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We present a model for the spine of relativistic Magnetohydrodynamics outflows in the Kerr geometry.
Meridional self-similarity is invoked to derive semianalytical solutions close to the polar axis. The study of
the energy conservation along a particular field line gives a simple criterion for the collimation of jets. Such
parameter have already been derived in the classical case by Sauty et al. 1999 and also extended to the
Schwarzschild metric by Meliani et al. 2006. We generalize the same study to the Kerr metric. We show
that the rotation of the black hole increases the magnetic self-confinement.
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I. INTRODUCTION

Several studies have contributed to show the importance
of black hole rotation in Active Galactic Nuclei (AGN) jet
formation. AGN jet classification mainly relies on orienta-
tion effects and relativistic doppler boosting. However,
they cannot explain either the dichotomy between radio
loud and radio quiet AGN, or the difference between
Fanaroff-Riley type I and II (FRI and FRII) jets.
There are two main theories to interpret the different
characteristics of radio loud and radio quiet galaxies.
The morphological differences may be explained by the
different physical properties of the environment in
which the relativistic jet propagates [1–5]. The dichotomy
can also be explained by involving a difference in the
nature of the central engine, the spin of the central black
hole, the accretion rate and the jet composition [6–10]. The
discovery of two subclasses of FRII galaxies does not allow
us to solve the problem of the dichotomy. The hybrid
morphology radio sources have two radio lobes which
exhibit a different FR morphology and cannot be explained
without external medium or jet power differences between
the two sides of the host galaxy [11]. In double-double
radio galaxies multiple pairs of lobes are seen and are
interpreted as different episodes of jet activity [12,13]
leading to the possibility that jet interruption occurs in
radio galaxies. Finally, a combination of external and
engine factors has to be invoked to explain the FRI/FRII
dichotomy, as we have suggested in [14]. However, in this
paper we could not study the effect of the black hole spin
because the analytical model was based on a Schwarzschild
metric.
The dichotomy between radio loud and radio quiet

sources has a result of the spin of the black hole has been
explored analytically and numerically [15]. Moreover,
Narayan and McClintock [16] have recently demonstrated

that there is a strong correlation between the power of the
jet and the spin of the black hole. The spin of the black hole
may also explain the high precession that is observed in
some jets [17]. In fact, as already suggested by Blandford
and Znajek [18], the rotational energy of the central black
hole is a tremendous spring for energy invoked to explain
emission of plasma flows. They were the first to propose a
magnetospheric model in the force free limit as a source for
extracting rotational energy from the black hole. This
model has been extensively discussed in the frame of ideal
MHD [19–24]. The energy extracted under the form of
Poynting flux depends on the rotational speed of the
magnetic field lines, the spin of the black hole, and as
shown recently by [25], on plasma injection on magnetic
field lines. Other 1 D models allowed us to study force-free
magnetospheres around black holes, first in Schwarzschild
metrics by [26] and in Kerr metrics by [27], with a more
complex magnetic configuration and taking into account
the connection between the magnetosphere and the
accretion disk. This last study shows that the higher the
black hole spin the smaller the magnetic dead zone of
the magnetosphere. S. Komissarov was the first to
perform numerical simulations of the Blandford-Znajek
scenario [28–31].
Besides the strong acceleration that they undergo,

AGN outflows appear to be highly collimated. The
question we want to address is whether there is a
correlation between the collimation of the jets and the
black hole spin. We propose a model for a rotating black
hole based on our previous steady axisymmetric analyti-
cal model [14]. The problem of collimation in all its
complexity must include the interaction between the jet
and the external medium (see e.g. Levinson and
Begelman [32], and references therein). In the following,
we focus on the self-collimation processes where it is the
combination of gas pressure and magnetic fields that
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acts to confine the flow, as illustrated in Fig. 1. Magnetic
self-confinement requires an ordered magnetic field
anchored onto the black hole or the inner disk region.
The poloidal component of the Lorentz force has a
collimating effect [33]. Therefore, we need to measure
separately the contribution of the gas pressure and
magnetic fields. In the framework of the θ-self-similar
model of [34], we solve the GRMHD equations in the
Kerr background. In this model, two parameters give the
magnetic and pressure confinement, as explained in [35].
This model has been successfully applied to model AGN
spine jets [14] and the criterion for magnetic collimation
derived in the case of a nonrotating black hole. In this
paper we investigate the effect of the black hole spin on
the efficiency of the magnetic confinement.
The paper is organized as follows. The model is

introduced in Sec. II. Using the 3þ 1 formalism [36]
we present the general equations that describe an axisym-
metric, stationary, ideal MHD flow in the gravitational
potential of a Kerr black hole. The complete set of 3þ 1
equations is given by Mobarry and Lovelace [37] in
Schwarzschild geometry. We compile in Sec. III the
complete set in Kerr geometry and obtain an original
formulation of the energy and momentum equations. In
Sec. IV we present the mathematical formalism and the
assumptions leading to the self-similar model, an extension
of the nonrelativistic meridionaly self-similar model [34] to
the case of relativistic jets around rotating black holes. In
Sec. V we present the collimation criterion established by
Sauty et al. [35] extended to this metric and show that the
rotation of the black hole induces a more efficient magnetic
collimation of the jet.

II. A SELF-SIMILAR MODEL FOR IDEAL
RELATIVISTIC MHD JETS

The common picture for the structure of relativistic jets is
the two-component model [38], where a relativistic eþe−
plasma is accelerated in the polar region of the central black
hole and is surrounded by a baryonic component coming
from the accretion disk. In AGN, pair injection in the black
hole magnetosphere may arise from annihilation of MeV
photons if the accretion rates are sufficient, or from pair
cascades induced by a potential drop in charge-starved
regions [39]. When the jet is emitted in the region very
close to the central engine, frame-dragging effects may play
an important role on self-collimation processes. To address
this question we therefore need to model the inner part of
the jet close to the polar axis.
The dynamics and the geometry of a magnetized,

relativistic plasma flow around a rotating black hole are
described by exact solutions to the general relativistic MHD
equations in the Kerr metric. A standard treatment to reduce
the stationary and axisymmetric GRMHD equations to a
system of ordinary differential equations is to adopt a self-
similar geometry, i.e., to make the assumption of a scaling
law of one of the variables as a function of one of the
coordinates (see Vlahakis and Tsinganos [40] for a general
classification of self-similar models). Analytical solutions
using radial self-similarity have been derived from
GRMHD equations in order to model disk winds
[41,45,46]. However those models fail to describe the
regions close to the rotational axis. A meridional self-
similar treatment (i.e., similar in the θ-direction) is neces-
sary to model the spine jet where the outflow is rather
driven by the thermal pressure. In those models, the θ-
dependence is prescribed a priori while the radial depend-
ence is derived from the MHD equations. This modeling
does not require the use of a polytropic equation of state.
The local equation of state can be derived a posteriori from
the calculated solutions.
For our investigation we chose the analytical model for

stellar jets developed by Sauty and Tsinganos [34]. In this
model, outflow solutions are super-Alfvénic, and one class
of the solutions provides self-confined jets [35]. This model
has been extended to the general relativistic case in
the Schwarzschild geometry [42] and applied to AGN jets.
The collimation of the relativistic solutions results from the
distribution of the total electromagnetic energy across
the jet, as compared to the corresponding distribution of
the thermal and gravitational energies. The FRI/FRII
dichotomy was explained by the magnetic rotator effi-
ciency [14]. In this paper, we extend the model to the Kerr
geometry to study the effect of frame-dragging on jet
collimation. The Kerr metric is axisymmetric and hence
adapted to this assumption. In the following, we make a
Taylor expansion of all physical quantities with small θ.
Such a treatment allows us to study the physical properties
of the outflow close to its rotational axis but does not imply

FIG. 1 (color online). Illustration of the self-collimation
processes.
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any restriction on the black hole rotation going from zero to
maximum value.

III. BASIC EQUATIONS

A. Flow equations

In the following we use the 3þ 1 decomposition of the
Kerr spacetime to write the GRMHD equations. The
rotating black hole is described by two parameters, m ¼
GM=c2 and a ¼ J=Mc, where M is the mass of the black
hole and J its specific angular momentum, respectively.
The Kerr metric writes,

ds2 ¼ −h2c2dt2 þ h1dr2 þ h22dθ
2 þϖ2ðdφ − ωdtÞ2;

ð1Þ

where h ¼ ρ
ffiffiffiffi
Δ

p
=Σ is the lapse function and

ω ¼ 2mrac=Σ2 the angular velocity of the zero angular
momentum observer (hereafter ZAMO) as seen from
infinity, with Δ ¼ r2 þ a2 − 2mr, ρ2 ¼ r2 þ a2 cos2 θ,
Σ2 ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ.
The 4-velocity of a particle can be decomposed as ua ¼

γðc~et̂ þ Vr~er̂ þ Vθ~eθ̂ þ Vφ~eφ̂Þ where ðVr; Vθ; VφÞ are the
components of the 3-velocity ~V relative to the ZAMO, and
γ ¼ ð1 − V2=c2Þ−1=2 is the Lorentz factor. In the following,
we use CGS units. The letters i; j; k… represent indices in
absolute space and run from 1 to 3 while a; b; c… represent
indices in 4-dimensional spacetime and run from 0 to 3.
The stress-energy tensor is Tab ¼ Tab

hyd þ Tab
em. The

electromagnetic stress-energy tensor Tab
em,

Tab
em ¼ 1

4π

�
FacFb

c −
1

4
gabFcdFcd

�
ð2Þ

satisfies to the Maxwell equations,

∇aFab ¼ 4πjb; ð3Þ
∇½aFbc� ¼ 0: ð4Þ

The electric current density 4-vector ja is only defined by
Eq. (3). We assume that the plasma is infinitely conducting.
The electric field is null in the comoving frame,

Fabub ¼ 0; ð5Þ
and thus the magnetic field is frozen to the plasma,

∇aðu½aBb�Þ ¼ 0: ð6Þ
In the 3þ 1 form the Maxwell equations (3) and (4)

writes [36],

~∇: ~B ¼ 0; ð7Þ
~∇:~E ¼ 4πq̂; ð8Þ

~∇ × ðh~EÞ ¼
�
~B: ~∇ω

c

�
ϖ~eφ̂; ð9Þ

~∇ × ðh~BÞ ¼ 4π

c
h~j −

�
~E: ~∇ω

c

�
ϖ~eφ̂; ð10Þ

where ~E; ~B are, respectively, the electric and magnetic
fields measured by a ZAMO. Ohm’s law (frozen) rewrites,

~Eþ
~V
c
× ~B ¼ 0: ð11Þ

Tab
hyd is the energy-momentum tensor for a perfect fluid,

Tab
hyd ¼

nw
c2

uaub þ Pgab ð12Þ

where n is the proper particle number density, w ¼
ðeþ PÞ=n the specific enthalpy per particle, e the internal
energy density (including rest-mass energy per particle)
and P the isotropic pressure, that is the sum of the kinetic
pressure and the pressure associated with the MHD waves.
The particles constituting the jet plasma may have two

origins. The particles may either come from the accretion
disk and thus be of hadronic origin, or due to pair creation
via annihilation processes close to the black hole horizon.
We assume that the particle number is conserved,

∇aðnuaÞ ¼ 0: ð13Þ

The jet dynamics is governed by the momentum equation,

∇bTab ¼ 0: ð14Þ
The first law of thermodynamics is obtained by projecting
the conservation of the energy-momentum tensor along the
fluid 4-velocity,

ua∇bTab ¼ 0: ð15Þ

The basic steady equations governing the kinematics of
the outflow (13) and (14) are in the 3þ 1 form,

~∇:ðhγn~VÞ ¼ 0; ð16Þ

γnð~V: ~∇Þ
�
γw~V
c2

�
¼ −γ2nw

�
~∇ ln hþϖωVφ

hc2
~∇ lnω

�

− ~∇Pþ q̂ ~Eþ
~j
c
× ~B: ð17Þ

Assuming infinite conductivity, the contribution of the
electromagnetic field is null in Eq. (15). The first law of
thermodynamics becomes

n~V: ~∇w ¼ ~V: ~∇P: ð18Þ
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B. Constants of motion

Because of flux-freezing, in steady axisymmetric out-
flows, streamlines and magnetic field lines are roped on the
same flux tubes of constant mass and magnetic flux. The
poloidal components of the velocity and magnetic field can
be derived from a stream function Ψðr; θÞ and a magnetic
flux function Aðr; θÞ,

~Vp ¼ 1

4πhγn

~∇Ψ
ϖ

× ~eφ̂; ð19Þ

~Bp ¼
~∇A
ϖ

× ~eφ̂: ð20Þ

The flow along any magnetic flux tube is given in terms
of four constants of motion, the particle flux per unit
magnetic flux,

ΨA ¼ dΨ
dA

¼ 4πhγnVp

Bp
; ð21Þ

the angular velocity of the field lines,

Ω ¼ h
Vφ

ϖ
−

ΨA

4πγn

Bφ

ϖ
þ ω; ð22Þ

the total angular momentum,

L ¼ ϖ

�
γw
c2

Vφ −
h
ΨA

Bφ

�
; ð23Þ

the total energy,

E ¼ hγw − h
ϖΩ
ΨA

Bφ þ
γwϖω

c2
Vφ: ð24Þ

From Eq. (22) we deduce the bulk velocity of a fluid
particle,

~V ¼ ΨA

4πhγn
~BþϖðΩ − ωÞ

h
~eφ: ð25Þ

C. Alfvén surface

By combining Eqs. (23)-(24) we obtain:

E − LΩ ¼ Eð1 − x2LÞ ¼ hγw

�
1 −

xVφ

c

�
1 −

ω

Ω

��
; ð26Þ

with

x2L ¼ LΩ
E

and x ¼ Ωϖ
ch

: ð27Þ

Finally, we deduce the values of the toroidal velocity

Vφ ¼ c
x

M2x2L − ð1 − x2LÞh2x2ð1 − ω
ΩÞ

M2ð1 − x2L
ω
ΩÞ − h2ð1 − x2LÞ

; ð28Þ

and the relativistic enthalpy

hγw ¼ E
M2ð1 − x2L

ω
ΩÞ − h2ð1 − x2LÞ

M2 − h2 þ h2x2ð1 − ω
ΩÞ2

; ð29Þ

where M is the poloidal Alfvénic Mach number as defined
in [42], see also [20,43,44],

M2 ¼ Ψ2
Aw

4πnc2
: ð30Þ

At the critical point where the denominators of Eq. (28)
and Eq. (29) vanish, the Alfvénic Mach number takes
the value,

M2
a ¼ h2a

1 − x2L
1 − x2L

ω⋆
Ω
: ð31Þ

It is easy to deduce from the previous equations that at
this point,

x2a ¼ x2L
1

ð1 − ω⋆
Ω Þð1 − x2L

ω⋆
Ω Þ

: ð32Þ

D. Light surfaces

The light cylinder is defined as the surface where
∥~Ep∥ ¼ ∥~Bp∥. From Eqs. (11) and (22) we obtain the
poloidal electric field ~Ep ¼ −x~Bp. The position of the two
light surfaces is thus given by x ¼ �1.
In the following, we assume that we can neglect

the effect of the electric field compared to the magnetic
field, Ep ≪ Bp therefore we shall consider x → 0 in
Eqs. (28)-(29). The Alfvén regularity condition rewrites

M2
a ¼ h2a: ð33Þ

As a consequences, the field lines cannot cross the light
cylinder, in contrast with radially self-similar disk wind
solutions [45,46]. We are limited to describing jets pos-
sessing a weak rotation velocity compared to the speed of
light; our solutions are pressure driven. The typical radius
of the spine jet emerging of the black hole is a few dozen
Schwarzschild radii.

IV. MODEL FUNCTIONS AND PARAMETERS

In this section, we present the mathematical formalism of
the θ-self-similar model. According to the notations used in
[34] all physical quantities are normalized in units of the
Alfvén quantities at the pole (subscript ⋆). We have
assumed as in previous papers that all physical quantities
can be developed to first order in α, which is equivalent to
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assuming small colatitudes. The model hypotheses lead to 4
normalized functions from which two control the flow
geometry,

(i) The function GðRÞ gives the variations of the
cylindrical radiusϖ with the distance to the origin, R.

(ii) The function FðRÞ is the expansion factor. It
measures the angle between the poloidal magnetic
field ~BP and the radial direction ~eR [34,42].

Two functions control the flow dynamics,
(i) The first is the poloidal Alfvén Mach number

M2ðRÞ;
(ii) The second is ΠðRÞ which measures the pressure

along the polar axis.
The model possesses six free parameters,
(i) δ is the latitudinal variation of density. For δ > 0

(δ < 0) density increases (decreases) going out from
the axis.

(ii) κ is the latitudinal variation of the pressure. For
κ > 0 (κ < 0) pressure increases (decreases) going
out from the axis.

(iii) λ measures the rotation of the flow at the Alfvén
surface. It is also a measure of the magnetic
lever arm.

(iv) ν is the ratio of the escape velocity in units of the
Alfvén speed at the Alfvén surface.

(v) μ is the normalized Schwarzschild radius.
(vi) σ measures the black hole spin. For the maximal

rotation value a=m ¼ 1, σ ¼ μ=2.

A. Gravitational potential

The normalized spherical radius and the normalized spin
parameter are, respectively,

R ¼ r
r⋆

; σ ¼ a
r⋆

: ð34Þ

The strength of the gravitational potential is given by the
polar escape speed at the Alfvén point in units of V⋆,

ν ¼ Vesc;⋆
V⋆

¼
ffiffiffiffiffiffiffi
2m
r⋆

s
c
V⋆

: ð35Þ

The normalized Schwarzschild radius introduced by [42] is
given by the parameter μ,

μ ¼ rS
r⋆

¼ 2m
r⋆

; ð36Þ

which is also the escape speed in units of the speed of light.
Combining Eqs. (35) and (36) we get a condition that
restricts the parametric space to

ffiffiffi
μ

p
ν

¼ V⋆
c

< 1: ð37Þ

To recover the θ-self-similar model [34], we must expand
the metric to first order in sin2 θ. The redshift factor and the
frame-dragging angular velocity write,

h≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

μR
R2 þ σ2

r �
1 −

μσ2R
2ðR2 þ σ2Þ2 sin

2θ

�
; ð38Þ

ω≡ μσRc
r⋆ðR2 þ σ2Þ2

�
1þ σ2

R2 þ σ2

�
1 −

μR
R2 þ σ2

�
sin2θ

�
:

ð39Þ

B. Magnetic field geometry

Let us introduce a normalized magnetic flux function α.
The magnetic flux potential can be separated into a function
of R times a function of θ. To first order in α, keeping the
dipolar term, we have,

α ¼ fðRÞ sin2 θ: ð40Þ
As pointed out in Sec. II, in meridionally self-similar

flows, the θ-dependance is prescribed and the Bernoulli
and Grad-Shafranov equations are solved for fðRÞ. Hence
fðRÞ measures the magnetic flux relative derivative and
its profile determines the geometry of the streamlines.
This function contains the normalized cylindrical radius
GðRÞ and is related to the expansion factor FðRÞ as
described below.
We get for the poloidal magnetic field from Eq. (20),

~Bp ¼
0
@ r2⋆B⋆

Σ
f cos θ

− r⋆B⋆
ffiffiffi
Δ

p
2Σ

df
dR sin θ

1
A ð41Þ

which gives keeping only first order terms,

~Bp ¼
0
@ B⋆

R2 þ σ2
f cos θ

− hB⋆
2

ffiffiffiffiffiffiffiffiffiffi
R2þσ2

p df
dR sin θ

1
A. ð42Þ

The form of the magnetosphere is determined by the
explicit dependence of the magnetic flux function αðR; θÞ
on its variables. Using Stokes’s theorem, Eq. (20) leads to
2πA ¼ H

S
~Bp: ~dS ¼ πr2⋆B⋆α, where

ϖa ¼ r⋆
ffiffiffi
α

p ð43Þ
is the cylindrical radius at the Alfvén point, in other words
the magnetic lever arm. We introduce the function GðRÞ
which represents the normalized cylindrical radius of a
given flux tube,

GðRÞ ¼ ϖ

ϖa
: ð44Þ
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We assume that α has a dipolar latitudinal dependence α ∝
sin2 θ that is consistent with the Taylor development of the
cylindrical radius,

ϖ ≡ r⋆
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ σ2

p
sin θ: ð45Þ

Combining Eqs. (43)–(45) we obtain the magnetic flux
function,

α ¼ R2 þ σ2

G2
sin2 θ: ð46Þ

We introduce the expansion factor FðRÞ that is the
logarithmic derivative of α with respect to the radius R,
F ¼ ∂ ln α=∂ lnRjθ. FðRÞ reflects the degree of the flow
collimation (see [34,35] for more details).

C. Density and pressure functions

The crucial assumption relates to the shape of the Alfvén
surface. In the absence of an accretion disk the shape of this
surface emerges as ellipsoidal in the numerical modeling of
Sakurai [47]. In our model, we assume that this critical
surface is spherical, MðR; αÞ≡MðRÞ. The Alfvén regu-
larity condition becomesM⋆ ¼ h⋆. Using Eq. (30) we find
the equipartition relation between electromagnetic and
kinetic energy,

B2⋆
8π

¼ 1

2
n⋆w⋆γ2⋆

V2⋆
c2

: ð47Þ

The assumption of a spherical Alfvén surface implies a
separation of the variables in the expression of the free
function ΨA [see Eq. (30)]. Making a first order expansion
in α,

Ψ2
A ¼ 4πc2h2⋆

n⋆
w⋆

ð1þ δαÞ; ð48Þ

where δ is a free parameter describing the deviation from
spherical symmetry of the ratio n=w. Conversely to the
classical model it is not the deviation of the mass density
itself as in Sauty and Tsinganos [34]. Following Eq. (18)
the θ-dependance of the gas pressure is similar to that of the
density to enthalpy ratio,

P ¼ P0 þ
B2⋆
8π

ΠðRÞð1þ καÞ ð49Þ

with P0 a constant, κ a free parameter describing the
deviation from spherical symmetric pressure, and ΠðRÞ a
normalized function.

1. Angular momentum flux and the Bernoulli constant

The function LΨA expresses both the total angular
momentum loss rate per unit of magnetic flux and the
poloidal electric current carried by the outflow [42].

LΨA ¼ λh⋆B⋆r⋆α ð50Þ

Using Eq. (48) we expand the angular momentum L to first
order,

L ¼ λγ⋆w⋆r⋆
V⋆
c2

α ð51Þ

The functions L and Ω are free while their ratio is fixed
by the regularity condition (33). We deduce from
Eqs. (33)–(51) the Bernoulli integral and the isorotation
law,

E ¼ h⋆γ⋆w⋆; Ω − ω ¼ ðλ − ω̄Þ h⋆V⋆
r⋆

; ð52Þ

As in [42] the λ parameter measures the strength of the
magnetic torque. In the following we introduce a new
parameter ℵ ¼ 1 − ω̄=λ to introduce the normalized frame-
dragging potential ω̄ in our equations.

D. Expressions for the fields
and the enthalpy

From the previous assumptions we get the expressions of
the magnetic and velocity fields as well as the density and
the enthalpy functions:

Br ¼
B⋆
G2

cos θ ð53Þ

Bθ ¼ −
B⋆
G2

hF
2

sin θ ð54Þ

Bφ ¼ −λℵ
B⋆
G

h⋆
h
NB

D

ffiffiffi
α

p ð55Þ

Vr ¼
V⋆M2

G2h2⋆
cos θ ð56Þ

Vθ ¼ −
V⋆M2

G2h2⋆
hF
2

sin θ ð57Þ

Vf ¼ −λℵ
V⋆
G

h
h⋆

NV

D

ffiffiffi
α

p ð58Þ

hγw ¼ h⋆γ⋆w⋆
�
1 −

μλ2

ν2

�
ℵ2

NB

D
þ ω̄

λ

�
α

�
ð59Þ

hγn ¼ h⋆γ⋆n⋆
h2⋆
M2

�
1þ δα −

μλ2

ν2

�
ℵ2

NB

D
þ ω̄

λ

�
α

�
: ð60Þ

where

NB ¼ h2

h2⋆
−G2; ð61Þ
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NV ¼ M2

h2⋆
−G2; ð62Þ

D ¼ h2

h2⋆
−
M2

h2⋆
: ð63Þ

V. RESULTS

A. Jet morphology and Lorentz factor

We solve Eqs. (A1–A4). The numerical procedure is
given in the Appendix. The jet is launched from a region
very close to the black hole, typically 2 gravitational radii.
We present solutions corresponding to the following set of
parameters : ν ¼ 0.54, μ ¼ 0.1, λ ¼ 1.1, κ ¼ 0.2, δ ¼ 1.35,
and for a black hole spin a ¼ 0.4. Figure 2 shows the
topology of the velocity and magnetic field. Figure 3 shows
the effect of the black hole rotation on the jet base. Figure 4
displays the corresponding Lorentz factor. The asymptotic
Lorentz factor is larger in the case of a limiting solution, i.e.

when the pressure Π⋆ is the lowest one that gives a
cylindrical solution.

B. Magnetic collimation efficiency

Figure 5 (left panel) displays three solutions to the
GRMHD equations, corresponding to the same physical
parameters, except for the spin of the central engine.
(ν ¼ 1.5, μ ¼ 0.1, λ ¼ 0.73, κ ¼ 0.021, δ ¼ 0.0778).
The upper jet is launched by a Schwarzschild black hole
while the other two solutions by a Kerr black hole
(a=m ¼ 0.2, a=m ¼ 0.99, respectively). The jet solution
in the Schwarzschild case is asymptotically cylindrical
because we have chosen the minimum value of Π⋆ ¼ Π⋆;1
giving the limiting solution (see Sauty et al. [35,42] for
details). For a lower initial pressure the jet would decolli-
mate while with a higher initial pressure the jet would
undergo recollimation with oscillations. An oscillatory jet
width is a basic feature of such recollimating jets [35].
Oscillations occurs because of the interplay of the cen-
trifugal force and the total (pinching plus pressure) mag-
netic force, always acting in opposite directions along the
cylindrical radius ϖ. The transverse pressure gradient
remaining similar this proves that the rotation of the central

FIG. 2 (color online). Spine jet–topology of the velocity and
magnetic field lines of our analytical and stationary jet solution
for a black hole spin parameter a=m ¼ 0.4.

FIG. 3 (color online). Spine jet–topology of the stream lines at
the base of the jet in (a) Schwarzschild geometry and (b) Kerr
geometry.

FIG. 4. Lorentz factor profile of the solution displayed in Fig. 2.
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black hole enhances the efficiency of the magnetic field to
collimate.
We can show in a different manner the same result now

using the Kerr solution of Fig. 2 and lowering the initial
value of the pressure by lowering Π⋆ until we get the
limiting solution for a value Π⋆ ¼ Π⋆;2. Figure 5 (right
panel) displays two jet morphologies which are almost
identical but clearly the same rate of collimation is obtained
in the second case for a lower pressure as Π⋆;2 < Π⋆;1.

C. Magnetic collimation parameter

In Sauty et al. [35], a general criterion for the jet
collimation has been established, based on the variation
of the energy across poloidal field lines. It gives an
important extra parameter ϵ which provides the efficiency
of the magnetic rotator to collimate the flow. We follow the
same procedure as in Meliani et al. [42] to derive the
magnetic collimation parameter ϵ in the Kerr metric.
After substituting n from Eq. (30) and derivating with α

constant, ~V · ∇ ∝ ∂=∂Rjα, Eq. (18) can be rewritten as

−8πM2
∂P
∂R

����
α

¼ −
∂
∂R

�
Ψ2

Aw
2

c2

�����
α

¼ ∂
∂R

�
Ψ2

AðE2 − w2Þ
c2

�����
α

; ð64Þ

where Ψ2
Aw

2 is proportional to the energy per unit
volume of the fluid reduced to the thermal content. Thus
Ψ2

AðE2 − w2Þ in essence measures the variation between the
total energy and the thermal energy of the fluid.
The form of the pressure is P ¼ f1ðRÞð1þ καÞ=8π. We

also know the θ dependence in all quantities in the
expression for Ψ2

Aw
2=c2, and after expanding with respect

to sin2 θ we find Ψ2
AðE2 − w2Þ=c2 ¼ f2ðRÞ þ f3ðRÞα.

Then Eq. (64) gives

−M2
df1
dR

ð1þ καÞ ¼ df2
dR

þ df3
dR

α

⇔

�
−M2df1 ¼ df2
−M2κdf1 ¼ df3:

ð65Þ

Eliminating df1 we get the integral f3ðRÞ − κf2ðRÞ ¼ ε
which is a local measurement of the magnetic efficiency to
collimate the flow but does not remain constant along
the flow.
After substituting the expressions for f2ðRÞ and f3ðRÞ,

we arrive at

ϵ ¼ M4

h4⋆ðR2 þ σ2ÞG2

�
F2

4
−

1

h2
− κ

R2 þ σ2

h2G2

�

−
ðδ − κÞν2

h2
R

R2 þ σ2
−

ν2σ2RG2

h2ðR2 þ σ2Þ3

þ λ2

G2h2⋆

�
NV

D

�
2

þ 2λ2

h2

�
ℵ2

NB

D
þ ω̄

λ

�
; ð66Þ

We refer to Sauty et al. [35] for a detailed parametric
analysis and a discussion on the different solutions which
are inferred from the modeling. Here we only consider for a
first approach κ > 0. This does not necessarily imply that
the flow is pressure confined. It may be either magnetically
confined or pressure confined depending on whether the
efficiency of the magnetic rotator prevails or not to the
thermal confinement. A negative ϵ implies that the source is
an inefficient magnetic rotator, which needs the help of the
gas pressure to collimate the outflow [35,42]. Conversely, a
positive ϵ is the sign of an efficient magnetic rotator with a
strong magnetic contribution to collimation.
It is simple to express this constant at the base of the flow

Ro assuming the poloidal velocity is negligible there, such
that the Alfvénic Mach number MðRoÞ ≈ 0. Then ϵ takes
the following form at the source boundary,

FIG. 5. Dependence of the cylindrical radius on the black hole spin (left panel) and on the pressure (right panel).
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ϵ

2λ2
¼ ERot;o þ EPoynt;o þ ΔE�

G þ Edrag

EMR
; ð67Þ

where EPoynt ¼ −hϖðΩ − ωoÞ=ΨABφ is the Poynting flux
and ER;o ¼ EV2

φ;o=2c2 is the rotational energy per particle.
The following term is very similar to the nonrelativistic one
except for the metric,

ΔE�
G ¼ −

Eμ
2

Ro

R2
o þ σ2

�
δ − κ þ σ2G2

o

ðR2
o þ σ2Þ2

�
α: ð68Þ

It measures the excess or the deficit of gravitational energy
per unit mass which is not compensated by the thermal
driving [35]. The last term Edrag ¼ Lωo represents the
coupling between the orbital angular momentum of the
fluid particle and the frame dragging of the Kerr black hole.
We see in Eq. (67) that the magnetic collimation

parameter seems to be larger in the Kerr metric, because
of the new term E drag and also because ΔE�

G is smaller as
we increase σ. In order to check this assumption, we
calculated solutions with the same physical parameters,
except for the black hole spin.
Figure 6 shows the evolution of ϵ with the rotation of the

black hole for two different sets of parameters correspond-
ing to the solutions presented above. The magnetic colli-
mation efficiency increases linearly with the black hole
spin. We may expect that it comes with the linear increase
of the roping of the magnetic field at the base of the flow
due to the drift of the rotation coordinate.

VI. DISCUSSION

We extended the meridional self-similar model of
Sauty and Tsinganos [34] to the GRMHD case in the

Kerr spacetime. We presented the first axisymmetric
analytical MHD solutions (2.5D) for an outflow accelerated
near the polar axis of a rotating black hole. In order to keep
the self-similarity in colatitude, we had to assume an
expansion of all equations including the metric with the
colatitude θ. As in the self-similar model in the
Schwarzschild geometry [42], we made the assumption
of a nonrelativistic rotational velocity to neglect the effects
of the light cylinder on the Alfvén surface. We derived
exact solutions to the GRMHD equations where the
collimation derives from a combination of pressure and
magnetic forces.
The contribution of the different mechanisms to the

collimation of the outflow in the context of meridional self-
similar models was studied in previous papers [35,42]. In
this paper, we made an extension of the magnetic colli-
mation parameter for a rotating black hole in order to
investigate the effect of the black hole spin on the flow
collimation. The collimation efficiency, given by the
variation of the specific energy across streamlines, has
five contributions; each one gives the variation—in units of
the volumetric energy of the magnetic rotator—between
any streamline and the polar axis of: the kinetic energy, the
volumetric gravitational energy, the Poynting flux, the
thermal content and the rotational energy associated with
the frame-dragging potential. The kinetic and magnetic
contents depend strongly on the physics of the central
engine. In the picture the jet is driven by the Blandford-
Znajek mechanism, the injected power goes as P ∝ sin2ðθÞ,
i.e., there is an energy deficit near the polar axis, which
would have the effect of increasing the magnetic collima-
tion parameter ϵ. The thermal content may depend on
plasma injection along the magnetic field lines, and a
complete picture should include the disk wind component,
which could inhibit the lateral expansion since it is
believed to be more dense than the leptonic spine jet.
The rotation of the black hole could also play a role since
the location of the innermost stable orbit depends on the
spin parameter.
The efficiency of self-collimation in relativistic jets can

be compromised by the existence of the electric fields,
which are negligible far from the light cylinder. We
considered only the region close to the polar axis
where the effect of the decollimating electric fields are
negligible while the frame-dragging plays an important
role. We found that the magnetic collimation efficiency is
enhanced by the rotation of the black hole and increases
linearly with the black hole spin in our model. This gain is
due (i) to the fact that the volumetric gravitational
energy ΔE�

G, which has a negative contribution to the
collimation efficiency, is smaller in the Kerr metric, and
(ii) to the presence of the new term Lω, associated with the
frame-dragging. As our model is valid only for small
colatitude angles, the contribution of this term is then
underestimated.

FIG. 6 (color online). Dependence of the magnetic collimation
efficiency on the black hole spin for two different sets of
parameters. The lower solutions (blue squares) correspond to:
ν ¼ 1.5, μ ¼ 0.1, λ ¼ 0.73, κ ¼ 0.021, δ ¼ 0.0778; the upper
solutions (triangles and dots) to : ν ¼ 0.54, μ ¼ 0.1, λ ¼ 1.1,
κ ¼ 0.2, δ ¼ 1.35. In both cases, the magnetic collimation ϵ
increases linearly with the parameter σ that measures the rotation
of the black hole.
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APPENDIX A: ORDINARY DIFFERENTIAL
EQUATIONS

For convenience we use the following notations : Xþ ¼
R2 þ σ2, X− ¼ R2 − σ2. Under the assumptions
of axisymmetry and meridional self-similarity, the
GRMHD equations reduce to the following four
ordinary differential equations for ΠðRÞ, M2ðRÞ, GðRÞ
and FðRÞ:

dΠ
dR

¼ −
2

h2
1

G4

�
dM2

dR
þ F − 2

R
M2

�

−
1

h4M2

X−

X2þ

�
ν2h4⋆ − μ

M4

G4

�
ðA1Þ

dM2

dR
¼ NM

D
ðA2Þ

dF
dR

¼ N F

D
ðA3Þ

dG
dR

¼ G
R

�
1 −

F
2

�
ðA4Þ

where we have defined:

NM ¼ M4

4h2⋆R

�
ð8 − 4FÞ

�
1 −

σ2

2Xþ

�
þ 4κ

Xþ
G2

ð2 − FÞ þ 2FRffiffiffiffiffiffiffi
Xþ

p
�
1þ σ2

Xþ

�
−
h2F2R2

Xþ
− 2Fμ

R2σ2

X
5
2þ

�

þ h2M2

h2⋆

�
F − 2

R

�
1þ κ

Xþ
G2

−
σ2

2Xþ

�
−

Fffiffiffiffiffiffiffi
Xþ

p þ h2F2

4

�
R
Xþ

þ μ

h2
X−
X2þ

�
þ h2F3

8
ffiffiffiffiffiffiffi
Xþ

p −
h2⋆
h2

λ2ℵ2μ

ν2
F

ffiffiffiffiffiffiffi
Xþ

p �

−
DG2

2h2M2

X−
Xþ

�
ν2h4⋆ − μ

M4

G4

��
δ − κ þ σ2G2

X2þ

�
1

2
− h2

σ2 − 3R2

X−

�
−
2μλ2ℵ2

ν2

�
NB

D
þ ω̄

λℵ

��

−
M2μ

2h2
X−
X2þ

Dþ λ2ℵ2
X−
Xþ

NBNV

D2
μþ h2G2D

2
κΠ

�
h2

h2⋆
F
D

ffiffiffiffiffiffiffi
Xþ

p
− 2R −

Xþ
R

ðF − 2Þ
�

þ λℵ
ffiffiffi
μ

p
ν

σG2

h⋆M2

�
ν2h4⋆ − μ

M4

G4

�
σ2 − 3R2

X2þ
NV þ h2

h2⋆
FM2

2

Rσ2

X
5
2þ

�
μ − h4⋆ν2

G4

M4

�

− λ2ℵ2h2
NB

D
ðF − 2ÞXþ

R
þ λ2ℵ2R

�
2M2 þ h2

�
F

ffiffiffiffiffiffiffi
Xþ

p
R

− 2

���
N2

B

D2
−

h2

2M2

N2
V

D2

�
; ðA5Þ

N F ¼ −
M2F

h2⋆
ffiffiffiffiffiffiffi
Xþ

p
�
ϒ

�
Rffiffiffiffiffiffiffi
Xþ

p −
F
2

�
− λ2ℵ2

N2
B

D3
XþðF − 2Þ

ffiffiffiffiffiffiffi
Xþ

p
R

þ F
2

�
1 −

h2FR
2

ffiffiffiffiffiffiffi
Xþ

p
��

þ h2

h2⋆

�
ϒ −

h2F2

4

��
F2

R
þ F

�
R
Xþ

−
2

R

�
−

2

h2
ffiffiffiffiffiffiffi
Xþ

p −4
h2⋆
h2

λ2ℵ2μ

ν2
ffiffiffiffiffiffiffi
Xþ

p �

þ
�
ϒ −

h2F2

4

�
μF
h2⋆

X
−

X2þ
þ 2ΠG2κ

ffiffiffiffiffiffiffi
Xþ

p
h2⋆

�
ϒ −

h2F2

4

�
2

F

�
Rffiffiffiffiffiffiffi
Xþ

p −
ffiffiffiffiffiffiffi
Xþ

p
R

�
þ

ffiffiffiffiffiffiffi
Xþ

p
R

��

−
G2F

2M2h2h2⋆
X−
Xþ

�
ν2h4⋆ − μ

M4

G4

��
δ − κ þ σ2G2

X2þ

�
1

2
− h2

σ2 − 3R2

X−

�
−
2μλ2ℵ2

ν2

�
NB

D
þ ω̄

λℵ

��

þ 4λ2ℵ2

h2

�
N2

B

D2
−

h2

2M2

N2
V

D2

��
ϒ

ffiffiffiffiffiffiffi
Xþ

p
−
h2RF
2

�
− λ2ℵ2

h2

h2⋆
Xþ
R

FðF − 2ÞNB

D2
−
μFM2

2h2h2⋆
X

−

X2þ

þ 2M2σ2

h2h2⋆X
3
2þ

��
1 −

ν2h4⋆G4R
M4Xþ

�
ϒ −

h2F2

4

�
þ λ2ℵ2

μ

h2⋆
X−
Xþ

NBNV

D3
F þ μ

F2M2

2h2⋆
Rσ2

X
5
2þ

þ λℵ
ffiffiffi
μ

p
ν

G2Fσ
M2h3⋆

�
ν2h4⋆ − μ

M4

G4

�
σ2 − 3R2

X2þ

NV

D
; ðA6Þ
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D ¼ −
�
1 −

σ2

2Xþ
þ κ

Xþ
G2

�
Dþ λ2ℵ2Xþ

N2
B

D2
þ h4F2

4h2⋆
; ðA7Þ

ϒ ¼ 1 −
σ2

2Xþ
þ κ

Xþ
G2

− λ2ℵ2
N2

B

D3
Xþ: ðA8Þ

At the Alfvén radius, the expansion factor is the solution
of the second degree polynomial C2F2⋆ þ C1F⋆ þ C0 ¼ 0,
with

C0 ¼
−h2⋆

ffiffiffiffiffiffiffiffiffi
Xþ;⋆

p
p02

8
−
λ2ℵ2⋆X3=2

þ;⋆
2

h4⋆; ðA9Þ

C1 ¼
Xþ;⋆p03

4
þ λ2ℵ2⋆X3=2

þ;⋆h2⋆ðp0 þ 2h2⋆ − μΛ⋆Þ; ðA10Þ

C2 ¼ p02
�
λ2ℵ2⋆X3=2

þ;⋆
�
μ

ν2
þ 1

2

�
þ

ffiffiffiffiffiffiffiffiffi
Xþ;⋆

p
2

ð1 − κΠ⋆Xþ;⋆Þ

−
σ2

2
ffiffiffiffiffiffiffiffiffi
Xþ;⋆

p �
1 −

ν2

Xþ;⋆

��
− λ2ℵ2⋆X3=2

þ;⋆p0½2h2⋆ − μΛ⋆�

− λ2ℵ2⋆X3=2
þ;⋆

�
2h4⋆ − 2μΛ⋆h2⋆ þ

μ2Λ2⋆
2

�
; ðA11Þ

where Xþ⋆ ¼ 1þ σ2, X−⋆ ¼ 1 − σ2, ℵ⋆ ¼ 1 − ω̄⋆
λ .

APPENDIX B: OVERVIEW OF THE
NUMERICAL TECHNIQUE

Assuming self-similarity, the partial differential equa-
tions system of GRMHD equations is transformed into an
ordinary differential equations system where the functions
depend only on the normalized radial distance R. Four
coupled equations constitute the system: the three equa-
tions given in Appendix A determine the unknown

functions ΠðRÞ, FðRÞ and M2ðRÞ and the function GðRÞ
is related to FðRÞ through Eq. (IV B). We have shown that
FðRÞ, GðRÞ are dimensionless functions related to the
shape of the jet while MðRÞ, ΠðRÞ describe the physics of
the magnetosphere. We briefly present the method for the
numerical integration of Eqs. (A1)–(A4). We start integrat-
ing the equations from the Alfvén critical surface. In order
to calculate the toroidal components of the fields, i.e.NB=D
and NV=D ¼ NB=D − 1, we apply l’Hospital’s rule at this
point,

NB

D

����⋆ ¼
h2⋆ð2 − F⋆Þ − μ½ 1−σ2

ð1þσ2Þ2�
p − μ 1−σ2

ð1þσ2Þ2
; p ¼ dM2

dR

����⋆: ðB1Þ

To avoid kinks in the field line shape, we need to satisfy a
regularity condition [48]. This means that Eq. (A6) should
be regular at R ¼ 1. As in [42] this extra requirement is
equivalent to N F:D ¼ 0 which eventually gives a second
order polynomial equation for the Alfvénic expansion
factor F⋆,

C2ðpÞF2⋆ þ C1ðpÞF⋆ þ C0ðp;Π⋆Þ ¼ 0; ðB2Þ

with the expressions for the coefficients C2, C1 and C0

given in Appendix A. Once we have determined the
regularity conditions at the Alfvén point, we integrate
downwind and upwind and cross all the other existing
critical points as in the nonrelativistic case. Notice that
solutions depend also on Π⋆, i.e. the pressure at the Alfvén
surface. As in the classical case its value has been
chosen such that the total gas pressure is always positive.
More details on the numerical technique can be found
in [34,35,42].
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