−a2;−b2�, there is a θ ∈ ½0; π

2
� so that

ρ2 vanishes (see Fig. 1). Thus ρ2 ¼ 0 does not describe a
ring-shaped singularity as in the Kerr spacetime but a
closed surface which is not traversable. Note that this is true
even in the case of a vanishing rotation parameter
ða ≠ 0; b ¼ 0Þ. In the special case of equal rotation
parameters, the singularity becomes pointlike. Of course,
the singularity is pointlike for the Schwarzschild case of
vanishing rotation parameters, as well.
The horizons x� are defined by the zeros of Δ [3]

x� ¼ 1

2

�
μ − a2 − b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − a2 − b2Þ2 − 4a2b2

q �
: ð5Þ

If μ > ðaþ bÞ2, then both roots are real and positive,
yielding two regular horizons x�, where x− is the Cauchy

FIG. 1. Values of x ¼ xs ∈ ½−a2;−b2� and θ ¼ θs ∈ ½0; π
2
� for

which ρ2 vanishes.
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horizon and xþ is the event horizon. In the special case
μ ¼ ðaþ bÞ2, a real double root occurs and thus both
horizons merge, leading to an extremal five-dimensional
Myers-Perry black hole. For ða − bÞ2 < μ < ðaþ bÞ2,
there are no real roots any longer and therefore a naked
singularity appears, which is considered unphysical by the
cosmic censorship hypothesis. If 0 < μ < ðaþ bÞ2, then
both roots are real and negative. For μ ¼ ða − bÞ2, there is a
negative double root with x� ∈ ð−a2;−b2�.
For μ < 0, i.e., for a negative black hole mass, both zeros

are real and negative, but one is always larger than −b2.
This seems to indicate that, even for negative mass, there is
a regular horizon. As pointed out in [35], however, this is
not true. In fact, there is a causality violating region outside
this surface, analogous to the case of the repulson discussed
by Gibbons and Herdeiro [37].
The static limit xstat is defined by gtt ¼ 0, which leads to

a single solution

xstat ¼ μ − a2cos2θ − b2sin2θ: ð6Þ

This is in contrast to the Kerr spacetime, where two
solutions of the equation gtt ¼ 0 are found.
In the Kerr spacetime, the ergosphere has an oblate

spheroidal shape that touches the event horizon at the poles.
In the five-dimensional Myers-Perry spacetime, this is only
the case if one of the angular momenta vanishes. In general
(a ≠ b ≠ 0), the event horizon is located entirely inside the
ergosphere. In the special case jaj ¼ jbj, the ergosphere is
independent of θ.
The radial positions of the singularity, both horizons and

the static limit in the five-dimensional Myers-Perry space-
time are represented in Fig. 2.

B. Equations of motion

Being stationary and axisymmetric, the general five-
dimensional Myers-Perry metric admits three Killing vec-
tor fields ∂t, ∂ϕ, and ∂ψ . The related conserved quantities
for the geodesic motion are the conjugate momenta [31]

pt ¼ gtt_tþ gtϕ _ϕþ gtψ _ψ ≕ −E;

pϕ ¼ gtϕ_tþ gϕϕ _ϕþ gϕψ _ψ ≕ Φ;

pψ ¼ gtψ _tþ gϕψ _ϕþ gψψ _ψ ≕ Ψ; ð7Þ

where the dot denotes the derivative with respect to an affine
parameter λ. Note that in the case of a massive test particle,
we assumed a normalized rest mass. Furthermore, we obtain

px ¼ gxx _x; pθ ¼ gθθ _θ: ð8Þ

The Hamiltonian is then given by [38]

H ¼ 1

2
gμνpμpν: ð9Þ

As addressed in [31,39–41], there is also a Killing tensor
Kμν, which is related to a hidden symmetry. The associated
constant of motion K can be derived by separating the
Hamilton-Jacobi equation

H ¼ 1

2
gμν

∂S
∂xμ

∂S
∂xν ¼ −

∂S
∂λ ; ð10Þ

as first discovered by Carter for the Kerr spacetime [42]. The
action S can be separated using the ansatz

S ¼ 1

2
δλ − Etþ SxðxÞ þ SθðθÞ þ ΦϕþΨψ : ð11Þ

Here we introduced a parameter δ, which describes the norm
of the four-velocity gμν _xμ _xν ¼ −δ, in order to investigate
massive ðδ ¼ 1Þ and massless ðδ ¼ 0Þ test particle motion
simultaneously.
It is now straightforward to obtain the geodesic equations

_x2 ¼
�
dx
dτ

�
2

¼ 16Δ2X ; ð12Þ

_θ2 ¼
�
dθ
dτ

�
2

¼ Θ; ð13Þ

_ϕ ¼ dϕ
dτ

¼ Φ
sin2θ

−
aβμ
Δ

E −
a2 − b2

α
Φ; ð14Þ

_ψ ¼ dψ
dτ

¼ Ψ
cos2θ

−
αbμ
Δ

E −
b2 − a2

β
Ψ; ð15Þ

_t ¼ dt
dτ

¼ Eρ2 þ αβμ

Δ
E; ð16ÞFIG. 2. Singularity, horizons and static limit of the five-

dimensional Myers-Perry spacetime.
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where the Mino time τ [43] was introduced by

ρ2dτ ¼ dλ; ð17Þ

in order to separate the θ and x equations, together with the
abbreviations

E ≔ Eþ aΦ
α

þ bΨ
β

;

Q ≔ ða2 − b2Þ
�
Φ2

α
−
Ψ2

β

�
;

X ≔
1

4Δ

�
ðE2 − δÞx − K þQþ αβμ

Δ
E2

�
;

Θ ≔ ðE2 − δÞða2cos2θ þ b2sin2θÞ − Φ2

sin2θ
−

Ψ2

cos2θ
þ K:

ð18Þ

III. COMPLETE CLASSIFICATION

Before solving the geodesic equations, we will study
several properties of the test particle motion by investigat-
ing the right-hand sides of Eqs. (12)–(16).

A. θ motion

The θ motion is described by Eq. (13). The subspace
θ ¼ 0 can only be reached if Φ ¼ 0 and the subspace θ ¼ π

2
can only be reached if Ψ ¼ 0 [31]. For Φ ¼ 0 and θ ¼ 0,
Eq. (13) can be rewritten as

K ¼ Ψ2 − ðE2 − δÞa2; ð19Þ

and for Ψ ¼ 0 and θ ¼ π
2
Eq. (13) yields

K ¼ Φ2 − ðE2 − δÞb2: ð20Þ

Other constant θ motions with θ0 ∈ ð0; π
2
Þ are given by

Θðθ0Þ ¼ 0 and
dΘ
dθ

����
θ0

¼ 0: ð21Þ

For further investigation of the θ motion, we perform the
substitution ξ ¼ cos2θ, which is bijective for θ ∈ ½0; π

2
�.

Thus, (13) is related to a polynomial Ξ of order 3:

_ξ2 ¼ a3ξ3 þ a2ξ2 þ a1ξþ a0 ≕ Ξ; ð22Þ

with the coefficients

a3 ¼ −4ðE2 − δÞða2 − b2Þ;
a2 ¼ 4ðE2 − δÞða2 − 2b2Þ − 4K;

a1 ¼ 4ðE2 − δÞb2 − 4Φ2 þ 4Ψ2 þ 4K;

a0 ¼ −4Ψ2: ð23Þ

For E2 ¼ δ or a ¼ b, this will reduce to a second
order polynomial. The case a ¼ b has already been
investigated in [33].
The zerosof Ξ are the turningpoints of theθmotion,which

need to be real to be physically relevant. In order to obtain real
values for ξ fromΞ, we have to requireΞ ≥ 0. The regions for
which Ξ ≥ 0 are bounded by the zeros of Ξ. The number of
zeros depends both on the parameters of the black hole ða; bÞ
andontheparametersof the testparticle ðE; K; δ; Φ; ΨÞ.The
conditionsΞ ¼ 0 and dΞ

dξ ¼ 0 define the double zeros ofΞ and
thus, the boundaries between regions where Ξ has a different
number of real zeros. Since Ξ is a polynomial of order 3 with
real coefficients, there are either three real or one real and two
complex conjugate zeros.
For various parameters ðK; δ; Ψ; a; bÞ, we can plot the

remaining parameters E and Φ in a parametric diagram.
Since Ξ is symmetric in E and Φ, it is sufficient to restrict
the plots to the first quadrant. Additionally, only the
absolute value of the rotation parameters a and b is
relevant. Because of the substitution ξ ¼ cos2 θ, we need
to confine the valid zeros by ξ0 ∈ ½0; 1�. For Φ ¼ 0, one
zero is always ξ0 ¼ 1 and, likewise, for Ψ ¼ 0, one zero is
always ξ0 ¼ 0. The interesting regions of the parametric
diagram are shown in Fig. 3.
There are seven different regions, representing different

variations of possible zeros. The grey regions belong to
parameters where Ξ has three real zeros and the white
regions represent parameters where Ξ has one real and two
complex conjugate zeros.
Unlike in the Kerr spacetime, where K must be non-

negative, we can also have a θ motion for a negative Carter
constant [see Figs. 3(c)–(d)].
For massless test particle motion, the regions (a), (c), and

(d) vanish, but the general structure of the E-Φ plots is only
slightly different.
All possible combinations are listed in Table I.

Eventually, the physically valid number of polar turning
points is given, concerning the restriction ξ ∈ ½0; 1�.
Table I points out that only regions (a) and (b) will yield a

physical θ motion.

B. x motion

The x motion is described by the equation

_x2 ¼ 16Δ2X ; ð24Þ
which can be written as a polynomial of the form

_x2 ¼ b3x3 þ b2x2 þ b1xþ b0 ≕ X ð25Þ

DIEMER et al. PHYSICAL REVIEW D 89, 124026 (2014)

124026-4



with coefficients

b3 ¼ 4ðE2 − δÞ;
b2 ¼ 4ðE2 − δÞða2 þ b2Þ − 4K þ 4δμ;

b1 ¼ 4ðE2 − δÞa2b2 þ 4E2μða2 þ b2Þ þ 8μEðaΦþ bΨÞ
þ 4Kðμ − a2 − b2Þ þ 4ðΦ2 −Ψ2Þða2 − b2Þ;

b0 ¼ 4μðabEþ aΨþ bΦÞ2 − 4a2b2ðK − Φ2 −Ψ2Þ
− 4a4Ψ2 − 4b4Φ2: ð26Þ

The real zeros of X will determine the radial turning points
of the physical motion and, therefore, correspond to
different orbit types. Basically, there are five different types
of orbits in the five-dimensional Myers-Perry spacetime:
Escape orbit (EO): x starts from infinity and approaches

a periapsis (closest radial turning point) and goes back to
infinity without crossing any horizon.
Two-world escape orbit (TEO): A special case of an

escape orbit, where the radial turning point lies behind both
horizons. Due to general causal restrictions, it cannot repass

FIG. 3 (color online). Definition of regions with a different number of zeros for massive [(a), (c)] and massless [(b), (d)] test particle
motion using E-Φ plots. The special case ξ0 ¼ 1 ðΦ ¼ 0Þ is represented by a dashed line. Grey regions denote three real zeros, white
regions one real and two complex conjugate zeros. The discriminant of Ξ vanishes for values at the boundary lines so that only a constant
θ motion is possible.
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both horizons to the former universe but to a different,
second universe.
Bound orbit (BO): x oscillates between two radial

turning points x1, x2, where x1, x2 ≤ x−.
Many-world bound orbit (MBO): A special case of a

bound orbit, where x1 ≤ x− and x2 ≥ xþ. For the same
reasons mentioned considering the two-world escape orbit,
each time both horizons are passed through, the former
universe cannot be reentered. So after every oscillation, the
test particle enters a different universe.

TABLE I. Zeros of Θ for different regions of the E-Φ plots.

Region Number of zeros Polar turning points

(a) 3 ∈ Rþ, 0 ∈ R− 2
(b) 2 ∈ Rþ, 1 ∈ R− 2
(c) 1 ∈ Rþ, 0 ∈ R− 0
(d) 1 ∈ Rþ, 2 ∈ R− 0
(e) 0 ∈ Rþ, 3 ∈ R− 0
(f) 0 ∈ Rþ, 1 ∈ R− 0
(g) 2 ∈ Rþ, 1 ∈ R− 0

FIG. 4 (color online). E-Φ plots for massive [(a), (b)] and massless [(c), (d)] test particle motion. Grey regions denote three real zeros,
white regions one real and two complex conjugate zeros. The dotted lines represent the boundaries of regions (a) and (b) of the θ-related
E-Φ plots, so that only the parameter values between these dotted lines are physically valid.
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Terminating orbit (TO): x ends in the curvature singu-
larity at x ¼ xs.
We will visualize these types of orbits in the next section

by introducing an effective potential. However, we first
want to investigate possible combinations of parameters for
the radial motion in the same way as we did for the θ
equation because, eventually, a set of parameters is only
viable if it holds true for both the θ and the x equations.
Since X is also a polynomial of order 3, we can again

differentiate between regions where X has three real zeros
or one real and two complex conjugate zeros (see Fig. 4).
Additionally, the restrictions of the θ equation are visual-
ized by the dotted line, representing the boundary of
regions (a) and (b). There are further restrictions on the
zeros of X as well. At least, a physical turning point is only
relevant if x0 ∈ ðxs;∞Þ. Table II provides the physical
relevant zeros of all regions.
Regions (1) and (2) obviously overlap with regions (a)

and (b) of allowed θ motion, and we will see that these
regions are related to many-world bound and two-world
escape orbits. Furthermore, there might be terminating
orbits for parameter values of these regions. Regions (3)
and (4) will not coincide with regions of allowed θ motion.
Figure 4(a) indicates that region (5) may extend into
regions of possible θ motion and, therefore, it will be
of physical interest. The same is true for region (6) in
Fig. 4(b). The parameter values of region (5) will belong to
escape orbits and many-world bound orbits. Region (6) is
related to two-world escape orbits and bound orbits which
are hidden behind the Cauchy horizon. Both regions may
also contain terminating orbits as well. We obtain
similar diagrams for massless test particle motion [see
Figs. 4(c)–(d)].
Note that for a test particle motion restricted to the

equatorial θ ¼ π
2
plane (20), one zero of X is always given

by x0 ¼ −b2 and for a motion restricted to the θ ¼ 0 plane
(19), one zero is always given by x0 ¼ −a2, which
represents the singularity xs in each case. Therefore, the
two remaining roots are either complex conjugate or
completely real. In the first case, the only possible
orbit type is given by terminating orbits, if X > 0 for
x > xs. At least in the massless case, this is true due to

θ ¼ π

2
∶

dX
dx

����
x¼−b2

¼ 4μðEaþ ΦÞ2;

θ ¼ 0∶
dX
dx

����
x¼−a2

¼ 4μðEbþΨÞ2; ð27Þ

which is non-negative (for a positive black hole mass μ), so
that X > 0 for x > xs in both planes. If the derivatives
vanish, the corresponding zeros are given by a real double
root at x1;20 ¼ xs and x30 ¼ 0. Furthermore, this implies the
absence of bound light motion in the equatorial planes,
since a region withX > 0 between two radial turning points
is always bounded by the singularity due to the conditions
(27). As shown in [31], there are also no bound orbits in the
massive case.

C. ϕ and ψ motion

The azimuthal motion is given by the ϕ and ψ equations:

_ϕ ¼ Φ
sin2θ

−
aβμ
Δ

E −
a2 − b2

α
Φ; ð28Þ

_ψ ¼ Ψ
cos2θ

−
αbμ
Δ

E −
b2 − a2

β
Ψ: ð29Þ

It is obvious that both equations diverge at the horizons.
This is not a physical effect but purely an artifact of the
Boyer-Lindquist coordinates. In the Kerr spacetime, one
could avoid this by using Kerr-Schild coordinates.
However, in the five-dimensional case, the Kerr-Schild
coordinates cover a smaller portion of the five-dimensional
Myers-Perry spacetime than the Boyer-Lindquist ones (if
b ≠ 0) [36].
In the case of a regular spacetime, Δ changes its sign

when crossing a horizon and therefore also _ϕ and _ψ will
change their sign [11,12] because the other terms are
negligible near the horizons.

IV. EFFECTIVE POTENTIAL

Another way of analyzing the possible geodesics of a
spacetime is to investigate the effective potential. As usual,
we will define the effective potential by rewriting the radial
x equation. Furthermore, we need to consider the θ
equation as well, which may provide additional restrictions
on the test particle’s energy. Finally, we will investigate the
possible test particle orbit types in these effective potentials
and relate them to the E-Φ regions of the radial motion
investigated above.

A. Definition

We can rewrite the x equation in the following form,

_x2 ¼ γ2E2 þ γ1Eþ γ0; ð30Þ

where

TABLE II. Zeros of X for different regions of the E-Φ plots.
The indicated number of zeros refers to the maximum number of
zeros in the related region.

Region Number of zeros Radial turning points

(1) 3 ∈ R, 2 ∈ ð−a2;∞Þ 2
(2) 1 ∈ R, 1 ∈ ð−a2;∞Þ 1
(3) 1 ∈ R, 1 ∈ ð−a2;∞Þ 1
(4) 3 ∈ R, 3 ∈ ð−a2;∞Þ 3
(5) 3 ∈ R, 3 ∈ ð−a2;∞Þ 3
(6) 3 ∈ R, 3 ∈ ð−a2;∞Þ 3
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γ2 ¼ 4ðΔxþ μαβÞ;
γ1 ¼ 8μðaβΦþ αbΨÞ;

γ0 ¼ −4Δðδxþ K −QÞ þ 4μαβ

�
aΦ
α

þ bΨ
β

�
2

: ð31Þ

The zeros of this quadratic polynomial define an effective
potential Veff

_x2 ¼ γ2ðE − Vþ
effÞðE − V−

effÞ; ð32Þ
where

V�
eff ≔

−γ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 − 4γ2γ0

p
2γ2

: ð33Þ

This means that, for a given set of parameters, there might
be restrictions on x depending on the test particle’s energy
E. The right-hand side of Eq. (32) needs to be equal to or
greater than zero. The condition _x2 ¼ 0 defines the radial
turning points for some value of E.

B. Properties

First, we will investigate the general properties of the
effective potential. Both parts of the effective potential will
merge if the radicand

64Δ
�
ðδxþK−QÞðΔxþαβμÞ−xμαβ

�
aΦ
α
þbΨ

β

�
2
�

ð34Þ

of Eq. (33) vanishes, which is obviously true for Δ ¼ 0.
Thus, the potential parts V�

eff merge at the horizons,
attaining the values

V�
effðxþÞ ¼ −

a
xþ þ a2

Φ −
b

xþ þ b2
Ψ ¼ −ΩaΦ −ΩbΨ;

V�
effðx−Þ ¼ −

a
x− þ a2

Φ −
b

x− þ b2
Ψ: ð35Þ

At infinity, the effective potential parts V�
eff take the values

lim
x→∞

V�
eff ¼ �

ffiffiffi
δ

p
; ð36Þ

so that we have a different behavior for massive and
massless test particle motion at infinity.
In the case of vanishing rotation parameters (a ¼

b ¼ 0), one regains the five-dimensional Schwarzschild-
Tangherlini effective potential [44].

C. Plots

Finally, we will plot some effective potentials for
various parameters and determine the possible orbit types.
A typical effective potential for massive and massless test
particles in the five-dimensional Myers-Perry spacetime is
shown in Figs. 5(a) and 5(b), respectively, illustrating orbit
types A to E. These orbit types are related to the regions (1),
(2), and (3) of the E-Φ plots of X. Values of x and E where
the polynomial X becomes negative and, thus, no physical
motion is possible are colored in gray.

There is a typical centrifugal barrier, which is well
known from the Kerr spacetime, that prevents a test particle
from falling into the singularity. This barrier emerges due to
a divergence of the effective potential at γ2 ¼ 0. However,
we will see that there might be terminating orbits.
Moreover, there is only a single maximum for positive
test particle energy and a single minimum for negative
energy, respectively, outside the event horizon, excluding
the existence of stable bound orbits in this area.
Nevertheless, these extrema indicate the presence of
unstable circular bound orbits. For the case of circular
null geodesics in the equatorial plane, the corresponding
radius has been calculated explicitly in [29].
As expected, both parts of the effective potential merge

at the horizons and there may be orbits whose radial turning
points coincide with the horizons as well.
The additional restrictions on the energy due to

the θ equation, as discussed above, are shown in
Figs. 5(c) and 5(d), 6 (hatched area). Because the zeros
of Θ are θ0 ∉ ½0; π

2
� within the hatched area, there is no

physical test particle motion within this energy threshold.
In the case of a ¼ b, we found out that the boundary
conditions for Θ and the effective potential coincide
with the singularity at x ¼ −a2 [33]. This case is shown
in Fig. 5(c) for a massive test particle (orbit type D). The
corresponding test particle’s energy is given by [33]

Ecrit ¼ V�
effð−a2Þ ¼ � 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2δ − K þ ðΦþΨÞ2

q
: ð37Þ

Figure 5(d) exemplifies the general case of unequal
rotation parameters for a massless test particle (orbit type
E). The effective potential crosses the dotted line, indicat-
ing x ¼ −b2, which allows the test particle to hit the
singularity for values of the radial coordinate x < −b2,
depending on the θ value.
Finally, Fig. 6 indicates the remaining orbit types of the

five-dimensional Myers-Perrry spacetime. Orbit type D is
shown for unequal rotation parameters. Orbit type F
belongs to terminating and two-world escape orbits, similar
to orbit type E. Orbit type G contains a bound orbit and a
two-world escape orbit, which corresponds to parameter
values of region (6). As we can see, these bound orbits are
exclusively inside the Cauchy horizon.
For both massive and massless test particle motion, there

are seven types of possible orbits in these effective potentials:
(i) Orbit type A: A single two-world escape orbit.
(ii) Orbit type B: A many-world bound orbit or an

escape orbit, depending on the initial condition xin.
(iii) Orbit type C: A single many-world bound orbit.
(iv) Orbit type D: A single terminating orbit.
(v) Orbit type E: A terminating orbit or an escape orbit.
(vi) Orbit type F: A terminating orbit or a two-world

escape orbit.
(vii) Orbit type G: A bound orbit or a two-world

escape orbit.
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Table III provides a summary of all possible orbit
types for massive and massless test particles in the five-
dimensional Myers-Perry spacetime.

V. ANALYTICAL SOLUTIONS

In this section, we will solve the geodesic
equations (12)–(16). The solutions will consist of the
Weierstrass ℘, ζ, and σ functions.

A. θ equation

In order to solve the geodesic equation (13) for the θ
motion, we will make use of the former substitution
ξ ¼ cos2 θ, providing the differential equation

_ξ2 ¼ a3ξ3 þ a2ξ2 þ a1ξþ a0 ð38Þ

FIG. 5 (color online). Typical effective potentials in the five-dimensional Myers-Perry spacetime for both massive [(a), (c)] and
massless [(b), (d)] test particle motion. Both parts of the effective potential Vþ

eff (red) and V−
eff (green) enclose a forbidden area (gray)

within which X is negative. The horizons are represented by dashed lines. The boundary of the singularity at x ¼ −b2 is depicted by a
dotted line and the one at x ¼ −a2 by a thick line. Five types of possible orbits are represented by thick blue dashed lines of constant
energy, which are called A, B, C, D, and E.
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with coefficients given in Eq. (23). Because the right-hand
side is a polynomial of order 3, the integration will yield an
elliptic integral. These kind of integrals can be solved using
the Weierstrass ℘ function. The first step is to obtain the
usual Weierstrass form. For a third order polynomial, this
can be achieved by substituting

ξ ¼ 1

a3

�
4y −

a2
3

�
: ð39Þ

This yields a differential equation in the needed form

_y2 ¼ 4y3 − g2y − g3 ≕ Y; ð40Þ

with Weierstrass invariants

g2 ¼
a22
12

−
a1a3
4

; g3 ¼
a1a2a3
48

−
a0a23
16

−
a32
216

: ð41Þ

These invariants are associated with the roots ey1, e
y
2, and e

y
3

of Y by g2 ¼ −4ðey1ey2 þ ey1e
y
3 þ ey2e

y
3Þ and g3 ¼ 4ey1e

y
2e

y
3.

Integration of the differential equation (40) leads to

FIG. 6 (color online). Remaining orbit types F, G for massive [(a), (b)] and massless [(c), (d)] test particle motion.
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τ − τin ¼
Z

y

yin

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u3 − g2u − g3

p
¼
Z

∞

yin

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u3 − g2u − g3

p þ
Z

y

∞

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u3 − g2u − g3

p ;

ð42Þ

where τin and yin ¼ 1
4
ða3ξin þ a2

3
Þ ¼ 1

4
ða3cos2θin þ a2

3
Þ are

the initial values.
The first integral yields a constant, whereas the second

integral represents an elliptic integral of the first kind. By
definition, the inversion of such an integral yields the
Weierstrass ℘ function

yðτÞ ¼ ℘ðτ − τθinÞ; ð43Þ

where we introduced

τθin ≔ τin þ
Z

∞

yin

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u3 − g2u − g3

p : ð44Þ

Resubstitution of y leads to

ξðτÞ ¼ 1

a3

�
4℘ðτ − τθin; g2; g3Þ −

a2
3

�
ð45Þ

and another resubstitution of ξ results in the final solution

θðτÞ ¼ arccos

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3

�
4℘ðτ − τθin; g2; g3Þ −

a2
3

�s !
: ð46Þ

Since θ ∈ ½0; π
2
�, we only consider the positive sign of the

square root.

B. x equation

The x equation is a polynomial of third order, too. Thus,
it can be solved by the same methods. TheWeierstrass form
is again obtained by substituting

x ¼ 1

b3

�
4z −

b2
3

�
; ð47Þ

leading to a differential equation

_z2 ¼ 4z3 − h2z − h3 ≕ Z; ð48Þ

with Weierstrass invariants h2, h3 associated with the roots
ez1, e

z
2, and ez3 of Z.

Splitting the integration of Eq. (48) and introducing the
initial value

τxin ≔ τin þ
Z

∞

zin

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u3 − h2u − h3

p ð49Þ

yields a solution of the following form:

zðτÞ ¼ ℘ðτ − τxin; h2; h3Þ: ð50Þ

A simple resubstitution of z leads to the final result

xðτÞ ¼ 1

b3

�
4℘ðτ − τxin; h2; h3Þ −

b2
3

�
: ð51Þ

Furthermore, we can calculate the proper time as a function
of the Mino time using Eqs. (45) and (51):

TABLE III. Summary of the possible orbit types in the five-dimensional Myers-Perry spacetime. Thick horizontal lines represent
possible orbits, whose radial turning points are illustrated by big dots. Horizons and the boundary of the singularity are shown as two
thin vertical lines or one thick vertical line, respectively. Special cases, where a radial turning point coincides with a horizon, have an
additional index ðx�Þ.
Orbit type Orbits Region Physical zeros Range of x

A TEO (2) 1
A TEO− (2) 1
B MBO, EO (5) 3
B MBOþ, EO (5) 3
B MBO−, EO (5) 3
B MBO�, EO (5) 3
C MBO (1) 2
C MBOþ (1) 2
C MBO− (1) 2
C MBO� (1) 2
D TO (1), (2) 0
E TO, EO (5) 2
F TO, TEO (6) 2
G BO, TEO (6) 3
G BO, TEO− (6) 3
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λðτÞ ¼
Z

τ

τin

ρ2ðτ0Þdτ0

¼
Z

τ

τin

½xðτ0Þ þ ða2 − b2Þξðτ0Þ þ b2�dτ0

¼ −
�
4

b3
ζðτ0 − τxinÞ þ

4ða2 − b2Þ
a3

ζðτ0 − τθinÞ

þ
�
b2
3b3

þ a2
3a3

− b2
�
τ0
�
τ

τin

; ð52Þ

where ζðτ0 − τxinÞ is, of course, related to the Weierstrass
coefficients h1, h2, as ζðτ0 − τθinÞ is related to g1, g2.

C. ϕ equation

The ϕ equation comprises a θ- and an x-dependent part.
Therefore, the differential can be separated into two parts,

dϕ ¼ dϕθ þ dϕx; ð53Þ

and reduced to their Weierstrass forms

dϕθ ¼
Φ

sin2θ
dτ ¼ Φ

1 − ξ

dξffiffiffiffi
Ξ

p ¼ RϕðyÞ dyffiffiffiffi
Y

p ;

dϕx ¼ −
�
aβμ
Δ

E þ a2 − b2

α
Φ

�
dτ ¼ ~RϕðzÞ dzffiffiffiffi

Z
p : ð54Þ

Here, RϕðyÞ and ~RϕðzÞ are rational functions that can be
decomposed into partial fractions

RϕðyÞ ¼ Gϕ

y − p1

;

~RϕðzÞ ¼ Hϕ
1

z − q1
þ Hϕ

2

z − q2
; ð55Þ

whereGϕ,Hϕ
1 ,H

ϕ
2 , p1, q1, and q2 are constants which arise

from the decomposition ansatz (see the Appendix).
Therefore, we can rewrite these integrals in a compact form

ϕθ − ϕθ
in ¼

Z
y

yin

Gϕ

y − p1

dyffiffiffiffi
Y

p ;

ϕx − ϕx
in ¼

Z
z

zin

X2
j¼1

Hϕ
j

y − qj

dzffiffiffiffi
Z

p : ð56Þ

These are elliptic integrals of the third kind. Substituting
yðτÞ ¼ ℘ðv; g2; g3Þ with vðτÞ ¼ τ − τθin and zðτÞ ¼
℘ðw; h2; h3Þ with wðτÞ ¼ τ − τxin will eliminate the square
root terms due to Eqs. (40) and (48). This yields

ϕθ − ϕθ
in ¼

Z
v

vin

Gϕ

℘ðvÞ − ℘ðv1Þ
dv; ð57Þ

ϕx − ϕx
in ¼

Z
w

win

X2
j¼1

Hϕ
j

℘ðwÞ − ℘ðwjÞ
dw; ð58Þ

where p1 ¼ ℘ðv1; g2; g3Þ and vin ¼ vðτinÞ, as well as
q1;2 ¼ ℘ðw1;2;h2; h3Þ and win ¼ wðτinÞ. Since the variable
v is always connected with the Weierstrass invariants g2, g3
as w is connected with h2, h3, we may suppress these
dependencies throughout. In order to finally solve these
integrals, we need the following relation between the
Weierstrass ℘ and ζ functions [45]

℘0ðyÞ
℘ðzÞ − ℘ðyÞ ¼ ζðz − yÞ − ζðzþ yÞ þ 2ζðyÞ: ð59Þ

Applying this relation will basically lead to integrals over
Weierstrass ζ functions, which are in turn the logarithmic
derivatives of the Weierstrass σ functions. Thus, we can
conclude that these integrals are solved by

ϕθ ¼
Gϕ

℘0ðv1Þ
½lnσðvðτÞ− v1Þ− lnσðvin − v1Þ

− lnσðvðτÞþ v1Þþ lnσðvinþ v1Þ
þ 2ζðv1ÞðvðτÞ− v1Þ� þϕθ

in

¼ Gϕ

℘0ðv1Þ
�
ln

�
σðvðτÞ− v1Þ
σðvðτÞþ v1Þ

�

− ln
�
σðvin − v1Þ
σðvin þ v1Þ

�
þ 2ζðv1ÞðvðτÞ− v1Þ

�
þϕθ

in ð60Þ

and

ϕxðτÞ ¼
X2
j¼1

Hϕ
j

℘0ðwjÞ
�
ln

�
σðwðτÞ − wjÞ
σðwðτÞ þ wjÞ

�

− ln

�
σðwin − wjÞ
σðwin þ wjÞ

�
þ 2ζðwjÞðwðτÞ − wjÞ

�
þ ϕx

in:

ð61Þ

Taking these parts together results in the overall solution
ϕðτÞ ¼ ϕθðτÞ þ ϕxðτÞ þ ϕin, where ϕin ≔ ϕθ

in þ ϕx
in.

D. ψ equation

The ψ equation can be obtained by replacing

a ↔ b; Φ ↔ Ψ; and θðτÞ ↔ θðτÞ þ π

2
ð62Þ

in the ϕ equation. This means that the ψ equation can also
be rewritten in the following form:

dψ ¼ dψθ þ dψx; ð63Þ

where
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dψθ ¼
Ψ

cos2θ
dτ ¼ Ψ

ξ

dξffiffiffiffi
Ξ

p ¼ RψðyÞ
dyffiffiffiffi
Y

p ;

dψx ¼ −
�
αbμ
Δ

E þ b2 − a2

α
Ψ

�
dτ ¼ ~RψðzÞ

dzffiffiffiffi
Z

p : ð64Þ

Again, a partial fraction decomposition of the rational
functions Rψ ðyÞ and ~Rψ ðzÞ leads to

RψðyÞ ¼ Gψ

y − p2

; ~RψðzÞ ¼ Hψ
1

z − q1
þ Hψ

2

z − q2
; ð65Þ

where the constants Gψ , Hψ
1 , H

ψ
2 , and p2 can be derived

from the constants obtained in the former section by using
Eq. (62) (see the Appendix). Consequently, the resulting
elliptic integrals of the third kind are solved by

ψθðτÞ ¼
Gψ

℘0ðv2Þ
�
ln

�
σðvðτÞ − v2Þ
σðvðτÞ þ v2Þ

�

− ln

�
σðvin − v2Þ
σðvin þ v2Þ

�
þ 2ζðv2ÞðvðτÞ − v2Þ

�
þ ψθ

in

ð66Þ

and

ψxðτÞ ¼
X2
j¼1

Hψ
j

℘0ðwjÞ
�
ln

�
σðwðτÞ − wjÞ
σðwðτÞ þ wjÞ

�

− ln
�
σðwin − wjÞ
σðwin þ wjÞ

�
þ 2ζðwjÞðwðτÞ − wjÞ

�
þ ψx

in;

ð67Þ

yielding the total solution ψðτÞ ¼ ψθðτÞ þ ψxðτÞ þ ψ in,
where ψ in ≔ ψθ

in þ ψx
in.

E. t equation

Basically, the t equation can be solved with the same
methods that were used for the ϕ and ψ equations. We will
split the integration into a θ- and an x-dependent part again,

dt ¼ dtθ þ dtx; ð68Þ

and substitute

dtθ ¼ Eða2cos2θ þ b2sin2θÞdτ ¼ FtðyÞ dyffiffiffiffi
Y

p ;

dtx ¼
�
Exþ αβμ

Δ
E
�
dτ ¼ RtðzÞ dzffiffiffiffi

Z
p : ð69Þ

In contrast to the ϕ and ψ equations, the θ-dependent part
only consists of a linear function FtðyÞ,

FtðyÞ ¼ E
a3

�
4y −

a2
3

�
ða2 − b2Þ þ Eb2 ≔ Jt1yþ Jt0; ð70Þ

with coefficients Jt1, J
t
0, while the rational function R

tðzÞ of
the x-dependent part can be decomposed into a linear
function ~FtðzÞ with coefficients Kt

1, Kt
0 and again two

partial fraction terms (see the Appendix)

RtðzÞ ¼ ~FtðzÞ þ Ht
1

z − q1
þ Ht

2

z − q2
; ð71Þ

~FtðzÞ ¼ E
b3

�
4z −

b2
3
þ b3μ

�
≔ Kt

1zþ Kt
0: ð72Þ

After the usual substitution to the v and w coordinates, the
linear terms will lead to integrals over the Weierstrass ℘
function, whose antiderivative is given by the negative
Weierstrass ζ function. Altogether, we obtain

tθ ¼ −Jt1ðζðvðτÞÞ − ζðvinÞÞ − Jt0ðvðτÞ − vinÞ þ tθin; ð73Þ

as well as

txðτÞ ¼ − Kt
1ðζðwðτÞÞ − ζðwinÞÞ − Kt

0ðwðτÞ − winÞ

þ
X2
j¼1

Ht
j

℘0ðwjÞ
�
ln
�
σðwðτÞ − wjÞ
σðwðτÞ þ wjÞ

�

− ln

�
σðwin − wjÞ
σðwin þ wjÞ

�
þ 2ζðwjÞðwðτÞ − wjÞ

�
þ txin:

ð74Þ

In conclusion, the full solution is given by tðτÞ ¼
tθðτÞ þ txðτÞ þ tin, where again tin ≔ tθin þ txin.

VI. ORBITS

In this section, we show examples of the types of orbits
discussed in the previous sections. The orbits are plotted in
the Cartesian coordinates (X, Y, Z, W) defined as

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxþ a2j

q
sin θ cosϕ; Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxþ a2j

q
sin θ sinϕ;

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxþ b2j

q
cos θ cosψ ; W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxþ b2j

q
cos θ sinψ :

ð75Þ

Since we cannot visualize a four-dimensional plot, we
present two- and three-dimensional orbits, using special
coordinate choices.

A. Two-dimensional orbits

Choosing θ ¼ π
2
will provide equatorial orbits, including

the restrictions ψ ¼ 0 and Eq. (20). Note that Eq. (20)
requires that the Carter constant K be expressed by the test
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FIG. 7 (color online). All possible types of two-dimensional, massive test particle orbits in the equatorial θ ¼ π
2
plane. The dotted line

represents the static limit, the dashed lines indicate the horizons, and the black circle represents the singularity.
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particle’s energy E and, therefore, the effective potential
needs to be redefined. In Fig. 7, we present the possible
orbits for massive test particles in this plane. The only
difference to massless test particles is the existence of
many-world bound orbits. As pointed out in [30], there are
no bound orbits in both cases, though. Because of the bad
choice of coordinates (Boyer-Lindquist coordinates), the
geodesics diverge at the horizons. This is associated
with the directional change of the orbits when crossing
the horizons. This behavior is known from the four-
dimensional Kerr spacetime [11,12]. For reasons of clarity,
we only indicated these divergences. As already mentioned,
the geodesics enter another universe when leaving the event
horizon again due to the principle of causality. In Fig. 7(d),
we can see the frame-dragging effect of the black hole,
which leads to corotation for test particles that approach the
black hole’s ergosphere with appropriate angular momen-
tum. The singularity in this plane is encountered
at x ¼ −b2.

B. Three-dimensional orbits

In order to obtain three-dimensional plots, we choose a
projection of the four-dimensional motion into the three-
dimensional space. This means that we will not obtain an
actual three-dimensional orbit but a projected orbit, omit-
ting one of the Cartesian coordinates. In order to find a
representation of the horizons and the singularity in this
projection, we will calculate the boundary of this projection
map to represent these quantities reasonably. One can
easily see that the image of this map is completely
contained in a spheroid of the form

X2

jxþ a2j þ
Y2

jxþ a2j þ
Z2

jxþ b2j ≤ 1; ð76Þ

where the equality is true for ψ ¼ 0. Therefore, the
boundary of this map is obtained for ψ ¼ 0, which can
be confirmed by calculating its Jacobian determinant.
Consequently, we will represent the static limit, the
horizons, and the singularity by this special projection.
Note that the interior of these projected boundaries will also
represent the actual spacetime quantities in four dimen-
sions. We may exemplify this by the coordinate trans-
formation from three-dimensional spherical coordinates
ðr; θ; ϕÞ to Cartesian coordinates ðX; Y; ZÞ given by
X ¼ r sin θ cosϕ, Y ¼ r sin θ sinϕ, and Z ¼ r cos θ. The
projection map onto the X-Y plane is bounded by the circle

X2

r2
þ Y2

r2
≤ 1; ð77Þ

where the equality is true for θ ¼ π
2
. Of course, the map is

also projecting into the inside of this circle. Thus, a three-
dimensional orbit diverging at a sphere may now seem to

cross the horizon smoothly and diverge inside the projected
disc afterwards (see Fig. 8).
Consequently, we will obtain these visual deficiencies

for the projected three-dimensional orbits as well. In Fig. 9
we present the possible orbits for massive test particles. In
Fig. 9(a) we show an escape orbit projected into the Y-Z-W
space, and in Fig. 9(b) the same orbit is projected into the
X-Y-W space. Apparently, the escape orbit is crossing the
event horizon in Fig. 9(a), which is physically not the case,
whereas the projection of Fig. 9(b) yields a familiar
representation of an escape orbit. Therefore, we also used
this projection for the representation of the remaining orbit
types in Fig. 9. As seen in Fig. 9(f), the singularity assumes
the shape of a double cone in this case.

VII. OBSERVABLES

Concerning the geodesics of a spacetime, it is possible to
calculate observable quantities. Observables are very useful
in order to test the related theory. These quantities are, e.g.,
the light deflection for escape orbits, the perihelion shift for
bound orbits, or the Lense-Thirring effect. We will follow
along the lines of [17,46,47] to calculate these effects.

A. Deflection angle

Let us first consider the deflection angle of an escape
orbit with a radial turning point x0 ¼ 1

b3
ð4ez3 − b2

3
Þ. The

deflection angle can be determined by calculating the
values τ∞� of the Mino time for which the radial coordinate
yields xðτ∞� Þ ¼ ∞:

τ∞� ¼
Z

∞

x0

þτin ¼
Z

∞

ez
3

dzffiffiffiffi
Z

p þ τin: ð78Þ

FIG. 8 (color online). Projection of a sphere S2 ⊂ R3 and of an
orbit diverging at the sphere into the X-Y plane.
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FIG. 9 (color online). All possible types of massive test particle orbits in the five-dimensional Myers-Perry spacetime projected into
the X-Y-Z space (b)–(f) and an additional projection of the escape orbit into the Y-Z-W space (a).
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The sign is related to both branches of
ffiffiffiffi
X

p
or

ffiffiffiffi
Z

p
,

respectively. The total change of the angular coordinates
is given by

Δθ ¼ θðτ∞þ Þ − θð−τ∞− Þ;
Δϕ ¼ ϕðτ∞þ Þ − ϕð−τ∞− Þ;
Δψ ¼ ψðτ∞þ Þ − ψð−τ∞− Þ: ð79Þ

The related deflection angles δθ, δϕ, and δψ are commonly
defined as the total change of the angular coordinate minus
π [48]. This is illustrated by Fig. 10 for a two-dimensional
light orbit of a massless particle.
Calculating the integral in Eq. (78) yields

τ∞� ¼ �1.00957; ð80Þ

and thus, the deflection angle is approximately given by

δϕ ¼ Δϕ − π ≈ 0.33π: ð81Þ

This agrees with the deflection angle indicated in Fig. 10.
Since in the two-dimensional case ϕðτÞ only depends on x,
we could alternatively make use of [48]

dϕ
dz

¼ dϕ
dτ

dτ
dz

¼
_ϕ

_z
⇒ Δϕ ¼

Z
∞

ez
3

RϕðzÞffiffiffiffi
Z

p dz: ð82Þ

B. Perihelion shift and Lense-Thirring effect

Now we consider the perihelion shift and the Lense-
Thirring effect for bound orbits or many-world bound
orbits. The corresponding x and the θ motions are periodic:

θðτÞ ¼ θðτ þ ωθÞ;
xðτÞ ¼ xðτ þ ωxÞ; ð83Þ

whereby these periods are related to the first fundamental
period ωy;z

1 of the ℘ function,

ωθ ¼ 2

Z
θmax

θmin

dθffiffiffiffi
Θ

p ¼ 2

Z
ey
2

ey
1

dyffiffiffiffi
Y

p ¼ 2ωy
1;

ωx ¼ 2

Z
xmax

xmin

dxffiffiffiffi
X

p ¼ 2

Z
ez
2

ez
1

dzffiffiffiffi
Z

p ¼ 2ωz
1: ð84Þ

The corresponding orbital frequencies with respect to the
Mino time τ are ϒθ ¼ 2π

ωθ
and ϒx ¼ 2π

ωx
.

The orbital periods of the remaining coordinates ϕ, ψ ,
and t depend on both θ and x and thus, have to be treated
differently. Therefore, the solutions ϕðτÞ, ψðτÞ, and tðτÞ
consist of two different parts, where one part represents the
average rates ϒϕ, ϒψ , and Γ at which ϕ, ψ , and t
accumulate with respect to τ,

ϒϕ ¼ 2

ωθ

Z
θmax

θmin

dϕθ þ
2

ωx

Z
xmax

xmin

dϕx;

ϒψ ¼ 2

ωθ

Z
θmax

θmin

dψθ þ
2

ωx

Z
xmax

xmin

dψx;

Γ ¼ 2

ωθ

Z
θmax

θmin

dtθ þ
2

ωx

Z
xmax

xmin

dtx; ð85Þ

and the other part represents oscillations around it with
periods ωθ and ωx. The corresponding differentials are
given by Eqs. (54), (64), and (69). What we eventually need
are the orbital frequencies with respect to the coordinate
time t

Ωθ ¼
ϒθ

Γ
; Ωx ¼

ϒx

Γ
; Ωϕ ¼

ϒϕ

Γ
; Ωψ ¼ϒψ

Γ
: ð86Þ

The perihelion shift and the Lense-Thirring effect are
defined as differences between these orbital frequencies

Δϕ
P ¼ Ωϕ −Ωx ¼

ϒϕ −ϒx

Γ
;

Δψ
P ¼ Ωψ − Ωx ¼

ϒψ −ϒx

Γ
;

Δϕ
LT ¼ Ωϕ −Ωθ ¼

ϒϕ −ϒθ

Γ
;

Δψ
LT ¼ Ωψ − Ωθ ¼

ϒψ −ϒθ

Γ
: ð87Þ

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we have discussed the motion of test
particles and light in the general five-dimensional Myers-
Perry spacetime. We have studied the general properties of

FIG. 10 (color online). Total change of the ϕ coordinateΔϕ and
deflection angle δϕ of a planar, massless escape orbit with
parameter values E ¼ 1.08, a ¼ 0.4, b ¼ 0.3, Φ ¼ −2, μ ¼ 1.
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the equations of motion and analyzed the structure of the
resulting orbits. We have investigated the influence of the
test particle’s energy and angular momenta on its orbital
motion by means of E-Φ plots. This allows us to classify
the possible types of orbits in this spacetime. In parallel, we
have introduced the effective potential, associated with the
radial coordinate, yielding the same classification.
To obtain the orbits of test particles and light, we have

integrated the equations of motions explicitly in terms of
the Weierstrass elliptic ℘, ζ, and σ functions. The existence
of such analytical solutions allows for systematic applica-
tions and offers a frame for testing the accuracy and
reliability of numerical integrations in other contexts.
We have used these solutions in order to illustrate some

examples of typical orbits for massive and massless test
particles. Here we have chosen either two-dimensional
plots for orbits lying in an equatorial plane or three-
dimensional plots for the general case, projecting the
general four-dimensional motion into three dimensions.
Furthermore, we have presented expressions for spacetime
observables, such as the light deflection angle, the peri-
helion shift and the Lense-Thirring effect.
As in four dimensions, also in the five-dimensional

Myers-Perry spacetime there is a Killing tensor, which is
related to the Carter constant, allowing us to separate the
equations of motion.
We could point out the typical presence of a centrifugal

barrier, preventing most particles from reaching the
singularity.
However, the additional spacetime dimension of the

Myers-Perry solution also causes differences concerning
the properties of the black hole spacetimes and the
respective orbits of test particles and light. In five dimen-
sions, a general black hole solution possesses two inde-
pendent rotation parameters, because four spatial
dimensions imply the existence of two independent planes
of rotation. Moreover, the structure of the singularity is
much more complex.
We have confirmed the absence of stable bound orbits

outside the black hole’s event horizon, which represents a
generic feature of higher-dimensional spacetimes with
event horizons of spherical symmetry (see also [44]).
Note, though, that there are unstable circular orbits inside
and outside the black hole’s event horizon. As an interest-
ing fact, we have shown the existence of stable bound orbits
between the singularity and the Cauchy horizon. This has
also been seen for the Reissner-Nordström [49] and Kerr-
Newman spacetimes [50]. However, such orbits would be
hidden from an external observer.

As a future step, it would be interesting to derive the
analytical solutions of the geodesics equations in the six-
dimensional Myers-Perry spacetime. The related geodesic
equations are solvable in terms of hyperelliptic functions
[28,51]. Since the six-dimensional Myers-Perry spacetime is
even dimensional, it may share a different set of similarities
with the Kerr spacetime than the five-dimensional case. But
there are also new features that arise only in higher
dimensions. For example, if the Myers-Perry spacetime
has only one nonvanishing angular momentum, then there
is no extremal black hole in more than five dimensions [3].
Furthermore, the discussion of the five-dimensional de

Sitter or anti–de Sitter Myers-Perry spacetime [5] would be
instructive. The corresponding analytical solutions may
still be expressed in terms of hyperelliptic functions. The
analysis of other charged rotating spacetimes in higher
dimensions might be interesting, as well. These include
black hole solutions with horizons of spherical topology,
such as the supersymmetric spacetimes [52] or the charged
rotating black holes in Einstein-Maxwell-dilaton theory
[53], but also spacetimes with a different horizon topology.
In black ring spacetimes, for instance, the equations of

motion could be separated only in special cases corre-
sponding to geodesics on the two rotational axes, or zero
energy null geodesics [54,55]. Consequently, the geodesic
motion was studied analytically as well as numerically
[54–60]. Interestingly, in contrast to Myers-Perry black
hole spacetimes, there are stable bound orbits in black ring
spacetimes [57,59–61]. Moreover, recent analysis [62]
revealed that such ring spacetimes may possess chaotic
bound orbits. It should be interesting to see whether chaotic
motion will also appear in further higher-dimensional
spacetimes.
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APPENDIX: CONSTANTS OF THE PARTIAL
FRACTION DECOMPOSITION

The constants of the partial fraction decomposition, used
in the analytical solutions for ϕðτÞ, ψðτÞ, and tðτÞ, are
given by

p1 ¼
a3
4
þ a2
12

; p2 ¼
a2
12

; q1 ¼
b3
8

�
μþ 2

3

b2
b3

− a2 − b2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − a2 − b2Þ2 − 4a2b2

q �
¼ b3

4
xþ þ b2

12
;

q2 ¼
b3
8

�
μþ 2

3

b2
b3

− a2 − b2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − a2 − b2Þ2 − 4a2b2

q �
¼ b3

4
x− þ b2

12
;
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and

Gϕ ¼ −
a3
4
Φ; Gψ ¼ a3

4
Ψ;

Hϕ
1 ¼ −b3

Φð3a2b2b3 þ 3b2b3μ − 3b4b3 − a2b2 þ 12a2q1 − 12b2q1 þ b2b2Þ þ Eð3ab2b3μ − ab2μþ 12aμq1Þ
48q1 − 48q2

− b3
Ψð3abb3μÞ
48q1 − 48q2

;

Hϕ
2 ¼ b3

Φð3a2b2b3 þ 3b2b3μ − 3b4b3 − a2b2 þ 12a2q2 − 12b2q2 þ b2b2Þ þ Eð3ab2b3μ − ab2μþ 12aμq2Þ
48q1 − 48q2

þ b3
Ψð3abb3μÞ
48q1 − 48q2

;

Hψ
1 ¼ −b3

Ψð3a2b2b3 þ 3a2b3μ − 3a4b3 − b2b2 þ 12b2q1 − 12a2q1 þ a2b2Þ þ Eð3a2bb3μ − bb2μþ 12bμq1Þ
48q1 − 48q2

− b3
Φð3abb3μÞ
48q1 − 48q2

;

Hψ
2 ¼ b3

Ψð3a2b2b3 þ 3a2b3μ − 3a4b3 − b2b2 þ 12b2q2 − 12a2q2 þ a2b2Þ þ Eð3a2bb3μ − bb2μþ 12bμq2Þ
48q1 − 48q2

þ b3
Φð3abb3μÞ
48q1 − 48q2

;

Ht
1 ¼ b3μ

Φð12aq1 − ab2 þ 3ab2b3Þ þΨð12bq1 − bb2 þ 3a2bb3Þ þ Eð12μq1 − b2μÞ
48q1 − 48q2

;

Ht
2 ¼ −b3μ

Φð12aq2 − ab2 þ 3ab2b3Þ þΨð12bq2 − bb2 þ 3a2bb3Þ þ Eð12μq2 − b2μÞ
48q1 − 48q2
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