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We consider the Plebański class of electrovacuum solutions to the Einstein equations with a
cosmological constant. These space-times, which are also known as the Kerr-Newman-NUT–(anti–)de
Sitter space-times, are characterized by a mass m, a spin a, a parameter β that comprises electric and
magnetic charge, a NUT parameter l and a cosmological constant Λ. Based on a detailed discussion of the
photon regions in these space-times (i.e., of the regions in which spherical lightlike geodesics exist), we
derive an analytical formula for the shadow of a Kerr-Newman-NUT–(anti–)de Sitter black hole for an
observer at given Boyer-Lindquist coordinates ðrO;ϑOÞ in the domain of outer communication. We
visualize the photon regions and the shadows for various values of the parameters.
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I. INTRODUCTION

Over the last twenty years observations have produced
increasing evidence for the existence of a supermassive
black hole at the center of our Galaxy. This evidence comes
from the observation of orbits of stars in the infrared [1,2]
which allows to estimate the mass of the central object. In
combination with estimates of the volume in which this
mass must be concentrated, the result strongly supports the
hypothesis of a black hole. These observations are expected
to become even more precise when the GRAVITY instru-
ment [3] goes into operation soon. In addition, it is planned
to explore the inner region of the center of our Galaxy, in
the order of magnitude of the Schwarzschild radius of the
central mass, with submillimeter radio telescopes. From
this project, which is called the Event Horizon Telescope
[4], we expect a radio image of the shadow of the central
black hole in a few years’ time. Therefore, it is timely to
advance the theoretical investigations of the shadows of
black holes as far as possible, as a basis for evaluating the
observational results that are to be expected soon.
For an observer at radius coordinate rO in the

Schwarzschild space-time, the shadow can be constructed
in the following way. We assume that there are light sources
distributed on the sphere r ¼ rL for some chosen rL > rO.
We consider all light rays issuing from the observer’s
position into the past. Some of them will reach a light
source at rL, after being deflected by the black hole; to the
initial directions of this first class of light rays we associate
brightness on the observer’s sky. Some of them will go to
the horizon and never reach a light source at rL; to the
initial directions of this second class of light rays we
associate darkness on the observer’s sky. The second class

fills the shaded region in Fig. 1. The borderline between
the two classes are light rays that asymptotically spiral
towards the photon sphere at r ¼ 3m (with G ¼ 1, c ¼ 1).
Therefore, in this case the shadow is circular and its angular
radius is determined by light rays that approach the photon
sphere (see again Fig. 1). For simplicity, we have con-
structed the shadow with light sources on a sphere r ¼ rL.
From the geometry it is clear that we could have light
sources anywhere else as long as they are outside of the
shaded region in Fig. 1.
Synge [5] was the first to calculate what we nowa-

days call the shadow of a Schwarzschild black hole.
(Synge did not use the word “shadow” but he investigated
the condition under which photons could escape to infin-
ity.) He found that the angular radius α of the shadow is
given by the simple formula

sin2α ¼ 27

4

ðρO − 1Þ
ρ3O

ð1Þ

where ρO ¼ rO=ð2mÞ is the ratio of the observer’s r
coordinate rO and the Schwarzschild radius. For the black
hole at the galactic center, an observer on the Earth is at
rO ≈ 8.3 kpc, and the mass is m ≈ 4.1 × 106 Solar masses
[2,6]. If one inserts these values into Synge’s formula one
gets an angular radius of α ≈ 25 microarcseconds which is
expected to be resolvable with Very Long Baseline
Interferometry (VLBI) soon [4,7].

2m 3m rO

α

FIG. 1 (color online). Angular radius α of the shadow of a
Schwarzschild black hole, given by Synge’s formula, Eq. (1).
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For a Kerr black hole, there is no longer a photon sphere
and the shadow is no longer circular. The photon sphere
breaks into a “photon region” which is filled by spherical
lightlike geodesics, i.e. by lightlike geodesics each of
which is confined to a sphere r ¼ constant. The boundary
of the shadow corresponds to light rays that asymptotically
spiral towards one of these spherical lightlike geodesics.
The deviation of the shadow from a circle is a measure for
the spin of the black hole. Bardeen [8] was the first to
correctly calculate the shadow of a Kerr black hole, the
results can also be found, e.g., in Chandrasekhar’s book [9].
For pictures of individual spherical lightlike geodesics in
the Kerr space-time we refer to Teo [10], and for a
discussion and a picture of the photon region in the Kerr
space-time to Perlick [11].
The shadow has also been discussed for other black holes

(and for naked singularities), e.g. for the Kerr-Newman
space-time [12], for δ ¼ 2 Tomimatsu-Sato space-times
[13], for black holes in extended Chern-Simons modified
gravity [14], in a Randall-Sundrum braneworld scenario
[15], and a Kaluza-Klein rotating dilaton black hole [16],
for the Kerr-NUT space-time [17], for multi-black holes
[18], and for regular black holes [19]. Hioki and Maeda
[20] introduced a deformation parameter that characterizes
the deviation of the shadow from a circle. Special interest
has been devoted to the question of whether the shadow
of a black hole can be used as a test of the no-hair theorem
(see Johannsen and Psaltis [21]). All these articles are
largely based on ray tracing in the respective space-times,
rather than on analytical studies of the geodesic equation,
and they assume that the observer is at infinity.
In this paper we want to extend the discussion of the

shadow in various directions. First, we consider a class of
space-times for which the shadow has not yet been calcu-
lated, namely the Plebański class [22]. The metrics in this
class, which are also known as the Kerr-Newman-NUT–
(anti–)de Sitter metrics, depend on five parameters: A mass
m, a spin a, a parameter β that comprises an electric and a
magnetic charge, a NUT parameter l, and a cosmological
constant Λ. It is a subclass of the Plebański-Demiański class
[23] of stationary axisymmetric type D electrovacuum
solutions of Einstein’s field equations with a cosmological
constant; the latter includes, in addition to the five param-
eters of the Plebański class, also a so-called acceleration
parameter; in the present work we will not consider the
acceleration parameter but we are planning to study its
influence in a separate publication. Second, we develop the
formalism for an observer not at infinity but rather at some
given Boyer-Lindquist coordinates ðrO; ϑOÞ in the domain
of outer communication. This is essential for the case Λ ≠ 0
because then the space-time is no longer asymptotically flat
and in the case Λ > 0 the domain of outer communication is
separated from r ¼ ∞ by a cosmological horizon. Third, our
treatment is fully analytical rather than based on ray tracing.
In particular, we give an exact analytical formula for the

boundary curve of the shadow. We feel that this is a major
advantage because it can serve as a basis for calculating
parameters of the space-time from the shape of the shadow
by analytical means. Fourth, our investigation includes a
detailed discussion of the photon regions in the space-times
under consideration. This is a crucial prerequisite for
deriving the analytical formula of the shadow, and it is also
of some interest in itself.
We emphasize that, as in all the theoretical papers cited

above, our calculation of the shadow is based on the
assumptions that light rays are lightlike geodesics and that
there are no light sources near the black hole. In view of the
black hole at the center of our Galaxy these assumptions are
highly idealized. Light rays near the central black hole are
expected to be affected by scattering, and there is good
evidence for the existence of a luminous accretion disk
around the black hole. The effect of scattering on the
visibility of the shadow was numerically demonstrated by
Falcke, Melia and Agol [24]. The visual appearance of an
accretion disk was studied with the help of various ray-
tracing programs by several authors, following the pioneer-
ing work of Bardeen and Cunningham [25] and Luminet
[26] (see e.g. Dexter et al. [27] or Mościbrodzka et al. [28]).
A broad overview of observations as well as simulations of
phenomena for the black hole in the center of our Galaxy
near Sgr A* is given by Dexter and Fragile in [29]. Whereas
the effects of matter certainly have to be taken into account
for a realistic prediction of what will be observed, calcu-
lating the geometrical shadow is of major importance
because it serves as the basis for all later refinements.
The paper is organized as follows. In Sec. II we

summarize the relevant properties of space-times of the
Plebański class. In Sec. III we determine the photon regions
for black-hole space-times of this class. In Sec. IV we derive
an analytical formula, in parameter form, for the boundary
curve of the shadow of such a black hole, as it is seen by an
observer with a specified four-velocity e0 somewhere in the
domain of outer communication. The results of Secs. III and
IV are illustrated with several pictures.

II. THE KERR-NEWMAN-NUT–(ANTI–)DE
SITTER METRIC

The Kerr-Newman-NUT–(anti–)de Sitter space-times
are stationary, axially symmetric type D solutions of the
Einstein–Maxwell equations with a cosmological constant.
This class of space-times was introduced by Plebański [22]
in 1975. A slightly larger class, which includes in addition
the so-called acceleration parameter, was found by
Plebański and Demiański [23] in 1976. For the case without
a cosmological constant, these metrics can be traced back to
Carter [30] and, in the Boyer–Lindquist coordinates we will
use in the following, to Miller [31]. A fairly detailed
discussion of the Plebański(–Demiański) metrics can be
found in the book by Griffiths and Podolský [32] (see also
Stephani et al. [33]).
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In Boyer–Lindquist coordinates ðt; r; ϑ;φÞ the Plebański
metric is given by [[32], p. 314]

gμνdxμdxν ¼ Σ
�

1

Δr
dr2 þ 1

Δϑ
dϑ2

�

þ 1

Σ
ððΣþ aχÞ2Δϑsin2ϑ − Δrχ

2Þdφ2

þ 2

Σ
ðΔrχ − aðΣþ aχÞΔϑsin2ϑÞdtdφ

−
1

Σ
ðΔr − a2Δϑsin2ϑÞdt2 ð2Þ

where we use the abbreviations

Σ ¼ r2 þ ðlþ a cosϑÞ2;
χ ¼ asin2ϑ − 2lðcos ϑþ CÞ;
Δ ¼ r2 − 2mrþ a2 − l2 þ β;

Δr ¼ Δ − Λ

�
ða2 − l2Þl2 þ

�
1

3
a2 þ 2l2

�
r2 þ 1

3
r4
�
;

Δϑ ¼ 1þ Λ

�
4

3
al cos ϑþ 1

3
a2cos2ϑ

�
: ð3Þ

Here, rescaled units are used so that the speed of light and the
gravitational constant are normalized (c ¼ 1, G ¼ 1). The
coordinates t and r range over � −∞;∞½, while ϑ and φ are
standard coordinates on the two-sphere. The metric depends
on five parameters, namely the mass m, the spin a, a
parameter β for electric and magnetic charge (β ¼ q2e þ q2m),
the NUT parameter l which is to be interpreted as a
gravitomagnetic charge, and the cosmological constant Λ.
In addition, there is a parameter C that was introduced by
Manko and Ruiz [34] for modifying the singularity that is
produced by l on the z axis (see below). In principle, the
parameters m, a, l, β, Λ and C can take all values in R,
although not all combinations are physically meaningful.
Note that for β < 0 the metric cannot be interpreted as a
solution to the Einstein–Maxwell equations, because in this
case the electric or magnetic charge has to be imaginary.
Nonetheless, the case β < 0 is of interest because metrics of
this form occur in some braneworld models (see [35]).
The Plebański class of metrics contains the Schwarzschild

(a ¼ β ¼ l ¼ Λ ¼ 0), Kerr (β ¼ l ¼ Λ ¼ 0), Reissner–
Nordström (a ¼ l ¼ Λ ¼ 0), Kottler or Schwarzschild–
(anti–)de Sitter (a ¼ β ¼ l ¼ 0), Kerr–Newman
(l ¼ Λ ¼ 0), and Taub–NUT (a ¼ β ¼ Λ ¼ 0) metrics as
special cases.
The metric (2) becomes singular if Σ ¼ 0, Δr ¼ 0, Δϑ ¼

0 or sinϑ ¼ 0. Some of these singularities are mere
coordinate singularities, but some of them are true (curva-
ture) singularities. As this issue is of some relevance for our
purpose, we briefly discuss the four types of singularities in
the following paragraphs.

(a) Σ ¼ 0. The equation Σ ¼ 0 is equivalent to

r ¼ 0 and cosϑ ¼ −l=a: ð4Þ
If l2 < a2, this condition is satisfied on a ring. The
singularity on this ring turns out to be a true (curvature)
singularity if m ≠ 0. One usually refers to it as to the
ring singularity. Note that, apart from the ring singu-
larity, the sphere r ¼ 0 is regular. Observers can move
through either of the two hemispheres (“throats”) that
are bounded by the ring singularity, thereby travelling
from the region r > 0 to the region r < 0 or vice versa.
If l2 > a2, there is no ring singularity. Σ is every-

where different from zero and the entire sphere r ¼ 0 is
regular.
In the borderline case l2 ¼ a2 the ring singularity

degenerates into a point on the axis. The case l ¼ a ¼
0 is special because in this case the entire sphere r ¼ 0
degenerates into a point singularity that separates the
region r > 0 from the region r < 0. In this case we
have two disconnected space-times.

(b) Δr ¼ 0. If we exclude the case a ¼ l ¼ 0, each zero
of Δr on the real line, −∞ < r < ∞, is a coordinate
singularity which indicates a horizon. As Δr is a
fourth-order polynomial of r with real coefficients, the
number of horizons can be 4, 2 or 0, where zeros of Δr
have to be counted with multiplicity. We say that the
horizon at the biggest r coordinate is the first horizon,
the next one is the second, and so on.
If Λ ≤ 0, the second derivative of Δr with respect to

r is strictly positive. Therefore, the number of zeros of
Δr is either 2 or 0. In the first case we have a black
hole, in the second case a naked singularity or a
regular space-time. In the black-hole case, the region
between r ¼ ∞ and the first horizon is called the
domain of outer communication of the black hole.
This is the region where we will place our observers
for observing the shadow of the black hole. On the
domain of outer communication, the vector field ∂r is
spacelike which is equivalent to Δr > 0. If Λ ¼ 0, the
equation Δr ¼ 0 reduces from fourth to second order.
In this case the horizons are at

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 þ l2 − β

q
ð5Þ

if a2 ≤ a2max ≔ m2 þ l2 − β; if a2 > a2max there are no
horizons, i.e., we have a naked singularity or a regular
space-time.
If Λ > 0, the vector field ∂r is timelike for big

values of r. Therefore, the first horizon, if it exists, is a
cosmological horizon. We have a black hole if there
are four horizons altogether. The domain of outer
communication is the region between the first and the
second horizon. Again, the vector field ∂r is spacelike
on the domain of outer communication. As in the case
Λ ≤ 0, we will restrict ourselves to the black-hole case
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and we will place our observers in the domain of outer
communication.

(c) Δϑ ¼ 0. If Λ ≠ 0, it is possible that zeros of Δϑ occur
at values cos2ϑ < 1. In close analogy to the zeros of
Δr, any such zero of Δϑ is a coordinate singularity
which indicates a horizon. In this case, the horizon is
situated on a cone ϑ ¼ constant rather than on a sphere
r ¼ constant. The vector field ∂ϑ changes its causal
character from spacelike to timelike when such a
horizon is crossed. This situation is hardly of any
physical relevance. Therefore, we want to choose the
parameters such that it is excluded. A sufficient
condition can be found in the following way. The
equation Δϑ ¼ 0 leads to a quadratic equation for
a cosϑ with solution

a cosϑ� ¼ −2l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 − 3=Λ

q
: ð6Þ

Therefore, if we restrict ouselves to values of l and
Λ such that

4l2Λ < 3 ð7Þ

we can be sure that Δϑ has no zeros.
(d) sinϑ ¼ 0. The metric has a singularity on the axis

sinϑ ¼ 0, as is always the case when using spherical
polar coordinates. If l ≠ 0, however, this is not just a
coordinate singularity but rather a true singularity. By
choosing the Manko–Ruiz parameter C appropriately
one can decide on which part of the axis the singularity
is situated.
To demonstrate this, we observe that in the limit

cosϑ→�1 we have Σ→r2þðl�aÞ2 and χ → −2l×
ð�1þ CÞ. As a consequence, the metric coefficient

gtt ¼ χ2

ΣΔϑsin2ϑ
−
ðΣþ aχÞ2

ΣΔr
ð8Þ

diverges unless C ¼ ∓1. This divergent behavior in-
dicates that either thecoordinate function tor themetricg
becomes pathological. It was shown byMisner [36] that
this singularity can be removed if one makes the time
coordinate t periodic. (Misner restricted himself to the
Taub–NUTmetric, a ¼ β ¼ Λ ¼ 0, withC ¼ 1 but his
reasoningappliesequallywell to thegeneral case.)Wedo
not followthis suggestionbecause it leads toa space-time
with closed timelike curves through every event. Instead,
we adopt Bonnor’s interpretation [[37], p. 145] of the
axial singularity who viewed it as a “massless source of
angularmomentum”. ForC ¼ 1, the singularity is on the
half-axis ϑ ¼ 0, for C ¼ −1 it is on the half-axis ϑ ¼ π
and for any other value ofC it is on both half-axes. Note
that each half-axis extends from r ¼ −∞ to r ¼ ∞.
Metrics (2) with different values of C are locally

isometric near all points off the axis. This follows from

the fact that a coordinate transformation t0 ¼ t − 2l ~Cφ
yields, again, a metric (2) with C0 ¼ Cþ ~C. With the
help of such a coordinate transfomation with ~C ¼ −C,
the parameter C can be eliminated from the geodesic
equation (see Kagramanova et al. [38]). Note, however,
that this transformationdoesnotworkgloballybecauseφ
is periodic and t is not, and it does not work near the axis
because φ is pathological there.
Moreover, a coordinate transformation ðt0;r0;ϑ0;φ0Þ¼

ðt;r;π−ϑ;−φÞ transforms a metric (2) into a metric of
the same form, but with the signs of l and C inverted.
This demonstrates that a metric with parameters
ðm; a;Λ; β;l; CÞ is globally isometric to a metric with
parameters ðm; a;Λ; β;−l;−CÞ.

We have seen that the vector fields ∂r and ∂ϑ change
their causal character from spacelike to timelike if a horizon
is crossed. The vector fields ∂t and ∂φ can change their
causal character as well. In this case, this has nothing to do
with a horizon but it is also of some relevance.
(e) gtt > 0. If a ≠ 0 the Killing field ∂t becomes space-

like, i.e. gtt ¼ gð∂t; ∂tÞ becomes positive, on part of
the space-time. In this region an observer cannot move
on a t line. The region where gtt > 0 is known as the
“ergosphere” or the “ergoregion.” (Note that some
authors reserve this name for the intersection of the
region where gtt > 0 with the domain of outer com-
munication.)

(f) gφφ < 0. If a ≠ 0 or l ≠ 0, there is a region where the
Killing field ∂φ becomes timelike. In this region,
the space-time violates the causality condition because
the φ lines are closed timelike curves. If l ≠ 0 and
Λ ≤ 0, the region where this occurs extends to r ¼ ∞.
If l ≠ 0 and Λ > 0, it is bounded by the first
(cosmological) horizon.

III. PHOTON REGIONS

In the space-times (2), the geodesic equation is com-
pletely integrable, i.e., it admits four constants of motion in
involution. These constants of motion are the Lagrangian,

L ¼ 1

2
gμν _xμ _xν; ð9Þ

the energy,

E ≔ −
∂L
∂_t ¼ −gφt _φ − gtt_t; ð10Þ

the z component of the angular momentum,

Lz ≔
∂L
∂ _φ ¼ gφφ _φþ gφt_t; ð11Þ

and the Carter constant K [30]. With the help of these four
constants of motion, the geodesic equation can be written in

GRENZEBACH, PERLICK, AND LÄMMERZAHL PHYSICAL REVIEW D 89, 124004 (2014)

124004-4



first-order form. For lightlike geodesics, L ¼ 0, the result-
ing equations read

_t ¼ χðLz − EχÞ
ΣΔϑsin2ϑ

þ ðΣþ aχÞððΣþ aχÞE − aLzÞ
ΣΔr

; ð12aÞ

_φ ¼ Lz − Eχ
ΣΔϑsin2ϑ

þ aððΣþ aχÞE − aLzÞ
ΣΔr

; ð12bÞ

Σ2 _ϑ2 ¼ ΔϑK −
ðχE − LzÞ2

sin2ϑ
≕ ΘðϑÞ; ð12cÞ

Σ2 _r2 ¼ ððΣþ aχÞE − aLzÞ2 − ΔrK ≕ RðrÞ: ð12dÞ

These equations can be solved explicitly in terms of
hyperelliptic functions (see Hackmann et al. [39]). Here,
we are interested in spherical lightlike geodesics, i.e.,
lightlike geodesics that stay on a sphere r ¼ constant.
The region filled by these geodesics is called the photon
region K. To determine this photon region, we introduce
the abbreviations

LE ¼ Lz

E
; KE ¼ K

E2
: ð13Þ

For spherical orbits the conditions _r ¼ 0 and ̈r ¼ 0 have to
be fulfilled. By (12d), this requires that RðrÞ ¼ 0 and
R0ðrÞ ¼ 0, hence

KE¼
ððΣþaχÞ−aLEÞ2

Δr
; KE¼

4rððΣþaχÞ−aLEÞ
Δ0

r
;

ð14Þ

where Δ0
r denotes the derivative of Δr with respect to r.

Solving for the constants of motion KE and LE results in

KE ¼ 16r2Δr

ðΔ0
rÞ2

; aLE ¼ ðΣþ aχÞ − 4rΔr

Δ0
r
: ð15Þ

Inserting these expressions into (12c) and observing that
the left-hand side of (12c) is non-negative gives us an
inequality that determines the photon region

K∶ ð4rΔr − ΣΔ0
rÞ2 ≤ 16a2r2ΔrΔϑsin2ϑ: ð16Þ

Note thatK is independent of the Manko-Ruiz parameterC.

As in the Kerr case [cf. [11]], through every point with
coordinates ðrp; ϑpÞ ofK there is a lightlike geodesic which
stays on the sphere r ¼ rp. Along each of these spherical
lightlike geodesics, the ϑ coordinate oscillates between
extremal values that are determined by the equality sign in
(16). The φ motion is given by (12b) and might be quite

FIG. 2 (color online). Legend for Figs. 3, 4, 5, and 6.

FIG. 3 (color online). Photon regions in Kerr space-time for
spins a ¼ λamax, where amax ¼ m. The plots on the right show a
magnified inner part.
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complicated. For some spherical light rays it is not even
monotonic.
In the nonrotating case (a ¼ 0) the inequality (16)

degenerates into an equality,

4rΔr ¼ ðr2 þ l2ÞΔ0
r: ð17Þ

This means that the photon regions degenerate into photon
spheres. The best known example is the photon sphere in
the Schwarzschild space-time at r ¼ 3m.
A spherical lightlike geodesic at r ¼ rp is unstable

with respect to radial perturbations if R00ðrpÞ > 0, and
stable if R00ðrpÞ < 0. The second derivative R00 can

a 1
50 amax

3 5m

a 2
5 amax

4 0m

a 4
5 amax

4 4m

a amax

4 7m

FIG. 4 (color online). Photon regions in Kerr-NUT space-
time with l ¼ 3

4
m, C ¼ 0 for spins a ¼ λamax, where

amax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
¼ 5

4
m. The plots on the right show a magni-

fied inner part.

a 1
50 amax

4 0m

a 2
5 amax

4 6m

a 4
5 amax

5 2m

a amax

5 4m

FIG. 5 (color online). Photon regions in Kerr-Newman-NUT
space-time (β ¼ 5

9
m2, l ¼ 4

3
m, C ¼ 0) with a cosmological

constant (Λ ¼ 10−2m−2) for spins a ¼ λamax, where
amax ≈ 1.51m. The plots on the right show a magnified inner part.
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be calculated from (12d). With the help of (15) this
results in

R00ðrÞ
8E2

Δ02
r ¼ 2rΔrΔ0

r þ r2Δ02
r − 2r2ΔrΔ00

r : ð18Þ

Figures 3, 4, 5 and 6 show plots of the photon regionK in
the ðr; ϑÞ plane, where unstable and stable spherical light
rays (18) are distinguished. The boundaries of the region
where Δr ≤ 0 are the horizons. Furthermore, the ergo-
sphere, the causality violating region, and the ring singu-
larity are shown. A legend for these figures can be found
in Fig. 2.
Each picture illustrates a meridional section through

space-time, i.e. the plane parametrized by r and ϑ, where
the ϑ coordinate is measured from the positive z axis.
Following a suggestion by O’Neill [40], we show the
whole range of the space-time, with the Boyer-Lindquist
coordinate r increasing outward from the origin which
corresponds to r ¼ −∞. O’Neill suggested to use the
exponential of r for the radial coordinate. As such a
representation strongly exaggerates the outer parts, we find
it more convenient to use two different scales. In the region
r < 0 (i.e., inside the sphere r ¼ 0), we usem expðr=mÞ for
the radial coordinate. In the region r > 0 (i.e., outside the
sphere r ¼ 0), we use rþm for the radial coordinate. The
dashed circle indicates the throats at r ¼ 0.
Each figure shows the photon region for four different

values of the spin a, keeping all the other parameters fixed.
Restricting to black-hole cases, we choose the four values
of the spin as a ¼ λamax, where λ ∈ f 1

50
; 2
5
; 4
5
; 1g and amax

denotes the spin of an extremal black hole which is
determined by the other parameters. If Λ ¼ 0, we have
a2max ¼ m2 þ l2 − β [cf. Eq. (5)]. If Λ ≠ 0, there is no

convenient formula for amax because one has to evaluate a
fourth-order equation.
In the Kerr space-time (see Fig. 3), there is an exterior

photon region at r > rþ and an interior photon region at
r < r−. Both of them are symmetric with respect to the
equatorial plane. Starting from the photon sphere at r ¼ 3m
for the nonrotating Schwarzschild case, the exterior photon
region gets a crescent-shaped cross section for a ≠ 0 and
grows with increasing spin a. The interior photon region
consists of two connected components that are separated by
the ring singularity. In the exterior photon region all
spherical light orbits are unstable while in the interior
photon region there are stable and unstable ones. Circular
lightlike geodesics exist where the boundary of the photon
region is tangent to a sphere r ¼ constant. We easily
recognize the three well-known circular lightlike geodesics
in the equatorial plane, but also two not-so-well-known
circular lightlike geodesics off the equatorial plane. The
latter are situated in the region where r < 0. The causality
violating region is adjacent to the ring singularity and lies to
the side of negative r. For small a, the ergoregion does not
intersect the exterior photon region but for a2 > m2=2
it does.
The additional gravitomagnetic charge l of the

Kerr-NUT space-time changes the symmetry behavior
significantly (see Fig. 4). The plots are no longer symmetric
with respect to the equatorial plane (but they remain, of
course, axially symmetric). The exterior and interior photon
regions show this asymmetry clearly. For a slowly rotating
Kerr-NUT black hole, a2 < l2, there is no ring singularity,
and there are no stable spherical light rays. If the spin is
increased, the ring singularity appears at a2 ¼ l2, degen-
erated to a point on the axis. With a further increased, the
ring singularity moves towards the equator and stable
spherical light orbits come into existence between r ¼ 0

5 2m 5 2m 5 2m 5 2m 5 2m 5 2m 5 2m

C 2 C 1 C 1
2 C 0 C 1

2 C 1 C 2

FIG. 6 (color online). Photon regions for varying singularity parameter C with fixed a ¼ 4
5
amax, β ¼ 5

9
m2, l ¼ 4

3
m, and

Λ ¼
n
10−2m−2 for C ≤ 0

0 for C > 0
, where amax ¼

n
1.51m for C ≤ 0

2
ffiffiffi
5

p
m=3 for C > 0

. If existent, the cosmological horizon restricts the region where

the causality is violated. If C ¼ 1 or C ¼ −1, one of the two half-axes is regular and it is not surrounded by a causality violating region.
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and r ¼ r−; as in the Kerr case, the interior photon region
consists of two connected components that are separated by
the ring singularity. While the ergosphere is not signifi-
cantly affected by l, there is an additional causality
violating region around the singularity on the axis which
extends from the outer horizon at r ¼ rþ to r ¼ ∞. The
interior causality violating region is now extending from
the inner horizon at r ¼ r− to r ¼ −∞. The causality
violating region depends on the Manko-Ruiz parameter C
which was chosen equal to zero in Fig. 4. (For other values
of C, see Fig. 6.)
Adding an electric or magnetic charge parameter β and a

cosmological constant Λ affects the photon regions little
(see Fig. 5). The only qualitative effect of β is in the fact
that, in the case a2 > l2, one of the two connected
components of the interior photon region is now detached
from the ring singularity. For nonzero Λ, higher spin values
amax are possible compared to space-times with Λ ¼ 0. For
the pictures we have chosen a (small and) positive value
for Λ such that the domain of outer communication is
bounded by a cosmological horizon. The latter is not
shown in Fig. 5 because these pictures do not extend so
far, but it is shown in Fig. 6. The cosmological horizon
restricts the causality violating region which depends on the
Manko-Ruiz parameter C (see Fig. 6).

IV. SHADOWS OF BLACK HOLES

The existence of the photon region (16) around the
black hole is essential for the construction of the shadow
of a black hole. In the Introduction we have already
explained how the shadow is constructed in the case of
a Schwarzschild black hole. The same construction works,
mutatis mutandis, in our more general black-hole space-
times. We fix an observer in the domain of outer commu-
nication at Boyer-Lindquist coordinates ðrO; ϑOÞ and we
think of light sources distributed on a sphere r ¼ rL with
some rL > rO.
For determining the shape of the shadow it is con-

venient to consider light rays which are sent from the
observer’s position into the past. Then we can distinguish
two types of orbits. Along light rays of the first type the
radius coordinate reaches the value rL, possibly after
going through a local minimum, so that we can think of
these light rays as being emitted from one of our light
sources. Along light rays of the second type the radius
coordinate decreases monotonically until it reaches the
horizon at r ¼ rþ, so these light rays cannot come from
any of our light sources. Correspondingly, in the direction
of light rays of the first type the observer would see
brightness, and in the direction of light rays of the second
type the observer would see darkness. The borderline
case, i.e. the boundary of the shadow, corresponds to
light rays that asymptotically spiral towards one of the
unstable spherical light orbits in the exterior photon
region which was discussed in Sec. III above. As in

the Schwarzschild case, it is obvious from the geometry
that the construction of the shadow works equally well if
light sources are distributed, rather than on a sphere r ¼
rL with rL > rO, anywhere else in the domain of outer
communication except in the region filled by the above-
mentioned light rays of the second type.
It is now our goal to calculate the boundary curve of the

shadow on the observer’s sky. We consider an observer
at position ðrO; ϑOÞ in the Boyer-Lindquist coordinates.
(The φ and t coordinates of the observation event
are irrelevant because of the symmetries of the metric.)
We choose an orthonormal tetrad,

e0 ¼
ðΣþ aχÞ∂t þ a∂φffiffiffiffiffiffiffiffiffi

ΣΔr
p

����
ðrO;ϑOÞ

;

e1 ¼
ffiffiffiffiffiffi
Δϑ

Σ

r
∂ϑ

����
ðrO;ϑOÞ

;

e2 ¼
−ð∂φ þ χ∂tÞffiffiffiffiffiffiffiffiffi

ΣΔϑ

p
sinϑ

����
ðrO;ϑOÞ

;

e3 ¼ −
ffiffiffiffiffiffi
Δr

Σ

r
∂r

����
ðrO;ϑOÞ

; ð19Þ

at the observation event (see Fig. 7). We assume that the
observer is in the domain of outer communication. This
guarantees that Δr is positive, and so is Σ. Moreover, we
assume that l and Λ are restricted by the inequality (7),
which guarantees that Δϑ is positive. Hence, the coef-
ficients in Eqs. (19) are indeed real and it is straight-
forward to verify that e0, e1, e2, e3 are orthonormal. The
timelike vector e0 is to be interpreted as the four-velocity
of our observer. The tetrad has been chosen such that
e0 � e3 are tangential to the principal null congruences

ϑO

rO

e1e2

e3

FIG. 7 (color online). At an observation event with Boyer-
Lindquist coordinates ðrO;ϑOÞ we choose an orthonormal tetrad
ðe0; e1; e2; e3Þ according to Eqs. (19). For each light ray that is
sent from the observation event into the past the tangent vector
can be written as a linear combination of e0, e1, e2 and e3. In this
way we can assign celestial coordinates to the direction of the
tangent vector (see Fig. 8).
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of our metric. For an observer with four-velocity e0 the
vector e3 gives the spatial direction towards the center of
the black hole.
For each light ray λðsÞ with coordinate representation

ðrðsÞ; ϑðsÞ;φðsÞ; tðsÞÞ, we write the tangent vector as

_λ ¼ _r∂r þ _ϑ∂ϑ þ _φ∂φ þ _t∂t: ð20Þ

On the other hand, the tangent vector at the observation
event can be written as

_λ ¼ αð−e0 þ sin θ cosψe1 þ sin θ sinψe2 þ cos θe3Þ;
ð21Þ

where α is a scalar factor. From (10) and (11) we find
that

α ¼ gð_λ; e0Þ ¼
aLz − ðΣþ aχÞEffiffiffiffiffiffiffiffiffi

ΣΔr
p

����
ðrO;ϑOÞ

: ð22Þ

Equation (21) defines the celestial coordinates θ and ψ
for our observer (see Fig. 8). The direction towards the
black hole corresponds to θ ¼ 0.
Comparing coefficients of ∂φ and ∂r in (20) and (21)

yields

sinψ ¼
ffiffiffiffiffiffi
Δϑ

p
sinϑffiffiffiffiffiffi

Δr
p

sin θ

�
ΣΔr _φ

ðΣþ aχÞE − aLz
− a

�����
ðrO;ϑOÞ

;

cos θ ¼ Σ_r
ðΣþ aχÞE − aLz

����
ðrO;ϑOÞ

: ð23Þ

Upon substituting for _φ and _r from (12b) and (12d), we find
from (23) that

sinψ ¼
~LE þ acos2ϑþ 2l cosϑffiffiffiffiffiffiffiffiffiffiffiffi

ΔϑKE
p

sinϑ

����
ϑ¼ϑO

;

sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ΔrKE

p

r2 þ l2 − a ~LE

����
r¼rO

; ð24Þ

where

~LE ¼ LE − aþ 2lC: ð25Þ
The boundary curve of the shadow corresponds to light
rays that asymptotically approach a spherical lightlike
geodesic. Such a light ray must have the same constants
of motion as the limiting spherical lightlike geodesic, i.e.,
by (15),

KE ¼ 16r2Δr

ðΔ0
rÞ2

����
r¼rp

;

a ~LE ¼
�
r2 þ l2 −

4rΔr

Δ0
r

�����
r¼rp

; ð26Þ

where rp is the radius coordinate of the limiting spherical
lightlike geodesic. Inserting the expressions for KE and ~LE
from (26) into (24) gives the boundary curve ðψðrpÞ; θðrpÞÞ
of the shadow.
We observe that the Manko-Ruiz parameter C has no

influence on the shadow and that the shadow is always
symmetric with respect to a horizontal axis. The latter result
follows from the fact that the points ðψ ; θÞ and ðπ − ψ ; θÞ
correspond to the same constants of motion KE and ~LE. For
l ≠ 0 and ϑO ≠ π=2 this symmetry property was not to be
expected.
For a > 0, the θ coordinate takes its maximal value along

the boundary curve at ψ ¼ −π=2 and its minimal value at
ψ ¼ π=2. The corresponding values of the parameter rp,
which we denote by rmaxðϑOÞ and rminðϑOÞ, respectively,
can be determined by inserting (26) into (24) and equating
ψ to ∓π=2. We find that rp ¼ rmax =minðϑOÞ is determined
by the equation

ðΣΔ0
r − 4rΔr∓4ar

ffiffiffiffiffiffiffiffiffiffiffi
ΔrΔϑ

p
sin ϑÞjðr¼rp;ϑ¼ϑOÞ ¼ 0: ð27Þ

Comparison with the inequality (16) shows that rmaxðϑOÞ
and rminðϑOÞ are the radius values where the boundary of
the exterior photon region intersects the cone ϑ ¼ ϑO.
The case a ¼ 0 is special because then our method of

parametrizing the boundary curve by rp does not work. If
a ¼ 0 we have rminðϑOÞ ¼ rp ¼ rmaxðϑOÞ, so (26) deter-
mines a unique value for KE. Inserting this value into (24)
gives the boundary curve of the shadow in the form
ðψð ~LEÞ; θð ~LEÞÞ. We see that θ ¼ constant if a ¼ 0, i.e.,
that the shadow is circular.
Note that we have calculated the shadow for an observer

with four-velocity e0 according to (19). For an observer
with a different four-velocity the shadow is distorted

FIG. 8 (color online). To each light ray at the observation event
we assign celestial coordinates θ and ψ with the help of Eq. (21)
(see figure on the left). The figure on the right shows the
stereographic projection (red ball) of the point ðθ;ψÞ on the
celestial sphere (black ball). The dotted (red) circles indicate
the celestial equator θ ¼ π=2 and its projection.
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according to the standard aberration formula of special
relativity.
In Figs. 9 and 10 we show pictures of the shadow, as it

is seen by our chosen observer with four-velocity e0. For
calculating the boundary curve of the shadow we have
used our analytical parameter representation, and for

plotting it we have used stereographic projection
from the celestial sphere onto a plane, as illustrated in
Fig. 8. Standard Cartesian coordinates in this plane are
given by

xðrpÞ ¼ −2 tan
�
θðrpÞ
2

�
sinðψðrpÞÞ;

yðrpÞ ¼ −2 tan
�
θðrpÞ
2

�
cosðψðrpÞÞ: ð28Þ

In Fig. 9 the observer position is kept fixed at
Boyer-Lindquist coordinates rO ¼ 5m and ϑO ¼ π=2.
The parameters of the black hole are chosen such that
the observer is always located in the domain of outer
communication. Each of the five shadings corresponds
to a certain choice of parameters β, l and Λ, and for each
choice the shadow is shown for four different values of the
spin, a ¼ λamax, where amax is determined by β, l and Λ.
The shadows of the first three cases—Kerr, Kerr-
NUT, Kerr-Newman-NUT with cosmological constant—
correspond to the photon regions presented in Figs. 3–5.
We see that the shape of the shadow is largely deter-

mined by the spin a of the black hole. With increasing a
the shadow becomes more and more asymmetric with
respect to a vertical axis. This asymmetry is well known
from the Kerr metric and it is easily understood as a
“dragging effect” of the rotating black hole on the light
rays. The other parameters β, l and Λ have an effect on the
size of the shadow but, at least for the naked eye, hardly on
its shape. Note that the size of the shadow depends, of
course, on rO and that there is no direct way of comparing
radius coordinates in different space-times operationally.
Therefore, if we want to get some information on the space-
time from observing the shadow, the shape is much more
relevant than the size.
In Fig. 10 we consider an extremal black hole, a ¼ amax,

with fixed parameters β, l and Λ. We keep the radius
coordinate rO of the observer fixed, and we vary the
inclination ϑO. Clearly, the asymmetry with respect to
the vertical axis vanishes if the observer approaches the
axis, ϑO → 0. We have already emphasized the remarkable

a 2
5 amax a 4

5 amax

a 1
50 amax a amax

β 0 0 5
9 m2 0

0 3
4 m 4

3 m 4
3 m

Λ 0 0 10 2m 2 0
amax m 5

4 m 1 51m 5
3 m

Kerr
Kerr–
NUT

KN–NUT
with Λ

Kerr–
NUT

FIG. 9 (color online). Shadow of a black hole for different
parameters a, β, l and Λ, seen by an observer at rO ¼ 5m and
ϑO ¼ π=2. The cross hairs indicate the spatial direction towards
the black hole, i.e., the spatial direction of the principal null
congruences with respect to our observer with four-velocity e0.
The dashed (red) circle indicates the celestial equator, cf. Fig. 8.

ϑO
π
2 ϑO

3π
8 ϑO

π
4 ϑO

π
8 ϑO 0

FIG. 10 (color online). Shadow of a black hole for an observer at rO ¼ 5m and different inclination angles ϑO, with fixed β ¼ 5
9
m2,

l ¼ 4
3
m, Λ ¼ 10−2m−2 and a ¼ amax ≈ 1.51m. As in Fig. 9, the cross hairs indicate the spatial direction towards the black hole and the

dashed (red) circle indicates the celestial equator.
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fact that there is no asymmetry with respect to the
horizontal axis.
We should mention that in the case l ≠ 0 some light rays

have to pass through the singularity on the axis. We have
assumed that these light rays are not blocked, i.e., that the
source of the gravitomagnetic NUT field does not cast a
shadow.

V. CONCLUSIONS AND OUTLOOK

Based on a detailed analysis of the photon regions in
black-hole space-times of the Plebański class, we have
derived an analytical formula for the shadows of such black
holes. As the space-times under consideration are not in
general asymptotically flat and may have a cosmological
horizon, one cannot restrict to observers at infinity as it was
done in many earlier articles on shadows of black holes.
Our formalism allows for observers at any Boyer-Lindquist
coordinates in the domain of outer communication. The
boundary curve of the shadow was calculated for observers
with a certain four-velocity e0, given by (19). For these
observers, the shadow turned out to be always symmetric
with respect to a horizontal axis, even for nonvanishing
NUT parameter l and for an observer off the equatorial
plane. For observers with a four-velocity different from e0,
the shadow can be easily calculated by combining our
results with the standard aberration formula of special
relativity. If this additional aberration effect is taken into
account, the boundary curve of the shadow will depend on
the parameters a, l, β and Λ, on the coordinates rO and ϑO
of the observer, and on the velocity of the observer relative
to an observer with four-velocity e0. (The mass m gives an
overall scale, and the Manko-Ruiz parameter C has no

influence on the shadow.) We are planning to investigate, in
a follow-up article, to what extent all these parameters can
be determined from the boundary curve of the shadow.
With an analytical formula for the boundary curve at hand,
it is a natural idea to use a Fourier analysis of the boundary
curve and to see how the parameters of the black hole can
be extracted from the Fourier coefficients.
We have restricted to black-hole space-times, but a large

part of the material presented in this paper is valid for naked
singularities as well. In particular, the characterization of
the photon region by inequality (16) is true in general.
A major difference is in the fact that in the case of a naked
singularity there is no domain of outer communication, so
the possible observer positions are restricted only by a
cosmological horizon, if present. The shadow of a naked
singularity is drastically different from the shadow of a
black hole, as was demonstrated by de Vries [12] for
the Kerr-Newman case. While for a black hole the
shadow is two-dimensional (an area on the sky, bounded
by a closed curve), for a naked singularity the shadow is
one-dimensional (an arc on the sky).
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