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We compute the electromagnetic self-force acting on a charged particle held in place at a fixed position r
outside a five-dimensional black hole described by the Schwarzschild-Tangherlini metric. Using a
spherical-harmonic decomposition of the electrostatic potential and a regularization prescription based on
the Hadamard Green’s function, we express the self-force as a convergent mode sum. The self-force is first
evaluated numerically, and next presented as an analytical expansion in powers of R=r, with R denoting
the event-horizon radius. The power series is then summed to yield a closed-form expression. Unlike its
four-dimensional version, the self-force features a dependence on a regularization parameter s that can be
interpreted as the particle’s radius. The self-force is repulsive at large distances, and its behavior is related to
a model according to which the force results from a gravitational interaction between the black hole and the
distribution of electrostatic field energy attached to the particle. The model, however, is shown to become
inadequate as r becomes comparable to R, where the self-force changes sign and becomes attractive. We
also calculate the self-force acting on a particle with a scalar charge, which we find to be everywhere
attractive. This is to be contrasted with its four-dimensional counterpart, which vanishes at any r.
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I. INTRODUCTION AND SUMMARY

A particle held in place at a fixed position r outside a
nonrotating black hole of massM requires an external agent
to supply an external force Fext that compensates for the
black hole’s gravity. When the particle carries an electric
charge q, the external force is smaller than when the
particle is neutral. The difference is accounted for by the
particle’s electromagnetic self-force, which originates in a
subtle interaction between the particle, the electric field it
generates, and the spacetime curvature around the black
hole. The electromagnetic self-force acting on a charged
particle at rest outside a Schwarzschild black hole was
computed by Smith and Will [1]. The only nonvanishing
component of the force vector Fα is the radial component

Fr, and the force invariant F ≔ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβFαFβ

q
, with the sign

adjusted so that the sign of F agrees with the sign of Fr, is
given by

F ¼ q2R
2r3

; ð1:1Þ

where R ¼ 2M is the event-horizon radius (we use geom-
etrized units, in which G ¼ c ¼ 1). The positive sign on the
right-hand side indicates that the self-force is repulsive,which
leads to a smaller Fext when the particle carries a charge.
The repulsive nature of the electromagnetic self-force is

a surprising feature that is difficult to explain. An attempt to
provide some intuition relies on the fact that the event
horizon is necessarily an equipotential surface, which
suggests that the black hole should behave as a perfect
conductor. This observation leads to the expectation that
the self-force could be derived (up to numerical factors) on

the basis of an elementary model involving a spherical
conductor of radius R in flat spacetime. The model features
a charge q at position r, a first image charge q0 ¼ −qðR=rÞ
at position R2=r inside the conductor, and a second image
charge −q0 ¼ qðR=rÞ at the center. The first image charge
produces a grounded conductor with a net charge q0
distributed on its surface, and the second image charge
eliminates this net charge, without violating the equipo-
tential condition at the surface. (The black hole does not
support a net charge.) The model predicts a self-force
resulting from an interaction between the charge q and the
image dipole inside the conductor, and a simple calculation
neglecting corrections of order ðR=rÞ2 reveals that the self-
force scales as F ∼ −q2R3=r5, with a negative sign indicat-
ing an attractive force. The model is a complete failure: it
fails to produce to the correct scaling with R and r, and it
even fails to produce the correct sign.
Another attempt to provide intuition, proposed in Sec. IV

of Ref. [2], produces a more intelligible picture. This model
focuses its attention on the force acting on the black hole
instead of the force acting on the charged particle. This
force is necessarily gravitational in nature, and according to
Newton’s third law, it must be equal in magnitude to the
force acting on the particle. (The model features a mixture
of Newtonian and relativistic ideas.) The force on the black
hole is produced in part by the particle’s mass, but there is
also a contribution from the distribution of electrostatic
field energy that surrounds the charge. In this view, the
charged particle behaves as an infinitely extended body,
and the black hole is comparatively much smaller. The
force on the black hole is then Fhole ¼ −MmðrÞ=r2, with
the negative sign indicating that the force is attractive, and
mðrÞ denoting the mass within radius r associated with the
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particle and the distribution of field energy. The particle’s
mass m is identified with mð∞Þ, and mðrÞ ¼ m−R∞
r 4πρr2dr, where ρ ¼ E2=ð8πÞ is the density of field
energy. With E ¼ q=r2 we have that mðrÞ ¼ m − q2=ð2rÞ,
and the force becomes Fhole ¼ −Mm=r2 þ q2R=ð4r3Þ. The
first term is the attractive gravitational force exerted by the
particle, and the second term is a repulsive contribution
from the field energy. Writing Fcharge ¼ Fhole gives us an
alternative interpretation: the first term is the gravitational
force exerted by the black hole, and the second term is the
self-force. This model is a success: it produces the correct
scaling with R and r, and it produces the correct sign. It
reproduces the Smith-Will force of Eq. (1.1) up to a factor
of 2.
The failure of the electrostatic model at providing a

reliable expression for the self-force has been a source of
fascination in the literature, and it has motivated a line of
inquiry that probes into the mysteries of the self-force in
various circumstances. Thus, authors have replaced the
black hole with various material bodies [2–6]; they
observed that the Smith-Will behavior of Eq. (1.1) is
universal at large distances, but modified when r becomes
comparable to the body’s radius R. Other authors have
replaced the asymptotically flat boundary conditions of the
Schwarzschild spacetime by asymptotic cosmological con-
ditions (specifically, de Sitter or anti-de Sitter conditions
[7]); they observed that the Smith-Will behavior continues
to hold approximately when the black hole and cosmo-
logical scales are well separated, but is substantially
modified when the scales are comparable.
In this paper we continue this line of inquiry, and ask

whether the interpretation of the self-force as a gravitational
interaction between the black hole and the electrostatic field
energy attached to the particle continues to apply in higher
dimensions. Extending themodel to an ðnþ 2Þ-dimensional
spacetime, with n denoting the number of angular direc-
tions, we have that the force on the black hole is now given
by Fhole ¼ −MmðrÞ=rn. The mass within radius r becomes
mðrÞ ¼ m −

R∞
r Ωnρrndr, where ρ ¼ E2=ð2ΩnÞ is the

density of field energy, and Ωn is the area of a unit
n-sphere. With E ¼ q=rn we have that mðrÞ ¼ m − q2=
½2ðn − 1Þrn−1�, and we obtain Fhole ¼ −Mm=rn þ q2M=
½2ðn − 1Þr2n−1�. The second term is identified with the
electromagnetic self-force, and relating the black-hole mass
to its event-horizon radius R via M ¼ 1

2
ðn − 1ÞRn−1, we

arrive at an expected scaling of q2Rn−1=ð4r2n−1Þ for the
self-force. We wish to know whether this expectation is
borne out by an actual computation. Self-forces in higher-
dimensional spacetimes were also considered by Frolov
and Zelnikov [8–11], who provided concrete results for the
specific case of Majumdar-Papapetrou spacetimes.
For reasons that will be explained below, our calculation

of the self-force is restricted to the five-dimensional case.
We obtain

F ¼ q2R2

2r5
Ξ

f3=2
; ð1:2Þ

where R is the event-horizon radius, f ≔ 1 − ðR=rÞ2, and

Ξ ¼ −
1

4x
þ 5

8
þ 139

96
x −

281

192
x2 þ

�
1

4x
þ 1

2
−
15

16
x

� ffiffiffi
f

p

þ 3

16
xð6 − 5xÞ ln ~sxð1þ

ffiffiffi
f

p Þ
8

ffiffiffi
f

p ð1:3Þ

with x ≔ ðR=rÞ2. The self-force depends on an unknown
parameter, the dimensionless quantity ~s ≔ s=R, which
originates in the regularization prescription to be described
below. An interpretation for the length scale s is that it
represents the radius of the particle, which must of course
be much smaller than the black hole, so that ~s ≪ 1. The
self-force, therefore, is not independent of the particle’s
size, and presumably this is an indication that in five
dimensions, the self-force cannot be expected to be
independent of the details of internal structure. A graph
of Ξ=f3=2 for selected values of ~s is displayed in Fig. 1.
When r is large compared with R, the function Ξ=f3=2

behaves as 1þOðxÞ, and the self-force becomes

F ∼
q2R2

2r5
ðr ≫ RÞ: ð1:4Þ

This repulsive behavior matches the expectation from the
gravitational model, up to a factor of 2 that was also seen in

FIG. 1. Electromagnetic self-force acting on a particle of charge
q at a fixed position r in the five-dimensional Schwarzschild-
Tangherlini spacetime. The self-force F is divided by its
asymptotic expression Fasymp ¼ q2R2=ð2r5Þ, and it is plotted
as a function of r=R for ~s ¼ 10−4 (long-dashed curve), ~s ¼ 10−6

(solid curve), and ~s ¼ 10−8 (short-dashed curve). The self-force
is positive (repulsive) when r=R is sufficiently large, but it
changes sign and becomes attractive when r=R becomes com-
parable to 4. For ~s ¼ 10−4 the transition occurs at r=R≃ 3.7154,
for ~s ¼ 10−6 it occurs at r=R≃ 4.4010, and for ~s ¼ 10−8 it
occurs at r=R≃ 4.9830.
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the four-dimensional case. When r decreases toward R,
however, the self-force force changes sign and becomes
attractive. As r approaches R the diverging factor f−3=2

begins to dominate, but the divergence is limited by the fact
that the particle cannot be closer to the horizon than a
distance of order s. Taking r=R > 1þ ~s, we find that the
self-force is bounded by

F > −
3

128
ffiffiffi
2

p q2

R3

1

~s3=2
ln
128

~s
: ð1:5Þ

In spite of this bound, the behavior of the self-force very
close to the horizon should be viewed with suspicion,
because a large jFj implies a large electric field that can no
longer be treated as a test field in a fixed background
spacetime. The detailed description of the self-force reveals
that the interpretation in terms of a gravitational interaction
does not hold up to five-dimensional scrutiny. While the
large-r behavior of the self-force is repulsive and compat-
ible with the model, the agreement does not persist when r
becomes comparable to R.
Unlike Smith and Will, our computation of the five-

dimensional self-force does not proceed on the basis of an
exact solution to Maxwell’s equations for a point charge in
the Schwarzschild-Tangherlini spacetime. Indeed, such a
five-dimensional analogue of the Copson solution [12,13]
is not known. Our method of calculation is therefore more
convoluted. We begin in Sec. II with the formulation of
Maxwell’s equations in higher-dimensional spacetimes,
their specialization to the specific case of a point charge
in the Schwarzschild-Tangherlini spacetime, and a presen-
tation of the solution in terms of a decomposition in higher-
dimensional spherical harmonics. This leads to a self-force
expressed as an infinite and diverging sum over spherical-
harmonic modes.
The mode-sum evaluation of the self-force requires

regularization, and we carry out the necessary steps in
Sec. III. We adopt a regularization prescription based on
Hadamard’s Green’s function [14], a local expansion of the
electrostatic potential that identifies the singular part that
must be subtracted before the mode sum is evaluated.
While Hadamard regularization can be formulated in any
spacetime dimension, its practical implementation becomes
increasingly difficult as the number of dimensions
increases, for the simple reason that the electric field of
a point charge becomes increasingly singular at the position
of the particle. With the techniques at our disposal we were
able to handle the five-dimensional case with relative ease,
and this motivated our restriction to five dimensions. An
extension to higher dimensions is possible, but would
require a substantial amount of additional work.
Unlike the situation in four dimensions, the five-

dimensional Hadamard Green’s function features a loga-
rithmic dependence on the separation between field and
source points. This is the source of the lnðs=RÞ term in the

self-force, with the length parameter s interpreted as the
particle’s radius. Unlike its four-dimensional version,
the five-dimensional self-force depends on the details of
the particle’s internal structure. This dependence is likely to
be even more dramatic in higher dimensions, because
the field of a point charge becomes increasingly singular
and requires additional regularization. It would be interest-
ing to pursue these matters by performing a self-force
calculation in six dimensions.
The calculation of the self-force proceeds in Sec. IV with

a numerical evaluation of the regularized mode sum, and an
analytical evaluation presented as an expansion in powers
of R=r. We carry out this expansion to a very high order,
and manage to sum the series to the closed-form expression
displayed in Eq. (1.2).
In Sec. V we exploit the same methods to calculate the

self-force acting on a scalar charge q at a fixed position r in
the five-dimensional Schwarzschild-Tangherlini spacetime.
Our final result is displayed in Eq. (5.24) below. When r is
much larger than R we find that the scalar self-force
behaves as

Fscalar ∼ −
3

8

q2R4

r7
ln

2rffiffiffi
~s

p
R
: ð1:6Þ

The self-force is attractive everywhere, and its scaling with
R4 ln r=r7 can be contrasted with the R2=r5 scaling of the
electromagnetic self-force. This result can also be con-
trasted with Wiseman’s four-dimensional expression [15]:
Fscalar ¼ 0. Like its electromagnetic counterpart, the scalar
self-force is bounded by Eq. (1.5) when the particle is close
to the horizon.
What would happen to the five-dimensional self-force if

the topology of the event horizon were changed from the S3

topology examined here to the S2 ×R topology of a black
string? The regularization techniques developed in this
paper could be adapted to this new situation, and a fresh
calculation of the self-force could be attempted. Would the
self-force continue to diverge as the event horizon is
approached? We hope to return to this question in future
work. In the remainder of the paper we present the detailed
calculations that lead to the results summarized in this
introductory section.

II. ELECTROSTATICS IN A HIGHER-
DIMENSIONAL BLACK-HOLE SPACETIME

In this section we formulate Maxwell’s equations in a
curved spacetime of arbitrary dimensionality, and special-
ize them to the description of a static electric charge in the
spacetime of a nonrotating black hole. This spacetime is
static and spherically symmetric, and we denote the number
of angular directions by n; the total number of spatial
dimensions is then nþ 1, and nþ 2 is the number of
spacetime dimensions.
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A. Maxwell’s equations and Lorentz force

Maxwell’s equations in a curved, ðnþ 2Þ-dimensional
spacetime are expressed in covariant form as

∇βFαβ ¼ Ωnjα; ∇½αFβγ� ¼ 0; ð2:1Þ

where Fαβ is the electromagnetic field tensor, jα is the
current density, ∇α is the covariant derivative operator, and
Ωn is the area of an n-dimensional unit sphere—an explicit
expression is given in Eq. (A1); indices enclosed within
square brackets are antisymmetrized. The sourcefree
Maxwell equations can be solved by expressing the
electromagnetic field in terms of a vector potential,

Fαβ ¼ ∇αΦβ −∇βΦα: ð2:2Þ

In a given Lorentz frame in flat spacetime, the components
of a static electric field are given by Ea ¼ Fat ¼ ∂aΦ with
Φ ≔ Φt, and Maxwell’s equations reduce to Gauss’s law
∇ · E ¼ Ωnjt, where jt is the charge density. The field
produced by a point charge q at the spatial origin of the
coordinate system is given by E ¼ ðq=rnÞΩ, where Ω ≔
x=r is a unit vector in the direction of the field point x, and
the associated potential is given by ðn − 1ÞΦ ¼ −q=rn−1.
The current density of a point charge q moving on a

world line described by the parametric relations zαðτÞ (with
τ denoting proper time) is given by

jαðxÞ ¼ q
Z

uαδðx; zðτÞÞdτ; ð2:3Þ

where δðx; x0Þ is a scalarized Dirac distribution defined byR
aðx0Þδðx; x0Þ

ffiffiffiffiffiffiffi
−g0

p
dnþ2x0 ¼ aðxÞ when x lies within the

domain of integration; g0 is the metric determinant evalu-
ated at x0, and aðx0Þ is an arbitrary test function.
Formally, the electromagnetic self-force acting on this

point charge is given by the Lorentz force

Fα ¼ qFα
βuβ; ð2:4Þ

where Fαβ is the electromagnetic field produced by the
charge. Since this field diverges at the position of the
particle, the equation has only formal validity, and the field
must be regularized before the self-force is computed.

B. Schwarzschild-Tangherlini spacetime

We specialize the general formulation of Maxwell’s
equations to the case of a charge q held at a fixed position
in a higher-dimensional analogue of the Schwarzschild
spacetime, often named the Tangherlini spacetime [16]. Its
metric is given by

ds2 ¼ −fdt2 þ f−1dr2 þ r2dΩ2
n; ð2:5Þ

where

f ≔ 1 − ðR=rÞn−1 ð2:6Þ

and dΩ2
n ≔ ΩABdθAdθB is the metric on a unit n-sphere—

refer to the Appendix for a fuller description of the notation
employed here and below. The gravitational radius Rmarks
the position of the event horizon, and it is related to the
gravitational (ADM) mass M by M ¼ 1

2
ðn − 1ÞRn−1.

The fixed position of the particle is described by r ¼ r0
and θA ¼ θA0 . To condense the notation it is helpful to
represent the angular coordinates θA by a unit vector Ω
defined in such a way that the relation between the
spherical polar coordinates ðr; θAÞ and quasi-Cartesian
coordinates xa is given by the usual x ¼ rΩðθAÞ. In this
notation the variable position of a point on a t ¼ constant
hypersurface is represented by ðr;ΩÞ, and the fixed position
of the charge is designated by ðr0;Ω0Þ.
For this static situation the only nonvanishing compo-

nent of the vector potential is Φ ≔ Φt, and Maxwell’s
equations reduce to the single equation

r2∂rrΦþ nr∂rΦþ 1

f
D2Φ ¼ r2Ωnjt; ð2:7Þ

in which ∂r denotes a partial derivative with respect to r,
and D2 is the Laplacian operator on the unit n-sphere (refer
to the Appendix). The charge density jt can be obtained
from the general expression of Eq. (2.3) by switching
integration variables from τ to z0ðτÞ. We get

jt ¼ q
δðr − r0Þ

rn0
δðΩ;Ω0Þ; ð2:8Þ

where δðΩ;Ω0Þ is the angular Dirac distribution introduced
in Eq. (A9).
A formal expression for the self-force acting on the

charged particle can be obtained from Eq. (2.4). Its only
nonvanishing component is

Fr ¼ q
ffiffiffiffiffi
f0

p ∂rΦðr0;Ω0Þ; ð2:9Þ

where f0 ≔ 1 − ðR=r0Þn−1. It is useful to remove the
dependence on the coordinate system by working instead

with the invariant F ≔ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβFαFβ

q
¼ f−1=20 Fr, with the

sign selected so that signðFÞ ¼ signðFrÞ. This gives

F ¼ q∂rΦðr0;Ω0Þ; ð2:10Þ

which represents the magnitude of the force actually
measured by a static observer at ðr0;Ω0Þ.

C. Decomposition in spherical harmonics

To proceed we decompose the potential and charge
density in the higher-dimensional spherical harmonics
introduced in the Appendix. We write
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Φðr;ΩÞ ¼
X
l;j

ψl;jðrÞYl;jðΩÞ ð2:11Þ

and

δðΩ;Ω0Þ ¼
X
l;j

Ȳl;jðΩ0ÞYl;jðΩÞ; ð2:12Þ

where an overbar indicates complex conjugation, Yl;jðΩÞ
are the spherical harmonics, labeled by an integer degree l
(l ¼ 0; 1; 2; � � �) and a degeneracy index j that ranges over
a number Nðn;lÞ of distinct values—refer to Eq. (A4).
Making the substitution returns the sequence of ordinary
differential equations

r2ψ 00
l;j þ nrψ 0

l;j −
lðlþ n − 1Þ

f
ψl;j

¼ qΩn

rn−20

Ȳl;jðΩ0Þδðr − r0Þ ð2:13Þ

for the expansion coefficients ψl;jðrÞ; a prime indicates
differentiation with respect to r.
Without loss of generality we may place the particle on

the polar axis. According to Eq. (A18), this ensures that
only the axisymmetric mode j ¼ 0 contributes to Φ.
Defining ψlðrÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðn;lÞ=Ωn

p
ψl;0ðrÞ, we find that the

differential equations become

r2ψ 00
l þ nrψ 0

l −
lðlþ n − 1Þ

f
ψl ¼ qNðn;lÞ

rn−20

δðr − r0Þ:

ð2:14Þ
Making use of Eq. (A16), we also find that the scalar
potential can be expressed as

Φðr; χÞ ¼
X
l

ψlðrÞPlðcos χÞ; ð2:15Þ

where χ ≔ θn is the angle from the polar axis, and
Plðcos χÞ are the generalized Legendre polynomials intro-
duced in the Appendix.
The substitutions

ξ ≔ 2ðr=RÞn−1 − 1; ψl ≔
ffiffiffi
f

p
PðξÞ ð2:16Þ

bring Eq. (2.14) to the form of an associated Legendre
equation with parameters ν ¼ l=ðn − 1Þ and μ ¼ 1. The
linearly independent solutions to the homogeneous version
of Eq. (2.14) are therefore

ψ in
l ¼

ffiffiffi
f

p
P1
νðξÞ; ψout

l ¼
ffiffiffi
f

p
Q1

νðξÞ: ð2:17Þ

The inner solution ψ in
l is regular at ξ ¼ 1 (r ¼ R) but

singular at infinity, while the outer solution ψout
l is singular

at ξ ¼ 1 but regular at infinity. The solution to Eq. (2.14)

can be obtained by combining these solutions and enforc-
ing the appropriate junction conditions at r ¼ r0. With ψ<

l
denoting the solution for r < r0, and ψ>

l denoting the
solution for r > r0, we have

ψ<
l ¼ qNðn;lÞ

rn0Wl
ψout
l ðr0Þψ in

l ðrÞ;

ψ>
l ¼ qNðn;lÞ

rn0Wl
ψ in
l ðr0Þψout

l ðrÞ; ð2:18Þ

where the Wronskian Wl ≔ ψ inψ
0
out − ψoutψ

0
in is evaluated

at r ¼ r0. Making use of Eq. (8.18) of Ref. [17], we find
that

Wl ¼ lðlþ n − 1Þ
2ðn − 1Þ

Rn−1

rn0
: ð2:19Þ

Our final expression for the solution to Eq. (2.14) is then

ψ<
l ¼ 2ðn − 1ÞNðn;lÞ

lðlþ n − 1Þ
q

Rn−1 ψ
out
l ðr0Þψ in

l ðrÞ ð2:20Þ

and

ψ>
l ¼ 2ðn − 1ÞNðn;lÞ

lðlþ n − 1Þ
q

Rn−1 ψ
in
l ðr0Þψout

l ðrÞ: ð2:21Þ

Complete expressions can be obtained by inserting
Eq. (2.17) with ν ¼ l=ðn − 1Þ and ξ ¼ 2ðr=RÞn−1 − 1.
The special case l ¼ 0 must be handled separately. Here

we find

ψ<
0 ¼ −

1

n − 1

q
rn−10

; ψ>
0 ¼ −

1

n − 1

q
rn−1

: ð2:22Þ

The electric field associated with this solution vanishes for
r < r0 and is equal to q=rn for r > r0; these expressions are
compatible with the presence of a charge q at r ¼ r0.
In terms of the mode decomposition, the (formal) self-

force acting on the charged particle is obtained by inserting
Eq. (2.15) within Eq. (2.10) and setting r ¼ r0, χ ¼ 0. This
gives

F ¼ q
X
l

ψ 0
lðr0Þ ð2:23Þ

after making use of the normalization condition Plð1Þ ¼ 1
for the generalized Legendre polynomials—refer to
Eq. (A15). Because the electric field is actually infinite
at the position of the charge, this mode sum does not
converge and the computation of the self-force requires
regularization.
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III. HADAMARD REGULARIZATION

A. Regularization and renormalization

We wish to turn Eq. (2.23) into a meaningful expression
for the self-force. We begin by generalizing the context to a
charged particle held at a fixed position x0 in any static,
(nþ 2)-dimensional spacetime with metric

ds2 ¼ −N2dt2 þ habdxadxb; ð3:1Þ

where the lapse N and spatial metric hab depend on the
nþ 1 spatial coordinates xa only. The electromagnetic self-
force acting on this particle is expressed formally as

Fa ¼ qN−1hab∂bΦ; ð3:2Þ

in which all quantities are evaluated at x0. We wish to turn
this formal statement into something meaningful.
We assert [18] that the physical self-force acting on the

particle is

Fa ¼ qN−1habh∂bΦiren; ð3:3Þ

in which h∂bΦiren is the average of ∂bΦ on a small surface
s ¼ constant surrounding the particle, from which all
contributions that diverge in the limit s → 0 are removed.
The average is defined precisely by working in Riemann
normal coordinates around x0, and s denotes proper
distance from the particle; the averaging is therefore
performed on a surface of constant proper distance. We
shall see that the diverging terms are proportional to the
particle’s acceleration, so that they can be absorbed into a
redefinition of the particle’s mass.
For a practical implementation of this regularization

procedure, it is convenient to introduce a singular potential
ΦS, a solution to Maxwell’s equations for a point charge at
x0, constructed locally with no regards to boundary con-
ditions imposed at infinity or anywhere else. The singular
potential is just as singular as Φ at x ¼ x0, and the
difference Φ − ΦS is smooth. We write

h∂bΦiren ¼ ∂bΦ − ∂bΦS þ h∂bΦSiren; ð3:4Þ

omitting the average sign on the difference ∂bΦ − ∂bΦS

because it is smooth in the limit s → 0.
For the next step we return to the specific context of

spherically symmetric spacetimes, and express the metric in
the general form of

ds2 ¼ −e2ϕdt2 þ f−1dr2 þ r2dΩ2
n; ð3:5Þ

in which ϕðrÞ and fðrÞ are arbitrary functions of the radial
coordinate, and dΩ2

n is the metric on a unit n-sphere. With
the particle placed on the polar axis χ ¼ 0, we decompose
Φ and ΦS as in Eq. (2.15), and write the self-force F ≔
f−1=20 Fr as

F ¼ Fmode þ FS; ð3:6Þ

where

Fmode ≔ qe−ϕ0f1=20

X
l

½ψ 0
lðr0Þ − ψS0

l ðr0Þ� ð3:7Þ

is a convergent sum over l modes, and

FS ≔ qe−ϕ0f1=20 h∂rΦSiren ð3:8Þ

is the regularized contribution from the singular potential.
We introduced the notation f0 ≔ fðr0Þ and ϕ0 ≔ ϕðr0Þ.
Our computation of the self-force is based on Eq. (3.6).

We identify the singular potential ΦS with the Hadamard
Green’s function associated with the differential equation
satisfied by an electrostatic potential Φ ≔ Φt in a static,
ðnþ 2Þ-dimensional spacetime. After introducing the main
equations we review Hadamard’s construction in an arbi-
trary number of dimensions, and then specialize it to the
specific case of a five-dimensional spacetime (n ¼ 3). We
next construct the Hadamard Green’s function as a local
expansion around the base point, and calculate h∂aΦSiren.
Then we specialize the results to a spherically symmetric
spacetime, decompose ∂rΦS in generalized Legendre
polynomials, and calculate the modes ψS0

l ðr0Þ that appear
in Eq. (3.7); these give rise to the ubiquitous regularization
parameters of the self-force literature [19–21]. This long
computation will return all the ingredients required in the
evaluation of Eq. (3.6).

B. Green’s function in a static spacetime

The metric of a static, ðnþ 2Þ-dimensional spacetime is
expressed as in Eq. (3.1). We introduce the vector field

Aa ≔ ∂a ln N; ð3:9Þ

and write Maxwell’s equation for the potential Φ as

∇2Φ − Aa∂aΦ ¼ Ωnμ; ð3:10Þ

where μ ≔ N2jt and ∇2 ≔ hab∇a∇b is the Laplacian
operator in the ðnþ 1Þ-dimensional space with metric
hab; ∇a is the covariant derivative operator in this space.
The field equation can be solved by means of a Green’s

function Gðx; x0Þ that satisfies

∇2Gðx; x0Þ − Aa∂aGðx; x0Þ ¼ −Ωnδðx; x0Þ; ð3:11Þ

where δðx; x0Þ is a scalarized Dirac distribution defined byR
aðx0Þδðx; x0Þ

ffiffiffiffi
h0

p
dnþ1x0 ¼ aðxÞ when x lies within the

domain of integration; h0 is the determinant of the spatial
metric evaluated at x0, and aðx0Þ is an arbitrary test function
of the spatial coordinates. In terms of the Green’s function
the solution to Eq. (3.10) is
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ΦðxÞ ¼ −
Z

Gðx; x0Þμðx0Þ
ffiffiffiffi
h0

p
dnþ1x0: ð3:12Þ

Notice that the source term in the equation for Φ comes
with a positive sign, while it comes with a negative sign in
the equation for G; this difference, which is entirely a
matter of convention, explains the appearance of a negative
sign on the right-hand side of Eq. (3.12).
For a static charge at a fixed position x0, the current

density of Eq. (2.3) yields μðxÞ ¼ qNðx0Þδðx; x0Þ, and
Eq. (3.12) reduces to

ΦðxÞ ¼ −qNðx0ÞGðx; x0Þ: ð3:13Þ

C. Hadamard construction

The Hadamard Green’s function GHðx; x0Þ is a local
solution to Eq. (3.11) that incorporates the singularity
structure implied by the Dirac distribution but does not
enforce boundary conditions that we might wish to impose
on the potentialΦ (for example, a falloff condition at spatial
infinity). The theory of such objects was developed by
Hadamard (who called them “elementary solutions” [14]),
and it is conveniently summarized in a number of refer-
ences [22–24]. We provide a brief description of the
construction here but include no derivations.
The local theory of Green’s functions relies heavily on

Synge’s world function σðx; x0Þ, which is half the squared
geodesic distance between the field point x and the base
point x0; it is assumed that x is sufficiently close to x0 that
the geodesic joining of them is unique. The gradient of σ
with respect to xa, denoted σa, is tangent to the geodesic,
and the same is true of σa0, the gradient with respect to x0a;
the vectors point in opposite directions. The mathematical
theory of two-point tensors (or bitensors), of which σ, σa,
and σa0 are examples, is developed systematically in
Refs. [22,25] and summarized in Ref. [24]. Our develop-
ments below rely heavily on these techniques.
The structure of the Hadamard Green’s function depends

critically on the dimensionality of the space. When n is
even (nþ 1 odd), the Green’s function can be expressed as

GHðx; x0Þ ¼
1

n − 1

Uðx; x0Þ
ð2σÞ12ðn−1Þ ; ð3:14Þ

where U is a biscalar that is assumed to be smooth in the
coincidence limit x → x0. When n is odd (nþ 1 even) we
have instead

GHðx; x0Þ ¼
1

n − 1

Uðx; x0Þ
ð2σÞ12ðn−1Þ þ Vðx; x0Þ ln 2σ

λ2
þWðx; x0Þ;

ð3:15Þ
where V and W are other smooth biscalars, and λ is an
arbitrary length parameter that makes the argument of the
logarithm dimensionless. In both cases U must be

normalized by Uðx0; x0Þ ¼ 1 to ensure that Eq. (3.14)
satisfies Eq. (3.11).
When n is even, U is constructed as an expansion in

powers of 2σ,

Uðx; x0Þ ¼
X∞
p¼0

Upðx; x0Þð2σÞp: ð3:16Þ

Substitution in Eq. (3.14) and then Eq. (3.11) reveals that
each expansion coefficient must satisfy

ð2σa∇a − Aaσa þ∇2σ þ 2p − n − 1ÞUp

¼ −
2p − nþ 1

ðn − 1Þ2 ð∇2 − Aa∇aÞUp−1: ð3:17Þ

This is a recursion relation for Up, and the differential
operator σa∇a on the left-hand side indicates that each
equation is a transport equation that can be integrated along
each geodesic that emanates from the base point x0. The
equation for U0 is integrated with a zero right-hand side,
and a unique solution is selected by enforcing the coinci-
dence limit U0ðx0; x0Þ ¼ 1. Hadamard proved [14] that the
expansion of Eq. (3.16) converges in a sufficiently small
neighborhood around x0.
When n is odd the construction must be modified to

account for the fact that the right-hand side of Eq. (3.17)
vanishes when p ¼ 1

2
ðn − 1Þ. The expansion for U must

then be truncated to

Uðx; x0Þ ¼
X12ðn−3Þ
p¼0

Upðx; x0Þð2σÞp; ð3:18Þ

and the additional terms in Eq. (3.15) are inserted to ensure
that the Green’s function continues to be a solution to
Eq. (3.11). The biscalars V and W are also constructed as
expansions in powers of 2σ,

Vðx; x0Þ ¼
X∞
p¼0

Vpðx; x0Þð2σÞp;

Wðx; x0Þ ¼
X∞
p¼0

Wpðx; x0Þð2σÞp; ð3:19Þ

and substitution in Eq. (3.15) and (3.11) produces the
recursion relations

ð2σa∇a − Aaσa þ∇2σ − 2ÞV0

¼ −
1

2ðn − 1Þ ð∇
2 − Aa∇aÞU1

2
ðn−3Þ; ð3:20Þ

ð2σa∇a − Aaσa þ∇2σ þ 2p − 2ÞVp

¼ −
1

2p
ð∇2 − Aa∇aÞVp−1; ð3:21Þ
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and

ð2σa∇a − Aaσa þ∇2σ þ 2p − 2ÞWp

¼ −
1

p
ð2σa∇a − Aaσa þ∇2σ þ 4p − 2ÞVp

−
1

2p
ð∇2 − Aa∇aÞWp−1: ð3:22Þ

The recursion relation (3.17) continues to apply in the odd
case. Equation (3.20) determines V0 from the last coef-
ficient in the expansion forU, and Eq. (3.21) determines the
remaining coefficients Vp. Equation (3.22) permits the
determination ofWp for p ≥ 1, but there is no equation that
determines W0, which must remain arbitrary. The expan-
sions of Eq. (3.19) are also known to converge [14] in a
sufficiently small neighborhood around x0.
The Hadamard Green’s function for n odd is subjected to

two types of ambiguities. The first concerns the choice of
length parameter λ, which is arbitrary, and the second
concerns the choice of function W0ðx; x0Þ, which is also
arbitrary. These ambiguities are not independent. In fact,
the freedom to choose λ is merely a special case of the
freedom to choose W0. To see this, suppose that an initial
choice for W0 is shifted to W0

0 ¼ W0 þ 2V0 ln ðλ=λ0Þ,
where λ0 is an alternate choice of length parameter. The
shift is then propagated to each Wp by the recursion
relations (3.22), and we find that Wp → W0

p ¼ Wpþ
2Vp ln ðλ=λ0Þ, which implies that

W → W0 ¼ W þ 2V ln ðλ=λ0Þ: ð3:23Þ

This, finally, is equivalent to a shift λ → λ0 in the Hadamard
form of Eq. (3.15).

D. Local expansion for n ¼ 3

We now set n ¼ 3 and use Eqs. (3.15), (3.18), (3.19) and
the recursion relations of Eqs. (3.17), (3.20), (3.21), (3.22)
to construct the Hadamard Green’s function as a local
expansion about the base point x0. To address the ambi-
guities discussed in the preceding paragraph, we specifi-
cally set W0ðx; x0Þ ¼ 0 for some arbitrary choice of λ. This
choice is justified on the basis that W0 is a smooth
contribution to the Hadamard Green’s function that cancels
out when it is incorporated in Eq. (3.4). The remaining
terms in the expansion for W play no role in the regulari-
zation prescription, because they vanish in the limit x → x0.
Equation (3.18) indicates that U ¼ U0 when n ¼ 3, and

Eq. (3.17) implies that U0 satisfies the transport equation

ð2σa∇a − Aaσa þ∇2σ − 4ÞU0 ¼ 0 ð3:24Þ

with U0ðx0; x0Þ ¼ 1. To integrate this equation we postulate
the existence of a local expansion of the form

U0 ¼ 1þ aa0σa
0 þ 1

2
aa0b0σa

0
σb

0 þ 1

6
aa0b0c0σa

0
σb

0
σc

0

þOðϵ4Þ; ð3:25Þ

in which aa0 , aa0b0 , and aa0b0c0 are tensors defined at the base
point x0. We let ϵ be a measure of distance between x and x0,
so that σa

0 ¼ OðϵÞ. Noting also that σ ¼ Oðϵ2Þ, we see that
a truncation of the expansion at order ϵ3 implies that the
U0=ð2σÞ contribution to the Green’s function is computed
through order ϵ; we shall maintain this degree of accuracy
in the remaining calculations.
The base-point tensors are determined by inserting

Eq. (3.25) within Eq. (3.24) and solving order by order
in ϵ. These manipulations are aided by the identities
ha

0
aσ

a ¼ −σa0 and σa
0
;aσ

a ¼ σa
0
satisfied by the world

function, as well as the standard expansions

σ;ab ¼ haa
0
hbb

0
�
ha0b0 −

1

3
Ra0c0b0d0σ

c0σd
0

þ 1

4
Ra0c0b0d0;e0σ

c0σd
0
σe

0 þOðϵ4Þ
�
; ð3:26aÞ

σ;a0b ¼ −hb0b
�
ha0b0 þ

1

6
Ra0c0b0d0σ

c0σd
0

−
1

12
Ra0c0b0d0;e0σ

c0σd
0
σe

0 þOðϵ4Þ
�
; ð3:26bÞ

Aa ¼ haa
0
�
Aa0 − Aa0;c0σ

c0 þ 1

2
Aa0;c0d0σ

c0σd
0 þOðϵ3Þ

�
;

ð3:26cÞ

hab0;c ¼
1

2
haa0hc

0
cRa0

b0c0d0σ
d0 þOðϵ2Þ; ð3:26dÞ

here haa0 is the parallel propagator, which takes a vector va
0

at x0 and returns the parallel-transported vector va ¼
haa0va

0
at x, Ra0b0c0d0 is the spatial Riemann tensor (defined

with respect to the spatial metric hab) evaluated at x0, and a
semicolon indicates covariant differentiation. A straightfor-
ward computation returns

aa0 ¼ −
1

2
Aa0 ; ð3:27aÞ

aa0b0 ¼
1

2
Aa0;b0 þ

1

4
Aa0Ab0 þ

1

6
Ra0b0 ; ð3:27bÞ

aa0b0c0 ¼ −
1

2
Aða0;b0c0Þ −

3

4
Aða0Ab0;c0Þ −

1

8
Aa0Ab0Ac0

−
1

4
Aða0Rb0c0Þ −

1

4
Rða0b0;c0Þ; ð3:27cÞ

where Ra0b0 is the spatial Ricci tensor at x0, and indices
enclosed within round brackets are fully symmetrized.
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While these calculations were carried out specifically for
n ¼ 3, it is easy to show that the end result for U0 is
actually independent of n.
We next compute the V ln ð2σÞ contribution to the

Green’s function through order ϵ (formally treating the
logarithm as a quantity of order unity), and this requires V0

expanded through order ϵ. We write

V0 ¼ bþ ba0σa
0 þOðϵ2Þ ð3:28Þ

and determine the coefficients b and ba0 by inserting
Eqs. (3.25) and (3.28) within Eq. (3.20). Another straight-
forward computation produces b ¼ − 1

8
aa

0
a0 − 1

8
Aa0aa0 and

ba0 ¼ − 1
4
bAa0 − 1

16
ab

0
b0a0 þ 1

24
ab0Rb0

a0 − 1
16
Ab0ab0a0 þ 1

16
ab0

Ab0
;a0 , and substitution of Eqs. (3.27) gives

b ¼ −
1

16

�
Aa0

;a0 −
1

2
Aa0Aa0 þ

1

3
R0
�
; ð3:29aÞ

ba0 ¼
1

32

�
∇02Aa0 þ Ab0

;b0Aa0 − Ab0Aa0;b0 −
1

2
Ab0Ab0Aa0

− Ab0Ra0b0 þ
1

3
R0Aa0 þ

1

3
R0
;a0

�
; ð3:29bÞ

where R0 is the Ricci scalar at x0, and ∇02 ≔ ha
0b0∇a0∇b0 is

the Laplacian operator with respect to the variables x0.

E. Gradient of the Hadamard Green’s function

Differentiation of GHðx; x0Þ with respect to xa yields

∂aGH ¼ −ga0a
�
−

U0

ð2σÞ2 σa0 þ
1

2σ

�
1

2
aa0 þ

1

2
aa0b0σb

0

þ
�
1

12
ae0Re0

b0a0c0 þ
1

4
aa0b0c0

�
σb

0
σc

0 þ 2V0σa0

�

þ ln
2σ

λ2
ba0 þOðϵÞ

	
; ð3:30Þ

and we wish to average this over a surface of constant
proper distance around x0. For this purpose it is convenient
to introduce Riemann normal coordinates based at x0, to
carry out all computations in this coordinate system, and to
translate back to the original coordinates when the calcu-
lation is completed. The construction of Riemann normal
coordinates is detailed in Sec. 8 of Ref. [24].
The Riemann normal coordinates xa are intimately tied

to Synge’s world function. We have that σa
0 ¼ −xa, and

2σ ¼ δabxaxb ≔ s2 is the squared proper distance from the
base point x0. In these coordinates the parallel propagator is
given explicitly by

ha
0
b ¼ δab −

1

6
Ra0

c0b0d0xcxd −
1

12
Ra0

c0b0d0;e0xcxdxe þOðs4Þ;
ð3:31Þ

in which the Riemann tensor and its covariant derivatives
are evaluated at x0. Making the substitutions in Eq. (3.30)
and writing xa ¼ sΩa, we obtain

∂aGH ¼ −
Ωa

s3
þ 1

s2

�
−
1

2
aa0 þ ab0ΩaΩb

�

þ 1

s

�
1

2
aa0b0Ωb −

1

2
ab0c0ΩaΩbΩc þ 2bΩa

�

−
1

4
aa0b0c0ΩbΩc þ 1

6
ab0c0d0ΩaΩbΩcΩd

− 2bb0ΩaΩb − 2 ln ðs=λÞba0 þOðsÞ;
ð3:32Þ

in which Ωa ≔ δabΩb.
We wish to average ∂aGH over a surface s ¼ constant.

With dA denoting the element of surface area, the
averaging operation is defined precisely by

h� � �i ≔
R ð� � �ÞdAR

dA
: ð3:33Þ

The surface is parametrized with polar angles θA, and the
defining relations xa ¼ sΩaðθAÞ imply that its intrinsic
metric is given by ds2 ¼ s2habΩa

AΩb
Bdθ

AdθB, where
Ωa

A ≔ ∂Ωa=∂θA. The metric in Riemann normal coordi-
nates is

hab ¼ δab −
1

3
Ra0c0b0d0xcxd −

1

6
Ra0c0b0d0;e0xcxdxe þOðs4Þ;

ð3:34Þ

and these relations imply that

dA ¼ s2
�
1 −

1

6
s2Ra0b0ΩaΩb −

1

12
s3Ra0b0;c0ΩaΩbΩc

þOðs4Þ
�
dΩn; ð3:35Þ

where dΩn is the area element on the unit n-sphere
introduced in Eq. (A1).
The explicit expression for dA and the standard

identities

1

Ωn

Z
ωadΩn ¼ 0; ð3:36aÞ

1

Ωn

Z
ωaωbdΩn ¼

1

nþ 1
δab; ð3:36bÞ

1

Ωn

Z
ωaωbωcdΩn ¼ 0; ð3:36cÞ
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1

Ωn

Z
ωaωbωcωddΩn ¼

1

ðnþ 1Þðnþ 3Þ
× ðδabδcd þ δacδbd þ δadδbcÞ

ð3:36dÞ

imply that

hωai ¼ −
s3

6ðnþ 1Þðnþ 3Þ∇
a0R0 þOðs4Þ; ð3:37aÞ

hωaωbi ¼ 1

nþ 1

�
δab −

s2

3ðnþ 3ÞR
a0b0

þ s2

3ðnþ 1Þðnþ 3ÞR
0δa0b0 þOðs4Þ

�
; ð3:37bÞ

hωaωbωci ¼ Oðs3Þ; ð3:37cÞ

hωaωbωcωdi ¼ 1

ðnþ 1Þðnþ 3Þ ðδ
abδcd þ δacδbd þ δadδbcÞ

þOðs2Þ: ð3:37dÞ

With all this we obtain

h∂aGHi ¼ −
aa0

4s2
−

1

24
ab

0
b0a0 −

1

72
ab

0
Ra0b0 þ

1

288
aa0R0

þ 1

144
R0
;a0 −

�
1

2
þ 2 ln

s
λ

�
ba0 þOðsÞ;

ð3:38Þ
after specialization to n ¼ 3.
Substitution of Eqs. (3.27) gives

h∂aGHi ¼
Aa0

8s3
þ ca0 −

�
1

2
þ 2 ln

s
λ

�
ba0 þOðsÞ; ð3:39Þ

where

ca0 ≔
1

48
∇02Aa0 þ

1

96
Ab0

;b0Aa0 þ
1

48
Ab0Aa0;b0

þ 1

192
Ab0Ab0Aa0 þ

1

144
Ab0Ra0b0 þ

1

576
R0Aa0 þ

1

72
R0
;a0 :

ð3:40Þ

The first term diverges in the limit s → 0, but since the
particle’s covariant acceleration at x0 is precisely equal to
Aa0 , this divergence can be absorbed into a redefinition of
the particle’s mass. Removing this term produces

h∂aGHiren ¼ ca0 −
�
1

2
þ 2 ln

s
λ

�
ba0 ; ð3:41Þ

and we see that this features a logarithmic dependence upon
s. This remaining dependence on the averaging radius

cannot be eliminated by renormalization. The result of
Eq. (3.41) was obtained in Riemann normal coordinates,
but since the right-hand side of the equation is expressed
in tensorial form, the result can immediately be translated
to any other coordinate system. It is worth mentioning that
a calculation performed for a four-dimensional spacetime
(n ¼ 2) would return h∂aGHiren ¼ 0; in this case FS ¼ 0.

F. Spherically symmetric space

We next specialize the results of the preceding sub-
sections to a five-dimensional, static and spherically
symmetric spacetime with metric

ds2 ¼ −e2ϕdt2 þ f−1dr2 þ r2dΩ2
3; ð3:42Þ

in which

dΩ2
3 ≔ dχ2 þ sin2χðdθ2 þ sin2θdϕ2Þ ð3:43Þ

is the metric on a unit three-sphere. Placing the base point
x0 on the polar axis χ0 ¼ 0 ensures that GHðx; x0Þ is
axisymmetric and therefore a function of r0, r, and χ only.
The covariant local expansion obtained in Sec. III D can
then be turned into an explicit expansion in powers of Δ ≔
r − r0 and χ. To achieve this we rely on techniques
developed in Sec. III of Ref. [26], which provide an explicit
expression for σa

0
as an expansion in powers of wa ≔

ðx − x0Þa ¼ ½Δ; χ; 0; 0�. The Green’s function expressed in
terms of Δ and χ is next differentiated with respect to Δ to
yield ∂rGH.
For the purposes of eventually expanding ∂rGH in

generalized Legendre polynomials to implement the mode
sum of Eq. (3.7), it is helpful to replace the dependence on
χ by a dependence on a function of χ that is well behaved
everywhere on the three-sphere. We choose Q ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − cos χÞp

, and replace each occurrence of χ by the
expansion χ ¼ Qþ 1

24
Q3 þ 3

640
Q5 þOðQ7Þ. After this

step we find it convenient to replace the dependence on
Q (which always occurs throughQ2) with a dependence on

ρ2 ≔
Δ2

fðr0Þ þ r02Q2 ¼ 2r02ðδ2 þ 1 − cos χÞ; ð3:44Þ

where

δ ≔
jΔjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r02fðr0Þ
p : ð3:45Þ

The reason for this substitution is that ρ2 is the leading term
in an expansion of 2σ in powers of wa; it therefore appears
prominently in our expansion of the Green’s function. The
manipulations described in this paragraph are standard fare
of self-force computations, and the methods originate in an
article by Detweiler, Messaritaki, and Whiting [27].
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The expression we obtain for ∂rGHðΔ; ρÞ is much too
large to be displayed here. In a schematic notation, we have
a result of the form

∂rGH ¼ ð∂rGHÞ−3 þ ð∂rGHÞ−2 þ ð∂rGHÞ−1 þ ð∂rGHÞ0
þ ð∂rGHÞln þOðϵÞ; ð3:46Þ

in which a subscript attached to enclosing brackets indi-
cates the scaling with ϵ. Each term in the sum is given
schematically by

ð∂rGHÞ−3 ¼ M−3ðΔ=ρ4Þ; ð3:47aÞ

ð∂rGHÞ−2 ¼ M−2ð1=ρ2Þ þOðΔ2=ρ4Þ þOðΔ4=ρ6Þ;
ð3:47bÞ

ð∂rGHÞ−1 ¼ OðΔ=ρ2Þ þOðΔ3=ρ4Þ þOðΔ5=ρ6Þ
þOðΔ7=ρ8Þ; ð3:47cÞ

ð∂rGHÞ0 ¼ M0 þOðΔ2=ρ2Þ þOðΔ4=ρ4Þ þOðΔ6=ρ6Þ
þOðΔ8=ρ8Þ þOðΔ10=ρ10Þ; ð3:47dÞ

ð∂rGHÞln ¼ Mln lnðρ=λÞ; ð3:47eÞ

where the coefficients in front of the factors Δp=ρq are
functions of r0 only. The terms involving M−3, M−2, M0,
andMln are those that give rise to regularization parameters
for self-force computations; the remaining terms are unim-
portant for our purposes.

G. Decomposition in Legendre polynomials

We next submit ∂rGH to a decomposition in the
generalized Legendre polynomials introduced in the
Appendix. We write

∂rGH ¼
X
l

ð∂rGHÞlPlðcos χÞ; ð3:48Þ

where the expansion coefficients ð∂rGHÞl depend on Δ
only. For the purposes of evaluating the mode sum of
Eq. (3.7), it is sufficient to obtain ð∂rGHÞl in the
limit Δ → 0.
For n ¼ 3 the generalized Legendre polynomials PlðuÞ

are directly related to UlðuÞ, the Chebyshev polynomials
of the second kind. The relation is obtained by comparing
their generating functions [Eq. (22.9.10) of Ref. [17] versus
Eq. (A13)], and we obtain UlðuÞ ¼ ðlþ 1ÞPlðuÞ. This
allows us to write the Rodrigues formula [Eq. (22.11.4) of
Ref. [17]]

PlðuÞ¼
ð−1Þl

ð2lþ1Þ!!ð1−u2Þ−1=2 dl

dul
ð1−u2Þlþ1

2 ð3:49Þ

and state the orthonormality property [Eq. (22.2.5) of
Ref. [17]]

Z
1

−1
ð1 − u2Þ1=2PlðuÞPl0 ðuÞdu ¼ π

2

1

ðlþ 1Þ2 δll0 : ð3:50Þ

It follows from this that any function fðuÞ can be decom-
posed as

fðuÞ ¼
X
l

flPlðuÞ; ð3:51Þ

with coefficients

fl ¼ 2

π
ðlþ 1Þ2

Z
1

−1
ð1 − u2Þ1=2fðuÞPlðuÞdu: ð3:52Þ

Insertion of Eq. (3.49) and integration by parts yields the
alternative expression

fl ¼ 2

π

ðlþ 1Þ2
ð2lþ 1Þ!!

Z
1

−1
ð1 − u2Þlþ1

2
dlf
dul

du ð3:53Þ

for the expansion coefficients.
The decomposition of ∂rGH, as expressed in Eqs. (3.46)

and (3.47), requires the decomposition of ρ−p, with ρ
defined by Eq. (3.44), and with p ranging from 2 to 10. To
accomplish this we adapt the method devised by Detweiler,
Messaritaki, and Whiting [27]. We set t ¼ e−T in the
generating function of Eq. (A13) to obtain

ðcoshT − uÞ−1 ¼
X
l

2ðlþ 1ÞPlðuÞe−ðlþ1ÞT; ð3:54Þ

write u ¼ cos χ, coshT ¼ δ2 þ 1, and expand the right-
hand side in powers of δ. This yields

ðδ2 þ 1 − cos χÞ−1 ¼
X
l

A1
lðδÞPlðcos χÞ ð3:55Þ

with

A1
l ¼ 2ðlþ 1Þ − 2

ffiffiffi
2

p
ðlþ 1Þ2δþOðδ2Þ: ð3:56Þ

This identity can be used to decompose ρ−2, and for the
higher powers we generate additional identities by repeat-
edly differentiating each side with respect to δ. We thus
obtain

ðδ2 þ 1 − cos χÞ−q ¼
X
l

Aq
lðδÞPlðcos χÞ ð3:57Þ

with

A2
l ¼

ffiffiffi
2

p
ðlþ 1Þ2δ−1 þOð1Þ; ð3:58aÞ
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A3
l ¼

ffiffiffi
2

p

4
ðlþ 1Þ2δ−3 þOðδ−1Þ; ð3:58bÞ

A4
l ¼ Oðδ−5Þ, and A5

l ¼ Oðδ−7Þ. Combining these results
with Eqs. (3.44) and (3.45), we arrive at the decompositions

ρ−p ¼
X
l

ðρ−pÞlPlðcos χÞ ð3:59Þ

with

ðρ−2Þl ¼ lþ 1

r02
þOðΔÞ; ð3:60aÞ

ðρ−4Þl ¼ ðlþ 1Þ2
ffiffiffiffiffiffiffiffiffiffi
fðr0Þp
2r03

1

jΔj þOð1Þ; ð3:60bÞ

ðρ−6Þl ¼ OðΔ−3Þ, ðρ−8Þl ¼ OðΔ−5Þ, and ðρ−10Þl ¼
OðΔ−7Þ.
To complete the decomposition of ∂rGH we must next

obtain a decomposition for lnðρ=λÞ. We have

lnðρ=λÞ ¼ lnð
ffiffiffi
2

p
r0=λÞ þ 1

2
lnðδ2 þ 1 − cos χÞ; ð3:61Þ

and the last term can be decomposed by inserting fðuÞ ≔
lnðδ2 þ 1 − uÞ within Eq. (3.53). The coefficients flðδ2Þ
can be expanded in powers of δ2, and the leading-order
term is given by

flð0Þ ¼ −
2

π

ðl − 1Þ!ðlþ 1Þ2
ð2lþ 1Þ!!

Z
1

−1
ð1 − uÞ1=2ð1þ uÞlþ1

2du

ð3:62Þ
when l ≠ 0. The substitution u ¼ 1 − 2t brings the integral
to the standard form of a Beta function, and after sim-
plification we obtain

flðδ2Þ ¼ −
2ðlþ 1Þ
lðlþ 2Þ þOðδ2Þ: ð3:63Þ

For l ¼ 0 we may insert fðuÞ directly in Eq. (3.52) and
evaluate the integral. This yields f0ðδ2Þ ¼ 1

2
− ln 2þ

Oðδ2Þ. Collecting results, we have established that the
decomposition of lnðρ=λÞ in generalized Legendre poly-
nomials comes with the coefficients

ðlnðρ=λÞÞ0 ¼ lnðr0=λÞ þ 1=4þOðΔ2Þ; ð3:64aÞ

ðlnðρ=λÞÞl≠0 ¼ −
lþ 1

lðlþ 2Þ þOðΔ2Þ: ð3:64bÞ

H. Regularization parameters

Inserting the decompositions of Eqs. (3.60) and (3.64)
into Eqs. (3.46) and (3.47) produces Eq. (3.48) with the
coefficients

ð∂rGHÞ0 ¼
ffiffiffiffiffiffiffiffiffiffi
fðr0Þp

M−3

2r03
signðΔÞ þM−2

r02
þM0

þMln½lnðr0=λÞ þ 1=4� þOðΔÞ; ð3:65aÞ

ð∂rGHÞl≠0 ¼
ffiffiffiffiffiffiffiffiffiffi
fðr0Þp

M−3

2r03
signðΔÞðlþ 1Þ2 þM−2

r02
ðlþ 1Þ

−Mln
lþ 1

lðlþ 2Þ þOðΔÞ: ð3:65bÞ

Taking into account Eq. (3.13), ΦS is identified with
−qNðx0ÞGHðx; x0Þ, and its decomposition involves the
coefficients −qeϕ0ð∂rGHÞl, where ϕ0 ≔ ϕðr0Þ. Substitut-
ing the previous results gives

q−1ψS0
0 ðr0Þ ¼ Aþ Bþ CþD½lnðr0=λÞ þ 1=4�; ð3:66aÞ

q−1ψS0
l≠0ðr0Þ ¼ Aðlþ 1Þ2 þ Bðlþ 1Þ −D

lþ 1

lðlþ 2Þ ;

ð3:66bÞ

where

A ≔ −
eϕ0

ffiffiffiffiffi
f0

p
M−3

2r30
signðΔÞ; ð3:67aÞ

B ≔ −
eϕ0M−2

r20
; ð3:67bÞ

C ≔ −eϕ0M0; ð3:67cÞ

D ≔ −eϕ0Mln ð3:67dÞ

are the so-called regularization parameters. We have
set f0 ≔ fðr0Þ.
Expressions for the regularization parameters can be

obtained by inserting the explicit form of the coefficients
M−3, M−2, M0, and Mln, which were left implicit in
Eq. (3.47). We find

A ¼ eϕ0

2r30
ffiffiffiffiffi
f0

p ; ð3:68aÞ

B ¼ eϕ0

4r30
ð2 − r0ϕ0

0Þ; ð3:68bÞ

C ¼ eϕ0

96r30
½2ð8 − r0ϕ0

0Þ

− ð16 − 20r0ϕ0
0 þ 3r20ϕ

02
0 − 6r20ϕ

00
0Þf0

− ð5 − 4r0ϕ0
0Þr0f00 þ r20f

00
0�; ð3:68cÞ
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D ¼ −
eϕ0

32r30
½4ð2 − r0ϕ0

0Þ − ð8 − 10r0ϕ0
0 þ 6r20ϕ

02
0 þ 6r20ϕ

00
0

− r30ϕ
03
0 þ 2r30ϕ

000
0 Þf0 þ ð2 − 4r0ϕ0

0 − 3r20ϕ
00
0Þr0f00

þ ð2 − r0ϕ0
0Þr20f000�; ð3:68dÞ

where ϕ0
0 ≔ ϕ0ðr0Þ, ϕ00

0 ≔ ϕ00ðr0Þ, with a similar notation
extending to f00, f

00
0 , and higher derivatives. In the case of

the Schwarzschild-Tangherlini spacetime, e2ϕ ¼ f ¼
1 − ðR=rÞ2, and the regularization parameters become

A ¼ 1

2r30
signðΔÞ; ð3:69aÞ

B ¼ 2 − 3R2=r20
4r30f

1=2
0

; ð3:69bÞ

C ¼ −
3R4

32r70f
1=2
0

; ð3:69cÞ

D ¼ 3ð6 − 5R2=r20ÞR4

32r70f
3=2
0

: ð3:69dÞ

With the regularization parameters now in hand, the mode
sum of Eq. (3.7) becomes

Fmode ¼ q2
X
l

Fmode
l ð3:70Þ

with

Fmode
0 ¼ q−1ψ 0

0ðr0Þ − A − B − C −D½lnðr0=λÞ þ 1=4�;
ð3:71aÞ

Fmode
l≠0 ¼ q−1ψ 0

l≠0ðr0Þ − Aðlþ 1Þ2 − Bðlþ 1Þ

þD
lþ 1

lðlþ 2Þ : ð3:71bÞ

To this we must add the contribution FS from the singular
potential, which can be obtained from Eq. (3.41). Because
FS is spherically symmetric, it has the effect of modifying
the expression for the zero mode F0. Noting that D ¼
2eϕ0br and letting

E ≔ eϕ0cr

¼ −
eϕ0

192r30
½2ð16 − r0ϕ0

0Þ − ð32 − 14r0ϕ0
0 þ 6r20ϕ

02
0 þ 12r20ϕ

00
0 þ r30ϕ

03
0 þ 6r30ϕ

0
0ϕ

00
0 þ 4r30ϕ

000
0 Þf0

þ ð8 − 3r0ϕ0
0 − 3r20ϕ

02
0 − 6r20ϕ

00
0Þr0f00 þ 2ð4 − r0ϕ0

0Þr20f000�

¼ −
ð4 − 7R2=r20ÞR4

192r70f
3=2
0

; ð3:72Þ

we find that

F ¼ Fmode þ FS ¼ q2
X
l

Fl ð3:73Þ

with

F0 ¼ q−1ψ 0
0ðr0Þ − A − B − C −D lnðr0=sÞ − E; ð3:74aÞ

Fl≠0 ¼ q−1ψ 0
l≠0ðr0Þ − Aðlþ 1Þ2 − Bðlþ 1Þ

þD
lþ 1

lðlþ 2Þ : ð3:74bÞ

At this final stage we notice that the dependence on the
arbitrary length parameter λ has completely disappeared.
The self-force, however, retains a dependence on the small
averaging radius s introduced in the calculation of FS.
The task of providing a regularization prescription for

the mode-sum computation of the self-force is now
completed. Our methods, based on an identification of
the singular potential ΦS with the Hadamard Green’s

function, can be applied to any static, spherically sym-
metric spacetime in five dimensions.

IV. EVALUATION OF THE SELF-FORCE

A. Numerical evaluation

Theelectromagnetic self-forceactingonaparticleofcharge
q held at position r0 in the five-dimensional Schwarzschild-
Tangherlini spacetime is computed by involving themodes of
the scalar potential displayed in Eqs. (2.17), (2.20), (2.21),
(2.22), as well as the regularization parameters of Eqs. (3.69)
and (3.72), in the mode sum of Eq. (3.73). The modes can be
evaluated either at r ¼ rþ0 , in which caseΔ ¼ 0þ, or they can
be evaluated at r ¼ r−0 , inwhich caseΔ ¼ 0−; the notationa�

signifies the limit when ϵ → 0 of a� ϵ, with ϵ taken to be
strictly positive. The associated Legendre functions are
evaluated to arbitrary numerical accuracy with the symbolic
manipulation softwareMAPLE, and themode sum is truncated
after a sufficient number of terms to ensure convergence. The
computation requires making a choice of averaging radius s,
and for illustrative purposes we sample the values s=R ¼
f10−4; 10−6; 10−8g.
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The results of this computationweredisplayed inFig. 1.The
numerical data reveal that the self-force F approaches
the (positive) asymptotic value Fasymp¼q2R2=ð2r50Þ when
r0≫R, turns negative when r becomes comparable to 4R,
anddivergesas−f−3=20 whenr0 → R;heref0 ≔ 1 − ðr0=RÞ2.

B. Large-r expansion of the self-force

To gain insight into the large-r0 behavior of the self-
force, we submit the modes of Eqs. (2.17) and the

regularization parameters of Eqs. (3.69) and (3.72) to an
expansion in powers of R=r0, and evaluate the mode sum
analytically. In the remainder of this section we shall write
r0 ¼ r to simplify the notation; there is no longer a need to
keep these quantities distinct.
The large-r behavior of ψ in

l , as defined in Eq. (2.17), can
be extracted by making use of Eq. (8.772.3) of Ref. [28]
and Eq. (15.3.11) of Ref. [17]. We find that the mode
function can be expressed as

ψ in
l ¼ Γðlþ 1Þ

Γðl=2þ 1ÞΓðl=2Þ ðr=RÞ
l

�Xl
p¼0

ð−l=2Þpð−l=2 − 1Þp
p!ð−lÞp

ðR=rÞ2p þ ð−1ÞlΓðl=2þ 1ÞΓðl=2Þ
Γðlþ 1ÞΓð−l=2ÞΓð−l=2 − 1Þ ðR=rÞ

2lþ2

×
X∞
p¼0

ðl=2þ 1Þpðl=2Þp
p!ðpþ lþ 1Þ! ðR=rÞ2p½−2 lnðr=RÞ − ψðpþ 1Þ − ψðpþ lþ 2Þ þ ψðl=2þ pþ 1Þ þ ψðl=2þ pÞ�

	
;

ð4:1Þ

in which ðaÞp ≔ aðaþ 1Þ � � � ðaþ p − 1Þ is the Pochham-
mer symbol, and ψðaÞ is the Digamma function. The mode
function is expressed as an expansion in powers of R=r, and
the second sum over p can be truncated when the required
degree of accuracy is achieved; this sum is multiplied by a
vanishing factor when l is even.
The large-r behavior of ψout

l can be extracted by making
use of Eq. (8.703) of Ref. [28] and Eq. (15.3.20) of
Ref. [17]. Here we find that the mode function can be
expressed as

ψout
l ¼−

ffiffiffi
π

p
Γðl=2þ2Þ

2lþ2Γðl=2þ3=2Þð1−R2=r2ÞðR=rÞlþ2

×Fðl=2þ1;l=2þ2;lþ2;R2=r2Þ; ð4:2Þ

where Fða; b; c; zÞ is the hypergeometric function, which is
defined as an infinite expansion in powers of its argument;
this expansion also can be truncated to the desired degree of
accuracy.
The calculation proceeds by first selecting O, the

maximum power of R=r (beyond the leading order) that
one wishes to keep in all expressions. The selected value of

O dictates at which point the infinite sums over p can be
truncated in Eqs. (4.1) and (4.2). It also determines
lmax ≔ 1

2
O − 1, the maximum value of l beyond which

the second set of terms in Eq. (4.1)—those involving the
logarithm and Digamma functions—are no longer required
in ψ in

l . The mode functions are evaluated individually for
0 ≤ l ≤ lmax, and then inserted in Eq. (2.20) or (2.21) to be
substituted in the regularized mode sum of Eq. (3.73). The
partial sum up to lmax is regularized by inserting the
regularization parameters expanded in powers of R=r.
Finally, the remaining sum from lmax to ∞, involving
the expanded mode functions and regularization parame-
ters, is evaluated exactly in closed form, and added to the
partial sum.
This calculation produces an explicit expression for the

self-force, given as an expansion in powers of R=r
truncated to the selected order O. We get

F ¼ q2R2

2r5

�
Fpoly −

9

8

R2

r2
Fln ln

4r2

sR

�
; ð4:3Þ

where

Fpoly ¼ 1þ 83

48
xþ 137

96
x2 þ 741

512
x3 þ 2333

1536
x4 þ 39487

24576
x5 þ 34827

20480
x6 þ 1177231

655360
x7 þ 1736163

917504
x8 þ 58354439

29360128
x9

þ 91678535

44040192
x10 þ 2553794009

1174405120
x11 þ 4181839333

1845493760
x12 þ 41740066799

17716740096
x13 þ 46918332385

19193135104
x14

þ 21768997188375

8598524526592
x15 þ 22506963123633

8598524526592
x16 þ 1486958228186313

550305569701888
x17 þOðx18Þ ð4:4Þ

and

Fln ¼ 1þ 2

3
xþ 5

8
x2 þ 5

8
x3 þ 245

384
x4 þ 21

32
x5 þ 693

1024
x6 þ 715

1024
x7 þ 23595

32768
x8 þ 12155

16384
x9 þ 600457

786432
x10

þ 205751

262144
x11 þ 3380195

4194304
x12 þ 1300075

1572864
x13 þ 28415925

33554432
x14 þ 29084535

33554432
x15 þ 1903421235

2147483648
x16 þOðx17Þ; ð4:5Þ
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with x ≔ ðR=rÞ2. These expressions were obtained by
selecting O ¼ 36 and lmax ¼ 17.

C. Summing the large-r expansion

The large-r expansion of Eq. (4.3), carried out to such a
high order in R=r, can be shown to produce an excellent fit
to the numerical data presented in Sec. IVA. The fit,

however, becomes relatively poor as R=r → 1, and indeed,
one can see from Eqs. (4.4) and (4.5) that the expansions
may not converge in this limit. In an effort to produce better
fits, we determined from the numerical data that the self-
force appears to diverge as f−3=2 when r → R; we recall
that f ¼ 1 − R2=r2 ¼ 1 − x. Removing this factor from the
expansions produces

f3=2Fpoly ¼ 1þ 11

48
x −

19

24
x2 þ 9

512
x3 þ 15

1024
x4 þ 103

8192
x5 þ 903

81920
x6 þ 1287

131072
x7 þ 16251

1835008
x8 þ 236871

29360128
x9

þ 62161

8388608
x10 þ 344923

50331648
x11 þ 2352909

369098752
x12 þ 17597487

2952790016
x13 þ 39054973

6979321856
x14

þ 4122846057

781684047872
x15 þ 2999320659

601295421440
x16 þ 2601240413

549755813888
x17 þOðx18Þ ð4:6Þ

and

f3=2Fln ¼ 1 −
5

6
xþOðx17Þ: ð4:7Þ

Remarkably, the factorization allows us to express Fln in
closed form (assuming that the pattern identified up to order
x17 is not broken at higher orders), and produces what
appears to be a converging series for f3=2Ppoly. This new
representation of the self-force can be shown to give rise to
a perfect fit to the numerical data.
Our unexpected success at expressing Fln in closed form

motivated us to seek a means to sum the power expansion
of Eq. (4.6). Let g0 stand for f−3=2Fpoly, and let s0ðpÞ be
the associated sequence of coefficients, so that g0 ¼P∞

p¼1 s0ðpÞxp−1. To search for a pattern in the sequence
we factorize each member in its prime factors, and notice
that the denominators are mostly powers of 2, except for
some factors that can be removed by defining a new
sequence1 s1ðpÞ ≔ ðp − 1Þðp − 2Þðp − 3Þs0ðpÞ. The new
sequence loses track of the first three members of the
original sequence, but these will be reinstated at a later
stage. To proceed with the search we repeatedly take
differences between adjacent members by defining the
new sequences s2ðpÞ ≔ s1ðpþ 1Þ − s1ðpÞ, s3ðpÞ ≔
s2ðpþ 1Þ − s2ðpÞ, and s4ðpÞ ≔ s3ðpþ 1Þ − s3ðpÞ. At this
point a recognizable pattern reveals itself, and we find that

s4ðpÞ ¼
9ðpþ 8Þð2p − 1Þ!!

2pþ4ðpþ 3Þ! : ð4:8Þ

Remarkably, the associated function g4 ¼
P∞

p¼1 s4ðpÞxp−1
can be written in closed form:

g4 ¼ −
3

16x4
ð4x3 − 21x2 þ 24x − 8Þ

−
3

4x4
ð2 − 3xÞð1 − xÞ3=2: ð4:9Þ

From this point on it is a simple matter to reconstruct the
function g0. Each sequence difference amounts to a
multiplication by ð1 − xÞ=x, so that g1 ¼ x3g4=ð1 − xÞ3
is the function associated with s1ðpÞ. To obtain g0 we must
account for the denominator in the relation s0ðpÞ ¼ s1ðpÞ=
½ðp − 1Þðp − 2Þðp − 3Þ�. It is easy to see that the divisions
by p − 1, p − 2, and then p − 3 give rise to the following
sequence of operations on g1:

gp−11 ≔
Z

x

0

x0−1g1ðx0Þdx0; ð4:10aÞ

gp−21 ≔
Z

x

0

x0−2gp−11 ðx0Þdx0; ð4:10bÞ

gp−31 ≔
Z

x

0

x0−2gp−21 ðx0Þdx0: ð4:10cÞ

Reinstating the early terms that were erased when s1ðpÞ
was introduced, we finally obtain

g0 ¼ 1þ 11

48
x −

19

24
x2 þ x2gp−31 : ð4:11Þ

The integrations displayed in Eq. (4.10) are elementary, and
we finally arrive at

f3=2Fpoly ¼ −
1

4x
þ 5

8
þ 139

96
x −

281

192
x2

þ
�
1

4x
þ 1

2
−
15

16
x

� ffiffiffi
f

p

þ 3

16
xð6 − 5xÞ ln 1þ ffiffiffi

f
p

2
ffiffiffi
f

p ; ð4:12Þ

the closed-form expression we were seeking. It is a simple
matter to verify that the expansion of the right-hand side of
Eq. (4.12) in powers of x reproduces Eq. (4.6).1Multiplication by p − 1 is optional.
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Combining Eqs. (4.3), (4.7), and (4.12), we finally
obtain the closed-form expression

F ¼ q2R2

2r5
Ξ

f3=2
; ð4:13aÞ

Ξ ¼ −
1

4x
þ 5

8
þ 139

96
x −

281

192
x2 þ

�
1

4x
þ 1

2
−
15

16
x

� ffiffiffi
f

p

þ 3

16
xð6 − 5xÞ ln ~sxð1þ ffiffiffi

f
p Þ

8
ffiffiffi
f

p ð4:13bÞ

for the electromagnetic self-force acting on a particle of
charge q at a fixed radial position r in the five-dimensional
Schwarzschild-Tangherlini spacetime. We have R denoting
the event-horizon radius, x ¼ ðR=rÞ2, f ¼ 1 − x, and ~s ≔
s=R is a dimensionless version of the averaging radius
introduced in the Hadamard regularization prescription.
It is a remarkable fact that the self-force can be expressed

in a closed form obtained by summing its large-r expan-
sion. It should be acknowledged that these manipulations
do not amount to a proof that the self-force is indeed given
by Eq. (4.13), because the patterns identified in the large-r
expansion could happen to break at any order beyond those
explicitly computed. (We have checked that the patterns
hold up to at least order x34.) We consider this eventuality
unlikely, however, and offer the perfect agreement between
Eq. (4.13) and the numerical data of Sec. IVA as evidence
that we have indeed found an exact expression for the
self-force.
For r=R ≫ 1, Ξ ¼ 1þOðxÞ, and the self-force behaves

as F ∼ q2R2=ð2r5Þ. For r=R → 1, we have instead

Ξ ¼ 3

16
ln

~s

8
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p þ 23

64
þOð1 − xÞ: ð4:14Þ

This estimate can be used to obtain the bound of Eq. (1.5)
for the self-force near the horizon.

V. SCALAR SELF-FORCE

The self-force acting on a scalar charge q at rest in the
five-dimensional Schwarzschild-Tangherlini spacetime can
be calculated with the same methods used to obtain the
electromagnetic self-force. Because the steps are very
similar we provide a very sparse description of this
calculation. We recycle the notation introduced in the
preceding sections.
A scalar potential Φ sourced by a scalar charge density μ

in an ðnþ 2Þ-dimensional spacetime satisfies the wave
equation

□Φ ¼ −Ωnμ; ð5:1Þ
where □ ≔ gαβ∇α∇β is the covariant wave operator. For a
point particle with scalar charge q moving on a world line
zαðτÞ,

μðxÞ ¼ q
Z

δðx; zðτÞÞdτ: ð5:2Þ

Formally, the scalar self-force acting on this particle is
given by

Fα ¼ qðgαβ þ uαuβÞ∇βΦ: ð5:3Þ

As in the case of the electromagnetic self-force, the scalar
field ∇βΦ is infinite on the world line, and the expression
requires regularization.
In the specific case of a static particle in the

Schwarzschild-Tangherlini spacetime, we have

□Φ ¼ f∂rrΦþ f
r
ðnþ rf0=fÞ∂rΦþ 1

r2
D2Φ ð5:4Þ

and

μ ¼ q
ffiffiffiffiffi
f0

p δðr − r0Þ
rn0

δðΩ;Ω0Þ: ð5:5Þ

Placing the charge on the polar axis, a decomposition in
generalized Legendre polynomials,

Φðr; χÞ ¼
X
l

ψlðrÞPlðcos χÞ; ð5:6Þ

produces the sequence of differential equations

r2ψ 00
l þ ðnþ rf0=fÞrψ 0

l −
lðlþ n − 1Þ

f
ψl

¼ −
qNðn;lÞffiffiffiffiffi
f0

p
rn−20

δðr − r0Þ ð5:7Þ

for the expansion coefficients ψlðrÞ. The linearly
independent solutions to the homogeneous equation are
ψ in
l ¼ PνðξÞ and ψout

l ¼ QνðξÞ, where ν ¼ l=ðn − 1Þ and
ξ ¼ 2ðr=RÞn−1 − 1. The solution to the inhomogeneous
equation is then

ψ<
l ¼ 2Nðn;lÞ

n − 1

q
ffiffiffiffiffi
f0

p
Rn−1 ψout

l ðr0Þψ in
l ðrÞ;

ψ>
l ¼ 2Nðn;lÞ

n − 1

q
ffiffiffiffiffi
f0

p
Rn−1 ψ in

l ðr0Þψout
l ðrÞ: ð5:8Þ

These expressions apply even when l ¼ 0, in which case
Nðn;lÞ ¼ 1, ψ in

0 ¼ 1, and ψout
0 ¼ − 1

2
ln f.

The formal self-force acting on a particle at r ¼ r0,
χ ¼ 0 has Fr ¼ qf0∂rΦ as its only nonvanishing compo-
nent. Converting to the invariant F ¼ f−1=20 Fr and sub-
stituting the mode decomposition, we obtain

F ¼ q
ffiffiffiffiffi
f0

p X
l

ψ 0
lðr0Þ: ð5:9Þ

BEACH, POISSON, AND NICKEL PHYSICAL REVIEW D 89, 124014 (2014)

124014-16



As in the electromagnetic case, this mode sum diverges and
requires regularization.
Our regularization prescription is based on the

Hadamard Green’s function and an averaging over a small
surface of constant proper distance around the particle. A
static potential in a static spacetime with the metric of
Eq. (3.1) satisfies

∇2Φþ Aa∂aΦ ¼ −Ωnμ; ð5:10Þ
which is the same as Eq. (3.10) except for the shift Aa →
−Aa and the minus sign on the right-hand side. The
associated Green’s function satisfies

∇2Gðx; x0Þ þ Aa∂aGðx; x0Þ ¼ −Ωnδðx; x0Þ; ð5:11Þ
which is the same as Eq. (3.11) except for the shift
Aa → −Aa. For the case of a point charge at a fixed
position x0, the scalar potential is given by

ΦðxÞ ¼ qGðx; x0Þ; ð5:12Þ
this is the same as Eq. (3.13) except for the absence of a
factor −Nðx0Þ on the right-hand side.
The regularized mode sum for the self-force shall be

expressed as

F ¼ q
ffiffiffiffiffi
f0

p �X
l

½ψ 0
lðr0Þ − ψS0

l ðr0Þ� þ h∂rΦSiren
	
; ð5:13Þ

and the singular potential ΦS shall be identified with
qGHðx; x0Þ, where GH is the Hadamard Green’s function.
The construction of the Green’s function proceeds as in
Sec. III. In fact, there is no need to repeat any of this work,
because the scalar Green’s function can be obtained directly
from the electromagnetic Green’s function by implement-
ing the shift Aa → −Aa. This observation, together with the

modified relation between ΦS and GH, implies that the
regularization parameters A, B,C,D, and E can be obtained
directly from Eqs. (3.68) and (3.72) by omitting the overall
factor of eϕ0 and changing the sign in front of ϕ0 and its
derivatives. The relations of Eq. (3.66) require no change,
and the regularized mode sum can be expressed as

F ¼ q2
ffiffiffiffiffi
f0

p X
l

Fl; ð5:14Þ

with Fl still given by Eq. (3.74). For the specific case of
the five-dimensional Schwarzschild-Tangherlini spacetime,
the regularization parameters for the scalar self-force are
given by

A ¼ −
1

2r30
ffiffiffiffiffi
f0

p signðΔÞ; ð5:15aÞ

B ¼ −
2 − R2=r20
4r30f0

; ð5:15bÞ

C ¼ −
R4

32r70f0
; ð5:15cÞ

D ¼ 3ð2 − R2=r20ÞR4

32r70f
2
0

; ð5:15dÞ

E ¼ 5ð4 − R2=r20ÞR4

192r70f
2
0

: ð5:15eÞ

We evaluate the scalar self-force as a large-r expansion
that will next be summed to a closed-form expression.
The large-r behavior of ψ in

l , obtained by combining
Eq. (8.820.4) of Ref. [28] with Eq. (15.3.11) of
Ref. [17], can be extracted from

ψ in
l ¼ Γðlþ 1Þ

½Γðl=2þ 1Þ�2 ðr=RÞ
l

�Xl
p¼0

½ð−l=2Þp�2
p!ð−lÞp

ðR=rÞ2p þ ð−1Þl½Γðl=2þ 1Þ�2
Γðlþ 1Þ½Γð−l=2Þ�2 ðR=rÞ

2lþ2

×
X∞
p¼0

½ðl=2þ 1Þp�2
p!ðpþ lþ 1Þ! ðR=rÞ

2p½−2 lnðr=RÞ − ψðpþ 1Þ − ψðpþ lþ 2Þ þ 2ψðl=2þ pþ 1Þ�
	
: ð5:16Þ

The large-r behavior of ψout
l , obtained by combining

Eq. (8.820.2) of Ref. [28] with Eq. (15.3.20) of Ref. [17],
is determined by

ψout
l ¼ −

ffiffiffi
π

p
Γðl=2þ 1Þ

2lþ2Γðl=2þ 3=2Þ ðR=rÞ
lþ2

× Fðl=2þ 1;l=2þ 1;lþ 2;R2=r2Þ: ð5:17Þ

Proceeding as in the electromagnetic case, we obtain the
scalar self-force expressed as an expansion in powers
of R=r truncated to a selected order O. For O ¼ 36 we
obtain

F ¼ 23

96

q2R4

r7

�
Fpoly −

18

23
Fln ln

4r2

sR

�
ð5:18Þ

with
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f3=2Fpoly ¼ 1 −
11

23
xþ 45

736
x2 þ 3

64
x3 þ 447

11776
x4 þ 3753

117760
x5 þ 25863

942080
x6 þ 63585

2637824
x7 þ 906615

42205184
x8

þ 233575

12058624
x9 þ 425309

24117248
x10 þ 8587071

530579456
x11 þ 63471735

4244635648
x12 þ 139414947

10032775168
x13

þ 14582768229

1123670818816
x14 þ 10522019289

864362168320
x15 þ 45291623793

3951369912320
x16 þOðx18Þ ð5:19Þ

and

f3=2Fln ¼ 1 −
1

2
xþOðx17Þ; ð5:20Þ

where x ≔ ðR=rÞ2.
The expansion of g0 ≔ f3=2Fpoly in powers of x can be

summed to a closed-form expression. The required steps
are very similar to those followed in the electromagnetic
case. Letting s0ðpÞ be the sequence of coefficients asso-
ciated with g0, so that g0 ¼

P∞
p¼1 s0ðpÞxp−1, we find that

the manipulations s1ðpÞ ¼ ðp − 1Þðp − 2Þs0ðpÞ, s2ðpÞ ≔
s1ðpþ 1Þ − s1ðpÞ, and s3ðpÞ ≔ s2ðpþ 1Þ − s2ðpÞ reveal
a recognizable pattern,

s3ðpÞ ¼
135

23

ð2pÞ!
22pp!ðpþ 3Þ! : ð5:21Þ

The associated function is

g3 ¼ −
9

46x4
ð5x3 − 30x2 þ 40x − 16Þ − 72

23x4
ð1 − xÞ5=2;

ð5:22Þ

and the original function g0 is easily reconstructed. We find

f3=2Fpoly ¼
1

92

�
48

x2
−
72

x
þ 146 − 77x

�

−
3

23

�
4

x2
−
4

x
þ 3

� ffiffiffi
f

p

þ 9

23
ð2 − xÞ ln 1þ ffiffiffi

f
p

2
ffiffiffi
f

p : ð5:23Þ

With this we finally arrive at

F ¼ q2R4

384r7
Ξ

f3=2
; ð5:24aÞ

Ξ ¼ 48

x2
−
72

x
þ 146 − 77x − 12

�
4

x2
−
4

x
þ 3

� ffiffiffi
f

p

þ 36ð2 − xÞ ln ~sxð1þ
ffiffiffi
f

p Þ
8

ffiffiffi
f

p ; ð5:24bÞ

a closed-form expression for the scalar self-force acting on
a particle of charge q at a fixed radial position r in the

five-dimensional Schwarzschild-Tangherlini spacetime.
We recall that f ¼ 1 − x, and ~s ≔ s=R is a dimensionless
version of the averaging radius introduced in the Hadamard
regularization prescription.
For r=R ≫ 1, Ξ ¼ 72 ln ð~sx=4Þ þOð1Þ, and the self-

force behaves as F ∼ Fasymp with

Fasymp ¼ −
3

8

q2R4

r7
ln

2rffiffiffi
~s

p
R
: ð5:25Þ

The self-force is attractive at large r, and it scales as
R4 ln r=r7, which can be contrasted with the R2=r5 scaling
of the electromagnetic self-force. As seen in Fig. 2, the self-
force stays attractive as r decreases toward R. Near the
horizon, taking r=R > 1þ ~s, we find that the self-force is
bounded by

F > −
3

128
ffiffiffi
2

p q2

R3

1

~s3=2
ln

128

~s
; ð5:26Þ

the same expression (1.5) that was found in the case of the
electromagnetic self-force.

FIG. 2. Scalar self-force acting on a particle of charge q at
position r in the five-dimensional Schwarzschild-Tangherlini
spacetime. The self-force is divided by the absolute value of
the asymptotic expression of Eq. (5.25), and it is plotted as a
function of r=R for ~s ¼ 10−4 (long-dashed curve), ~s ¼ 10−6

(solid curve), and ~s ¼ 10−8 (short-dashed curve).
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APPENDIX: SPHERICAL HARMONICS IN
HIGHER DIMENSIONS

We collect some useful results from the literature [29,30]
pertaining to the theory of spherical harmonics in higher
dimensions. The functions are defined on a unit n-sphere,
with n denoting the number of angular directions on the
sphere. The spherical polar coordinates on the sphere are
collectively denoted θA, with the index A running from 1 to
n. Their relation to Cartesian coordinates xa in a Euclidean
ðnþ 1Þ-dimensional space is given by xa ¼ rΩaðθAÞ,
where r is the distance to the origin and Ω a unit vector
in the direction of x. The metric on the unit n-sphere is
denoted ΩAB, and its inverse is ΩAB. The area element on
the sphere is dΩn ≔

ffiffiffiffi
Ω

p
dnθ, with Ω ≔ det½ΩAB�, and the

integrated area is

Ωn ≔
Z

dΩn ¼
2πðnþ1Þ=2

Γðnþ1
2
Þ : ðA1Þ

The covariant derivative operator compatible with the
metric is denoted DA.

1. Definition and properties

The scalar harmonics Yl;j are defined in such a way that
the function a ≔ rlYl;jðθAÞ satisfies Laplace’s equation
∇2a ¼ 0 in the ðnþ 1Þ-dimensional space. The trans-
formation to the spherical coordinates allows us to write

∇2a ¼ ∂rraþ n
r
∂raþ 1

r2
D2a; ðA2Þ

with ∂r indicating partial differentiation with respect to r,
and D2 ≔ ΩABDADB denoting the Laplacian operator on
the unit n-sphere. Making the substitution produces the
eigenvalue equation

½D2 þ lðlþ n − 1Þ�Yl;j ¼ 0 ðA3Þ

for the spherical harmonics. Here l ¼ 0; 1; 2; � � �, and the
index j runs over a number Nðn;lÞ of linearly independent
functions, with

Nðn;lÞ ¼ ð2lþ n − 1Þðlþ n − 2Þ!
ðn − 1Þ!l! : ðA4Þ

For n ¼ 2 we have the familiar Nð2;lÞ ¼ 2lþ 1, and for
n ¼ 3 we have Nð3;lÞ ¼ ðlþ 1Þ2.

Spherical harmonics of a given degree l can be ortho-
normalized by implementing the Gram-Schmidt procedure,
while spherical harmonics of different degrees are neces-
sarily orthogonal. The orthonormality relations are

Z
Ȳl;jðΩÞYl0;j0 ðΩÞdΩn ¼ δll0δjj0 ; ðA5Þ

with an overbar indicating complex conjugation. Here and
below we use the direction Ω as a convenient encoding of
the angles θA.
Any function b of the angular coordinates θA can be

decomposed in spherical harmonics, according to

bðΩÞ ¼
X∞
l¼0

XN−1

j¼0

bl;jYl;jðΩÞ; ðA6Þ

with coefficients given by

bl;j ¼
Z

fðΩÞȲl;jðΩÞdΩn: ðA7Þ

These relations imply the completeness relation

X
lj

Ȳl;jðΩ0ÞYl;jðΩÞ ¼ δðΩ;Ω0Þ; ðA8Þ

in which δðΩ;Ω0Þ is a scalarized delta function defined byZ
δðΩ;Ω0ÞbðΩ0ÞdΩ0

n ¼ bðΩÞ: ðA9Þ

2. Axisymmetric mode

Let χ ≔ θn be the angle from the polar axis, and let the
metric on the unit n-sphere be expressed as

dΩ2
n ¼ dχ2 þ sin2χdΩ2

n−1; ðA10Þ

where dΩ2
n−1 is the metric on a unit ðn − 1Þ-sphere. We

denote by Yl;0 the spherical harmonic of degree l that
depends on χ only, and we call this function the axisym-
metric mode. Its eigenvalue equation takes the form of the
ordinary differential equation

d2Yl;0

dχ2
þ ðn − 1Þ cos χ

sin χ
dYl;0

dχ
þ lðlþ n − 1ÞYl;0 ¼ 0;

ðA11Þ
and the transformation u ¼ cos χ brings this to the form of
a generalized Legendre equation

ð1 − u2ÞP″
l − nuP0

l þ lðlþ n − 1ÞPl ¼ 0; ðA12Þ
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in which a prime indicates differentiation with u. The
generalized Legendre functions are defined by the generat-
ing function

g ≔ ð1 − 2utþ t2Þ−1
2
ðn−1Þ ¼

X
l

alPlðuÞtl; ðA13Þ

where

al ≔
�
lþ n − 2

l

�
¼ ðlþ n − 2Þ!

ðn − 2Þ!l! : ðA14Þ

When n ¼ 2, al ¼ 1, and we recover the usual definition of
the Legendre polynomials. When x ¼ 1 we have that
g ¼ ð1 − tÞ−ðn−1Þ, with a series expansion given byP

lalt
l; this ensures that

Plð1Þ ¼ 1: ðA15Þ

The axisymmetric mode Yl;0ðχÞ and the generalized
Legendre function Plðcos χÞ differ by a normalization
factor that reconciles Eq. (A5) with Eq. (A15); the
relation is

Yl;0ðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðn;lÞ
Ωn

s
Plðcos χÞ: ðA16Þ

3. Value on the polar axis

Suppose that in Eq. (A8), the unit vector Ω0 is aligned
with the polar axis e. The completeness relation becomes

δðΩ; eÞ ¼
X
lj

Ȳl;jðeÞYl;jðΩÞ; ðA17Þ

and since δðΩ; eÞ is axisymmetric relative to e, we must
have that only the j ¼ 0 term contributes to the sum. This
implies that Ȳl;jðeÞ ¼ Ȳl;0ðeÞδj0, and since Ȳl;0ðeÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðn;lÞ=Ωn

p
Plð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðn;lÞ=Ωn

p
, we have that

Yl;jðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðn;lÞ
Ωn

s
δj0: ðA18Þ

Making the substitution in δðΩ; eÞ, we arrive at

δðΩ; eÞ ¼
X
l

Nðn;lÞ
Ωn

Plðcos χÞ; ðA19Þ

where cos χ ¼ Ω · e.
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