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We consider a self-interacting, massive scalar field (non)minimally coupled to new massive gravity in
three dimensions. For this model, we first derive a family of black hole solutions depending on a unique
integration constant and parametrized in terms of the nonminimal coupling parameter. Imposing the
absence of naked singularities restricts the parameters in such a way that the field vanishes at infinity and
fixes the metric to be asymptotically AdS. Within this family of solutions it is possible to find a black hole
supported by a minimally coupled scalar field, and therefore the existence of these solutions is not inherent
to the presence of the nonminimal coupling. The Wald formula for the entropy, being proportional to the
lapse function evaluated at the horizon, yields a zero entropy in spite of the fact that the solution has a
nonzero temperature. As a consequence, the unique integration constant may be interpreted as a sort of
gravitational hair. As in the source-free case, we show that the same field equations also admit
asymptotically Lifshitz black hole solutions in a different region of the space of parameters. These
Lifshitz solutions are divided into three families for which all the parameters entering in the action may be
expressed in terms of the dynamical exponent.
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I. INTRODUCTION

Since the discovery of the Bañados-Teitelboim-Zanelli
black hole solution [1], there has been increasing interest in
black hole physics in three dimensions. This interest has
grown even greater in the last two decades, in part because
of the implications in the context of the AdS3=CFT2

correspondence. Indeed, it is now well accepted that
three-dimensional gravity is an excellent laboratory in
which to explore and test some of the ideas behind the
AdS/CFT correspondence [2]. In contrast with the four-
dimensional case, the existence of the Bañados-Teitelboim-
Zanelli black hole in three dimensions is inherent to the
presence of the negative cosmological constant, and due to
the lack of local degrees of freedom in pure Einstein gravity
in three dimensions, it is the global structure of this solution
that provides its nontriviality. A way to circumvent this
behavior was proposed long ago in [3] by adding to the
standard Einstein-Hilbert action a Chern-Simons term
built out of the connection. In second-order formulation,
the resulting theory—which is called “topologically mas-
sive gravity” and is not parity invariant because of the

Chern-Simons term—propagates a single massive spin 2
(left or right) degree of freedom depending on the sign of
the Chern-Simons coupling parameter. More recently, a
massive gravity respecting parity invariance has been
proposed in Ref. [4], where the authors showed that a
particular and specific combination of the quadratic invar-
iants constructed with the scalar curvature R and the Ricci
tensor Rμν kill the dangerous spin 0 mode leaving only a
healthy massive spin 2 field. Soon after its presentation, this
theory, whose action in the presence of the cosmological
term Λ is given by

SNMG ¼ 1

2

Z
d3x

ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

m2

�
RμνRμν −

3

8
R2

��
;

was dubbed “newmassive gravity.” This new gravity theory
has been intensively studied during the last years and
shown to admit interesting physical solutions, such as AdS
waves [5], warped AdS black holes [6], and type D and
type N solutions (see [7] and [8]). It is also interesting to
stress that new massive gravity accommodates black hole
solutions with rather different asymptotic behaviors.
Indeed, within the black hole spectra of solutions of the
theory, one finds rotating asymptotically AdS black holes
with a gravitational hair [9,10] as well as a Lifshitz black
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hole with a dynamical exponent z ¼ 3 [11]. By Lifshitz
black hole, we mean a black hole spacetime whose
asymptotic behavior enjoys an anisotropic scaling sym-
metry, where time and space scale with different weights.
Recently, there has been intense activity to promote the
ideas underlying the gauge-gravity duality to nonrelativistic
physics with the hope of gaining a better understanding of
some strongly coupled condensed matter physics phenom-
ena observed in laboratories (for a review see, e.g.,
[12,13]). In this context Lifshitz spacetimes, whose metrics
read

ds2L ¼ −r2zdt2 þ dr2

r2
þ r2d~x2D−2; ð1Þ

are natural candidates to be the gravity duals for non-
relativistic scale invariant theories, [14]. Here the dynamical
exponent z reflects the anisotropy of the scaling symmetry,

t → λzt; r →
r
λ
; ~x → λ~x:

In the present paper we establish that new massive
gravity in three dimensions may also accommodate black
hole solutions with a source given by a (non)minimally
coupled and self-interacting scalar field whose action
reads

SM ¼ −
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2
∂μΦ∂μΦþ ξ

2
RΦ2 þM

2
Φ2 þ λ

4!
Φ4

�
:

Here, ξ ≥ 0 denotes the nonminimal coupling parameter, R
the scalar curvature,M is a constant identified as part of the
mass of the scalar field, and λ is the coupling constant of
the potential Φ4. The field equations obtained by varying
the action SNMG þ SM read

Gμν þ Λgμν −
1

2m2
Kμν ¼ Tμν; ð2aÞ

□Φ ¼ ξRΦþMΦþ λ

3!
Φ3; ð2bÞ

where we have defined

Kμν ¼ 2□Rμν −
1

2
∇μ∇νR −

1

2
□Rgμν þ 4RμανβRαβ ð3Þ

−
3

2
RRμν − RαβRαβgμν þ

3

8
R2gμν; ð4Þ

and the stress tensor is given by

Tμν ¼ ∂μΦ∂νΦ − gμν

�
1

2
∂σΦ∂σΦþM

2
Φ2 þ λ

4!
Φ4

�
þ ξðgμν□ −∇μ∇ν þ GμνÞΦ2: ð5Þ

In the case of pure Einstein gravity with a cosmological
constant, there exists a broad literature of black hole
solutions with a (non)minimal scalar field, which started
with the pioneering work of Martinez and Zanelli [15] (see,
e.g., [16–19]). In this paper we revisit this problem in the
context of new massive gravity. Interestingly enough, we
will show that, as in the source-free case, there exists a
family of asymptotically AdS black hole solutions as well
as Lifshitz black hole configurations.
The organization of the paper follows. In the next

section, we present a family of AdS black hole solutions
depending on a unique integration constant. For this class
of solutions, the constants m, M, Λ, and λ are all para-
metrized in terms of the nonminimal coupling parameter
and the AdS radius l. We also show that these solutions
may even exist for a scalar that is minimally coupled to
gravity (ξ ¼ 0), while if ξ takes the value that provides a
conformally coupled scalar (ξ ¼ 1=8), the solution reduces
to a stealth black hole configuration on a particular case of
the asymptotically AdS black hole of [9–10]. In Sec. III,
three classes of asymptotically Lifshitz black holes are
reported for which all the parameters entering in the
action are fixed in terms of the dynamical exponent. The
last section is devoted to the discussion and some
conclusions.

II. ASYMPTOTICALLY ADS BLACK
HOLE SOLUTIONS

A black hole solution of the field equations (2)
is given by

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ þ r2dφ2; ð6aÞ

FðrÞ ¼ r2

l2
− c1

�
r
l

�32ξ−5
16ξ−3

; ð6bÞ

ΦðrÞ ¼
�
l
r

� 1
6−32ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c1ð32ξ − 5Þ

256ξ2 − 32ξ − 1

s
; ð6cÞ

where c1 is an arbitrary integration constant, Λ is the
cosmological term in the action, λ is the self-interaction
coupling, and the graviton mass and scalar field mass are
fixed as
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Λ ¼ −
ð16ξ − 1Þð48ξ − 7Þ
2ð256ξ2 − 32ξ − 1Þl2 ;

λ ¼ −
3ð8ξ − 1Þð256ξ2 − 32ξ − 1Þð768ξ2 − 152ξþ 9Þ

16ð16ξ − 3Þ2ð32ξ − 5Þl2 ;

m2 ¼ 256ξ2 − 32ξ − 1

2ð16ξ − 3Þ2l2 ;

M ¼ ð8ξ − 1Þð768ξ2 − 192ξþ 11Þ
4ð16ξ − 3Þ2l2 : ð7Þ

The isolated points defined by ξ ¼ 1
16
ð1þ ffiffiffi

2
p Þ, ξ ¼ 5

32
, and

ξ ¼ 3
16
are excluded from this family. Note that for c1 ¼ 0,

the metric becomes the pure AdS spacetime while the scalar
field vanishes identically, and in this case the couplings of
the action are no longer fixed in terms of the nonminimal
coupling parameter but rather as

Λ ¼ m2 ¼ −
1

2l2
:

Imposing the absence of naked singularities at infinity
implies that the coupling ξ must be restricted such that the
leading term in the lapse should be r2 (therefore fixing an
asymptotically AdS behavior). As a consequence, the
scalar field vanishes at infinity. Requiring in addition the
existence of an event horizon, finally implies that the range
of physically allowed values of ξ is

ξ ∈
�
0;

1

16
ð1þ

ffiffiffi
2

p
Þ½∪� 5

32
;
3

16

�
: ð8Þ

Clearly the strength of the subleading term in the metric
strongly depends on the value of the nonminimal coupling
parameter ξ.
The horizon is located at r ¼ rþ ¼ lc3−16ξ1 , while the

Hawking temperature of these solutions is given by

TH ¼ c3−16ξ1

4πlð3 − 16ξÞ : ð9Þ

The Wald formula for the entropy S, being proportional to
the lapse metric function evaluated at the horizon, yields a
zero entropy,

S ∝
�
1 − c1

�
r
l

� 1
16ξ−3

�����
r¼rþ

¼ 0: ð10Þ

Note that zero entropy black hole solutions with planar
horizon have also been found for scalar fields nonmini-
mally coupled with the general Lovelock gravity in
arbitrary dimension in [20]. Assuming that the first
law of thermodynamics holds implies that the solutions
in our family have zero mass. As a consequence, one

may interpret the unique integration constant c1 as a
gravitational hair.
To conclude this section, let us analyze in more detail the

solutions obtained for some relevant particular values of ξ.
It is remarkable to note that we are allowed to consider the
minimally coupled case ðξ ¼ 0Þ and therefore conclude
that the existence of these solutions is not inherent to the
presence of the nonminimal coupling RΦ2 in the action as
is the case, for example, in four dimensions, [21–23]. For
this case the metric reduces to

ds2 ¼ −
�
r2

l2
− c1

r5=3

l5=3

�
dt2 þ dr2

r2

l2 − c1
r5=3

l5=3

þ r2dϕ2; ð11Þ

and the values for the couplings can be read from Eq. (7),
while the expression for the field is obtained from (6c) by
fixing ξ ¼ 0.
When ξ ¼ 1

8
, the scalar field becomes massless M ¼ 0

and not self-interacting λ ¼ 0, giving indeed a conformal
invariant matter source. The remaining parameters take the
values Λ ¼ m2 ¼ − 1

2
, while the metric reduces to

ds2 ¼ −
�
r2

l2
− c1

r
l

�
dt2 þ dr2

r2

l2 − c1
r
l

þ r2dϕ2: ð12Þ

The expression for the field can be read as well from (6c) by
setting ξ ¼ 1

8
. This solution is a particular case of the

asymptotically AdS black hole found in the absence of
sources for new massive gravity [9,10]. In other words, for
the conformal coupling ξ ¼ 1

8
, the black hole becomes a

particular solution of the field equations (2) for which both
sides (the gravity and the source parts) vanish identically,

Gμν þ Λgμν −
1

2m2
Kμν ¼ 0 ¼ Tμν:

This type of black hole configuration was discussed in [24]
and dubbed “stealth.” Note that this stealth solution
corresponds to a particular case of the one found in [25].
We now show that the same field equations (2) may also

accommodate Lifshitz black hole solutions for a different
region of the parameters, as occurs in the source-free
case with the AdS solution [9] and the z ¼ 3 Lifshitz
solution [11].

III. ASYMPTOTICALLY LIFSHITZ BLACK
HOLE SOLUTIONS

There are three branches of solutions with Lifshitz
asymptotic for the above equations of motion (2). In all
of them, the solutions have the following generic form,
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ds2 ¼ r2z
�
1 −

c1
rχ

�
dt2 þ dr2

r2ð1 − c1
rχÞ

þ r2dφ2;

ΦðrÞ ¼
ffiffiffi
α

p
rχ=2

; ð13Þ

with the cosmological term and the graviton mass
parametrized in terms of the dynamical exponent as

Λ ¼ −
1

2
ðz2 þ zþ 1Þ; m2 ¼ −

1

2
ðz2 − 3zþ 1Þ; ð14Þ

where from now on we set l ¼ 1. The different branches
share basically the same features as those discussed in the
AdS case and are presented with some detail below.

A. χ ¼ ðzþ 1Þ
For χ ¼ ðzþ 1Þ, there exists a Lifshitz black hole

solution, where the parameters are fixed as follows:

ξ ¼ 5

32
; α ¼ 16c1ð1 − zÞ

z2 − 3zþ 1
;

M ¼ 1

16
ðz2 − 3zþ 1Þ;

λ ¼ 3ðz2 − 3zþ 1Þð8z2 þ 11zþ 13Þ
256ðz − 1Þ : ð15Þ

In order to deal with a real scalar field, the constant c1
must be strictly positive and the existence of a horizon is
ensured for

z ∈
�
0;
3 −

ffiffiffi
5

p

2
½∪�1; 3þ

ffiffiffi
5

p

2

�
:

As in the previous sections the other values at the
boundaries of the intervals are excluded from this family
of solutions.

B. χ ¼ 2ðz − 1Þ
The second family of Lifshitz black hole solutions is

only valid for z ≥ 1 in order to have the correct Lifshitz
asymptotic, and the parameters take the following form:

ξ ¼ 2z − 1

4ð3z − 1Þ ; α ¼ 4c1ð1 − 3zÞ
z2 − 3zþ 1

;

M ¼ ð2z − 5Þðz2 − 3zþ 1Þ
6z − 2

;

λ ¼ 3ðz2 − 3zþ 1Þð12z3 − 44z2 þ 48z − 13Þ
4ð1 − 3zÞ2 : ð16Þ

As in the previous case, in order to ensure a well-behaved
spacetime at infinity as well as an event horizon, the
dynamical exponent must belong to the following range:

z ∈
�
1;
3þ ffiffiffi

5
p

2

�
:

C. χ ¼ 1
2 ðzþ 1Þ

The last class of solutions is given for χ ¼ 1
2
ðzþ 1Þ with

ξ¼ 3z2 − 4zþ 3

2ð9z2 − 12zþ 11Þ ; α¼ c1ðz− 3Þð9z2 − 12z− 11Þ
2ðz− 1Þðz2 − 3zþ 1Þ ;

M ¼ ðz− 1Þð21z2 − 13z2 þ 31z− 15Þ
16ð9z2 − 12z− 11Þ

λ¼ −
3ðz− 1Þ3ðz2 − 3zþ 1Þð9z2 − 12z− 19Þ

4ðz− 3Þð9z2 − 12z− 11Þ2 :

The dynamical exponent falls within the following range:

z ∈
�
0;
3 −

ffiffiffi
5

p

2
½∪�1; 3þ

ffiffiffi
5

p

2
½∪�3;∞

�
:

In contrast with the previous cases, here there is a wider
range of possible values for the dynamical exponent. Note
that none of these three classes of solutions accommodate a
stealth with z ¼ 3 [11], as was the case for the asymptoti-
cally AdS solution. Indeed, one can see from the previous
expression of λ that the value z ¼ 3 is singular in this case.
We also notice that minimally coupled scalar fields are not
allowed in the Lifshitz case. As a last comment, we mention
that as in the AdS case, the Wald formula for the entropy S
will be proportional to

S ∝
�
1 −

c1
rχ

�����
r¼rþ

and hence vanish by virtue of the definition of the
horizon rþ.

IV. CONCLUSIONS

In this paper, we have reported two classes of black hole
solutions of new massive gravity in three dimensions with a
source described in term of a self-interacting and massive
scalar field (non)minimally coupled. The first metric family
corresponds to an asymptotically AdS black hole in a
specific region of the coupling constants which are all
parametrized in term of ξ. As in the source-free case, we
have shown that the same equations also admit Lifshitz black
hole solutions for a different set of the parameters expressed
in this case in terms of the dynamical exponent z. It is
somehow appealing that the equations of new massive
gravity with or without source may accommodate such
classes of black holes with different asymptotic behavior. It
is also surprising that the matter source that has made
possible the construction of these black hole solutions is
quite simple. Indeed, it involves a scalar field Φ that can
be massive, (non)minimally coupled, and for which the

FRANCISCO CORREA, MOKHTAR HASSAINE, AND JULIO OLIVA PHYSICAL REVIEW D 89, 124005 (2014)

124005-4



self-interacting potential is a physical one,U ∝ Φ4.We have
also computed theWald formula for the entropy and realized
that it is proportional to the lapsemetric function evaluated at
the horizon. As a consequence, the Wald entropy vanishes
identically in spite of the fact that the solutions have a
nonzero temperature. We have not computed the mass since
imposing that the first law of thermodynamics holds, this
would yield a zero mass. Indeed, in Ref. [20], the planar
black hole solutions obtained for Lovelock gravity with a
scalar field nonminimally coupled also have zero entropy
when computed usingWald’s formula. In this case, using the
Euclidean formalism, it was explicitly shown that the mass
indeed vanishes. Independently, it will be nice to provide a
complete thermodynamics analysis of the solutions derived
here. Also it will be desirable to understand the physical
meaning of these solutions that have a zero entropy. It seems
that it is due to the presence of higher-order curvature terms
as well as to the fact that the transverse section of these
solutions is planar. The scalar field foundhere is static in both
families of solutions; hence, a rotating version of the AdS
black hole solution can easily be obtained by operating with
an improper boost in the ðt − φÞ plane. This trick will also
work in the case of the Lifshitz black hole. with the
difference being that the spinning version of the Lifshitz
black hole will violate the Lifshitz isometry at infinity. In
three dimensions, solitons can easily be constructed from

static black holes by operating a doubleWick rotation. In the
case of Lifshitz black holes with dynamical exponent z, the
corresponding soliton will enjoy the Lifshitz anisotropy
asymptotically with a dynamical exponent z−1. These
solitons may be useful for better understanding the thermo-
dynamics issue of the solutions presented here. Indeed, in
Ref. [26], the authors proposed a generalization of the Cardy
formula in order to compute the semiclassical entropy of
Lifshitz black holes with dynamical exponent z, and in this
formula the ground state is played by the soliton with
dynamical exponent z−1.
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