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We find that the four-dimensional cosmological Einstein-Yang-Mills theory with SUð2Þ gauge group
admits Lifshitz spacetime as a base solution for the dynamical exponent z > 1. Motivated by this, we next
demonstrate numerically that the field equations admit black hole solutions which behave regularly on the
horizon and at spatial infinity for different horizon topologies. The solutions depend on one parameter, the
strength of the gauge field at the horizon, which is fine-tuned to capture the Lifshitz asymptotics at infinity.
We also discuss the behavior of solutions and the change in Hawking temperature for black holes that are
large or small with respect to the length scale L, which is itself fixed by the value of the cosmological
constant.
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I. INTRODUCTION

The AdS/CFT conjecture has been a strong and versatile
tool in the arsenal of high energy theory. The aptly named
duality, relating conformal field theories to gravity in
higher dimensions, has proven to be a powerful theoretical
toolkit and provided great insight in high energy physics.
Recently, there has been a serious effort to trickle down to
the energy scale of condensed matter and make holography
accessible to strongly coupled systems which can be
realized in experiments [1–4] (and references therein).
One of the approaches to achieve such duality is to impose
an anisotropic scaling symmetry on the boundary field
theory

t → λzt; ~x → λ~x; r →
r
λ
; ð1Þ

where z is called the dynamical exponent. The symmetry
algebra of field theories is controlled by z, e.g., z ¼ 1
generates the Poincaré group with special conformal
symmetries, and when z > 1, one ends up with different
scalings for time and space, which leads to nonrelativistic
field theories with Lifshitz symmetries: our main focus in
this work. The bulk metric conjuring up these symmetries is
found to be

ds2 ¼ L2

�
−r2zdt2 þ dr2

r2
þ r2d~x2

�
; ð2Þ

with peculiar properties regarding causal structure and
geodesics [2,5]. Einstein gravity with a negative cosmo-
logical constant does not admit this type of anisotropic
background as a solution. One should either consider
higher derivative theories or matter couplings to source

the metric. Once we depart from Einstein gravity and add
the higher curvature corrections, the amended theories
begin to accommodate (2) as a solution [6]. On the other
hand, the anisotropic backgrounds engineered with various
types of matter Lagrangians [7]—e.g., string theory moti-
vated p-form fields [5], massive gauge fields, and Uð1Þ
fields with dilatoniclike couplings [8]—are better studied
models for gravity duals. One of the first examples is the
theory considered in [5], which is conjectured to be the
gravitational dual of 2þ 1 dimensional field theories
modeling quantum critical behavior in strongly correlated
electron systems.
In principle, black hole solutions describe the finite

temperature behavior of those dual nonrelativistic field
theories, which renders them important objects in holog-
raphy. Curvature corrections open up the way for large
families of analytic black holes in different dimensions,
both for static and stationary Lifshitz spacetimes [6,9–11].
However, analytic black holes with matter fields for generic
z are rather rare [7,8]. For a fixed value of z, several exact
solutions were found [12–15]. On the other hand, different
types of numerical solutions were explored with generic z
values and for different horizon topologies [16–20] for
theories with massive gauge fields and p forms.
The matter Lagrangians with non-Abelian gauge fields

have been used in holographic superconductor models
[21,22], with AdS/Schwarzschild black hole backgrounds.
Recently, the effects of Lifshitz scaling on these models
have also been considered [23]. In this work we will first
focus on a different and simpler question: whether it is
possible at all to support Lifshitz spacetime (2) with non-
Abelian matter sources. To our knowledge, this has not
been addressed previously elsewhere. Having answered the
first in the affirmative, the second task we undertake is the
dressing up of this background solution with black holes.
There is substantial literature on Einstein-Yang-Mills
particlelike and black hole solutions [24–28], both in*dedeveci@metu.edu.tr
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asymptotically flat and AdS backgrounds with different
characteristics. For example, asymptotically flat, colored
black holes [25] admit finite range field strength; i.e., there
is no global magnetic SUð2Þ charge that makes them
indistinguishable from Schwarzschild at infinity, whereas
asymptotically AdS ones can possess global SUð2Þ mag-
netic charge [28]. As we will show in what follows, Lifshitz
asymptotics are quite different: Fields extend to infinity not
only to endow black holes with SUð2Þ charge, but also to
support Lifshitz spacetime. By abandoning asymptotic
flatness, black holes with nonspherical horizon topologies
can be constructed. Accordingly, we will consider three
types of event horizon topologies—viz., planar, spherical,
and hyperbolic—with different gauge field Ansätze
respecting the corresponding symmetries.
For large black holes, these three types have similar

behavior but differ significantly in the case of small event
horizon radii. Our focus will be on the numerical evidence
for the asymptotically Lifshitz black holes in cosmological
Einstein-Yang-Mills (EYM) theory. We will not discuss the
relation to the holographic dual field theories, which merits
a separate significant problem on its own.
The outline of the paper is as follows: In Sec. II we start

with the equations of motion for the EYM system, state the
Ansatz for the planar symmetric Yang-Mills (YM) fields,
and obtain the solution for the background metric (2). We
then set the stage for black hole solutions by dressing up the
background metric and gauge fields with suitable functions
in Sec. III. Sections IVA and IV B are devoted to the series
solutions of black holes at infinity and at the horizon,
respectively. We next study the numerical black hole
solutions of the theory in Sec. IV C. In Sec. V the
Hawking temperature of the solutions we have found is
analyzed. Finally, we conclude with Sec. VI.

II. LIFSHITZ ASYMPTOTICS AND SUð2Þ
GAUGE FIELDS

The gravity theory we consider is the four-dimensional
cosmological EYM theory for the gauge group SUð2Þ,
described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ðR − 2ΛÞ − 1

2g2YM
TrFμνFμν

�
; ð3Þ

where Λ is the cosmological and g2YM is the gauge coupling
constant in dimensions of 1=length2.1 In order to support
backgrounds with anisotropic scaling symmetry, a naive

approach is to make the coupling constants depend on the
geometry, i.e., the parameter z. It is worth emphasizing that
the path taken here is different from [28,29], in which AdS
is already a vacuum for the gravitational sector and the YM
field is used only as a hair parameter, not for supporting the
AdS geometry. In this work the YM field will be used to
source the metric (2), so it has to decouple at z ¼ 1.
Because of this major difference, we will not be able to
recover the results of [28] in the conformal limit z ¼ 1. As
we will show in the discussion below, ours is still an
appropriate way to proceed.
Einstein field equations following from the action (3) read

Rμν − Λgμν ¼
1

g2YM
Tμν; ð4Þ

with the traceless YM stress-energy tensor defined as

Tμν ≡ Tr

�
Fμ

αFνα −
1

4
gμνFαβFαβ

�
; ð5Þ

and the YM field equations

DμFμν ¼ 0; ð6Þ

where the gauge covariant derivative is defined
as Dμ ≡∇μ − i½Aμ; �.
The traceless nature of the stress-energy tensor allows us

to determine the value of the cosmological constant from
Einstein field equations. The trace of (4) when used with
the metric (2) yields

Λ ¼ −
3þ 2zþ z2

2L2
: ð7Þ

The next step is to consider the non-Abelian gauge field
configuration respecting the symmetry of the plane, which
is a subgroup of the Poincaré group and is studied
extensively in [30,31]. Additionally, we shall also restrict
ourselves to the static and purely magnetic case. This
restriction leads to the SUð2Þ gauge connection

Aμdxμ ¼ wðrÞT1dx1 þ wðrÞT2dx2: ð8Þ

For our purposes, it is convenient to express the metric (2)
in a form which is analogous to the one that is commonly
used2 (see Refs. [26–28]):

ds2 ¼ L2

�
−SðrÞ2μðrÞdt2 þ dr2

μðrÞ þ r2d~x2
�
: ð9Þ1Here Fμν is the gauge field strength Fμν ≡ Fa

μνTa ¼ ∂μAν −∂νAμ − i½Aμ; Aν� and we choose generators Ta ≡ τa=2 and a ¼ 1,
2, 3, with τa denoting Pauli matrices. The commutation relations
and the normalization of generators are given as ½Ta; Tb� ¼
iϵabcTc and TrTaTb ¼ δab=2, respectively. Throughout, we use
the conventions in which the signature of metrics is ð−;þ;þ;þÞ,
with the Riemann tensor taken as Rμ

ναβ ¼ ∂αΓμ
βν − � � � and

Rμν ¼ Rα
μαν.

2Here we are considering the planar case, whereas in the
literature the spatial part of (9) is typically spherical, with a
different gauge field Ansatz. The other cases can also be treated in
a similar manner, which will be discussed later in the next section.
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Taking (8) and (9) into account, field equations (4) and (6)
reduce to the system

S−1S0 ¼ 1

2L2g2YM

ðw0Þ2
r

; ð10Þ

ðμw0Þ0 ¼ w3

r2
−

1

2L2g2YM

μðw0Þ3
r

; ð11Þ

rμ0 þ μþ L2r2Λ ¼ −
1

2g2YML
2

�
w4

2r2
þ μðw0Þ2

�
; ð12Þ

with primes denoting the ordinary derivative with respect
to r.
Plugging in SðrÞ ¼ rz−1 and μðrÞ ¼ r2 and using (7), it is

straightforward to show that Lifshitz spacetime (2) is a
solution for all z > 1, provided that the gauge field and the
coupling constant are chosen as

wðrÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
r; g2YM ¼ 1

2L2

ðzþ 1Þ
ðz − 1Þ : ð13Þ

The sign ambiguity of the gauge field can be deduced from
the invariance of the field equations (10), (11), and (12)
under wðrÞ → −wðrÞ, which corresponds to a gauge trans-
formation [27]. Hence, in what follows we will proceed
with the positive sign gauge field. The solution we
have found is basically a “colorful plane with Lifshitz
asymptotics.” Note also that z > 1 in order to have real
gauge fields, which signals the “critical slowing down” of
the possible dual field theories [5].
The conformal limit z → 1 of (13) is also peculiar. The

YM part decouples from the gravity action and, as is well
known, AdS spacetime is a solution of (4) without matter
fields, provided Λ ¼ −3=L2. Moreover, the decoupled
gauge field is a solution to the pure YM part, which is
in some sense the AdS analogue of the flat space solution
given in [30,31].
Having determined that the non-Abelian YM matter is

suitable for Lifshitz asymptotics, we can now continue and
dress up this background geometry to obtain black hole
solutions.

III. FIELD EQUATIONS

In this section we first extend the metric and the gauge
field Ansatz to cover the other types of event horizon
topologies, then cast the field equations in a way that is
convenient for capturing the Lifshitz asymptotics for both
the metric and the gauge field at large spatial distance.
We will control the spatial part of the metric by

introducing a parameter k,

ds2 ¼ L2

�
−SðrÞ2μðrÞdt2 þ dr2

μðrÞ þ r2dΩ2
k

�
; ð14Þ

where

dΩ2
k ≡

8>><
>>:

dθ2 þ sin2θdϕ2 k ¼ þ1

dθ2 þ sinh2θdϕ2 k ¼ −1
dθ2 þ dϕ2 k ¼ 0.

ð15Þ

It is clear from this definition that k ¼ 0 corresponds to the
planar symmetric case we have discussed previously, k ¼ 1
yields the spherically symmetric metric, and the k ¼ −1
option is invariant under hyperbolic rotations.
The gauge field Ansatz will change accordingly by

taking into account the symmetries of the metric (15). It
is well known that the isometries of spacetime follow from
the Lie derivative of the metric gμν,

Lξmgμν ¼ 0; ð16Þ

where ξm’s are the set of Killing vectors generating
isometries. Intuitively, the condition for a spacetime sym-
metric gauge field AμðxÞ can be defined as

LξmAμ ¼ 0: ð17Þ

However, there is even more to the story: There is a gauge
transformation freedom in infinitesimal form A0

μðxÞ ¼
AμðxÞ þ ϵDμW, where ϵ is a small parameter and W ¼
WðxÞaTa is a function in the Lie algebra of the gauge
group. With this transformation freedom, the symmetry
condition for a gauge field reads [32,33]

LξmAμ ¼ DμWm; ð18Þ

from which the integrability conditions that are used to
determine Wm’s can be obtained. Eventually, by solving
(18), the most general form of the spacetime symmetric Aμ

can be found.
The plane symmetric gauge field Ansatz used in the

previous section follows from this procedure. In addition to
that, we will also consider the following static SUð2Þ
connections that are invariant under SOð3Þ (which is
known as the Witten Ansatz) and the connected part of
SOð2; 1Þ [32,34],

A¼ qðrÞT3dtþpðrÞT3drþðwðrÞT1þuðrÞT2Þdθ
þðwðrÞΩkðθÞT2−uðrÞΩkðθÞT1þ ~ΩkðθÞT3Þdϕ; ð19Þ

for k ¼ 1;−1, where Ω1ðθÞ≡ sin θ;Ω−1ðθÞ≡ sinh θ;
~Ω1ðθÞ≡ cos θ, and ~Ω−1ðθÞ≡ cosh θ.
This expression still has a Uð1Þ gauge freedom [26],

which can be used to set uðrÞ ¼ 0. Next, with the help of
the field equations, we see that pðrÞ ¼ 0, provided that
wðrÞ ≠ 0. In order to simplify the discussion, we will only
consider the gauge field strengths with a vanishing electric
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part, i.e., qðrÞ ¼ 0. In fact this choice is rather restrictive. It
was shown in [35] that, with appropriate asymptotics, the
Reissner-Nordström solution is the only static black hole
with a nonzero YM electric field. However, all of this was
for asymptotically flat backgrounds and, obviously, these

arguments do not necessarily apply for Lifshitz spacetimes.
Nevertheless, we shall restrict ourselves to the purely
magnetic Ansatz in this work.
Taking these considerations into account, we are thus

led to

A ¼
�
wðrÞT1dθ þ ðwðrÞΩkðθÞT2 þ ~ΩkðθÞT3Þdϕ for k ¼ �1

wðrÞT1dθ þ wðrÞT2dϕ for k ¼ 0.
ð20Þ

Now, utilizing the generalized metric (14) and the gauge
field Ansatz (20), Eqs. (10), (11), and (12) can be cast into a
general form covering all possible cases [29]:

S−1S0 ¼ 1

2L2g2YM

ðw0Þ2
r

; ð21Þ

ðμw0Þ0 ¼ wðw2 − kÞ
r2

−
1

2L2g2YM

μðw0Þ3
r

; ð22Þ

rμ0 þ μþ L2r2Λ − k ¼ −
1

2g2YML
2

�ðw2 − kÞ2
2r2

þ μðw0Þ2
�
:

ð23Þ

Although this form of the field equations is helpful for
exploring the constraints on the functions at the horizon, it
is a bit impractical for numerical purposes. It is more

appropriate to redefine the metric and the gauge field
functions such that the Lifshitz vacuum (2) can be explicitly
recovered at large radii. One can achieve this with simple
redefinitions

wðrÞ≡ ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
rhðrÞ; μðrÞ≡ r2

gðrÞ2 ;

SðrÞ≡ rz−1fðrÞgðrÞ; w0ðrÞ≡ ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
jðrÞ: ð24Þ

It is obvious from these definitions that if all the unknown
functions fðrÞ, gðrÞ, hðrÞ, and jðrÞ are one in the large r
limit (i.e., when r ≫ 1), then we recover the Lifshitz
background solution we have constructed for the EYM
system, with k ¼ 0.
All of these assumptions and identifications and the

coupling constants (7) and (13) yield the following system
of equations:

rfðrÞ0 ¼ −fðrÞ
�
ðz − 1Þ − jðrÞ2

2
ðz − 1Þ þ gðrÞ2hðrÞ4

4
ðz2 − 1Þ − gðrÞ2

4
ð3þ 2zþ z2Þ þ 3

2

�

− kfðrÞgðrÞ2
�

k
4r4

ðz − 1Þ
ðzþ 1Þ −

hðrÞ2
2r2

ðz − 1Þ − 1

2r2

�
; ð25Þ

rjðrÞ0 ¼ jðrÞ þ gðrÞ2hðrÞ3ðzþ 1Þ − gðrÞ2jðrÞ
2

ðz2 þ 2zþ 3Þ þ gðrÞ2hðrÞ4jðrÞ
2

ðz2 − 1Þ

− k

�
gðrÞ2

�
hðrÞ2jðrÞ

r2
ðz − 1Þ − k

jðrÞ
2r4

ðz − 1Þ
ðzþ 1Þ þ

jðrÞ
r2

þ hðrÞ
r2

��
; ð26Þ

rgðrÞ0 ¼ gðrÞjðrÞ2
2

ðz − 1Þ þ gðrÞ3hðrÞ4
4

ðz2 − 1Þ − gðrÞ3ð3þ 2zþ z2Þ þ 3gðrÞ
2

þ kgðrÞ3
�

k
4r4

ðz − 1Þ
ðzþ 1Þ −

hðrÞ2
2r2

ðz − 1Þ − 1

2r2

�
; ð27Þ

rhðrÞ0 ¼ jðrÞ − hðrÞ: ð28Þ

Several observations are in order here. The highly nonlinear
nature of the EYM system makes the analytic study
difficult and, despite our efforts, we could not find an
exact solution with nontrivial gauge field functions. Yet it is

simple enough for working numerically since we have
reduced the system into one of coupled first-order ordinary
differential equations, with the functions having definite
asymptotic values.
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Second, terms explicitly involving 1=r2 and 1=r4 appear
only in spherical and hyperbolic cases where k ¼ �1.
Exploiting this fact, we will assume that in the large r limit,
the spherical and hyperbolic spatial parts can be replaced
by a flat one [16] [20]. Thus all of the unknown functions
appearing in the numerical solutions will have the same
asymptotic behavior, i.e., fðrÞ ¼ gðrÞ ¼ hðrÞ ¼ jðrÞ ¼ 1.
Note that the three equations (26)–(28) form a closed

system on their own, and Eq. (25) can be considered
separately. In addition, the right-hand side of (25) is linear
in the function fðrÞ, which makes its normalization
undetermined. This leads to a scaling of the initial value
of f at large r, which is essentially a gauge choice, i.e., a
rescaling of the time coordinate [5]. In order to get the
correct asymptotics after the numerical integration, proper
initial values must be chosen.
We now need to expand the functions fðrÞ; gðrÞ;

hðrÞ; and jðrÞ, at large r and separately at the horizon,
for all possible values of the parameter k but for a fixed
value of z. One can extract a shooting parameter from the
asymptotic form of the solutions to (25), (26), (27), and
(28) provided there is one available with the given
boundary conditions; this is of paramount importance for
the numerical study.

IV. SERIES AND NUMERICAL SOLUTIONS

We now describe the results obtained by expanding the
functions at large radii and at the horizon, whose existence
we presume. The series solution will teach us a great deal
about the initial values and bounds on the functions defined
in the previous section. We will then consider the numerical
solutions of the system for various cases.

A. Series solution for the large radius

First we look for the series solutions at large r, which in
principle can confirm the plausibility of the assumption we
have made in regards to the employment of the planar
background for all horizon types at large r. The behavior of
solutions is rather interesting for different values of z. It
turns out that geometries with even integer dynamical
exponent z admit only planar solutions. However, all types
of geometries are supported when z is chosen to be an odd
integer. In order to establish this result, we first fix the value
of z in Eqs. (25), (26), (27), and (28), then make a simple
transformation r ¼ 1=x, and finally assume a power series
expansion at small x,

fðrÞ ¼
X∞
n¼0

~fnxn; gðrÞ ¼
X∞
n¼0

~gnxn;

hðrÞ ¼
X∞
n¼0

~hnxn; jðrÞ ¼
X∞
n¼0

~jnxn; ð29Þ

with the Lifshitz asymptotics (i.e., ~f0 ¼ ~g0 ¼ ~h0 ¼
~j0 ¼ 1). We insert these into the equations of motion

(25), (26), (27), and (28) and work order by order in x.
We can summarize our findings as follows3:
For z ¼ 2 and k ¼ 0, we find

fðrÞ ¼ 1 −
9hL
2r4

−
1557

176

h2L
r8

þOð1=r16Þ þ � � � ; ð30Þ

gðrÞ ¼ 1þ 6hL
r4

þ 1143

22

h2L
r8

þOð1=r16Þ þ � � � ; ð31Þ

hðrÞ ¼ 1þ hL
r4

þ 405

44

h2L
r8

þOð1=r16Þ þ � � � ; ð32Þ

jðrÞ ¼ 1 −
3hL
r4

−
2835

44

h2L
r8

þOð1=r16Þ þ � � � : ð33Þ

However, for z ¼ 3 and with generic k, we get

fðrÞ ¼ 1þ k
2r2

þ 127

1352

k2

r4
þOð1=r5Þ þ � � � ; ð34Þ

gðrÞ ¼ 1þ 23

676

k2

r4
þ 12hL

r5
þOð1=r6Þ þ � � � ; ð35Þ

hðrÞ ¼ 1 −
3

338

k2

r4
þ hL

r5
þOð1=r6Þ þ � � � ; ð36Þ

jðrÞ ¼ 1þ 9

338

k2

r4
−
4hL
r5

þOð1=r6Þ þ � � � ; ð37Þ

where we have only one arbitrary parameter hL character-
izing both solutions at large r. Let us emphasize that the
discrepancy between even and odd z follows from the
expansion (29) we have considered. There may be frac-
tional powers of x in the expansion (29) which can remedy
the situation for the even z case. It is also possible that we
have made an inappropriate choice of coordinates to
discuss the solutions for large r. Nevertheless, we fix z ¼
3 in the numerical part of the calculations (see Sec. IV C),
for the sake of clarity.

B. Series solution about the event horizon

Let us now focus on the series solution about the
presumed horizon. In order to have a nonextremal black
hole, gtt and grr components of the metric (14) must have a
simple zero and a simple pole (see Refs. [16] and [20]) at
the finite horizon r ¼ R0. This assumption leads to the
following horizon expansions of the functions,

3To keep the following discussion simple, we only present our
findings for the z ¼ 2 and z ¼ 3 cases. The generic behavior of
the solutions is captured by the z ¼ 2 choice when z is even
(z ¼ 4; 6; 8;…) or by the z ¼ 3 choice when z is odd
(z ¼ 5; 7; 9;…).
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fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − R0

p X∞
n¼0

fnðr − R0Þn; ð38Þ

gðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − R0

p
X∞
n¼0

gnðr − R0Þn: ð39Þ

At this stage it is worthwhile to discuss the constraints on
the gauge field functions at the horizon in order to construct
the series expansion for the functions hðrÞ and jðrÞ. These
constraints can easily be seen from the general form of the
field equations (21), (22), and (23) that we discussed in
Sec. III. This set implies that the gauge field function wðrÞ
and its derivative must be related at the horizon as

w0ðR0Þ ¼
wðR0Þðw2ðR0Þ − kÞ

ðkR0 − 1
2g2YML

2

ðw2ðR0Þ−kÞ2
2R0

− L2R3
0ΛÞ

; ð40Þ

which amounts to relating the expansion coefficients on the
horizon

jðR0Þ ¼ j0 ¼
2h0R0ðh20R2

0ðzþ 1Þ− kÞ
2kR0 þ R3

0ðz2 þ 2zþ 3Þ− ðz−1Þðk−h2
0
R2
0
ðzþ1ÞÞ2

R0ðzþ1Þ
;

for z > 1; ð41Þ

where wðR0Þ¼
ffiffiffiffiffiffiffiffiffiffi
zþ1

p
R0h0, with the definition h0≡hðR0Þ.

The subtle difference between the planar case and the other
cases shows itself here. When k ¼ 0, the horizon radius
cancels out and j0 depends only on h0 and the dynamical
exponent z. To make the meaning of h0 clear, consider a
noncoordinate basis for the one-forms [5]

θt ¼ LrzfðrÞdt; θxi ¼ Lrdxi;

θr ¼ L
gðrÞ
r

dr; i ¼ 1; 2; ð42Þ

in which the planar metric (14) takes the form
ds2 ¼ ημνdθμdθν, with ημν ¼ diagð−1; 1; 1; 1Þ. The gauge
connection simply follows as

A ¼
ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p

L
hðrÞðT1θ1 þ T2θ2Þ: ð43Þ

This suggests that h0 can be considered as the strength of
the gauge field at the horizon, up to some normalization.
There is also an upper bound for the gauge field function
wðrÞ for a given horizon radius R0, which follows from the
condition for a regular horizon, i.e.,

dμ
dr

����
r¼R0

> 0: ð44Þ

Then, with the help of (23), one finds that

k −
1

2g2YML
2

ðw2ðR0Þ − kÞ2
2R2

0

− L2R2
0Λ > 0: ð45Þ

In terms of wðR0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
h0, this inequality further

simplifies to

R2
0ðzþ 1Þð2kþ R2

0ð3þ 2zþ z2ÞÞ
ðz − 1Þ > ðk − R2

0ðzþ 1Þh20Þ2:

ð46Þ

The inequality (46) is rather important for numerical
purposes. It weakly constrains the strength of the gauge
field at the horizon, which in turn reduces the possible
values for the shooting parameter h0. For k ¼ 0, h0 is solely
bounded by the z value. There is no dependence on the
horizon radius; i.e., if a numerical solution is found for the
system with a fixed value of h0, then it will always remain a
solution for different radii. On the other hand, for the
other topologies where k ¼ �1, the gauge field strength
changes with the changing horizon radius. The hyperbolic
case k ¼ −1 demands special attention regarding the
value of the event horizon radius. By virtue of (45),
there is a lower bound on the event horizon radius for
fixed z:

jΛj > 1

L2R2
0

�
1þ 1

4g2YMR
2
0L

2

�
: ð47Þ

The bound and the relations above can also be extracted
from near horizon expansions. Assuming that the functions
hðrÞ and jðrÞ are finite on the horizon, they read

hðrÞ ¼
X∞
n¼0

hnðr − R0Þn; ð48Þ

jðrÞ ¼
X∞
n¼0

jnðr − R0Þn: ð49Þ

Inserting the expansions (29), (48), and (49) into (25), (26),
(27), and (28), one finds solutions depending on two free
parameters h0, the strength of the gauge field at the horizon,
and R0, the horizon radius for a fixed z value.
As a simple example, for z ¼ 2 and k ¼ 0, one gets

g0 →

ffiffiffiffiffiffiffiffi
2R0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 − 3h40

p ; ð50Þ

j0 →
6h30

11 − 3h40
; ð51Þ

h1 →
h0ð3h40 þ 6h20 − 11Þ

ð11 − 3h40ÞR0

; ð52Þ

DENIZ OLGU DEVECIOĞLU PHYSICAL REVIEW D 89, 124020 (2014)

124020-6



g1 →

ffiffiffi
2

p ð18h80 þ 27h60 − 99h40 þ 121Þ
ð11 − 3h40Þ5=2

ffiffiffiffiffiffi
R0

p ; ð53Þ

f1 →
f0ð−27h80 þ 9h60 þ 165h40 − 242Þ

ð11 − 3h40Þ2R0

: ð54Þ

Note that all of the coefficients depend on two parameters:
h0 and R0. Although f0 appears to be a free parameter, it is
in fact just an overall normalization factor, as was noted
earlier in the penultimate paragraph of Sec. III. The bound
on h0 is now clear. In order to have real values for g0, h0
must be smaller than a value depending on z, and for z ¼ 2
and k ¼ 0, the strength of the gauge field must be
h40 < 11=3, which is consistent with (46). Finally, the value
in (41) is also recaptured here.
To sum up, we have paved the way for numerical

computation by finding the initial values for functions in
terms of h0 and R0. Now, fixing one of the two parameters,
namely the event horizon radius R0, the shooting method
can be used to search for numerical solutions. For a fixed
value of R0, we numerically evolve the functions and make
them converge to unity at infinity by fine-tuning the initial
value h0. The behavior of solutions differs considerably for
small and large horizon radius values, and it also depends
on the topology.

C. Numerical solutions

We begin with the larger black holes and fix z ¼ 3 in
order to compare results for different values of k. For the
numerical integration, MATLAB’s differential equation
solver ODE45 was used with default settings, which
implements the Runge-Kutta method with variable step
size and a relative tolerance value of 10−3 (with 0.1
accuracy). Convergence is obtained for sufficiently fine-
tuned initial conditions specified at the horizon.
It turns out that there is a unique critical value of h0,

within the allowed region described by (46), where we have
the desired asymptotics. This is quite different from what
was observed in asymptotically flat or AdS analogues of
these black holes, where solutions behave peculiarly
depending on the horizon topology and the value of the
cosmological constant. For example, spherically symmetric
EYM black hole solutions with AdS asymptotics exist in
continuous open intervals [28]—i.e., 0 < ωh < ωc

h, where
ωh is the shooting parameter and ωc

h is the critical value of
the gauge field above which no solution exists. Moreover,
the solutions we have found have no nodes—regardless
of the topology—whereas in AdS for k ¼ 1, the gauge
fields have nodes for sufficiently small jΛj [28] and the
solutions with k ¼ 0;−1 are nodeless [29].
Setting R0 ¼ 10, we see from Figs. 1 and 2 that, for large

black holes, the solutions behave similarly regardless of the
topology of the event horizon. Although we plot the
functions for all values of k, the graphs coalesce into
one with a small difference between their shooting

parameters h0. The metric functions fðrÞ and gðrÞ start
from zero and infinity, respectively, then converge to 1
monotonically. We have the following results for the initial
value of the gauge field function, i.e., the shooting
parameter

h0 ¼

8>><
>>:

1.025530137 for k ¼ 1

1.023139854 for k ¼ −1
1.024335678 for k ¼ 0;

ð55Þ

10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

FIG. 1. The figure plots the metric functions fðrÞ and gðrÞ as a
function of radius r. This is an example of a large black hole with
R0 ¼ 10, where the plots overlap for all values of k.

10 12 14 16 18 20
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

FIG. 2. The figure shows the gauge field functions hðrÞ and
jðrÞ as a function of radius r with R0 ¼ 10. The initial values of
functions for different topologies are very close to each other.
Graphs for different topologies merge into one.
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with the cutoff value rmax ¼ 1000. In order to extend the
numerical integration to a larger distance, the shooting
parameter h0 must be fine-tuned. As an example, for k ¼ 1
and R0 ¼ 10, setting h0 ¼ 1.025530137219 yields the
desired asymptotics at rmax ¼ 10.000. The value of j0
simply follows from (41).
We then fix R0 ¼ 0.5 in order to investigate the smaller

black holes. The behavior of the solutions changes dras-
tically. First of all, the functions of spherical and hyperbolic
solutions decay appreciably slower and, moreover, the
shooting parameters (i.e., h0) differ considerably. From

Figs. 3 and 4, we see that for the spherical case the metric
function fðrÞ makes a peak first and then converges to
unity, unlike the planar and hyperbolic cases, where the
functions monotonically converge to 1. The other metric
function, gðrÞ, reaches a minimum and then approaches 1
for the spherically symmetric black holes. It turns out that
for small black holes we have the following gauge field
strengths (see Fig. 5):

h0 ¼

8>><
>>:

1.425617169 for k ¼ 1

0.278652475 for k ¼ −1
1.024335678 for k ¼ 0.

ð56Þ

0 1 2 3 4 5
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0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIG. 3. A small black hole with R0 ¼ 0.5. The figure shows the
metric function fðrÞ for different cases k ¼ 1;−1; 0. The solid
line corresponds to k ¼ 1, the dashed line to k ¼ 0, and the dot-
dashed line to k ¼ −1, respectively.
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3

3.5

4

FIG. 4. The figure illustrates the metric function gðrÞ with a
small radius R0 ¼ 0.5. The solid line indicates k ¼ 1, while the
k ¼ 0 and k ¼ 1 cases are represented by dashed and dot-dashed
lines, respectively.

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

FIG. 5. The gauge field function hðrÞ is displayed on the top
and jðrÞ at the bottom, both as functions of r. In both graphs,
R0 ¼ 0.5. The solid line indicates k ¼ 1, while the k ¼ 0 and
k ¼ 1 cases are represented by dashed and dot-dashed lines,
respectively.
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Having seen the differences between large and small black
holes, let us now compare the analytic bound (46) with the
values of h0 for different radii. For planar black holes, a
unique value of h0 is sufficient for all event horizon radii.
Meanwhile, for the spherical case one needs larger gauge
fields for small radii, and hyperbolic ones can support
weaker gauge fields as the radius gets smaller. A similar
behavior was observed for the Abelian field strength in the
works of [16,20]. For clarity, we plot h0 versus R0 for both
spherical (Fig. 6) and hyperbolic (Fig. 7) cases. The solid
line depicts the solution of the inequality (46) as a function
of R0, and the dashed line represents the numerical values
obtained from the shooting method. Evidently, the bound
(46) is saturated as the horizon radius R0 gets smaller. It is
worth emphasizing that the lower limit on the horizon
radius (47) for z ¼ 3 is consistent with the numerical
results; i.e., from Fig. 7 we see that there is no solution
below R0 ∼ 0.48.

V. THERMAL BEHAVIOR

Finally, let us compute the temperature and discuss the
thermal behavior of these black holes. We resort to the
Euclidean metric obtained by a Wick rotation to compute
the temperature, which leads to the following expression
[17],

T ¼ f0R
zþ1
0

4πg0
; ð57Þ

where f0 and g0 are the expansion coefficients in the near
horizon limit. The general expression from the series
solution near the horizon determines g0 in terms of k,
h0, R0, and z:

g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzþ 1Þp

R3=2
0

ð2h20kR2
0ðz − 1Þ þ h40R

2
0ð1 − zÞðzþ 1Þ − k2 ðz−1Þ

ðzþ1Þ þ 2kþ R2
0ð3þ 2zþ z2ÞÞ1=2

: ð58Þ

Recall that the coefficient f0 is to be determined from the
normalization of the numerical solution, so it depends on
the shooting parameter h0. Therefore, fixing z ¼ 3, the
temperature now depends only on the horizon radius and
the topology. After finding several numerical solutions
for different R0 values, we plot Fig. 8 by computing the
temperature within the limits of numerical accuracy. It is

clear from this figure that as the radius gets smaller, black
holes get cooler at different rates. Hyperbolic ones have a
higher cooling rate than planar ones, and the spherical
black holes are hotter for small radii. In the large R0

limit, the temperatures become identical just like the
solutions. The thermal behavior of these black holes is the
opposite of their AdS counterparts, where the Hawking

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FIG. 6. The inequality (46) as a function of R0 is plotted with
a solid line for k ¼ 1. The dashed line corresponds to the
numerical values of h0 as a function of R0 for spherically
symmetric black holes.
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1.4
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FIG. 7. The inequality (46) as a function of R0 is plotted with a
solid line for k ¼ −1. The dashed line corresponds to the
numerical values of h0 as a function of R0 for hyperbolically
symmetric black holes. The lower bound (47) on the horizon
radius is apparent.
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temperature increases with the ever decreasing radius
causing thermal instability. Moreover, it is clear that the
EYM black holes do not exhibit Hawking-Page transi-
tion. A similar thermal behavior is observed for the
Lifshitz black holes supported by Abelian p forms
[16,20], which indicates that the black holes become
extremal; i.e., they have zero Hawking temperature in the
vanishing black hole size.

VI. CONCLUSIONS

In this work, we have studied the Lifshitz black holes
with different horizon topologies in four-dimensional
cosmological EYM theory. After obtaining the gauge field
that supports the Lifshitz spacetime (2), we found numeri-
cal black hole solutions with different horizon topologies
by suitably fine-tuning the gauge field strength at the
horizon. Through the series solution of the field equations,
we have found a quite interesting property: The geometries
with odd z support black holes with different horizon
topologies, whereas for even z only planar ones are
supported. Thus we have fixed z ¼ 3 in order to investigate
all possible scenarios. From numerical results, we have
observed that the behavior of solutions for different
topologies changes considerably for small black holes,
whereas it becomes identical for large horizon black holes.
We have also analyzed the thermal behavior of the
numerical solutions by computing the Hawking temper-
ature for all types of black holes. We have found that there
is a rapid decay in temperature as the black hole radius gets
smaller and, moreover, black holes do not display
Hawking-Page transition. In this respect, the EYM black
holes and the Abelian counterparts [16,20] have quite

similar characteristics, but they both differ considerably
from their conformal cousins. The phenomenological
models we discuss here and the ones with massive vectors
[5,16] are not the only possibilities for Lifshitz spacetime.
In string embedded constructions, soliton and black hole
solutions with Lifshitz asymptotics are shown to exhibit
phase transitions [36,37], which are analogous to the
Hawking-Page transition in AdS. This discrepancy between
the models calls for further study.
One of the most important questions to ask relates to the

use of EYM theory in nonrelativistic holography. Certainly,
Lifshitz spacetimes and black holes with non-Abelian
matter sources deserve further attention. The finite temper-
ature effects in a possible dual theory are expected to be
mimicked by the black hole solutions, similar to the AdS
Schwarzschild black hole in AdS/CFT correspondence.
Also, as we have discussed in the Introduction, the holo-
graphic superconductor models with Lifshitz scalings
employ black holes with non-Abelian fields in which these
solutions can be useful. Although the holographic descrip-
tion of matter Lagrangians with Abelian and scalar fields
has been studied to some extent, there has not been much
work done on EYM theory in which these solutions can
find a practical application.
A further direction of research would be to consider the

extension of these black holes. First, the existence of
analogous solutions can be considered by extending
the SUð2Þ symmetry Ansatz to higher spacetime dimen-
sions. It would also be interesting to investigate the
generalization of the gauge group SUð2Þ to SUðNÞ. In
another vein, here we have only considered a purely
magnetic part; one could still extend this Ansatz by turning
on the function qðrÞ in (19) and looking for the existence of
dyonic black holes. It would certainly be of interest if the
non-Abelian counterparts of Lifshitz solitons [16,20,38]
could be found.
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APPENDIX

Here we give the expression for the Kretschmann scalar
of the metric for generic z and k:

FIG. 8. Temperature versus horizon radius for z ¼ 3. The
different topologies are represented by a solid line k ¼ 0, a
dashed line k ¼ 1, and a dot-dashed line k ¼ −1.

DENIZ OLGU DEVECIOĞLU PHYSICAL REVIEW D 89, 124020 (2014)

124020-10



RμναλRμναλ ¼ 4

L4gðrÞ6
�
2gðrÞ2ðrf0ðrÞ þ zfðrÞÞ2

fðrÞ2 þ kgðrÞ4ðkgðrÞ2 − 2r2Þ
r4

þ gðrÞ2 þ 2ðgðrÞ − rg0ðrÞÞ2Þ

þ 4

L4gðrÞ6
�ðrðgðrÞðrf00ðrÞ þ ð2zþ 1Þf0ðrÞÞ − rf0ðrÞg0ðrÞÞ þ zfðrÞðzgðrÞ − rg0ðrÞÞÞ2

fðrÞ2
�
: ðA1Þ

In order to check the regularity of (A1) at the horizon, we first fix z ¼ 3 and plug the horizon expansions (39) into (A1). A
quick check at the lowest order shows that the scalar is finite at the horizon, and further computation yields

RμναλRμναλjr¼R0
¼ f20ð4g60k2 þ g21R

8
0 − 20g0g1R7

0 þ 104g20R
6
0Þ þ 9f21g

2
0R

8
0 − 6f0f1g0R7

0ðg1R0 − 10g0Þ
f20g

6
0L

4R4
0

: ðA2Þ

For the regularity of the Kretschmann scalar at the far field, first perform the transformation in Sec. IVA:

RμναλRμναλ ¼ 4

L4gðxÞ6
�
2gðxÞ2ð−xf0ðxÞ þ zfðxÞÞ2

fðxÞ2 þ kgðxÞ4
�
kgðxÞ2 − 2

x2

�
x4 þ gðxÞ2

�

þ 4

L4gðxÞ6
�ððgðxÞðx3f00ðxÞ þ 2x2f0ðxÞ − ð2zþ 1Þx2f0ðxÞÞ − x3f0ðxÞg0ðxÞÞ þ zfðxÞðzgðxÞ þ xg0ðxÞÞÞ2

xfðxÞ2
�

þ 4

L4gðxÞ6 ð2ðgðxÞ þ xg0ðrÞÞ2Þ: ðA3Þ

Employing expansions (29) in (A3) and taking the limit x → 0,

lim
x→0

RμναλRμναλ ¼ 408

g40L
4
: ðA4Þ
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