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We introduce a new operator in loop quantum gravity—the 3D curvature operator—related to the three-
dimensional scalar curvature. The construction is based on Regge calculus. We define this operator starting
from the classical expression of the Regge curvature, we derive its properties and discuss some explicit
checks of the semiclassical limit.
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I. INTRODUCTION

Loop quantum gravity (LQG) [1] is a promising candi-
date to finally realize a quantum description of general
relativity (GR). The theory presents two complementary
descriptions based on the canonical and the covariant
approach (spinfoams) [2]. The first implements the Dirac
quantization procedure [3] for GR in Ashtekar-Barbero
variables [4] formulated in terms of the so-called holon-
omy-flux algebra [1]: one considers smooth manifolds and
defines a system of paths and dual surfaces over which
the connection and the electric field can be smeared. The
quantization of the system leads to the full Hilbert space
obtained as the projective limit of the Hilbert space defined
on a single graph. The second is instead based on the
Plebanski formulation [5] of GR, implemented starting
from a simplicial decomposition of the manifold, i.e.
restricting to piecewise linear flat geometries. Even if
the starting point is different (smooth geometry in the first
case, piecewise linear in the second) the two formulations
share the same kinematics [6], namely the spin-network
basis [7] first introduced by Penrose [8]. In the spinfoam
setting, with its piecewise linear nature, a beautiful inter-
pretation of the spin networks in terms of quantum
polyhedra [9] naturally arises. This interpretation is not
needed in the canonical formalism where continuous
geometries lead to polymeric quantum geometries.
However in [10] it has been proven that the discrete
classical phase space (on a fixed graph) of the canonical
approach based on the holonomy-flux algebra can be
related to the symplectic reduction of the continuous phase
space with respect to a flatness constraint; this construction
allows a reconciliation between the loop gravity geomet-
rical interpretation in terms of singular geometry, and the
spinfoam interpretation in terms of piecewise flat geometry,
since it can be shown that both geometries belong to the
same equivalence class. Canonical LQG and spinfoam

appear much closer if we allow in the first to disentangle
the discretization from the quantization procedure. In this
article we want to pursue this perspective as a tool to build a
curvature operator in LQG, fundamental to solving the
most challenging issue in the canonical approach: the
quantum dynamics related to the Hamiltonian constraint.
The Hamiltonian constraint has been quantized by
Thiemann [11,12] improving several previous proposals
[13] and finally succeeding in defining an anomaly-free
operator. It is defined employing a regularization procedure
with specific rules that might be changed to bring it closer
to the spinfoam formalism [14,15] (but until now spoiling
the anomaly-free property). However, this operator is
computationally extremely hard to implement [16], in
particular its Lorentzian part which involves several com-
mutators of the extrinsic curvature in order to express
the Ricci scalar in terms of holonomies and fluxes. Few
computations appeared so far [17,18] and few solutions
have been found [19]. The idea developed in this paper is
the following: the Lorentzian term of the Hamiltonian
constraint, which is just the integral of the Ricci scalar over
the three-dimensional surface of the foliation

R
Σ

ffiffiffi
q

p
R, can

be seen as the Einstein-Hilbert (E-H) action in 3D and we
know how to write this expression using Regge calculus
[20,21] in terms of geometrical quantities, i.e. lengths and
angles. Operators of length [22–24] and angle [25–27] are
available in LQG and spinfoams and by using a suitable
regularization procedure for the classical quantities we can
implement directly the integral of the Ricci scalar as an
operator acting on spin-network states and in this way settle
the first step to bypass many of the complications appearing
in the Lorentzian constraint. The considerations due to the
change of regularization procedure bring us close to the
perspective of [10] and make our proposal intriguing also
for the spinfoam formalism.
The article is organized as follows: In the first section we

present briefly Regge calculus, discuss the generalization of
the 3D Regge action to arbitrary piecewise flat decom-
position and we highlight some results about the conver-
gence of the discrete action to the continuum one. In the
second section we present our construction of the 3D scalar
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curvature operator writing the classical formulas for the
length and the angle in terms of fluxes and we expose the
adopted regularization scheme. Those geometrical quan-
tities are then promoted to operators and by means of an
averaging procedure we build the final expression of the
gauge invariant curvature operator. Finally, in the third
section we discuss some properties of this operator and its
semiclassical (large spins limit) behavior.

II. SCALAR CURVATURE FOR A
PIECEWISE FLAT SPACE

A. Regge calculus

Regge calculus [20,28] is a discrete approximation of
general relativity which approximates spaces with smooth
curvature by piecewise flat spaces: given an n-dimensional
Riemannian manifold Σ, we consider a simplicial
decomposition Δ “approximating” Σ where we assume
that curvature lies only on the hinges of Δ, namely on its
n − 2 simplices. In this context, Regge derived the sim-
plicial equivalent of the E-H action:

SEH ¼
Z
Σ

ffiffiffiffiffiffi
−g

p
Rdnx → SR ¼

Z
Δ

ffiffiffiffiffiffi
−g

p
Rdnx ¼ 2

X
h

ϵhVh;

ð1Þ

where the sum extends to all the hinges h with measure Vh
and deficit angle ϵh:

ϵh ¼ 2π −
X
sh

θshh ¼
X
sh

�
2π

αh
− θshh

�
if the hinge h is not on the boundary;

ϵh ¼ π −
X
sh

θshh ¼
X
sh

�
2π

αh
− θshh

�
if the hinge h is on the boundary: ð2Þ

θshh is the dihedral angle at the hinge h and the sum extends
to all the simplices sh sharing the hinge h. The coefficient
αh is the number of simplices sharing the hinge h or twice
this number if the hinge is respectively in the bulk, or on the
boundary of the triangulation. Using simplices for the
decomposition implies that both VhðlabÞ and ϵhðlabÞ are
functions of the hinges lengths lab joining two sites a and b
of Δ. Equation (1) can also be written in another form
which, as we will see later, is more adapted to our
quantization scheme:

1

2

Z
Δ

ffiffiffiffiffiffi
−g

p
Rdnx ¼

X
h

X
sh

Vsh
h

�
2π

αh
− θshh

�

¼
X
s

X
h∈s

Vs
h

�
2π

αh
− θsh

�
; ð3Þ

where in the last equality the first sum is over simplices s of
Δ while the second is over the hinges h in each simplex.
The purpose of this paper is to define a scalar curvature

operator for LQG implementing a regularization of SEH in
terms of a simplicial decomposition that allows to replace
SEH with the right-hand side of (3) and finally promote this
expression to a well-defined operator acting on the LQG
kinematical Hilbert space. As we are interested in the
Hamiltonian constraint of the four-dimensional theory, we
consider only spaces of dimension n ¼ 3. Therefore the
expression we want to quantize is

1

2

Z
Δ

ffiffiffiffiffiffi
−g

p
Rd3x ¼

X
s

X
h∈s

Ls
h

�
2π

αh
− θsh

�
; ð4Þ

where Ls
h is the length of the hinge h belonging to the

simplex s.
Also, if we think only about computing the integral of

the scalar curvature, the formula (4) can be extended to
arbitrary piecewise flat cellular decompositions as pre-
sented below. This is an important step in our approach to
construct the operator as the reason will be clear later.

B. From simplicial decompositions to arbitrary
piecewise flat cellular decompositions

This section is about generalizing the classical Regge
expression for the integrated scalar curvature. It is impor-
tant to point out that we are only interested in computing
the quantity

R ffiffiffiffiffijgjp
Rdx3 for an arbitrary piecewise flat

cellular decomposition of space. This does not mean that
we are building a generalization of Regge calculus as we do
not derive any equations of motion.
Let us first introduce the definition of a cellular decom-

position: a cellular decomposition C of a space Σ is a
disjoint union (partition) of open cells of varying dimension
satisfying the following conditions:

(i) An n-dimensional open cell is a topological space
which is homeomorphic to the n-dimensional
open ball.

(ii) The boundary of the closure of an n-dimensional
cell is contained in a finite union of cells of lower
dimension.

In 3D Regge calculus we consider a simplicial decom-
position of a 3D manifold which is a special cellular
decomposition. Using the ϵ-cone structure [20] we induce a
flat manifold with localized conical defects. Those conical
defects lie only on the 1-simplices and encode curvature.
Thereby it can be proven that scalar curvature is distribu-
tional and proportional to the deficit angles carried by the
1-simplices. Then by integration over the entire space one
gets Eq. (1) (see [28]). This construction is independent
from the choice of the simplicial decomposition: the same
expression would hold for arbitrary piecewise flat cellular
decompositions, i.e decompositions such that the space
inside each 3-cell is flat. The difference is that the deficit
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angle along one hinge, though still constant, is not
determined by the hinges lengths lab. On arbitrary piece-
wise flat decompositions the lengths do not form a
complete set of variables for the theory and more param-
eters such as the angles are needed. The final expression of
the integrated scalar curvature in the general case can be
written as

1

2

Z
C

ffiffiffiffiffiffi
−g

p
Rd3x¼

X
h∈C

Lhϵh¼
X
c∈C

X
i∈c

Lc
h

�
2π

αh
−θch

�
; ð5Þ

where the first sum now is over the 3-cells c and αh is the
number of 3-cells sharing the hinge h (if it is not on the
boundary of C).
Equation (5) is the classical formula that we adopt to

express the integrated scalar curvature and it is the basis of
our construction to define a curvature operator.

C. On the convergence of Regge action

The question of convergence of Regge action to the E-H
action and the relationship between the discrete scheme and
the corresponding continuum theory is of crucial impor-
tance. There have been extensive studies on this aspect of
Regge calculus. In particular, it is possible to derive the
Regge action from the E-H one [28] and it was shown [29]
that given any lattice, regular or not, the deviation of Regge
action from its continuum limit can be expressed as a power
series in l2, where l is the typical length of the lattice. This
proves that Regge action approaches the E-H action when
the typical length goes to 0:

lim
l→0

SR ¼ SEH ð6Þ

provided that certain general boundary conditions are
satisfied. Moreover, this convergence result can be gener-
alized to some nonsimplicial decompositions. For example,
if we consider a polyhedral decomposition (or any decom-
position with flat hinges), the result is recovered by
invoking the simple argument that such decomposition
can always be refined using simplices and therefore
inducing a simplicial decomposition where the additional
hinges carry null deficit angles. For more general decom-
positions where for instance the hinges are not straight
lines, the result is not straightforward. However, there
exists at least a class of such decompositions for which
the convergence holds. A simple example is to consider a
decomposition where the hinges are arcs of circles such that
the length l̆ab in Rn of each arc, connecting two sites a and
b of the lattice, is proportional to the Euclidean distance lab
in Rn between the same sites

l̆ab ¼ ξ:lab; ð7Þ
with a proportionality constant ξ that is the same for all
hinges. Let Ξ be the decomposition with arcs as hinges
and characterized by the constant ξ, and Δ the

decomposition with straight lines connecting the same
sites. Note that in Ξ, two sites can be connected by any
number hab of hinges1 with equal lengths l̆kab. Thereby we
can generate the set of deficit angles ϵ̆kab for Ξ using the
deficit angles ϵkab of Δ such that for every two connected
sites a and b we have2

Xk¼hab

k¼1

l̆kab:ϵ̆
k
ab ¼ lab:ϵab; ð8Þ

where k labels the different arcs connecting the two sites a
and b. Hence we can write

SRðΞÞ ¼ 2
X
h∈Ξ

l̆h:ϵ̆h ¼ 2
X
h∈Δ

lh:ϵh ¼ SRðΔÞ; ð9Þ

where the index h labels the hinges of the decomposition.
This shows that, from any polyhedral decomposition

of space, we can construct an equivalent piecewise flat
decomposition characterized by a positive number ξ (larger
than 1) where straight hinges are replaced by arcs. Then, by
keeping the coefficient ξ constant in the refinement process,
the convergence result can be recovered in this particular
nonsimplicial case. This example suggests that Regge
action written for a nonsimplicial decomposition, and
specially with nonstraight hinges, could converge to the
continuum action. Since the convergence of the expression
(5) is crucial for the construction and the interpretation of
the operator introduced in this work, we have, a priori,3 to
restrict ourselves only to cellular decompositions allowing
this convergence result. Therefore in the rest of the paper
the term “cellular decomposition” will refer to a piecewise
flat cellular decomposition for which Regge action con-
verges to the E-H action.

III. CONSTRUCTION OF THE
CURVATURE OPERATOR

We start by writing the classical expressions for the
length and the dihedral angle in terms of the densitized triad
(electric field).

1The number of hinges could be infinite but we exclude this
case. Later on we will see that the prescription we are considering
in the regularization implies that the set of hinges linking two
sites forms a 3-cell when the number of those hinges exceeds one.
Hence an infinite number of hinges would form a 3-cell with
infinite number of faces which in the dual picture would
correspond to intertwiners of infinite number of spins.

2Such a choice is always possible since in the general case the
deficit angles are not determined by the lengths as it was in the
simplicial case. For instance we can take ϵ̆kab ¼ ϵab

ξ:hab
.

3As long as we do not give a general proof of the convergence
result for general decompositions, we may expect that this result
does not hold for all decompositions. But for our construction,
specifically in the regularization scheme, it is enough it exists one
class of decompositions with nonstraight hinges which verify the
convergence.
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Given a curve γ embedded in a 3-manifold Σ,

γ∶½0; 1� → Σ

s → γaðsÞ;

the length LðγÞ of the curve in terms of the electric field Ei
is

LðγÞ ¼
Z

1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijGiðsÞGjðsÞ

q
; ð10Þ

where

GiðsÞ ¼
1
2
ϵijkϵabcEb

jE
c
k _γ

aðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3!
ϵijkϵabcEa

i E
b
jE

c
k

q : ð11Þ

In (11) the Ei’s are evaluated at xa ¼ γaðsÞ
and _γaðsÞ ¼ dγaðsÞ

ds .
To define the dihedral angle, we consider two surfaces S1

and S2 intersecting in the curve γ. The dihedral angle
between those two surfaces is then

θ12 ¼
Z

1

0

ds

�
π − arccos

�
δjkEb

jnbðS1; sÞEc
kncðS2; sÞ

jEb
jnbðS1; sÞjjEc

kncðS2; sÞj
��

;

ð12Þ

where jEb
jnbðSk; sÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijEb

i nbðSk; sÞEc
jncðSk; sÞ

q
and

nbðSk; sÞ is the normal one form on the surface Sk.
4

We can therefore express Regge action in terms of the
densitized triad as follows:

1

2

Z
C

ffiffiffiffiffiffi
−g

p
Rd3x ¼

X
c∈C

X
h∈c

Lc
h

�
2π

αh
− θch

�
¼

X
c∈C

X
γðsÞ¼∶h∈c

Z
1

0

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δii0

1
2
ϵijkϵabcEb

jE
c
k _γ

aðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3!
ϵijkϵabcEa

i E
b
jE

c
k

q 1
2
ϵi

0j0k0ϵa0b0c0Eb0
j0E

c0
k0 _γ

a0 ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3!
ϵi

0j0k0ϵa0b0c0Ea0
i0 E

b0
j0E

c0
k0

q
vuuut

:
Z

1

0

ds

�
2π

αh
− π þ arccos

�
δjkEb

jnbðS1; sÞEc
kncðS2; sÞ

jEb
jnbðS1; sÞjjEc

kncðS2; sÞj
��

: ð13Þ

The next step is to match Regge calculus context with
LQG framework. This is achieved by invoking the duality
between spin networks and quanta of space, which allows
one to describe for example spin networks in terms of
quantum polyhedra [9,30,31]. The second step is to define
a regularization scheme for the classical expressions
that we have. Those steps are detailed in the following
sections.

A. Spin networks and decomposition of space

In LQG, we define the kinematical Hilbert space H of
quantum states [1] as the completion of the linear space of
cylindrical functions ΨðΓÞ on all possible graphs Γ. An
orthonormal basis in H can be introduced, called the spin-
network basis, so that for each graph Γ we can define a
proper subspace HΓ of H spanned by the spin-network
states defined on Γ. Those proper subspaces HΓ are
orthogonal to each other and they allow to decompose
H as

H ¼ ⨁
Γ
HΓ ð14Þ

A spin-network state is defined as an embedded colored
graph denoted jΓ; |l; {ni, where Γ is the graph while the
labels |l are quantum numbers standing for SUð2Þ
representations (i.e. spins) associated to edges, and {n
are quantum numbers standing for SUð2Þ intertwiners

associated to nodes. It was shown [30,31] that an
intertwiner can be seen as the dual to a region of 3D
space with a topologically spherical boundary. This
boundary is punctured by the N legs of the intertwiner
which means that the boundary surface is made of N
elementary patches whose areas are determined by the
spins carried by the intertwiner legs.
The idea is to use this duality to build a three-cellular

decomposition on a given spin-network graph. Given a spin
network we build a dual cellular decomposition and we will
use this to regularize the classical expression (13) for the
curvature. In the following we give a general prescription
to get a cellular decomposition from a spin-network state
based only on the spin-network graph Γ (different pre-
scription considering also the quantum labels in order to
use Minkowski theorem [32] will be explored in future
work). This prescription does not guarantee the uniqueness
of the decomposition associated to the graph Γ, but we do
not focus on this issue for now as the rising ambiguities are
discussed in detail in Sec. IV.
For each spin-network graph we define a covering

cellular decomposition (see Fig. 1) as follows.
A cellular decomposition C of a three-dimensional space

Σ built on a graph Γ is said to be a covering cellular
decomposition of Γ if

(i) each 3-cell of C contains at most one vertex of Γ;
(ii) each 2-cell (face) of C is punctured at most by one

edge of Γ and the intersection belongs to the interior
of the edge;4The normals are always taken to be inwards.
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(iii) two 3-cells of C are glued such that the identified
2-cells match.

We can add an additional requirement on the boundary of
a 3-cell in order to respect the dual picture introduced to
construct the length operator that we need (Sec. III B), this
requirement states
(iv) If two 2-cells on the boundary of a 3-cell intersect,

then their intersection is a connected 1-cell.
This full set of requirements is quite easy to meet.

Furthermore, once a decomposition satisfying these con-
ditions is achieved, subsequent refinements needed in the
limiting procedure always exist. Nonetheless, these con-
ditions do restrict the allowed decompositions. As we will
see, they ensure that the limiting operator is well defined; if
refinements are taken arbitrarily, in general the limit fails
to exist.
Having such a decomposition, we can use it to

regularize the classical expression in (13). The regulari-
zation enables us to promote (13) to an operator through
the quantization of the length and the dihedral angle
separately. In the following, we define explicitly the two
operators L̂c

h and θ̂ch, combine them to build the curvature
operator and study some of its properties in some
simple cases.

B. The length operator

In LQG we have three proposals for length operator
[22–24]. Since our approach to construct a scalar curvature
operator is using the dual picture, we choose Bianchi’s
operator [23] which is constructed based on the same
dual picture of quantum geometry. Here we summarize
the construction contained in [23]. The first step in this
construction is an external regularization of the classical
expression of the length of a curve (10). Considering a
region R delimited by two surfaces S1 and S2 intersecting in
a curve γ parametrized by the variable s (see Fig. 2), the
length of this curve is

LðγÞ ¼ lim
Δs→0

X
I

LI; ð15Þ

where LI is the length of a hinge γI belonging to the
boundary of a cell RI of elementary size Δs, which is part
of a cubic partition (labeled by I) of the region R. The
length LI is defined as

LI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijGi

IG
j
I

q
with

Gi
I ¼

Δs
2

P
α;β

1
Δs4 Y

i
Iαβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
8.3!

P
α0;β0;ρ0

1
Δs6 jQIα0β0ρ0 j

q
¼

Δs
2

P
α;β

1
Δs4 V

ijk
xI FjðS1IαÞFkðS2IβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
8.3!

P
α0;β0;ρ0

1
Δs6 jT

ijk
xI FiðSα0I ÞFjðSβ

0
I ÞFkðSρ

0
I Þj

q : ð16Þ

α0, β0 and ρ0 label partitions of SI ¼ ∂RI , the boundary of
the cell RI, while α and β label partitions of S1I ¼ RI∩S1
and S2I ¼ RI∩S2 respectively (see Fig. 2). Fi are the fluxes
of the electric fields through the surfaces Sk:

FiðSkÞ ≔
Z
Sk
ϵabc Ea

i dx
b ∧ dxc: ð17Þ

x is a coordinate system on R. The functions Vijk
xI and Tijk

xI
have been incorporated in order to guarantee the SUð2Þ-
gauge invariance of the nonlocal expressions of the
nominator and the denominator in Eq. (16) and they are
defined as

Vijk
xI ¼ ϵij

0k0Dð1Þðhλ1 ½A�Þj0 jDð1Þðhλ2 ½A�Þk0k; ð18Þ

Tijk
xI ¼ ϵi

0j0k0Dð1Þðhλ1 ½A�Þi0 iDð1Þðhλ2 ½A�Þj0 jDð1Þðhλ3 ½A�Þk0k;
ð19Þ

FIG. 1. Examples of covering cellular decompositions: On the
left, a 3-cell containing a 4-valent node of Γ (dashed line). On the
right, a part of a covering cellular decomposition C around two
4-valent nodes of Γ (dashed line): in continuous black lines the
3-cells containing the nodes, in gray the intermediate structure.

FIG. 2. Decomposition of the region adjacent to γ into cubic
cells and the partitioning of the boundary ∂RI of the cubic cell RI .
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where λm is a curve linking a point xI inside RI and a point
in SmIα, whileD

ð1ÞðhλmÞ is the holonomy of the connection A
along the curve λm taken in the representation “1” (the
adjoint representation).
Having the regularized expression which has the appro-

priate classical limit, (16) can be promoted to a quantum
operator:

ˆLðγωÞ ≔
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂−1
n δijŶ

iðγωÞŶjðγωÞV̂−1
n

q
: ð20Þ

The index ω ¼ ðn; e1; e2Þ stands for a wedge (two edges e1
and e2 intersecting in a node n) in the graph Γ dual to the
two faces intersecting in the curve γ. While ŶiðγωÞ and V̂n
are respectively the two-handed operator and the volume
operator,

ŶiðγωÞ¼ ϵij
0k0Dð1Þðhe1 ½A�Þj0 jDð1Þðhe2 ½A�Þk0kF̂jðSe1ÞF̂kðSe2Þ;

ð21Þ

V̂n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8.3!

X
α;β;ρ

jϵi0j0k0Dð1Þðheα ½A�Þi0 iDð1Þðheβ ½A�Þj0 jDð1Þðheρ ½A�Þk0kF̂iðSeαÞF̂jðSeβÞF̂kðSeρÞj
s

; ð22Þ

note that there exist two versions of the volume operator
[33,34] in the literature; the one presented in (22) and used
in [23] is the Rovelli-Smolin version [33] which is con-
sistent with the external regularization scheme. In principle,
one could use here the version [34] even if this is based on a
different regularization procedure.
The inverse of the volume operator in (20) does not exist

a priori but by restricting the domain of the volume
operator in (22) we get an invertible operator for which
we can define an inverse and extended maximally its
domain. Considering the geometrical interpretation of such
operator, the inverse volume operator must satisfy the
following two conditions:

(i) It acts only at the nodes of the spin-network graph and
it annihilates spin-network states containing no node.

(ii) It has the same eigenstates of the volume operator
with nonvanishing eigenvalues equal the inverse of
the nonvanishing eigenvalues of (22).

Such an operator exists and can be introduced as

V̂−1 ≔ V̂−1 ¼ lim
ϵ→0

ðV̂2 þ ϵ2l6Þ−1V̂; ð23Þ

where l is a constant which has the dimension of length.
This limit is well defined and the result is a Hermitian
operator V̂−1 which commutes with V̂ and admits a self-
adjoint extension to the whole Hilbert space.
This length operator measures the length of a curve

defined as the intersection of two surfaces dual to two edges
sharing a node in a given spin-network graph. This operator
is positive semidefinite, Hermitian and has a discrete
spectrum.
It is important to point out that we cannot give a general

expression (for any values of the spins) of the length
eigenvectors in terms of the intertwiner basis elements
because of the presence of the volume operator for which
many properties are known but closed formulas are not
available [35] (regardless of the volume operator choice).
But of course the eigenstates and eigenvalues can be
computed algebraically and numerically for any fixed state.

C. The dihedral angle operator

We proceed with the same scheme to regularize the
expression of the dihedral angle in (12) as it was done for
the length. We consider a partition that decomposes a
region R delimited by two surfaces S1 and S2 intersecting in
γ. Then replacing in (12) the contraction of the densitized
triad field with the one form normal to the surface Sk by the
flux through this surface FiðSkÞ we get the following
expression:

θ12Iαβ ¼ π − arccos

×

264 δ0ikFiðS1IαÞFkðS2IβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ0ijFiðS1IαÞFjðS1IαÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ0klFkðS2IβÞFlðS2IβÞ

q
375;
ð24Þ

where the functions δ0ik has been inserted in order to
guarantee the SUð2Þ-gauge invariance of the nonlocal
expressions of the terms in Eq. (24) and it is defined as

δ0ik ¼ δi
0k0Dð1Þðhλ1 ½A�Þi0 iDð1Þðhλ2 ½A�Þk0k: ð25Þ

α and β label partitions of S1I ¼ RI∩S1 and S2I ¼ RI∩S2
respectively.
On the quantum level, the fluxes are just the SUð2Þ

generators ~J associated to the edges of the spin network.
Therefore we can write a simple expression for the dihedral
angle operator θ̂ik in the conventional intertwiner basis5

5The orthonormal intertwiner states basis jj1…jV; ι1…ιV−3i
for a node of valence V are basis elements of the Hilbert space
Hj1;…;jV ¼ Inv½Vj1 ⊗ � � � ⊗ VjV � with Vj being the Hilbert space
corresponding to the irreducible representations of SUð2Þ with
spin j. Those states are labeled by V − 3 quantum numbers fιig
depending on the coupling of the external legs. We indicate
with jjiki the basis state of a V-valent intertwiner with the
spins ji and jk coupled together and arbitrary couplings for the
spins left.
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dθðγωÞ ≔ θ̂ik ¼
X
jik

�
π − arccos

�
jikðjik þ 1Þ − jiðji þ 1Þ − jkðjk þ 1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiðji þ 1Þjkðjk þ 1Þp ��

jjikihjikj; ð26Þ

where i and k label the two edges forming the wedge ω dual
to the two faces intersecting in the curve γ. The numbers ji,
jk and jik are respectively the values of the spins i, j and
their coupling.

D. The curvature operator

Before combining the two operators we defined in the
previous sections, let us go back to the dual picture and
rebuild our scenario to construct the curvature operator.
Considering a spin network, we build a covering cellular
decomposition C of the 3-space and we focus on a small
region which contains only one hinge of the decomposi-
tion. The assumption is that the curvature in that region lies
on the hinge; this allows us to write the curvature as a
combination à la Regge of the length of this hinge and the
deficit angle around it. This assumption can be seen as a
restriction of the phase space of gravity to piecewise flat
manifolds, but from our perspective this is rather a different
way to regularize our classical expression of the integrated
scalar curvature as we also take the continuum limit when
the regulator, in this case the typical length, goes to zero.
This regularization scheme is well justified classically from
the result that any manifold can be arbitrarily approximated
by a piecewise flat manifold thanks to the convergence of
Regge action to the E-H action.
On the other hand, the reason why we chose such a

regularization scheme is the fact that we can express
curvature in terms of simpler quantities that we can handle
easily in order to analyze the Hamiltonian constraint and its
kernel, which is our final aim.
We have seen that the angle operator is defined without

any ambiguities, while for the length operator we still need
to think about one issue: the length operator we use is
associated only to a node, which means a 3-cell of the
covering cellular decomposition, while a hinge can be
shared by many 3-cells, which means that for one hinge we
have as many length operators as 3-cells sharing it. This is
where (3) is useful because rewriting the integral over the
cellular decomposition as a sum over 3-cells allows us to
define our quantities with respect to each 3-cell, and
therefore to avoid the ambiguity.
At this point we have to choose an ordering of the

operators in the definition of ½Lc
h
dð2παh −θchÞ� associated to a

hinge h of the 3-cell c, and we suggest the following
expression:

�
Lc
h

�d2π
αh

−θch

��
¼ 2π

αh
L̂c
h −

1

2
ðL̂c

h · θ̂
c
h þ θ̂ch · L̂

c
hÞ; ð27Þ

where L̂c
h ¼ dLðγωÞ and θ̂ch ¼ dθðγωÞ with γω the curve

corresponding to the hinge h for the 3-cell c containing
the wedge ω. This expression guarantees the operator to be
Hermitian. Of course this is not the only way to define it,
but it is the simplest to think of. Now we can define a
quantum curvature operator R̂C as

R̂C ≔
X
c

X
h∈c

�
Lc
h

�d2π
αh

−θch

��
¼

X
c

X
h∈c

2π

αh
L̂c
h −

1

2
ðL̂c

h · θ̂
c
h þ θ̂ch · L̂

c
hÞ: ð28Þ

This operator is the quantum analog6 of the classical
expression

R
C

ffiffiffi
g

p
Rdx3. It is Hermitian and depends on

the choice of C. From (28), we see that we can define an
operator R̂c representing the action of R̂C in the region
contained in the 3-cell c:

R̂c ≔
X
h∈c

2π

αh
L̂c
h −

1

2
ðL̂c

h · θ̂
c
h þ θ̂ch · L̂

c
hÞ; ð29Þ

Let us now evaluate the action of the operator R̂c on a
cylindrical function ΨðΓÞ which is cylindrical with
respect to Γ. Because of the conditions (i) and (ii) on
the covering decomposition C, a 3-cell c either contains
one node of Γ or no node at all. Due to the first condition
on the inverse volume operator which is itself used to
define the length operator, if the 3-cell c does not contain
a node we have

R̂cΨðΓÞ ¼ 0: ð30Þ

If the 3-cell does contain a node, say n, then

6In the construction of the operator we quantized the classical
formula (13) restricted to piecewise linear manifolds as an
approximation of the continuous ones. We can consider the
operator (28) also for continuous manifolds; at the quantum level
this is not making any difference because the kinematical Hilbert
space of the continuous and the discrete theory are the same (see
[10] for a discussion of how continuous and discrete quantum
theories can be seen as a quantization of the same theory in
different gauges). However, while the operator (28) is the
quantization of the exact classical expression representing the
integral of the Ricci scalar in the discrete case, the same
expression may fail to be the integral of the Ricci scalar in the
continuous case. In this sense one should prove that the classical
formula (13) with lengths and angles expressed in terms of fluxes
of the Ashtekar electric field really converges to the desired
classical expression [36].
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R̂cΨðΓÞ ¼
X
ωc
n

�
2π

αωc
n

L̂ðωc
nÞ −

1

2
ðL̂ðωc

nÞ · θ̂ðωc
nÞ

þ θ̂ðωc
nÞ · L̂ðωc

nÞÞ
�
ΨðΓÞ; ð31Þ

where ωc
n labels the wedges7 containing the node n and

selected by the 3-cell c. To make the notation clearer for
later, we introduce the coefficient κðc;ωnÞ which is equal
to 1 when the wedge is selected by the 3-cell c and 0
otherwise. Then (31) becomes

R̂cΨðΓÞ ¼
X
ωn

κðc;ωnÞ
�
2π

αωn

L̂ðωnÞ −
1

2
ðL̂ðωnÞ · θ̂ðωnÞ

þ θ̂ðωnÞ · L̂ðωnÞÞ
�
ΨðΓÞ: ð32Þ

From (30) and (32) we deduce the action of R̂C on ΨðΓÞ:

R̂CΨðΓÞ ¼
X
n∈Γ

X
ωn

κðc;ωnÞ
�
2π

αωn

L̂ðωnÞ −
1

2
ðL̂ðωnÞ · θ̂ðωnÞ

þ θ̂ðωnÞ · L̂ðωnÞÞ
�
ΨðΓÞ: ð33Þ

The action of the operator R̂C depends on the 3-cells
containing the nodes of Γ (selecting the wedges) and the
cells glued to them (fixing the values of the coefficients
αωn

). Hence, it can be kept unchanged as we refine the
covering decomposition and shrink the 3-cells to the
nodes:

lim
Volume½c∈C�→0

R̂CΨðΓÞ ¼
X
n∈Γ

X
ωn

κðc;ωnÞ

×

�
2π

αωn

L̂ðωnÞ −
1

2
ðL̂ðωnÞ · θ̂ðωnÞ

þ θ̂ðωnÞ · L̂ðωnÞÞ
�
ΨðΓÞ: ð34Þ

This limit is well defined. Unfortunately, this operator
(34) carries a memory of our choice of the covering
decomposition C through the coefficients κðc;ωnÞ and
αωn

, i.e., the background structure used in the regulari-
zation procedure. However, one can eliminate the
κðc;ωnÞ by averaging the regularized operator over
relevant background structures, while the ambiguity on
αωn

can be solved by making a suitable choice. We
discuss those features in the next section.

IV. AVERAGING AND SHARING CONDITIONS

Following from our construction, the action of the
curvature operator on a spin network depends on the
choice of the covering cellular decomposition. This choice
is a priori not unique because our prescription to build a
decomposition from a spin-network state does not imply
the uniqueness. We consider this issue as due to the lack
of information on a graph enabling the construction of a
covering cellular decomposition. Choices of different
coverings for a spin-network graph may select a different
set of the graph wedges, consequently different sharing
coefficients αh and this would imply different results for the
action of the curvature operator.
To remove the first dependence on κðc;ωnÞ, we need to

appropriately average R̂C over the relevant background
structures, use the resulting operator R̂av

C instead of R̂C
in (33) and then take the limit.
The dependence on κðc;ωnÞ rises directly from the

choice of the 3-cells of C containing the nodes of Γ.
From the definition of the covering decomposition, we can
deduce that the 3-cells are isomorphic to spherical poly-
hedra verifying requirement (iv). It is important to note that
for a fixed number of faces F, such spherical polyhedra
regroup in a finite number of classes. A class is defined by
the number of edges forming the boundary of each face. For
instance, for F ¼ 3 we have only one class which can be
represented by the 3-hosohedron,8 for F ¼ 4 we have the
4-hosohedron, the spherical tetrahedron and a third class
obtained by taking a 4-hosohedron and replacing one of its
vertices by two connected vertices. These classes can be
represented by planar graphs (see Fig. 3) similar to Schlegel
diagrams for polytopes [37], obtained choosing a face and
projecting all the other faces on it as viewed from above.
Labeling the faces i; j; k;…, each class defines, up to
permutations of the labels, the adjacency rules for the faces.
Each permutation of the labels of faces defines a configu-
ration. More precisely, if we consider a class and represent
each edge in it as ij (i ≠ j) using the labels of the two faces
intersecting at this edge, a configuration is one permutation
of faces labels on the full set of edges contained in the class
and can be represented as a set of labeled edges
fij; kl; mn;…g. Considering the case F ¼ 4 as an exam-
ple, label the faces 1, 2, 3, 4 and the edges by ij,
i ≠ j ∈ f1; 2; 3; 4g. Then the 4-hosohedron (a class) is
represented by f12; 23; 34; 41g or by any other configu-
ration obtained by permuting the labels of faces. The
number of inequivalent configurations for a certain class
is of course finite, for the 4-hosohedron is 3. The tetrahe-
dron is represented by f12; 13; 14; 23; 24; 34g or again by
any other configuration obtained by permuting the labels of
faces. It is clear that those two classes are defining different

7We recall that a wedge is a set formed by a node and a couple
of links sharing it: fn; ei; ejg.

8An n-hosohedron [37] is a tessellation of n areas on a
spherical surface such that each area is bounded by two circular
arcs and all areas share the same two vertices.
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configurations hence selecting different edges. The fact
that the number of inequivalent configurations, we denote
it Nconf , is always finite allows us to define an averaging
procedure over those configurations associated to a 3-cell

with a fixed number of faces F, or in other words to a node
of Γ with a given valence F.
For a given F-valent node n of Γ, a wedgeω containing n

is considered only in a subset of the full set of configu-
rations, therefore we have a number of appearances Napp of
a wedge in the set of configurations; this number depends
only on the valence of n. Thus we can define a coefficient
κðFnÞ depending only on the valence Fn of n:

κðFnÞ ¼
Napp

Nconf
≤ 1 ð35Þ

which stands for the average of κðc;ωnÞ. This coefficient is
of course the same for all wedges containing the node n.
Thus, the action of the averaged operator R̂av

C is

R̂av
C ΨðΓÞ ¼

X
n∈Γ

κðFnÞ
X
ωn

�
2π

αωn

L̂ðωnÞ −
1

2
ðL̂ðωnÞ · θ̂ðωnÞ þ θ̂ðωnÞ · L̂ðωnÞÞ

�
ΨðΓÞ

¼
X
ωn∈Γ

κðFnÞ
�
2π

αωn

L̂ðωnÞ −
1

2
ðL̂ðωnÞ · θ̂ðωnÞ þ θ̂ðωnÞ · L̂ðωnÞÞ

�
ΨðΓÞ; ð36Þ

where the sum in the second line is over all the wedges of
the graph Γ.
Now we still need to deal with ambiguity on the

coefficients αωn
. Classically the coefficients fαωn

¼ αhg
are associated to hinges and they come from the sharing
conditions on the hinges: given a hinge h, we specify all the
3-cells of C containing this hinge on their boundaries. αh is
the number of those 3-cells. Following from our construction
of the operator, those coefficients are totally arbitrary; they
depend on the choice of the decomposition but there is no
information in the spin-network states that could fix them.
They are free parameters. Of course we can always define a
prescription to fix them. Nevertheless, the choice of fαωn

g
could control different interesting features of the operator
R̂av
C , for example the locality of the operator: we could ask

that αωn
¼ Fn, which would make the operator ultralocal as

it depends only on the properties at the node n. Or we could
ask that fαωn

g are equal to the number of nodes forming the
smallest loop in Γ containing the wedge ωn which makes the
operator local, and so on. Note that both the AQG framework
[38] and the proposal in [10] for a continuous formulation of
the LQG phase space, require the assignment not only of the
abstract graphs Γ on which the spin networks are defined,
but also a choice of an embedding with a further choice of a
dual graph Γ�: this assignment in our case would correspond
to a unique choice of fαωn

g that could remove the ambiguity.
In [10] it has been shown that from the discrete data
associated with a graph Γ it is possible to built a discrete
phase space that can be interpreted as the symplectic
reduction of the continuous phase space of gravity with
respect to a constraint imposing the flatness of the con-
nection everywhere outside of the dual graph Γ�. This

discrete phase space built from Γ and Γ� corresponds to
“Regge-like” metrics whose curvature is concentrated
around not necessarily straight edges. This approach, com-
patible with the spinfoam perspective, would fix uniquely
the covering cellular decomposition and therefore fix the
fαωn

g and remove the need for the averaging procedure
described above. However, considering the graph Γ� in the
quantum theory would require introducing new quantum
states that contain information fixing the graph Γ and its dual
Γ�, information which is not given by the spin-network
states. Therefore we do not assume in the construction of the
operator any particular knowledge of the dual graph Γ�.
For now, we say that we choose a prescription fixing

the fαωn
g, therefore we can express the action of the

final curvature operator R̂ which does not depend on the
decomposition as

R̂ΨðΓÞ ¼
X
ωn∈Γ

κðFnÞ
�
2π

αωn

L̂ðωnÞ −
1

2
ðL̂ðωnÞ · θ̂ðωnÞ

þ θ̂ðωnÞ · L̂ðωnÞÞ
�
ΨðΓÞ: ð37Þ

In the following section we present some properties of
this operator and discuss its semiclassical limit on some
simple cases.

V. PROPERTIES OF THE CURVATURE
OPERATOR

A. Gauge and diffeomorphism transformations

The curvature operator R̂ is SUð2Þ gauge invariant as a
result of introducing the functions Vijk

xI , T
ijk
xI and δ0ik in the

FIG. 3. Classes of spherical polyhedron with four faces, from
the left to the right: the 4-hosohedron, the class with three vertices
and the spherical tetrahedron.
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regularized expressions of the length Eq. (16) and the
dihedral angle Eq. (24). Therefore, the operator is naturally
defined in the space of gauge invariant cylindrical func-
tions. Also, since the classical integral over Σ, considered as
an observable, is Σ-diffeomorphism invariant, we require
the same for our operator and this is satisfied by the
construction we introduced, thanks to the averaging
procedure. Thus it defines the operator in the space of
diffeomorphism invariant states. Also, we can think of
restricting the domain of integration to an open region B
of the space Σ; this induces an operator R̂B,

R̂BΨðΓÞ ¼
X

ωn∈Γ∩B
κðFnÞ

�
2π

αωn

L̂ðωnÞ −
1

2
ðL̂ðωnÞ · θ̂ðωnÞ

þ θ̂ðωnÞ · L̂ðωnÞÞ
�
ΨðΓÞ; ð38Þ

which is still gauge invariant but it is diffeomorphism
covariant instead of being invariant. This is simply due to

the fact that the action of an arbitrary diffeomorphism does
not preserve the region B.

B. Spectrum of the curvature operator

In Fig. 5 we report the eigenvalues of the curvature
operator in the case of a four-valent node with all spins
equal j1 ¼ j2 ¼ j3 ¼ j4 ¼ j0, and for the geometry dual to
a loop of three four-valent nodes with equal internal spins
(labeling the links forming the loop) and equal external
spins (see Fig. 4). This last configuration is an example of a
specific choice of a dual graph Γ� which selects a covering
decomposition consisting of three glued 4-faces cells fixing
α equal to 3 for the wedges forming the loop.

C. Semiclassical properties

It is important to stress that in our case the semiclassical
limit (large spins limit) does not mean the continuous limit
but rather a discrete limit which is classical Regge calculus.
In Fig. 6 we report the expectation values of the

curvature operator on Livine-Speziale coherent states
[39] in the case of a regular four-valent node as a function
of the spin j0.
Livine-Speziale coherent states are SUð2Þ invariant

intertwiners, obtained by group averaging of SUð2Þ
coherent states [40] which minimize the uncertainty Δ ¼
jh~J2i − h~Ji2j in the direction of the angular momentum.
The SUð2Þ coherent states are constructed from the highest
weight state through the group action and they are labeled
by the spin j and a unit vector n̂ defining a direction on the
sphere S2. A Livine-Speziale coherent state can be decom-
posed in the conventional basis of intertwiners as

jj; n̂i0 ¼
X

m1…mV

YV
i¼1

ami
ðn̂iÞ

X
ι1…ιV−3

Cι1…ιV−3
m1…mV jj1…jV; ι1…ιV−3i;

ð39Þ
where Cι1…ιV−3

m1…mV are the (generalized) Clebsch-Gordan coef-
ficients and ami

ðn̂iÞ are the coefficients defining a coherent

FIG. 4 (color online). The configuration with three 4-valent
nodes with equal internal spins “j” and equal external spins “j0”.

FIG. 5 (color online). Spectrum λ of the curvature operator: on the left the case of a regular four-valent node plotted as a function of the
spin j0. The parameter α is fixed to 1. On the right the case of the internal geometry in a configuration of three four-valent nodes plotted
as a function of the spins j (internal spin) and j’s (external spin). The parameter α is fixed to 3. Units ð8ΠγL2

PÞ
1
2 are used.
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state associated to one spin ji in terms of the spin basis.
Using recoupling theory, these generalized coefficients [41]
can always be decomposed into sums of products of
conventional (3-valent) Clebsch-Gordan coefficients.
In Fig. 7 we report the expectation values of the

curvature operator on Rovelli-Speziale [42] semiclassical
tetrahedra as a function of the spin in the case of a regular
four-valent node (figure on the left in 7), and for the internal
geometry in the case of three four-valent nodes with equal
internal spins and equal external spins (figure on the right
in 7).
Rovelli-Speziale semiclassical tetrahedron is a semi-

classical quantum state corresponding to the classical
geometry of the tetrahedron determined by the areas
A1;…; A4 of its faces and two dihedral angles θ12, θ34
between A1 and A2 respectively A3 and A4. It is defined as a
state in the intertwiner basis jj12i

ψ ¼
X
j12

cj12 jj12i ð40Þ

with coefficients cj12 such that

hθ̂iji → θij;
hΔθ̂iji
hθ̂iji

→ 0 ð41Þ

in the large scale limit, for all ij. The large scale limit
considered here is taken when all spins are large.
The expression of the coefficients cj12 satisfying the

requirements is

cj12ðj0; k0Þ ¼
1

ð2πσj12Þ
1
4

exp

�
−
ðj12− j0Þ2

4σj12
þ iϕðj0;k0Þj12

�
;

ð42Þ

where j0 and k0 are given real numbers respectively linked
to θ12 and θ34 through the following equations:

j20 ¼ 2j1j2 cos θ12 þ j21 þ j22;

k20 ¼ 2j3j4 cos θ34 þ j23 þ j24:
ð43Þ

σj12 is the variance which is appropriately fixed and the
phase ϕðj0; k0Þ is the dihedral angle to j0 in an auxiliary
tetrahedron related to the asymptotic of the 6j symbol
performing the change of coupling in the intertwiner basis
(see [42]).
For a classical regular tetrahedron, using the expression

(1) for Regge action, the integrated classical curvature
scales linearly in terms of the length of its hinges because
the angles do not change in the equilateral configuration
when the length is rescaled, which means that the integrated
classical curvature scales as square root function of the
area of a face. In Figs. 6 and 7 (left plot), we see that the
expected values of R̂ on coherent states and semiclassical
(regular) tetrahedra for large spins scales as a square root
function of the spin; this matches nicely the semiclassical
evolution we expect. In the second case, represented in 7
(right plot), in which the state is picked on the configuration
where three identical tetrahedra are glued together in flat
space to form two glued tetrahedra as in the 2-3 Pachner

FIG. 6 (color online). Expectation values of R̂ on Livine-
Speziale coherent states plotted as a function of the spin: case
of a regular four-valent node (α ¼ 1). Units ð8ΠγL2

PÞ
1
2 are used.

The curve is a fit with a square root function 6, 57þ 12, 87
ffiffiffiffi
j0

p
.

FIG. 7 (color online). Expectation values of R̂ on Rovelli-Speziale semiclassical states plotted as a function of the spin for two different
configurations: on the left the case of a regular four-valent node (α ¼ 1). The curve is a fit with a square root function 6, 55þ 12, 77

ffiffiffiffi
j0

p
.

On the right the case of three four-valent nodes (three tetrahedra glued together) with equal internal spins and equal external spins
(α ¼ 3). Units ð8ΠγL2

PÞ
1
2 are used.
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move (see Fig. 4), we can notice that the expectation values
approach zero as the value of the spins increase which
means that the configuration in the considered region is
close to the classical flat geometry and that is exactly the
expected semiclassical behavior.

VI. DISCUSSION AND OUTLOOKS

In this paper we presented the construction of a curvature
operator R̂ associated with an open region of a 3-manifold,
based on an “external” regularization scheme using Regge
calculus. We discussed some of its properties and checked
its semiclassical behavior in some simple cases. The
regularization scheme we adopt in this construction is
quite different from the one used in the construction of
the volume operator for instance, because in our case the
classical expression is written as the limit of a Regge-like
discretization instead of introducing a Riemannian sum.
Once the regularization is done we express the lengths
and angles appearing in the Regge formulas in terms
of the elementary variables of the theory, i.e the two-
dimensionally smeared triads, which have unambiguous
quantum analogs. Thereby we promote the regulated
classical expressions to quantum operators and finally
remove the regulator. We choose an appropriate ordering
of the length and angle operators to make the resulting
curvature operator Hermitian. The quantum operator we
find still carries a memory of the background structures
used in the regularization procedure. This additional
structure can be removed with an averaging procedure
over the relevant regularization structures. This construc-
tion leads to a well-defined, nongraph changing, operator R̂
up to the choice of some coefficients fαωn

g specifying,
given a spin-network graph, the adjacency relations of the
covering cellular decomposition.
As discussed in Sec. IV, the freedom in the choice of

the coefficients fαωn
g is due to the nonuniqueness of the

covering and more precisely to the nonuniqueness of the
dual to the spin-network graph. On one hand this tells us
that these coefficients can be used to control the properties
of the locality of the operator. In this sense the information
given by a one cell containing a node is not enough to

define unambiguously the curvature operator in the region
containing only that node. This picture reminds us of the
parallel transport on an infinitesimal closed loop as a way to
probe curvature classically in a point on a manifold: the
loop is a nonlocal object allowing to explore a very small
neighborhood of the relevant point. In the same way,
we need to explore the structure around each nonempty
cell to know the coefficients fαωn

g. On the other hand, the
nonuniqueness of a covering cellular decomposition can be
fixed by introducing any consistent prescription and a priori
the only criterion available to favor a choice over another is
the semiclassical limit, but it appears that at least the global
behavior of the large spin limit is not affected by this
choice.
The regularization scheme we developed exposes a

picture in which the geometry is understood as being
locally flat and this feature may suggest that this operator is
basically defined for the specific class of piecewise flat
manifolds. However, the fact that classically the limit of
Regge expression for the integrated curvature can be
taken in such a way that it converges to the integral of
the continuous scalar curvature on a chosen manifold is the
argument supporting our perspective in which this operator,
as implemented in LQG context, is an operator which
measures curvature.
This paper is mainly motivated by our desire to develop a

different way to implement the Hamiltonian operator for
the Lorentzian case in LQG. Our hope is that the curvature
operator we built will allow us to construct a more
analytically manageable Hamiltonian operator and will
give the possibility to construct solutions in order to get
more insights on the dynamical sector of LQG both in the
full theory [43,44] and in simplified models [45–48]. This
will be the subject of upcoming works.
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