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We study the infrared (large separation) behavior of a massless minimally coupled scalar quantum field
theory with a quartic self interaction in de Sitter spacetime. We show that the perturbation series in the
interaction strength is singular and secular, i.e. it does not lead to a uniform approximation of the solution in
the infrared region. Only a nonperturbative resummation can capture the correct infrared behavior. We seek
to justify this picture using the Dyson-Schwinger equations in the ladder-rainbow approximation. We are
able to write down an ordinary differential equation obeyed by the two-point function and perform its
asymptotic analysis. Indeed, while the perturbative series—truncated at any finite order—is growing in the
infrared, the full nonperturbative sum can be decaying.
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I. INTRODUCTION

Questions on the actual size of quantum loops correc-
tions during inflation [1–3], the eventual dynamical screen-
ing of the cosmological constant and the related instability
of de Sitter spacetime [4–6] are of great interest to
cosmology. As part of an ongoing effort to illuminate
these difficult questions, the interacting quantum field
theory (QFT) in de Sitter spacetime has been attracting a
lot of attention recently. Since the literature on the subject
can easily become confusing, we refer the interested reader
to the recent and much needed review [7].
In this paper we will concentrate on a specific and

important aspect of the interacting QFT in de Sitter
spacetime, namely the infrared behavior of the massless
self-interacting scalar field. We will not discuss the back-
reaction induced by the stress-energy tensor of the latter on
the de Sitter background, although our results are of direct
relevance to this matter. We also note that, while the major
conclusions of our work concerning the IR behavior of
interacting fields in de Sitter spacetime are likely to be
relevant to more general cosmological models, this relation
is certainly not immediate, due to the special form of the
λϕ4 interaction we consider.
Besides the usual vacuum ambiguities specific to curved

spacetime field theories, the quantization of the free
massive scalar field in de Sitter spacetime poses no
particular challenges.1 In the so-called Bunch-Davies
vacuum state, the two-point function Δm2 is a perfectly
well defined hypergeometric function of the invariant

distance. For small masses however, Δm2 develops a
1=m2 pole, rendering the massless limit ill-defined and
the quantization of the theory a nontrivial task. This
situation must be contrasted with the flat space case, where
the massless limit is smooth. We note that the divergence
appearing in the limit m → 0 is often referred to as an
important IR divergency in de Sitter spacetime. As will
become clear in what follows, we believe that this is neither
the relevant notion of IR divergency, nor is it an important
issue in the first place.
Several propositions to quantize the massless field

coexist in the literature. Depending on how one interprets
and cures the ill-defined massless limit, one might end up
with a de Sitter invariant theory or not.
The first and most popular option is to understand the

problematic massless limit as an indication of the impos-
sibility of maintaining the full de Sitter invariance of the
quantum theory. Indeed, breaking de Sitter invariance
leads to a well-defined quantization and to interesting
cosmological implications [10,11].
Another approach can be found in [12,13], where a

“renormalized” two-point function Δ0 is defined through
the subtraction of the divergent 1=m2 term. The resulting
quantum theory preserves de Sitter invariance, as well as
causality and positivity. We have also shown in [14] that it
leads to the observed scale-invariant cosmic microwave
background power spectrum. This renormalized free propa-
gator will be used throughout the present article.
A most important fact is that while the massive two-point

function Δm2 decays in the IR region, Δ0 is growing in this
same limit. This is the interesting IR notion we believe one
should study. The rest of the article is devoted to the study
of what becomes of this growing behavior when a quartic
self interaction is added to the Lagrangian.
Most of the preceding works dealing with this problem

focus on the simplest approximation possible, namely local
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contributions to the self energy, either at a finite order in
perturbation theory, or nonperturbatively by summing the
infinite set of the so-called cactus diagrams. The outcome
of such an approximation is at most a dynamically
generated mass, m2

dyn. Indeed, most of the authors consid-
ering this approximation find m2

dyn ∝
ffiffiffi
λ

p
H2, where λ is

the interaction strength and H is the Hubble constant
(see [15–20] and references therein). A nonvanishing
m2

dyn is also what the earlier and more sophisticated
Starobinsky’s stochastic approach [21,22] leads to.
Unfortunately, these results strongly depend on how one

defines the coincidence limit of the free massless two-point
function. Indeed, even at the much simpler flat space level,
where no dynamical mass generation is believed to occur,
the implications of the renormalization schemes have not
been fully clarified, especially because renormalization
schemes that are mathematically acceptable might not
always be physically meaningful. Anyhow, an eventual
dynamically generated mass in de Sitter spacetime would
imply that the growing IR behavior in de Sitter spacetime
has been cured by the inclusion on an interaction, however
mild. In other terms, the presence of a small but non-
vanishing λ will make the massless limit smooth, and the
limits m → 0 and λ → 0 will not commute.
In this paper we go beyond this local approximation by

considering nonlocal contributions to the self energy. An
effort to go beyond this approximation can also be found in
[23], where the Dyson series of the two-loop self energies
are summed. We note that, contrary to the flat space case,
the summation of the Dyson series of repeated self-energies
chains is a nontrivial task in de Sitter space. Another
attempt to consider general massless nonlocal diagrams has
been made in [24], where interesting parametric represen-
tations of the interacting propagator have been developed.
A first reason to consider nonlocal contributions is the

ambiguity of the local approximations discussed above.
Perhaps the most important motivation for us is to prove in
a well-defined and specific context, that perturbation
theory is singular in de Sitter spacetime, and to insist that
this is probably the single most important technical issue
underlying all of the de Sitter interacting QFT.
Considering nonlocal diagrams is way more challenging

technically speaking in de Sitter spacetime, and especially
in the massless limit. We are essentially faced with two
major difficulties. First of all, the absence of translational
symmetry makes the harmonic analysis much less useful in
de Sitter calculations. This has to be contrasted with the
extremely powerful tool that is the flat space Fourier
transform. We invite the readers to compare the relative
difficulties of computing, say, a simple one-loop two-point
function for a scalar massive field theory in Minkowski (see
for instance chapter 3 of [25]) and in de Sitter space [26].
Second, one must add up the difficulties proper to the

massless case. While in flat space this is a simplifying limit,
in de Sitter space, because the free massless propagator is

growing in the IR, any Feynman integral using it as a
building block is plagued with many IR divergencies. As
will become clear shortly, our setup very efficiently solves
the two preceding difficulties by intensively making use of
the de Sitter symmetry and by transforming integral
equations into differential ones.
While we indeed believe that the inclusion of an

interaction, however small, has drastic consequences on
the quantization of the massless field and its IR behavior,
we argue here in favor of a more precise overall picture.
The free propagator Δ0, as well as its perturbative (non-
local) corrections, are growing. However, when the leading
IR contributions are summed up, the full nonperturbative
propagator G is decaying. In other words, the perturbative
expansion develops secular terms, making the perturbative
series nonuniform in the IR. We take a first step to justify
this picture by summing, via a linear Dyson-Schwinger
equation, the so-called ladder-rainbow diagrams.
The organization of the paper is as follows: After a rapid

introduction to the basics of de Sitter geometry and QFT,
we illustrate the methods we use on the simpler cases of
massless flat space and massive de Sitter space fields. We
then write down in Sec. IV the Dyson-Schwinger equations
in the local and in the ladder-rainbow approximation. We
give a rapid discussion on the local approximation and
consequent dynamical mass generation. Taking full advan-
tage of de Sitter symmetry, we are able to reduce the
Dyson-Schwinger integral equation into an ordinary differ-
ential one, the asymptotics of which are studied in Sec. V.
In Sec. VI we merely write down the nonlinear Dyson-
Schwinger (DS) equations and suggest a strategy to
tackle them in the future. Finally, Sec. VII is a concluding
discussion.

II. DE SITTER QFT

A. De Sitter geometry

The D-dimensional de Sitter spacetime can be identified
with the real one-sheeted hyperboloid in the Dþ 1
Minkowski spacetime MDþ1:

XD ¼ fx ∈ RDþ1; x2 ¼ −H−2g;
where H > 0 is the Hubble constant. Flat space is obtained
as theH → 0 limit. This definition of the de Sitter manifold
reveals the maximal symmetry of XD under the action of
the de Sitter group SO0ð1; DÞ, the latter making the
calculations analytically tractable. We take full advantage
of this fact in this paper. Let μðx; x0Þ denote the geodesic
distance between the points x and x0. It is useful to
introduce the quantity z given for the space-like separations
(μ2 > 0 or 0 < z < 1) by z ¼ cos2ðHμ

2
Þ. As a general rule,

we will work in the space-like region and then analytically
continue the propagators. As shown in [27], when acting on
functions of the invariant μðx; x0Þ, the Laplace-Beltrami
operator reduces to the ordinary differential operator:
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ð−□þm2Þ ¼ −
d2

dμ2
− ðD − 1ÞAðμÞ d

dμ
þm2; (1)

where

�
AðμÞ ¼ μ−1; on Minkowski space
AðμÞ ¼ H cotðHμÞ; on de Sitter space:

In terms of the variable z, this becomes the hypergeometric
operator

ð−□þm2Þ ¼ H

¼ −zð1 − zÞ d2

dz2
− ½c − ðaþ þ a− þ 1Þz� d

dz

þ aþa−;

where

a� ¼
D − 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2 − 4m2

H2

q
2

; c ¼ D=2:

In particular, in the massless case we have

H ¼ −zð1 − zÞ d2

dz2
−
D
2
ð1 − 2zÞ d

dz
: (2)

In order to make the connection to cosmology more
direct, we also introduce a flat coordinate system. The
spatial sections in this coordinate system are D − 1 planes.
These coordinates cover only half of the de Sitter spacetime
and are given by

xðt; xÞ ¼

8>><
>>:

x0 ¼ H−1 sinhðHtÞ þ H
2
x2eHt

xj ¼ xjeHt

xD ¼ H−1 coshðHtÞ − H
2
x2eHt:

The de Sitter metric and the invariant quantity z in this
coordinate system read

ds2 ¼ dt2 − a2ðtÞdx2; aðtÞ ¼ eHt

zðx; x0Þ ¼ 1

2

�
1 −

H2

2
eHðtþt0Þðx − x0Þ2 þ coshðHðt − t0ÞÞ

�
:

B. The massless field

The physical reason behind the appearance of strong IR
effects in de Sitter space can be simply understood: the
rapid expansion of the spacetime dilates correlation pat-
terns. After all, this is the exact reason why a de Sitter
inflationary phase in the early Universe solves many
problems of the hot big bang model. These IR effects
are naturally stronger for massless (and nonconformally

invariant) fields such as the massless minimally coupled
(mmc)2 scalar and the graviton. We review here these IR
divergences in the mmc case.
Recall that in the Bunch-Davies vacuum state the

massive propagator for a scalar field reads

Δðx; x0Þ ¼ Γða−ÞΓðaþÞHD−2

ΓðD=2Þ2DπD=2 2F1½a−; aþ; D=2; z�: (3)

In the massless limit, this expression diverges because of
the pole of the Gamma function. More precisely, we have
the small mass expansion

Δðx; x0Þ ∼ D

4π
Dþ1
2

Γ
�
D − 1

2

�
HD

m2
þ regular terms inm:

Note that in the flat space limit (H → 0), this singular term
is absent and the massless limit is smooth.3

One of the first papers to study the mmc scalar field in de
Sitter space is [10], where the authors prove that a usual de
Sitter-invariant Fock space quantization is impossible in
this case. They then propose to trade the de Sitter SOð1; DÞ
invariance for a smaller one, say a SOðDÞ invariance.
Equivalently, it is a common belief among workers in the
field that the scale-invariant power spectrum leads neces-
sarily to a breakdown of de Sitter invariance and that
some physical quantities might thus become time depen-
dent. Several authors later proposed different treatments of
the mmc field, xamong which [13] is one of the most
exhaustive. Here, the divergent term is subtracted, a
renormalized de Sitter-invariant two-point function is
computed4 and it reads (we work in D ¼ 4 for simplicity)

2Minimally coupled means that there is no term in the action
proportional to Rϕ2, R being the Ricci scalar. As the latter is
constant in de Sitter spacetime, it is a correction to the mass term.

3This means that the flat space limit (H → 0) and the massless
limit (m → 0) do not commute. This is a physically important fact
and might mean that even a small amount of curvature—like in
today’s Universe—could have important consequences on
massless fields.

4The drawback is that the two-point function no longer verifies
the equation of motion□ϕ ¼ 0; instead, it verifies the anomalous
equation

□ϕ ¼ −
3

8π2
:

This simple renormalization procedure has been used implicitly
in several earlier works. However, the major contribution of [13]
is proving that on a suitably chosen subspace of states, E, the
equation of motion is effectively restored. This “physical” space
of states should be regarded the same way as we regard the one
that appears in the quantization of gauge theory (for instance, the
space of transverse photons in QED). Moreover, the authors were
able to show that the renormalized two-point function defines a
positive kernel when restricted to E, thus enabling a probabilistic
interpretation of the theory.
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Δ0ðzÞ ¼
H2

ð4πÞ2
�

1

1 − z
− 2 ln ð1 − zÞ

�
: (4)

In [14] we also proved that Δ0 gives, as it should, the
observed scale-invariant power spectrum. We will use this
propagator for the mmc hereafter (and we will omit the
subscript 0 when no confusion can arise).

III. ILLUSTRATION OF OUR APPROACH

In this article we use a calculation method that is not
habitually used in de Sitter spacetime; moreover, we use
it to study the complicated massless field. For the purpose
of clarity, we try to disentangle theses difficulties by
first illustrating our techniques on the flat space case. We
then consider de Sitter spacetime but for the simpler
massive field.
For simplicity, we will only consider in this section

the cubic self-interacting scalar field in 6-dimensional
spacetime whose action is

S ¼
Z

dVx

�
1

2
gμν∂μϕ∂νϕ −

1

2
m2ϕ2 −

λ

3!
ϕ3

�
;

where dVx ¼ ffiffiffiffiffiffi−gp
d6x is the invariant volume element.

A. Flat spacetime

The position-space D-dimensional free two-point func-
tion is usually computed from the Fourier-space function
and is known to be equal to (for space-like separations)

Δ ¼ cD

�
m2

μ2

�ðD−1Þ=4
KD

2
−1ð

ffiffiffiffiffiffiffiffiffiffiffi
m2μ2

q
Þ;

where cD is a numeric constant independent from m and K
is the modified Bessel function of the second kind. In the
previous expression μðx; x0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2

p
is the invariant

distance. This result can be retrieved immediately in the
following manner: Δ obeys the Klein-Gordon equation

ð−□x þm2ÞΔ ¼ 0:

Taking advantage of the Poincaré symmetry, the angular
integration can be trivialized and the Klein-Gordon oper-
ator transformed into the ordinary differential equation
[see (1)]

−Δ00 −
ðD − 1Þ

μ
Δ0 þm2Δ ¼ 0;

whose solutions are indeed Bessel functions. The correct
linear combination can be found in different manners, for
instance by imposing that Δ decays in the IR (jμ2j → ∞).
Consider now the slightly more complicated case of

the one-loop corrected propagator G1. We restrict our

discussion to the massless field for simplicity.
Calculations are usually carried out in Fourier space, where

G1ðkÞ ¼ Δþ ΔΣΔ:

The one-loop self energy Σ in the modified minimal
subtraction scheme [28] reads

ΣMSðk2Þ ¼ −
λ2

12ð4πÞ3 k
2 þ λ2

2ð4πÞ3
Z

1

0

dxD ln ðD=M2Þ;

where D ¼ xð1 − xÞk2 and M is the renormalization
parameter. This expression is easily Fourier transformed to
coordinate space and the IR behavior is G1 ∝ λ2μ−4 ln μ2.
The same result can be retrieved immediately using, again,
a differential equation formulation of the problem: G1ðμÞ
verifies

G1ðx; x0Þ ¼ Δðx; x0Þ

þ λ2

2

Z
dVadVbΔðx; aÞΔ2ða; bÞΔðb; x0Þ:

Applying the massless Klein-Gordon operators on x and x0,
we obtain

ð−□xÞð−□x0 ÞG1ðx; x0Þ ¼ ð−□xÞδðx; x0Þ þ
λ2

2
Δ2ðx; x0Þ;

the solution of which is5

G1ðμÞ ¼
C1

μ2
þ C2

μ4
þ C3μ

2 þ C4 − c26λ
2
22þ 12 ln μ2

576μ4
;

where Ci are integration constants. The solution having the
correct λ → 0 behavior and decaying in the IR reads

G1ðμÞ ¼ ΔðμÞ − c26λ
2
22þ 12 ln μ2

576μ4
∼IR −

c26λ
2 ln μ2

48μ4
:

We see already some advantages of the differential equation
method in flat space, but the real advantages will become
clear in the case of de Sitter spacetime.
We end this section with two remarks. First, we note that

the dominant IR behavior is included in the particular
solution to the inhomogeneous equation, making it inde-
pendent from any boundary conditions. This phenomenon
will turn out to be also true in the massless de Sitter case as
well. Second, this differential equation method is appli-
cable to a large class of diagrams, but cannot be—at least
immediately—generalized to all diagrams.

5The local terms proportional to δ and its derivatives will only
contribute by redefining the integration constants in different
spacetime regions.
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B. Interacting massive fields in de Sitter space

In this section we illustrate the differential equation
method on the case of the massive scalar field with a cubic
self interaction in de Sitter space. The one-loop correction
to the propagator for this theory has been calculated in the
well-known paper [26] using the de Sitter invariant Bunch-
Davies vacuum and Watson-Sommerfeld transformations.
The main result of that paper is that the one-loop corrected
propagator decays in the IR. We rederive in this section this
result using the differential equation technique.
The free propagator, given in (3), can be found by

different methods, the most effective one being the differ-
ential equation method, as done for instance in [27].
Now, applying the Klein-Gordon operator twice and

taking full advantage of de Sitter invariance, we find that
G1 obeys

H2G1ðzÞ ¼
λ2

2
Δ2ðzÞ:

This equation can be exactly solved; however, we simply
need here to extract the asymptotic IR behaviors, which are
immediate. We find behaviors proportional to

fzσ; zσ̄; zσ ln z; zσ̄ ln z; z2σg

in full agreement with [26]. In particular, all possible IR
behaviors are decaying. In order to implement the correct
boundary conditions, one needs either the exact solutions
(which are quite cumbersome), either a uniform approxima-
tion. We will study such approximations for the more
interesting massless case in the rest of this paper.
The efficiency of our method is obvious in this last

example. We also note the very interesting contribution
from the same authors in the subsequent paper [29] where
they prove that the massive field propagator is decaying in
the IR at any loop order, for any n-point function. The
interested reader can also consult the closely related
paper [30].

IV. DYSON-SCHWINGER EQUATIONS

The Dyson-Schwinger equations, an infinite set of
integral equations between the n-point functions, are the
equations of motion of the QFT. These equations, through
some truncation schemes, give a convenient handle on
nonperturbative effects in the theory. From now on we
study the 4-dimensional QFT given by the action

S ¼
Z

dVx

�
1

2
gμν∂μϕ∂νϕ −

1

2
m2ϕ2 −

λ

4!
ϕ4

�
:

The (unrenormalized) Dyson-Schwinger equations for the
exact propagator read

ð−□x þm2ÞGðx; x0Þ

¼ −iδðx; x0Þ − i
Z

dVyΣðx; yÞGðy; x0ÞΣðx; yÞ

¼ 1

2
ð−iλÞGðx; yÞδðx; yÞ þ 1

6
ð−iλÞ2

×
Z

dzGðx; z1ÞGðx; z2ÞGðx; z3ÞΓ4ðz1; z2; z3; yÞ; (5)

where dz ¼ dVz1dVz2dVz3 , G is the exact Feynman propa-
gator, Δ the free one, Σ the self energy, which involves the
exact four-point function Γ4 and so on. A graphical
representation of the first two DS equations is given in
Fig. 1. The first equation is known as the Dyson equation
which in flat spacetime is readily solved in Fourier space
and is equivalent to summing the usual geometric series of
self energies: G ¼ Δ=ð1 − ΔΣÞ. The second equation,
giving the self energy, contains local and nonlocal
contributions. We will study them both in what follows.
The Dyson-Schwinger equations are an infinite tower of

integral equations difficult to study without a heavy
truncation scheme. One of the most frequently used
schemes is the ladder-rainbow approximation, which con-
sists of the replacement of the exact four-point function
by its bare value: Γ4ðz1; z2; z3; yÞ → −iλδðz1; yÞδðz2; yÞ
δðz3; yÞ. After a quick discussion of the local contributions
in Sec. IVA, we use the ladder-rainbow approximation
throughout this work to study nonlocal contributions to the
self energy.

A. Local approximation and dynamical mass
generation

The local approximation of the self energy, given by
Σðx; yÞ ¼ −i λ

2
Gðx; yÞδðx; yÞ, is the simplest approximation

in which one can study the Dyson-Schwinger equations. It
is known as the Hartree approximation and resums the
so-called cactus diagrams depicted in Fig. 2. It leads to the
equations

FIG. 1. Dyson-Schwinger equation relating the two- and four-point functions. A blob on a propagator indicates that it is exact.
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ð−□x þm2
dynÞGðx; x0Þ ¼ −iδðx; x0Þ;

m2
dyn ¼ m2

0 þ
λ

2
Gðx; xÞ:

We take from now on the bare mass m2
0 ¼ 0. The first

equation can be readily solved in terms of the hyper-
geometric function, as in (3). The second equation is the
so-called gap equation and is explicitly given by

−λð2H2−m2
dynÞ½Hν− þHνþ�þ2H2λ− ðλþ32π2Þm2

dyn ¼ 0;

where ν� ¼ 1
2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 −

4m2
dyn

H2

q �
and Hz ¼

P∞
k¼1 ð1k − 1

kþzÞ
is the harmonic number function. For a small λ the solution
behaves like

m2
dyn ∼

H2
ffiffiffiffiffi
3λ

p

4π
;

in agreement with [17,21] and numerous other works.
Several comments are in order. First, the resummed two-

point function behaves now like a massive one and decay in
the IR. This is our first result. Second, the dynamically
generated mass m2

dyn vanishes in the flat spacetime limit
(H → 0) as expected. Finally, and perhaps the most
important commentary concerning the dynamical mass
generation, the actual result depends on how one defines
the coincidence limit Gðx; xÞ. This is already a nontrivial
question in flat space, even if physically sound arguments
strongly suggest that the tadpole diagram vanishes and no
dynamical mass generation is possible. The situation in de
Sitter spacetime is at least as intricate (see Appendix C of
[26] and the recent detailed analysis in [31]).
We close this section by noting that, in the literature, the

gap equation is only obtained for small masses and coupling.
On the contrary, we have obtained its general form. As a
consequence, we are also able to study its solution in the
strong coupling regime, λ → ∞. Interestingly, we find in this
limit that m2

dyn → 2H2, which corresponds to the confor-
mally invariant field, whose two-point function simply
reduces to ½16π2ð1 − zÞ�−1. To our knowledge, this strong
coupling limit has not been given before and the precise
meaning of the appearance of the conformal field is yet
unclear to us.

B. Nonlocal approximation: Ladder rainbow

From now on we will discard eventual local contribu-
tions to the self energy and concentrate on the nonlocal
ones. First, let us analyze the Dyson-Schwinger equations
for our purposes in some detail.
Since we discard local corrections, the expansion of

the self energy starts at two loops, with the first term in
the expansion indeed furnishing a primitive element in the
Hopf algebra H of ϕ4 theory, which provides a Hochschild
one-cocycle Bþ. Omitting higher Hochschild cocycles—
which seems reasonable as they do not alter the algebraic
structure of the Dyson-Schwinger equations—, we find the
combinatorial Dyson-Schwinger equation for the self energy

Xðλ2Þ ¼ 1 −
λ2

6
Bþ

�
1

X3ðλ2Þ
�
:

Its fix-point is a formal series ∈ H½½λ2�� such that the
application of renormalized Feynman rules ΦR gives
ΦRðXðλ2ÞÞ ¼ 1 − Σ.
Hochschild cohomology ensures that we renormalized by

local counterterms, and ensures that each contributing graph
is divided by its symmetry factor, as it should [32,33].
We drastically simplify this system by linearizing it to a

commutative and cocommutative Hopf algebra generated
from simple concatenations of the cocycle Bþ:

Xðλ2Þ ¼ 1 −
λ2

6
BþðXðλ2ÞÞ:

Graphically, the two equations read as in Fig. 3.
Explicitly, the two expansions in the graphs read as

in Fig. 4.
Note that in the linearized case, graphs do not contribute

by their symmetry factors anymore, as “insertion places”
are missing. Explicitly, the Dyson-Schwinger equation in
the linearized ladder-rainbow approximation reads (see
[34] for the flat space case)

ð−□x þm2Þð−□x0 þm2ÞGðx; x0Þ − λ2

6
Δ2ðx; x0ÞGðx; x0Þ

¼ −ið−□x þm2Þδðx; x0Þ:
For maximally symmetric spacetimes and vacuum states,
this reduces to�

ð−□þm2Þ2 − λ2

6
Δ2ðx; x0Þ

�
Gðx; x0Þ

¼ −ið−□þm2Þδðx; x0Þ: (6)

In terms of the z variable and the hypergeometric operator
H, using the formulas (1), the homogeneous6 part of the
preceding equation becomes:

FIG. 2. A typical cactus-like diagram summed in the Hartree
approximation.

6The inhomogeneity proportional to a delta function will be
responsible to a shift that can be absorbed in the integration
constants.
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ðH2 − ϵΔ2ÞGðzÞ ¼ 0; ϵ ¼ λ2=6: (7)

Note that for the nonlinear Dyson-Schwinger equation, the
corresponding differential equation would become highly
nonlinear even in flat space—see Sec. VI—, and on top of
that nonlinearity we would have all the complexities of the
hypergeometric operator on which we now focus.
This ordinary differential equation is the central equation

of our work and we will refer to it as the master equation in
what follows. We will use the following boundary con-
ditions, which are the natural generalization of the Bunch-
Davies vacuum state: regularity for antipodal points (i.e. at
z ¼ 0) and a flat spacetime singularity at short distances
(at z → 1). The flat space singularity is proportional to
(see Appendix B)

μ
−1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ64π2

p
π2

þ8

q
: (8)

Developing the relation z ¼ cos2ð μ
2RÞ near μ → 0, we have

the asymptotic behavior of G at z ¼ 1:

G ∼
z→1

1

16π2
ð1 − zÞν; ν ¼ −

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ 64π4

p

π2
þ 8

s
:

V. ASYMPTOTICS OF THE MASTER EQUATION

A. Perturbation series and leading logarithms

First, let us tackle the master equation perturbatively in ϵ.
This is relevant to understanding the physics of the problem
as well as the need of a more refined asymptotic analysis.

Writing G ¼ G0 þ ϵG1 þ ϵ2G2 þ � � �, it is relatively
easy—although tedious—to compute the first terms in this
series. The result involves logarithmic and polylogarithmic
functions.
A very interesting fact worth mentioning at this level is

that, because we work at the level of the differential
equation, no IR divergencies appear whatsoever: the differ-
entiation serves as a canonical and nonambiguous regu-
larization procedure. These facts will be discussed in much
more detail in the forthcoming publication. Instead of
divergencies, we obtain perfectly well-defined expressions
for every Gn, and they grow in the IR. More precisely, we
have the “leading logarithms”

G0ðzÞ ∼ −
ln z
8π2

; G1ðzÞ ∼ −
ln5 z

92160π6
; � � �

Actually, we are able to obtain by induction the explicit
leading large z behavior for an arbitrary order:

GnðzÞ ∼ −
Γð5=4Þ

23þ10n9nπ2þ4nΓð1þ nÞΓðnþ 5=4Þ ln
1þ4nz:

It is of course very tempting to sum up these leading
logarithms, which we do. The result is convergent but
wrong, i.e. the sum of the subleading terms in Gn is not
negligible. We note that the exact same phenomenon occurs
for the quantum anharmonic oscillator [35]. We thus need a
more powerful method to derive the asymptotics of the
master equation. We will use here the Wentzel-Kramers-
Brillouin (WKB) method.

FIG. 3. Nonlinear and linear Dyson-Schwinger equations in the ladder-rainbow approximation.

FIG. 4. Nonlinear and linear Dyson-Schwinger equations (both in the ladder-rainbow approximation) expanded out in perturbation
theory. Note that the linear Dyson-Schwinger equations miss some graphs, which also results in wrong symmetry factors. It nevertheless
gives a strict subset of the full expansion at any order.
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B. WKB approximation

We study the homogeneous master equation (7), which we reproduce here explicitly for convenience:

Gð4Þ þ
�
6

z
þ 6

z − 1

�
Gð3Þ þ

�
6

z2
−
22

z
þ 22

z − 1
þ 6

ðz − 1Þ2
�
G00

þ
�

8

ðz − 1Þ2 −
8

z2

�
G0 −

ϵ

256π4ð1 − zÞ2z2
�

1

1 − z
− 2 lnð1 − zÞ

�
2

G ¼ 0: (9)

This equation possesses one regular singular point at z ¼ 0
and two irregular singular points at z ¼ 1 and z ¼ ∞. The
local study performed around these points in Appendix C
shows that the interaction term (proportional to ϵ) is
negligible near z ¼ 0 and is very important near z ¼ ∞.
We then use a WKB approximation (or Liouville-Green

for mathematicians) to obtain global approximations to the
four fundamental solutions of (C1). The solution having the
correct z → 1 limit, has also the following IR behavior:

G ∼
1

z3=2 ln
3
4ð−zÞ exp

�
−
� ffiffiffi

ϵ4
p

ln
3
2ð−zÞ

3
ffiffiffi
2

p
π

þ 9π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð−zÞp
ffiffiffi
2

p ffiffiffi
ϵ4

p
��

:

As the other solutions have a subleading contribution
near z ¼ 1, they (notably the one with ω ¼ 1 in
Appendix C) can spoil the IR behavior by making it grow
instead of decaying. The absence of this solution will be
checked via a rigorous analysis elsewhere.
We note that, while the approximation near z ¼ 1

obtained via a certain WKB approximation is only valid
for strong couplings, ϵ ≪ 1, the asymptotic behavior
obtained via local analysis (see Appendix C) is exact for
any ϵ.
Finally, an important remark is the following: the

phenomenon described here belongs to a large class of
phenomena in mathematics and physics known as secular
perturbation theory. The simplest such example is given by
the boundary value problem [36]:

y00 þ ϵy0 þ y ¼ 0; for t > 0; yð0Þ ¼ 0; y0ð0Þ ¼ 1:

To the first order in perturbation theory in ϵ the solution is
unbounded for a large t:

yðtÞ ¼ sinðtÞ − 1

2
ϵt sinðtÞ:

Unlike this perturbative solution, the exact solution is
bounded:

yðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2=4

p e−ϵt=2 sin ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2=4

q
Þ:

In the case under consideration, the multiple scales method
[36,37] (consisting of introducing a new scale τ ¼ ϵt,

treating it as independent of t, and using this freedom to
kill the secular terms) yields, to the first iteration, the
uniform approximation

yðtÞ ∼ e−ϵt=2 sinðtÞ:

Wewill investigate the applicability of these multiple scales
methods to the study of strong IR effects in de Sitter
spacetime in a future publication.

VI. NONLINEAR LADDER-RAINBOW
APPROXIMATION

In the nonlinear ladder-rainbow approximation the
two-point function verifies

H2G − ϵG3 ¼ 0:

This equation resums all of the diagrams shown in the first
equation of Fig. 4. Note that it does not take into account
repeated chains of self energy. The large μ; z asymptotics of
the linear equation are of course more involved than the
linear case. However, we are able to make some progress in
the flat space case by tackling the problem perturbatively in
ϵ. Note that the full equation flat space equation, taking into
account chains, has been studied in [33] for the cubic
interaction in flat space.
We are able to find the explicit form of the leading

infrared term for an arbitrary perturbation order. More
precisely, we have in the IR

GðμÞ ¼ G0ðμÞ þ ϵG1ðμÞ þ ϵ2G2ðμÞ þ � � �

GnðμÞ ∼
ð−1Þ3nΓð1

2
þ nÞ

81þ3nπ
5
2
þ4nΓð1þ nÞ

lnnμ
μ2

:

These leading behaviors can be resummed and lead to

G ∼
2

ffiffiffi
2

p

μ2
ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ ln μ

p :

Whether one can neglect the sum of the subleading terms is
a crucial question whose investigation is beyond the scope
of this paper.
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VII. DISCUSSION

We end our work with a concise discussion of several
important issues.
A crucial technical point in our analysis is that we are

able to take full advantage of de Sitter symmetry by
transforming the Dyson-Schwinger integral equation into
an ordinary differential equation (depending only on the
scalar variable z). This not only drastically simplifies
the computations, but it also constitutes a nonambiguous
IR regularization procedure.
We have successfully resummed nonlocal contributions to

the self energy. To our knowledge, this is the first time such
results are obtained. It is however important to stress that our
conclusions were drawn in a very restrictive context, namely
the ladder-rainbow approximation, which is a drastic sim-
plification of the full theory. A better control of this ap-
proximation has to be achieved, mainly by summing over a
larger family of diagrams, for instance using the nonlinear
Dyson-Schwinger equation discussed above. Another inter-
esting path to follow is to combine insights from our present
work and from the “physical momentum representation” of de
Sitter correlators developed in [38,39]. The aim would be to
resum the Dyson series of the ladder-rainbows self energies.
We also note that the difficulty to rigorously justify the

used approximation is a general trend in hard problems such
as the nonperturbative QFT, a classical example being the
study of bound states using the Bethe-Salpeter equation [40].
We have been able to avoid any discussion about UV

renormalization because we transform the integration over
loops into differential equations. Hence, renormalization
only intervenes through the integration constants. This is
actually the generic situation for the study of solutions of
Dyson-Schwinger equations: for a kinetic renormalization
scheme, the renormalization condition amounts to fixing
the boundary conditions of the equations.
The secularity of perturbation theory exists already in

flat space. However, unlike the de Sitter case, it does
not change the IR behavior of the two-point function
because of a rapidly decaying overall μ−2 factor. Indeed,
the ladder-rainbow two-point function in flat space reads
(see Appendix B)

μ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffiffiffiffiffiffiffi
ϵþ64π4

p
4π2

q
¼ 1

μ2

�
1−

ϵ ln μ

256π4
þ ϵ2ð5 ln μþ 2ln2μÞ

262144π8
þ � � �

�
:

In nonstationary situations, one should use the so-called
Schwinger-Keldysh (also known as the in-in) QFT formal-
ism. However, de Sitter spacetime is particular in that the
in-in and the Euclidean formalisms are equivalent. This has
been proven for the massive interacting case in [41].
Whether this equivalence holds in the massless limit likely
depends on how one interprets and treats the strong IR
effects that arise in this case, as discussed in the introduc-
tion. This is certainly an interesting point to study.

The IR behavior of the graviton field in de Sitter
spacetime is one of the most important open questions
in cosmology. We believe that the nonperturbative effects
exhibited in the present work for the mmc scalar field can
illuminate this issue. On top of these nonperturbative
effects, we also expect an interesting interplay with non-
trivial gauge artifacts similar to the ones already exhibited
for the photon field in de Sitter space in [42].
As already mentioned in the introduction, we neglect the

backreaction of the quantum fields on the background
metric. However the fact that the interacting two-point
functionG decays in the IR is of paramount relevance to the
difficult but crucial issue of whether the backreaction can
be neglected to begin with. Ultimately, this is equivalent to
understanding the stability of the de Sitter spacetime.
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APPENDIX A: CONVENTIONS

Here, we list our kinematical conventions. The metric is
the mostly plus one. Consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ −

1

2
m2ϕ2 −

λ

4!
ϕ4

�
;

where g is the determinant of the metric. The free Feynman
propagator hTϕðxÞϕðx0Þi ¼ Δðx; x0Þ verifies

ð−□x þm2ÞΔðx; x0Þ ¼ −i
δðx − x0Þffiffiffiffiffiffi−gp :

Feynman rules are given by

Propagator∶ Δðx; x0Þ
Vertex∶ − iλ:

APPENDIX B: FLAT SPACE MASTER
EQUATION

In the flat space the master equation (7), with A ¼ 1=μ
and ΔðμÞ ¼ 1

4π2μ2
is readily solved and gives the four

fundamental solutions with

μρ; ρ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ 64π4

p

4π2

s
:

The boundary conditions, included in the integral
equation for instance, select the solution for which

ρ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffiffiffiffiffiffiffiffiffi
ϵþ64π4

p
4π2

r
.
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APPENDIX C: LOCAL ANALYSIS

We study the homogeneous master equation (7), which we reproduce here explicitly for convenience:

Gð4Þ þ
�
6

z
þ 6

z − 1

�
Gð3Þ þ

�
6

z2
−
22

z
þ 22

z − 1
þ 6

ðz − 1Þ2
�
G00

þ
�

8

ðz − 1Þ2 −
8

z2

�
G0 −

ϵ

256π4ð1 − zÞ2z2
�

1

1 − z
− 2 ln ð1 − zÞ

�
2

G ¼ 0: (C1)

This equation possesses one regular singular point at z ¼ 0 and two irregular singular points at z ¼ 1 and z ¼ ∞. We
perform here a local analysis near these points.

1. Frobenius series at z ¼ 0

The indical polynomial is P0ðλÞ ¼ λ2ðλ2 − 1Þ. Our equation being fourth order and the roots of P0 being separated by
integers, some care has to be taken in the application of the Frobenius method (see [43] for the explicit algorithm). We
obtain the local behaviors �

1

z
; ln z; 1; z

	
:

More precisely, the first terms of the four solutions are given by

8>>>>>>>>>>><
>>>>>>>>>>>:

G1ðzÞ ∼ zþ 2z2
3
þ
�

ϵ

18432π4
þ 5

9

�
z3 ∼ z;

G2ðzÞ ∼ 1
z þ 84 −

�
216þ 15ϵ

512π4

�
zþ

�
−48þ

�
36þ 3ϵ

256π4

�
z

�
ln z ∼ 1

z ;

G3ðzÞ ∼ 1 − zþ
�
−
2

3
þ ϵ

3072π4

�
z2 ∼ 1;

G4ðzÞ ∼ 9zþ
�
40

9
−

7ϵ

4608π4

�
z2 þ

�
2 − 2zþ

�
−
4

3
þ ϵ

1536π4

�
z2
�
ln z ∼ 2 ln z:

This analysis implies that the boundary condition imposing regularity at z ¼ 0 eliminates 2 of the 4 solutions.

2. Asymptotic behavior near z ¼ 1

a. ϵ ¼ 0

In this case the point z ¼ 1 is a regular singular point.
The free master equation being invariant under the trans-
formation z → 1 − z, the asymptotic behaviors at z ¼ 1 can
be directly obtained from the behavior near z ¼ 0 (also the
equation is then exactly solvable) and are given by�

1 − z;
1

1 − z
; lnð1 − zÞ; 1

	
:

b. ϵ > 0

Even if the point z ¼ 1 is an irregular singular point, this
“irregularity” appears only at the first order when z → 1. At
the zeroth order in 1 − z, one can thus still define an indical
polynomial which is given by

P1ðλÞ ¼ λ4 − λ2 −
ϵ

256π4
;

and the roots of which read

λ ¼ � 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ 64π4

p

π2
� 8

s

and are not separated by integers for a generic ϵ. The
leading behaviors near z ¼ 1 are thus given by

ð1 − zÞλ; λ ¼ � 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ 64π4

p

π2
� 8

s
:

We can verify that this is the full leading behavior at z ¼ 1.

3. Asymptotic behavior near z → ∞
By making the ansatz G ¼ eS and using the dominant

balance method recursively [37], we are able to derive the
leading behavior near infinity:
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Gω ∼
1

z3=2 ln
3
4 ð−zÞ exp

��
ω

ffiffiffi
ϵ4

p
ln

3
2 ð−zÞ

3
ffiffiffi
2

p
π

þ 9π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð−zÞp
ffiffiffi
2

p
ω

ffiffiffi
ϵ4

p
��

;

ω4 ¼ 1:

Obtaining this result necessitates some lengthy calculations
that we choose not to reproduce here.

APPENDIX D: WKB APPROXIMATION

Consider the general fourth-order differential equation (of
course the parameter δ can be introduced in many different
ways, leading to more or less accurate approximations):

δ4½Gð4Þ þ a3Gð3Þ þ a2G00 þ a1G0� − a0G ¼ 0:

When δ → 0, each of the four elementary solutions in the
WKB approximation read (in our situation, δ ¼ ϵ−1=4,
meaning that we perform a strong coupling expansion)

G ∼ exp

�
1

δ
ðS0 þ δS1 þ δ2S2Þ

�
;

where

S0¼ω

Z
z ffiffiffiffiffi

a04
p

; ω4¼1;

S1¼
−1
8

�
3loga0þ2

Z
z
a3

�
;

S2¼
1

128ω

Z
z 1ffiffiffiffiffi

a04
p

�
−
45a020
a02

þ48a03þ
40a000
a0

þ12a32−32a2

�
:

(D1)

These solutions have the asymptotic behaviors

8>><
>>:

Gω ∼z→1 ð1 − zÞ
ω
ffiffi
ϵ4

p
4π þ π

ω
ffiffi
ϵ4

p
;

Gω ∼z→∞
1

z3=2ln
3
4ð−zÞ

exp

��
ω

ffiffiffi
ϵ4

p
ln

3
2 ð−zÞ

3
ffiffiffi
2

p
π

þ 9π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð−zÞp

ffiffiffi
2

p
ω

ffiffiffi
ϵ4

p
��

:

Comparing the WKB results to the exact local analysis
performed before, we find that they are exactly the same as
z → ∞. They also coincide near z → 1 in the strong
coupling limit ϵ ≫ 1. This is a verification of our previous
calculations. The “minimal” choice corresponding to the
boundary value at z ¼ 1 will be ω ¼ −1, implying that the
real part of the resummed two-point function decays
at z → ∞.
However, this WKB approximation breaks down near

z ¼ 0, preventing us from implementing the boundary
conditions at z ¼ 0. This breakdown can be explicitly
seen because the following relations in the expansion
G ∼ exp ½1δ ðS0 þ δS1 þ δ2S2Þ� do not hold near z ¼ 0:

S0 ≫ S1 ≫ S2:

This was also expected, since the point z ¼ 0 is a
degenerate regular singular point, i.e. having equal expo-
nents (see [44] p. 202). The global analysis of such
equations, specially higher-order ones, is a nontrivial task
(see [45] and references therein) that we will examine in a
future work.
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