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We consider trapped inflation in a higher dimensional field space: particle production at a dense
distribution of extra species points leads to a terminal velocity at which inflation can be driven in steep
potentials. We compute an additional, nearly scale invariant contribution to the power spectrum, caused by
backscattering of the continuously produced particles. Since this contribution has a blue tilt, it has to be
subdominant, leading to an upper bound on the coupling constant between the inflatons and the extra
species particles. The remaining allowed parameter space is narrow.
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I. INTRODUCTION

The observation of the cosmic microwave background
radiation by the Planck satellite is consistent with the
predictions of simple, small-field slow-roll models: pertur-
bations are adiabatic and Gaussian, with a red spectral
index, and gravitational waves1 are not observed [2–4].
On the other hand, inflationary models in string theory are

commonly of the multifield type, with models on landscapes
(higher dimensional moduli spaces [5–7]) appearing to be
common. Extracting generic predictions of inflation on such
landscapes has received increased attention, as evident in
the ongoing investigation of random landscapes [8–16], the
effect of decaying fields during inflation (staggered infla-
tion) [17–21], cascade inflation [22,23] or multifield open
inflation [24–26], among other multifield models [27–35].
It should be noted that the presence of eternal inflation,
requiring the choice of a measure as well as anthropic
reasoning (see e.g. [36,37] for a recent analysis of the
measure problem and [38] for a review of proposed
measures), can hamper solid predictions. While Planck is
consistent with single-field models, it does not preclude, but
merely constrains most multifield effects; see e.g. [39] for
a summary. For instance, the absence of primordial non-
Gaussianities [4] curtails the curvature of the end-of-inflation
hypersurface [15,39–46], modulated reheating [47–55],
curvatons [56–62], modulated trapping [63,64], and particle
production during inflation [63,65–68], among other
effects; see [69,70] for reviews. Furthermore, the absence
of gravitational waves [2] puts pressure on large-field
models (r ∼ 0.1 due to the Lyth bound [71]), whether they
are of the single- or multifield type.
In this article we consider trapped inflation in higher

dimensional field spaces [72], which is a class of multifield

models operating on moduli spaces containing a dense
distribution of extra-species points (ESPs).
ESPs are locations at which additional degrees of free-

dom become light and can be produced kinematically; once
produced, they need to be incorporated into the low energy
effective field theory. ESPs are generic in string theory
and often associated with additional symmetries; see
[73–81] for some examples (see also [82,83] for a discussion
of the string Higgs effect). Applications include moduli
trapping [83–90], effects on inflation [91–93], trapped
inflation [72,84,94,95] (see also [96–102]), modulated trap-
ping [63,64,103], and preheating [104–106] (see [107] for a
review and extensive references on preheating).2 ESP dis-
tributions can be dense, as in trapped inflation [72,84,94,95],3

or sparse, as in [63], depending on the moduli space under
consideration. In this paper we model the extra species
particles phenomenologically by including additional scalar
fields that are coupled quadratically to the inflatons, as in [84]
(see [67,112,113] for the incorporation of gauge fields).
Trapped inflation is based on the inclusion of back-

reaction of the extra species particles onto inflatons
[72,84,94,95]: once particles are produced, an attractive
force towards the ESP results, affecting inflationary
dynamics [84]. If the dimensionality of field space is large,
D ≫ 1, and ESPs are dense, a terminal velocity4 vt ∼ gx2

results [72]. vt becomes independent of the potential in the
large D limit. As long as the potential is steep enough, the
trajectory is traversed at this constant speed; thus, func-
tional fine-tuning, i.e., the η problem, is relaxed. Preheating
was discussed in [106], entailing qualitatively new reso-
nance effects: efficient preheating is likely for dense
distributions, x≲ 0.001, in contrast to preheating with a
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1The BICEP2 experiment [1] claims a detection of r ∼Oð0.1Þ,

which would rule out small-field models if confirmed independ-
ently.

2See [108] for particle production at a point of enhanced gauge
symmetry after inflation within the MSSM [109–111].

3Monodromy inflation [95] is a realization of trapped inflation
[84,94].

4This terminal velocity at weak coupling should not be
confused with the speed limit at strong coupling [114], leading
to Dirac-Born-Infeld inflation [115].
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single ESP at the vacuum expectation value (VEV) of the
inflatons [116–119].
Intrinsic perturbations (i.e., solutions to the homo-

geneous equation for perturbations) are expected to have
a red spectral index and a suppressed amplitude similar to
perturbations in single-field trapped inflation [94]. We
leave the computation of this spectrum to a future pub-
lication in lieu of focusing on additional curvature fluctua-
tions sourced by backscattering of the produced particles
of the inflaton condensate. This effect was computed for
distinguishable ESP encounters in a series of papers by
Barnaby et al. [65–68,112,113,120–122]: in the power
spectrum, a bump (with a suppressed ringing pattern)
results at a wave number corresponding to the Hubble
radius at the time of the encounter. In our setup, several
ESPs are encountered at any given time, leading to a
superposition of bumps. In Sec. IV, we compute analyti-
cally a nearly scale invariant contribution to the power
spectrum, Pbs, resulting from this superposition. We find a
small blue tilt that is ruled out by Planck (a red index was
found at the 5σ level). Consequently, the amplitude of Pbs
needs to be subdominant, leading to an upper bound on the
coupling constant, g≲Oð0.01Þ.
We discuss the implication for trapped inflation in

Sec. IVA, concluding that only a narrow region of parameter
space remains viable. We comment on non-Gaussianities in
Sec. IVA 1, which receive an additional contribution from
the same effect. We expect a similar constraint on g from
bounds on the bispectrum, but leave a computation to
future work.
The detailed outline of this paper is as follows: we start

with a brief recap of trapped inflation in Sec. II, providing a
heuristic argument motivating the presence of a terminal
velocity. The conditions to drive trapped inflation at vt are
summarized in Sec. II B. Readers familiar with [72]
may skip these sections. After commenting briefly on the
intrinsic power spectrum in Sec. III, we derive the additional
contribution from backscattering in Sec. IV, followed by a
discussion of the allowed values of g and x in Sec. IVA. We
comment on the effectiveness of preheating and non-
Gaussianities thereafter, before concluding in Sec. V.
Throughout this article we set the reduced Planck mass

to unity,

M2
P ¼

1

8πG
≡ 1: ð1Þ

II. BRIEF RECAP: TRAPPED INFLATION IN A
HIGHER DIMENSIONAL FIELD SPACE

In [72] the mechanism of trapped inflation [84,94,95]
has been generalized to higher dimensional field spaces and
preheating has been discussed in [106]. We refer the
interested reader to [72] for a thorough derivation of the
results stated in this section, but would like to provide a
heuristic argument to aid the reader’s intuition.

A. A heuristic argument

ESPs are locations in field space at which additional
degrees of freedom become light, so that they can be
produced kinematically. Here, we wish to consider a higher
dimensional field space with potential VðφiÞ, i ¼ 1…D,
D ≫ 1 and a dense, homogeneous and isotropic5 ESP
distribution, characterized by an average inter-ESP distance
x. We model the extra degree of freedom at a single ESP at
~φESP by an additional light scalar field coupled to the
inflaton via the interaction Lagrangian

Lint ¼ −
g2

2
χ2

XD
i¼1

ðφi − φESP
i Þ2: ð2Þ

For simplicity, we assume canonical kinetic terms and an
identical coupling g between the inflatons and the extra
fields. If the bare mass mχ is small and [104,120]

g >
H2

v
; ð3Þ

with v≡ j _~φj and H ¼ _a=a the Hubble parameter, particle
production during an ESP encounter can be computed
analytically, identical to particle production during preheat-
ing [104]. The produced particle density depends sensi-
tively on the distance of closest approach, i.e., the impact
parameter

μ ¼ minðj~φðtÞ − ~φESPjÞ; ð4Þ
so that

ρχ ∝ e−
g
v μ

2

: ð5Þ

Evidently, if μ >
ffiffiffiffiffiffiffiffi
v=g

p
, particle production is suppressed

and this particular ESP can be neglected. However, if the
trajectory comes closer, a fraction of the inflatons’ kinetic
energy is transferred to χ particles. As the trajectory moves
away from the ESP, these particles become heavy and, via
the coupling in (2), lead to an attractive force towards the
ESP that diminishes over time in an expanding universe,
ρχ ∝ a−3. Such a single encounter can slow down, bend
and, for strong coupling, temporarily trap the trajectory
[63,84]. While interesting effects similar to the curvaton
scenario can result for such a single encounter [63], we
wish to consider the other extreme of a dense ESP
distribution, so that individual encounters become indis-
tinguishable from each other.
Due to the exponential suppression in (5), only ESPs in a

cylinder around the trajectory with radius of order
ffiffiffiffiffiffiffiffi
v=g

p
need to be considered. If

ffiffiffiffiffiffiffiffi
v=g

p ≲ x, ESPs are encountered

5The assumption of homogeneity and isotropy is made to
simplify computations, and not derived from any underlying
principle.
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individually as in [63], if at all. On the other hand, ifffiffiffiffiffiffiffiffi
v=g

p
> x, many ESPs are close enough to the trajectory at

any given time for particle production to take place. Since
we distribute ESPs homogeneously, no particular direction
is singled out. Hence, if the trajectory in field space is
sufficiently straight in the absence of ESPs, the resulting
backreaction of the produced χ particles onto the inflatons

is opposite to the velocity _~φ.
Let us consider inflatons placed somewhere high up in a

steep potential V: initially at rest, the fields accelerate due
to the gradient. As long as v < gx2, hardly any ESPs are in
reach and the inflatons keep accelerating. Once v ∼ gx2 is
reached, particles at many ESPs are produced, resulting in
an opposing force to the speed, and thus the gradient of the
potential if the trajectory is sufficiently straight. This force
becomes exceedingly strong as v increases, subsequently
reducing v. On the other hand, if v dips below gx2, the
speed picks up again due to the gradient of the potential.
Thus, after initial oscillations, balancing these two forces
leads to a movement at a terminal velocity of order gx2; see
Fig. 1 for an illustration.
This heuristic argument can be made precise (see [72]),

leading to the terminal velocity

vt ¼ gx2Δ; ð6Þ

Δ≡
�ð2πÞ33H

g5x4
∂V
∂ϕ

�
2=ðDþ4Þ

ð7Þ

in the large D limit (this result ignores factors of order
1=D), where we defined ϕ as the field along the trajectory.
Since Δ → 1 for large D, we can approximate

vt ≈ gx2 ð8Þ

in the large D limit, which is independent of the potential
(assuming that the slope of the potential is steep enough to
drive v towards vt).

B. Conditions for inflation at the terminal velocity

In order for (8) to be self-consistent and inflation to be
driven at the terminal velocity, several conditions need to be
satisfied (see [72] for more details):
(1) The potential needs to be steep enough to ignore

Hubble friction, yielding the condition vt ≪ vSR≈
j∂V=∂ϕj=ð3HÞ. If vt > vSR, the slow-roll regime is
entered before the terminal velocity is reached.

(2) To avoid prolonged oscillations around vt, the time
for backreaction to act needs to be smaller than the
characteristic time needed to change the speed due
to the potential. This entails the lower bound
D ≫ 2 lnðj∂V=∂ϕj2ð2πÞ3=ðgxÞ6Þ.

(3) The trajectory should not be strongly curved
over a few Hubble times, so that backreaction is

approximately antiparallel to the velocity and the
gradient, yielding the upper bound vt ≲ 10−4.

(4) The potential energy needs to dominate over the
kinetic energy, which in turn needs to be bigger than
the energy in produced particles, to guarantee that
inflation takes place.

(5) At least N ¼ 60 e-folds of inflation are needed to
solve the standard problems of the big bang.

III. CONTRIBUTIONS TO THE POWER
SPECTRUM

The study of perturbations in trapped inflation is subtle,
since backreaction of χ particles onto the background is
included at the level of the equations of motion, not the
Lagrangian. In the one dimensional case, an analysis of
perturbations in ϕ in the uniform curvature gauge for a de
Sitter background is given in [94], which can be general-
ized to our case. This computation takes place in two steps:
first, the solution of the homogeneous equation leads to the
intrinsic power spectrum. In a previous version of this

2

1/2
(v/g) ~ x

~

(v/g)1/2

 x<(v/g)
1/2

x

FIG. 1 (color online). Schematic: ESPs (black dots) with
average inter-ESP distance x distributed on a D ¼ 2 dimensional
field space; the arrow denotes an approximately straight trajec-
tory given by Vð~ϕÞ. The blue circles have radius

ffiffiffiffiffiffiffiffi
v=g

p
; only

those ESPs that have an impact parameter of μ ∼
ffiffiffiffiffiffiffiffi
v=g

p
(dark

blue) can affect inflationary dynamics, due to the exponential
suppression in (5). Top: The speed in field space v is small, so that
μ >

ffiffiffiffiffiffiffiffi
v=g

p
for almost all ESPs. Except for rare encounters with

single ESPs, no particle production takes place. Bottom: As v
increases,

ffiffiffiffiffiffiffiffi
v=g

p
∼ x, and many ESPs become within reach of the

trajectory. Backreaction provides a friction force, leading to a
movement at the terminal velocity vt in (8).
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article, a discussion of the intrinsic power spectrum
was included, following the standard approach to cosmo-
logical perturbation theory as used in [72]. This compu-
tation, as well as the section pertaining to perturbations in
[72], is not applicable, since it is based on the standard
Lagrangian for cosmological perturbations; instead, the
methods employed in [94] should be used. We plan to
correct this computation in a forthcoming separate pub-
lication and focus on a second contribution to the power
spectrum induced by the peculiar solution to the inhomo-
geneous equation, i.e., by the inclusion of a source term due
to backscattering: perturbations in the produced particle
density (responsible for the speed limit and thus crucial
for the background solution) backscatter off the inflaton
condensate. For a single ESP encounter, this backscattering
effect leads to a bump in the power spectrum, accom-
panied by a (suppressed) ringing pattern [120,121].
A dense superposition of these bumps should lead to a
nearly scale invariant contribution to the power spectrum,
that can reach the COBE limit if g is sufficiently large, as
mentioned in [72]. We expect this second contribution to
dominate over the intrinsic power spectrum without
tuning, in line with the results of [94].
The computation of this contribution and its scalar

spectral index is the aim of this paper. We will show that
this contribution Pbs carries an observationally ruled out
blue spectral index so that it must be subdominant, leading
to an upper bound on g. Thus, the intrinsic power spectrum
has to saturate the COBE bound while satisfying obser-
vational constraints on the scalar spectral index and the
tensor to scalar ratio or an additional mechanism has to be
invoked to provide the power spectrum.
In the former case, fields move at the terminal velocity

while scales in the observational window leave the horizon;
a regular slow-roll regime is entered thereafter. This setup
can be valid for complicated potentials as long as V is steep
enough and the conditions in Sec. II B are satisfied. If
the spectral index or amplitude fail to meet observational
requirements one may use a curvaton [56–58] or modulated
reheating [47–50] to provide the power spectrum. Such an
addition would render the model rather complicated and
one may argue to discard it based on Ockham’s razor.
If trapped inflation is not operational during the last sixty

e-folds of inflation, it may be present and useful at earlier
times: if fields start out high up in a steep potential on some
complicated (random) landscape in string theory inflation is
rare in the absence of a speed limit; if it occurs, it usually
takes place near a saddle point [8–11,13,16]. If a speed
limit is present, inflation is already taking place when the
saddle is encountered, avoiding the overshoot problem and
addressing the initial value problem of inflationary cos-
mology (why is _ϕ2=2 ≪ V?). In this setup, the initial
inflationary phase at the terminal velocity takes place
before scales relevant for observations leave the horizon
and has therefore no observable impact.

IV. THE POWER SPECTRUM FROM
BACKSCATTERING

In [120,121] the effect of backscattering of a single ESP
onto fluctuations of a single inflaton field was computed,
yielding a bumplike contribution to the power spectrum
that can be approximated by

PESP ≈ A

�
πe
3

�
3=2

�
k

kESP

�
3

exp

�
−
π

2

k2

k2ESP

�
; ð9Þ

which ignores a ringing pattern in the large k tail (we are
not interested in these oscillations, since they will be
averaged out via the superposition of bumps). The ampli-
tude was computed in [121] by comparison to lattice field
simulations to

A ≈ 10−6g15=4; ð10Þ
which was tested for a quadratic potential and g2 ¼
1; 0.1; 0.01; it was found to be a good approximation up
to factors of order unity [121]. We shall use this estimate to
put constraints on g subsequently, keeping this theoretical
uncertainty in mind. The location of the peak is set by the
Hubble scale at the ESP encounter,

kESP ¼ cHESPeNESP ð11Þ
where

NESP ≡
Z

ϕESP

ϕ�

HðϕÞ
_ϕ

dϕ ð12Þ

is the number of e-folds between ϕ� at N ¼ 60 e-folds
before the end of inflation and the ESP encounter at ϕESP,
and the proportionality constant is given by c ¼ ffiffiffiffiffi

gv
p

=HESP
[120,121] (note that our notation differs from the one in
[120,121]).
For us, there are two important differences compared

to [120,121]: firstly, while v is given by the slow-roll speed
in [120,121], it is the terminal velocity v ¼ vt ¼ gx2 for us.
As a consequence, we get c ¼ gx=H so that

kESP ¼ gxeNESP ; ð13Þ
with

NESP ≈ −
1

vt

Z
ϕESP

ϕ�
HðϕÞdϕ ð14Þ

≈ Nð1 − y1þs=2Þ; ð15Þ

where we defined

y≡ ϕESP

ϕ�
ð16Þ

and used the monomial potential
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V ¼
XD
i¼1

λ

s
φs
i ¼

λ

s
ϕs; ð17Þ

with s ≥ 2 in the last step as an explicit example. We only
consider ESP encounters in the trapped inflation regime,
i.e., ϕESP > ϕt; the latter results by equating the slow-roll
speed

vSR ¼
ffiffiffiffiffi
λs
3

r
ϕs=2−1 ð18Þ

with the terminal velocity vt, so that the transitional field
value becomes

ϕt ≡
�
vt

ffiffiffiffiffi
3

λs

r �2=ðs−2Þ
; ð19Þ

for s > 2 (for s ¼ 2 the slow-roll speed is constant, so that
either slow roll or movement at the terminal velocity is
operational during the inflationary regime). Thus, the slow-
roll regime is operational for

ϕend ≲ ϕ≲ ϕt; ð20Þ

with ϕend ¼ s=
ffiffiffi
2

p
at which the potential slow-roll param-

eter equals 1, while inflation is driven at the terminal
velocity for ϕ > ϕt; see Fig. 2 for an illustration. The
transition between the two regimes is smooth6 so that no
sharp features in observables are expected. The total
number of e-folds

N ¼
Z

ϕend

ϕt

H
_ϕ
dϕþ

Z
ϕt

ϕ�

H
vt

dϕ ð21Þ

≡ NSR þ Nt ð22Þ

can be computed to

NSR ≈
1

2s
ðϕ2

t − ϕ2
endÞ; ð23Þ

Nt ≈
ffiffiffiffiffi
λ

3s

r
1

vt

2

sþ 2
ðϕ1þs=2

� − ϕ1þs=2
t Þ; ð24Þ

for s > 2, where we used the slow-roll approximation for
NSR and vt ¼ const as well as 3H2 ≃ V for Nt. Since

λðϕ�Þ ¼ 3sH2�
1

ϕs�
; ð25Þ

and ϕt ¼ ϕtðλðϕ�ÞÞ via (19), it is usually not possible to
solve Nðϕ�Þ ¼ 60 for ϕ� analytically, but once the infla-
tionary energy scale H� is specified, it may always be done
numerically.
A second difference compared to [120,121] is that ESPs

are not encountered head on, but distributed around
the trajectory and passed in rapid succession. As a result,
particle production at a single ESP is suppressed by an
impact parameter μ, i.e., the distance of closest approach to
the ESP, leading to nχ ∝ expð−gμ2=vÞ, which carries over
to the energy density in (5) and all associated effects. These
consequences were computed in [72], where it was shown
that particle production, and thus backreaction, is domi-
nated by ESPs with impact parameters close to

μ0 ¼ x

ffiffiffiffiffiffi
D
2π

r
; ð26Þ

particle production of ESPs further away is exponentially
suppressed, while ESPs closer to the trajectory are too few
to affect the dynamics strongly if D is large; the latter is a
direct consequence of the fact that most of the volume, and
thus ESPs, in a hypersphere is close to its surface in the
large D limit. Thus, the corresponding particle density nχ
carries a suppression factor of exp ð−D=2Þ, which in turn
carries directly over to PESP; we may thus write the
cumulative contribution to the power spectrum from back-
scattering7 as

V

Trapped InflationSR

tend

FIG. 2. An inflationary potential (s > 2), denoting the region of
slow-roll dynamics for ϕend < ϕ < ϕt and trapped inflation at the
terminal velocity vt in (8) for ϕ > ϕt, with the transitional field
value ϕt in (19).

6When vSR dips below vt, particle productions ceases, and the
effect of the already produced particles redshifts away since
ρχ ∝ a−3. Hence, the velocity slowly decreases from vt tracking
vSR.

7For trapped inflation in one dimension, the corresponding
spectrum from backscattering was computed in [94] by a different
approximation scheme.
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Pbs ¼
Z
traj

dnESPPESP; ð27Þ

with

PESP ≈ A

�
πe
3

�
3=2

�
k

kESP

�
3

exp

�
−
π

2

k2

k2ESP
−
D
2

�
; ð28Þ

and we defined the effective ESP line density

dnESP ≡ VD−1
μD−1
0

xD
dϕ; ð29Þ

where VD−1 is the volume of a D − 1 dimensional unit
sphere. See Fig. 3 for a schematic of the infinitesimal
volume element to be integrated along the trajectory.
Replacing ϕ by y as the integration variable and defining

the dimensionless function

FðkÞ≡
Z

∞

0

�
k

kESPðyÞ
�

3

exp

�
−
π

2

�
k

kESPðyÞ
�

2
�
dy ð30Þ

we get

Pbs ≈
�
πe
3

�
3=2

AESP
ϕ�
x
FðkÞ; ð31Þ

where we used (26) so that

VD−1
μD−1
0

xD
≈
eD=2

x
; ð32Þ

and we extracted the leading order result in a 1=D
expansion. To be concrete, we used VD ¼ πD=2=Γð1þ
D=2Þ and the large argument limit of the Γ function. Note
that the suppression factor of e−D=2 of a single ESP
encounter with impact parameter μ0 is compensated by
the large number of traversed ESPs.
Replacing y by kESP via (13) and (15), and defining

z≡ ln

�
k
H�

�
; ð33Þ

κ ≡ kESP
H�

; ð34Þ

we can write the integral explicitly as

FðzÞ ¼
Z

gxeN=H�

0

2

sþ 2

�
1 −

1

N
ln

�
κH�
gx

��
−s=ðsþ2Þ

×
1

Nκ

�
ez

κ

�
3

exp

�
−
π

2

�
ez

κ

�
2
�
dκ ð35Þ

≡
Z

gxeN=H�

0

fðκ; zÞdκ: ð36Þ

To compute the scalar spectral index of the additional
contribution to the power spectrum,

nbss − 1≡ d lnPbs

d ln k

����
�
¼ 1

F
dF
dz

����
z¼0

; ð37Þ

we need F and its derivative at z ¼ 0.
Let us focus on Fð0Þ first: the integrand peaks at

κ̄ðzÞ≡
ffiffiffi
π

p
2

ez; ð38Þ

so that we may approximate the logarithm in fðκ; zÞ by its
value at κ̄. The remaining integral can be approximated by

Fð0Þ ≈ 1

πN

ffiffiffi
2

p

sþ 2

�
1 −

1

N
ln

� ffiffiffi
π

p
H�

2gx

��−s=ðsþ2Þ
: ð39Þ

Similarly, we can compute dF=dzjz¼0 by first approximat-
ing the logarithm in fðκ; zÞ by its value at κ̄ðzÞ, computing
the partial derivative of the entire integrand with respect to
z, approximating the remaining elementary integrals and
finally setting z ¼ 0, yielding after some algebra

dF
dz

����
z¼0

≈
ffiffiffi
2

p
s

πN2ðsþ 2Þ2
�
1 −

1

N
ln

� ffiffiffi
π

p
H�

2gx

��−2sþ1
sþ2

: ð40Þ

We checked the analytic approximations numerically, and
we found them to be accurate at the percent level. With
these approximations, the scalar spectral index simplifies to

nbss − 1 ≈
s

sþ 2

1

N − lnð
ffiffi
π

p
H�

2gx Þ
: ð41Þ

Evidently, this additional contribution to the power spec-
trum has a blue spectral index nbss − 1 ∼ 10−2 for all s [the
logarithm gives a factor of order 1 for the allowed values of
g in (46)], which is ruled out by the Planck satellite at the 5σ
level. Hence

FIG. 3. Schematic showing an infinitesimal volume element
around the trajectory. Only ESPs up to a distance of μ0 in (26)
affect inflationary dynamics via backreaction and potentially
curvature perturbations via backscattering (see Fig. 1).
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Pbs ≈
A
N

�
e
3
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2πg
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π
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; ð42Þ

where we used x ¼ ffiffiffiffiffiffiffiffiffi
vt=g

p
, which cannot provide the

dominant contribution to the power spectrum, but has to
satisfy

Pbs ≪ Pζ: ð43Þ

A. Discussion: Consequences of the allowed
values of g and x

Demanding Pbs ≲ 0.1Pζ yields the upper bound g≲ gmax
by using Pbs from (42), the approximate amplitude A from
(10) and ϕ� from solving Nðϕ�Þ ¼ 60. This bound depends
on the inflationary energy scale H� and the terminal
velocity vt. If the intrinsic power spectrum is computed,
these parameters can be expressed in terms of observables
such as the scalar spectral index and the tensor to
scalar ratio.
Fortunately, for reasonable8 values of H� the logarithm

in (42) can be ignored, so that

gmax ≈
�
105

Pζ
ffiffiffiffi
vt

p
ϕ�

�
3

e

�3
2 sþ 2ffiffiffiffiffiffi

2π
p

�
4=17

: ð44Þ

As vt has to be below the slow-roll speed to be relevant, ϕ�
needs to be below the value it would have if ESPs were
absent. Thus, taking s ¼ 3 and ϕ� ¼ 19 as a concrete
example, we get

g≲ gmax ≈ 0.022v2=17t : ð45Þ

Taking vt ∼ 10−6 or smaller so that vt is below vSR yields
g≲ 0.044 ∼Oð10−2Þ as an upper bound. Along with the
lower bound on g in (3), gmin ≈H2�=vt ∼ 10−4 if vt ∼ 10−6

and H� ∼ 10−5 during inflation at the terminal velocity, we
arrive at the allowed interval

Oð10−4Þ≲ g≲Oð10−2Þ: ð46Þ

The upper bound on g is comparable to the one originating
from a single bump in the power spectrum in [121], and
somewhat lower than the estimate in [72]. Whereas
individual bumps may be used to match outliers/oscillating

features in the power spectrum, and thus improve a fit, a
seizable contribution of Pbs is not desirable due to its
blue tilt.
The interval for g is not particularly wide, but allowed

values do not appear to be overly fine-tuned either and
cover the same range commonly considered for studies of
preheating after inflation [104,123,124]. In fact, the fields
at ESPs in the vicinity of the final resting place can act as
preheat matter fields, as investigated in [106]: there, it was
found that preheating is qualitatively different than in
models that have an ESP at the VEV of the inflatons;
while dephasing of inflatons tends to suppress parametric
resonance [116–119] (see [118,125,126] for the case of two
inflations, that still permits resonances), two new effects
leading to efficient preheating were found: particle pro-
duction during the first infall can already comprise a
seizable energy transfer if the trapped inflation regime
lasts until preheating commences, but it is never complete.
Subsequent broad resonance is generically suppressed due
to dephasing of the fields, but if an ESP happens to lie at a
well-defined distance from the VEV, a prolonged narrow
resonance regime can complete preheating. In [106] it was
concluded that both effects are important/likely if the
average inter-ESP distance is of order x ∼ 10−3 or smaller
(g ¼ 0.5 × 10−4 was used). Since x ¼ ffiffiffiffiffiffiffiffiffi

vt=g
p

the allowed
interval of g corresponds to

Oð0.01Þ ≲ x≲Oð0.1Þ: ð47Þ

Such values of the average inter-ESP separation appear
reasonable in light of the known examples of moduli spaces
in string theory. Since x ∼ 10−3 lies outside of this interval,
it is unlikely for an ESP to be at the right position for a
prolonged narrow resonance regime. Furthermore, particle
production during the first infall does not take place if the
slow-roll regime is operational towards the end of inflation.
The latter is the case for monomial potentials if ϕt in (19) is
bigger than ϕend. However, if the inflationary model is a
large-field one, one may/should expect x to differ by a
factor of order 1 over the course of inflation, which might
boost preheating; if preheating is absent, fields either decay
via tachyonic instabilities [118,127,128] or the standard
theory of reheating.
To summarize, while a small value of Pζ still requires

fine-tuning of the inflationary energy scale,9 the functional
fine-tuning of the potential needed for large-field models
in the absence of additional symmetries is absent for
inflation at the terminal velocity, since inflation is due to a
small vt, which in turn can be achieved by reasonable
values of the coupling constant g and inter-ESP distance x;

8Taking e.g.H� ∼ 10−5 assumes an inflationary energy scale in
line with slow-roll models where ðH2�=ð2π _ϕÞÞ2 ¼ Pζ ∼ 2 × 10−9

is set by the Cobe normalization (using vt ∼ 10−6 as in the
estimate that follows). This slow-roll result does not apply for
trapped inflation at the terminal velocity, which requires the
computation of the intrinsic power spectrum as in [94] (not
provided in this paper). If H� were considerably below 10−5, the
lower bound on g in (46) would be relaxed, but the upper bound
would hardly be affected due to the logarithmic dependence.

9A computation of the intrinsic power spectrum (not presented
here) is needed to check if the amplitude of Pint can be large
enough to saturate the COBE bound; if this is the case, one can
relate Pζ to H� and tune H� accordingly.
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the main requirement is a steep enough potential to drive _ϕ
towards the terminal velocity, i.e., vSR > vt (see Sec. II B
for additional, mild conditions). In this regime, we showed
that the additional contribution to the power spectrum
from backscattering is observationally ruled out by Planck,
since it carries a blue spectral index. As a consequence,
only the narrow interval in (46) remains viable for trapped
inflation at the terminal velocity, severely reducing
the motivation to consider trapped inflation in the first
place.

1. Non-Gaussianities

Let us comment briefly on non-Gaussianities: from the
conclusions of [129–133], we do not expect large intrinsic
non-Gaussianities to be generated during inflation even if
the potential is more structured than in the simple mono-
mial cases considered here, since the trajectory has to be
reasonably straight (see point 3 in Sec. II B). However,
another source of non-Gaussianities is present: as back-
scattering leads to an additional contribution to the power
spectrum, it also acts as a source for higher order corre-
lation functions, such as the bispectrum. In [65], the shape
function due to a distinguishable ESP encounter was
computed (see also [66]), entailing a localized feature as
well as oscillatory components. Such a highly structured
bispectrum (two integrals cannot be expressed in closed
form) is difficult to compare with observations: non-
linearity parameters fNL for smooth shapes (local, equi-
lateral, orthogonal, etc.) are essentially blind to localized
and/or oscillatory features, and even modal expansions
[4,134,135] reach their limit of applicability fast for such
oscillating signals, as discussed in [136]. However, in
our case many copies of the shape function in [65] are
superimposed, similar to the individual bumps in the
power spectrum. Hence, a smooth, nearly scale invariant
bispectrum results, which should be much simpler to
constrain. It would be interesting to perform this compu-
tation and compare the resulting upper bound on g with
the one stemming from the power spectrum (we expect
them to be comparable). We leave this interesting project
to a future study.

V. CONCLUSION

The presence of extra species points on moduli spaces in
string theory is a generic phenomenon. If fields evolve on
such a higher dimensional landscape (D ≫ 1) with a dense
distribution of ESPs, a speed limit at the terminal velocity
vt ∼ gx2 is present (g is the coupling constant to the extra
species particles and x the average inter-ESP distance),
potentially leading to trapped inflation.
We investigated the feasibility of this inflationary sce-

nario in light of Planck’s observation of a red-spectral
index, ns ¼ 0.9603� 0.0073. In addition to the intrinsic
curvature perturbation which has a suppressed amplitude

and is expected to carry a red spectral index (not computed
here), another contribution to the power spectrum is
present in trapped inflation: the produced extra species
particles backscatter off the inflaton condensate, leading to
additional curvature fluctuations. A single ESP encounter
leads to a bump in the power spectrum at a wave number
set by the Hubble radius at the time of the event, as
computed by Barnaby et al. Since the terminal velocity is
due to the superposition of many ESP encounters at any
given time, the resulting superposition of bumps leads
to an additional, nearly scale invariant contribution to
the power spectrum, Pbs. We computed analytically the
amplitude (42) and the scalar spectral index (41) of Pbs.
The index is always blue and therefore observationally
ruled out by Planck. As a consequence, Pbs needs to be
subdominant, which leads to an upper bound on the
coupling constant, Oð10−4Þ ≲ g≲Oð10−2Þ for vt ∼ 10−6

(the lower bound is required by the employed method to
compute particle production at ESPs; it may be relaxed if
the inflationary energy scale turns out to be considerably
lower in trapped inflation compared to slow-roll models,
while still consistent with the COBE normalization);
correspondingly, the average inter-ESP distance needs
to satisfy Oð0.01Þ ≲ x≲Oð0.1Þ. Values for g and x in
these narrow intervals provide the remaining parameter
space for trapped inflation at a terminal velocity.
Given these narrow ranges, the appeal of trapped

inflation is reduced as fine-tuning reemerges to suppress
the contribution to the power spectrum from backscatter-
ing. Further, it is not clear if observational constraints
can be met in this narrow range: the intrinsic power
spectrum needs to be computed to check whether or not
the amplitude and spectral index of the power spectrum
and the tensor to scalar ratio are consistent with obser-
vations.10 Further, the lower bound on x indicates that
preheating at ESPs after inflation is most likely ineffec-
tive; hence, inflatons decay either via tachyonic insta-
bilities or the standard theory of reheating. An additional
contribution to non-Gaussianities from backscattering is
present, but given that Pbs needs to be subdominant, we
expect these non-Gaussianities to be below observational
bounds.

ACKNOWLEDGMENTS

We would like to thank L. Lorentz for initial collabo-
ration and N. Barnaby for discussions. T. B. and D. B.
would like to thank the APC (Paris) for hospitality and D.
Langlois for support.

10The results in the previous version of this paper pertaining to
the intrinsic power spectrum were faulty, due to the unjustified
use of a standard Lagrangian for cosmological perturbations. An
improved version of this computation is in progress by two of the
authors (D. B. and T. B.) of this article.

DIANA BATTEFELD, THORSTEN BATTEFELD, AND DANIEL FIENE PHYSICAL REVIEW D 89, 123523 (2014)

123523-8



[1] P. A. R. Ade et al. (BICEP2 Collaboration),
arXiv:1403.3985.

[2] P. A. R. Ade et al. (Planck Collaboration), arXiv:1303.5076
[Astron. Astrophys. (to be published)].

[3] P. A. R. Ade et al. (Planck Collaboration), arXiv:1303.5082.
[4] P. A. R. Ade et al. (Planck Collaboration), arXiv:1303.5084.
[5] R. Bousso and J. Polchinski, J. High Energy Phys. 06

(2000) 006.
[6] L. Susskind, in Universe or Multiverse?, edited by B. Carr,

pp. 247–266.
[7] M. R. Douglas and S. Kachru, Rev. Mod. Phys. 79, 733

(2007).
[8] A. Aazami and R. Easther, J. Cosmol. Astropart. Phys. 03

(2006) 013.
[9] J. Frazer and A. R. Liddle, J. Cosmol. Astropart. Phys. 02

(2011) 026.
[10] J. Frazer and A. R. Liddle, J. Cosmol. Astropart. Phys. 02

(2012) 039.
[11] L. McAllister, S. Renaux-Petel, and G. Xu, J. Cosmol.

Astropart. Phys. 10 (2012) 046.
[12] M. Dias, J. Frazer, and A. R. Liddle, J. Cosmol. Astropart.

Phys. 06 (2012) 020; 03 (2013) E01.
[13] D. Battefeld, T. Battefeld, and S. Schulz, J. Cosmol.

Astropart. Phys. 06 (2012) 034.
[14] F. G. Pedro and A. Westphal, arXiv:1303.3224.
[15] D. Battefeld and T. Battefeld, J. Cosmol. Astropart. Phys.

07 (2013) 038.
[16] M. C. D. Marsh, L. McAllister, E. Pajer, and T. Wrase,

J. Cosmol. Astropart. Phys. 11 (2013) 040.
[17] D. Battefeld, T. Battefeld, and A.-C. Davis, J. Cosmol.

Astropart. Phys. 10 (2008) 032.
[18] T. Battefeld, Nucl. Phys. B, Proc. Suppl. 192-193, 128

(2009).
[19] D. Battefeld and T. Battefeld, J. Cosmol. Astropart. Phys.

03 (2009) 027.
[20] D. Battefeld, T. Battefeld, H. Firouzjahi, and N. Khosravi,

J. Cosmol. Astropart. Phys. 07 (2010) 009.
[21] D. Battefeld, T. Battefeld, J. T. Giblin, Jr., and E. K. Pease,

J. Cosmol. Astropart. Phys. 02 (2011) 024.
[22] A. Ashoorioon and A. Krause, arXiv:hep-th/0607001.
[23] A. Ashoorioon, A. Krause, and K. Turzynski, J. Cosmol.

Astropart. Phys. 02 (2009) 014.
[24] K. Sugimura, D. Yamauchi, and M. Sasaki, J. Cosmol.

Astropart. Phys. 01 (2012) 027.
[25] T. Battefeld, J. C. Niemeyer, and D. Vlaykov, J. Cosmol.

Astropart. Phys. 05 (2013) 006.
[26] K. Sugimura and E. Komatsu, J. Cosmol. Astropart. Phys.

11 (2013) 065.
[27] S. Dimopoulos, S. Kachru, J. McGreevy, and J. G. Wacker,

J. Cosmol. Astropart. Phys. 08 (2008) 003.
[28] R. Easther and L. McAllister, J. Cosmol. Astropart. Phys.

05 (2006) 018.
[29] K. Becker, M. Becker, and A. Krause, Nucl. Phys. B715,

349 (2005).
[30] M. Majumdar and A.-C. Davis, Phys. Rev. D 69, 103504

(2004).
[31] S.-H. H. Tye, J. Xu, and Y. Zhang, J. Cosmol. Astropart.

Phys. 04 (2009) 018.
[32] A. Ashoorioon, H. Firouzjahi, and M.M. Sheikh-Jabbari,

J. Cosmol. Astropart. Phys. 06 (2009) 018.

[33] A. Ashoorioon, H. Firouzjahi, and M.M. Sheikh-Jabbari,
J. Cosmol. Astropart. Phys. 05 (2010) 002.

[34] A. Ashoorioon and M.M. Sheikh-Jabbari, J. Cosmol.
Astropart. Phys. 06 (2011) 014.

[35] A. Ashoorioon, U. Danielsson, and M.M. Sheikh-Jabbari,
Phys. Lett. B 713, 353 (2012).

[36] K. D. Olum, Phys. Rev. D 86, 063509 (2012).
[37] J. S. Schiffrin and R. M. Wald, Phys. Rev. D 86, 023521

(2012).
[38] B. Freivogel, Classical Quantum Gravity 28, 204007

(2011).
[39] J. Elliston, D. J. Mulryne, and R. Tavakol, Phys. Rev. D 88,

063533 (2013).
[40] F. Bernardeau and J.-P. Uzan, Phys. Rev. D 67, 121301

(2003).
[41] D. H. Lyth, J. Cosmol. Astropart. Phys. 11 (2005) 006.
[42] M. P. Salem, Phys. Rev. D 72, 123516 (2005).
[43] L. Alabidi and D. Lyth, J. Cosmol. Astropart. Phys. 08

(2006) 006.
[44] F. Bernardeau and T. Brunier, Phys. Rev. D 76, 043526

(2007).
[45] M. Sasaki, Prog. Theor. Phys. 120, 159 (2008).
[46] A. Naruko and M. Sasaki, Prog. Theor. Phys. 121, 193

(2009).
[47] G. Dvali, A. Gruzinov, and M. Zaldarriaga, Phys. Rev. D

69, 023505 (2004).
[48] M. Zaldarriaga, Phys. Rev. D 69, 043508 (2004).
[49] L. Kofman, arXiv:astro-ph/0303614.
[50] F. Vernizzi, Phys. Rev. D 69, 083526 (2004).
[51] F. Bernardeau, L. Kofman, and J.-P. Uzan, Phys. Rev. D

70, 083004 (2004).
[52] K. Ichikawa, T. Suyama, T. Takahashi, and M. Yamaguchi,

Phys. Rev. D 78, 063545 (2008).
[53] T. Battefeld, Phys. Rev. D 77, 063503 (2008).
[54] C. T. Byrnes, J. Cosmol. Astropart. Phys. 01 (2009) 011.
[55] T. Suyama and M. Yamaguchi, Phys. Rev. D 77, 023505

(2008).
[56] K. Enqvist and M. S. Sloth, Nucl. Phys. B626, 395

(2002).
[57] D. H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002).
[58] T. Moroi and T. Takahashi, Phys. Lett. B 522, 215 (2001);

Phys. Lett. B 539, 303(E) (2002).
[59] K. Enqvist and S. Nurmi, J. Cosmol. Astropart. Phys. 10

(2005) 013.
[60] A. D. Linde and V. Mukhanov, J. Cosmol. Astropart. Phys.

04 (2006) 009.
[61] K. A. Malik and D. H. Lyth, J. Cosmol. Astropart. Phys. 09

(2006) 008.
[62] M. Sasaki, J. Valiviita, and D. Wands, Phys. Rev. D 74,

103003 (2006).
[63] D. Battefeld, T. Battefeld, C. Byrnes, and D. Langlois,

J. Cosmol. Astropart. Phys. 08 (2011) 025.
[64] D. Langlois and L. Sorbo, J. Cosmol. Astropart. Phys. 08

(2009) 014.
[65] N. Barnaby, Phys. Rev. D 82, 106009 (2010).
[66] N. Barnaby, Adv. Astron. 2010, 156180 (2010).
[67] N. Barnaby and M. Peloso, Phys. Rev. Lett. 106, 181301

(2011).
[68] N. Barnaby and S. Shandera, J. Cosmol. Astropart. Phys.

01 (2012) 034.

PARTICLE PRODUCTION DURING INFLATION IN LIGHT … PHYSICAL REVIEW D 89, 123523 (2014)

123523-9

http://arXiv.org/abs/1403.3985
http://arXiv.org/abs/1303.5076
http://arXiv.org/abs/1303.5076
http://arXiv.org/abs/1303.5082
http://arXiv.org/abs/1303.5084
http://dx.doi.org/10.1088/1126-6708/2000/06/006
http://dx.doi.org/10.1088/1126-6708/2000/06/006
http://dx.doi.org/10.1103/RevModPhys.79.733
http://dx.doi.org/10.1103/RevModPhys.79.733
http://dx.doi.org/10.1088/1475-7516/2006/03/013
http://dx.doi.org/10.1088/1475-7516/2006/03/013
http://dx.doi.org/10.1088/1475-7516/2011/02/026
http://dx.doi.org/10.1088/1475-7516/2011/02/026
http://dx.doi.org/10.1088/1475-7516/2012/02/039
http://dx.doi.org/10.1088/1475-7516/2012/02/039
http://dx.doi.org/10.1088/1475-7516/2012/10/046
http://dx.doi.org/10.1088/1475-7516/2012/10/046
http://dx.doi.org/10.1088/1475-7516/2012/06/020
http://dx.doi.org/10.1088/1475-7516/2012/06/020
http://dx.doi.org/10.1088/1475-7516/2013/03/E01
http://dx.doi.org/10.1088/1475-7516/2012/06/034
http://dx.doi.org/10.1088/1475-7516/2012/06/034
http://arXiv.org/abs/1303.3224
http://dx.doi.org/10.1088/1475-7516/2013/07/038
http://dx.doi.org/10.1088/1475-7516/2013/07/038
http://dx.doi.org/10.1088/1475-7516/2013/11/040
http://dx.doi.org/10.1088/1475-7516/2008/10/032
http://dx.doi.org/10.1088/1475-7516/2008/10/032
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.051
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.051
http://dx.doi.org/10.1088/1475-7516/2009/03/027
http://dx.doi.org/10.1088/1475-7516/2009/03/027
http://dx.doi.org/10.1088/1475-7516/2010/07/009
http://dx.doi.org/10.1088/1475-7516/2011/02/024
http://arXiv.org/abs/hep-th/0607001
http://dx.doi.org/10.1088/1475-7516/2009/02/014
http://dx.doi.org/10.1088/1475-7516/2009/02/014
http://dx.doi.org/10.1088/1475-7516/2012/01/027
http://dx.doi.org/10.1088/1475-7516/2012/01/027
http://dx.doi.org/10.1088/1475-7516/2013/05/006
http://dx.doi.org/10.1088/1475-7516/2013/05/006
http://dx.doi.org/10.1088/1475-7516/2013/11/065
http://dx.doi.org/10.1088/1475-7516/2013/11/065
http://dx.doi.org/10.1088/1475-7516/2008/08/003
http://dx.doi.org/10.1088/1475-7516/2006/05/018
http://dx.doi.org/10.1088/1475-7516/2006/05/018
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.011
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.011
http://dx.doi.org/10.1103/PhysRevD.69.103504
http://dx.doi.org/10.1103/PhysRevD.69.103504
http://dx.doi.org/10.1088/1475-7516/2009/04/018
http://dx.doi.org/10.1088/1475-7516/2009/04/018
http://dx.doi.org/10.1088/1475-7516/2009/06/018
http://dx.doi.org/10.1088/1475-7516/2010/05/002
http://dx.doi.org/10.1088/1475-7516/2011/06/014
http://dx.doi.org/10.1088/1475-7516/2011/06/014
http://dx.doi.org/10.1016/j.physletb.2012.06.034
http://dx.doi.org/10.1103/PhysRevD.86.063509
http://dx.doi.org/10.1103/PhysRevD.86.023521
http://dx.doi.org/10.1103/PhysRevD.86.023521
http://dx.doi.org/10.1088/0264-9381/28/20/204007
http://dx.doi.org/10.1088/0264-9381/28/20/204007
http://dx.doi.org/10.1103/PhysRevD.88.063533
http://dx.doi.org/10.1103/PhysRevD.88.063533
http://dx.doi.org/10.1103/PhysRevD.67.121301
http://dx.doi.org/10.1103/PhysRevD.67.121301
http://dx.doi.org/10.1088/1475-7516/2005/11/006
http://dx.doi.org/10.1103/PhysRevD.72.123516
http://dx.doi.org/10.1088/1475-7516/2006/08/006
http://dx.doi.org/10.1088/1475-7516/2006/08/006
http://dx.doi.org/10.1103/PhysRevD.76.043526
http://dx.doi.org/10.1103/PhysRevD.76.043526
http://dx.doi.org/10.1143/PTP.120.159
http://dx.doi.org/10.1143/PTP.121.193
http://dx.doi.org/10.1143/PTP.121.193
http://dx.doi.org/10.1103/PhysRevD.69.023505
http://dx.doi.org/10.1103/PhysRevD.69.023505
http://dx.doi.org/10.1103/PhysRevD.69.043508
http://arXiv.org/abs/astro-ph/0303614
http://dx.doi.org/10.1103/PhysRevD.69.083526
http://dx.doi.org/10.1103/PhysRevD.70.083004
http://dx.doi.org/10.1103/PhysRevD.70.083004
http://dx.doi.org/10.1103/PhysRevD.78.063545
http://dx.doi.org/10.1103/PhysRevD.77.063503
http://dx.doi.org/10.1088/1475-7516/2009/01/011
http://dx.doi.org/10.1103/PhysRevD.77.023505
http://dx.doi.org/10.1103/PhysRevD.77.023505
http://dx.doi.org/10.1016/S0550-3213(02)00043-3
http://dx.doi.org/10.1016/S0550-3213(02)00043-3
http://dx.doi.org/10.1016/S0370-2693(01)01366-1
http://dx.doi.org/10.1016/S0370-2693(01)01295-3
http://dx.doi.org/10.1016/S0370-2693(02)02070-1
http://dx.doi.org/10.1088/1475-7516/2005/10/013
http://dx.doi.org/10.1088/1475-7516/2005/10/013
http://dx.doi.org/10.1088/1475-7516/2006/04/009
http://dx.doi.org/10.1088/1475-7516/2006/04/009
http://dx.doi.org/10.1088/1475-7516/2006/09/008
http://dx.doi.org/10.1088/1475-7516/2006/09/008
http://dx.doi.org/10.1103/PhysRevD.74.103003
http://dx.doi.org/10.1103/PhysRevD.74.103003
http://dx.doi.org/10.1088/1475-7516/2011/08/025
http://dx.doi.org/10.1088/1475-7516/2009/08/014
http://dx.doi.org/10.1088/1475-7516/2009/08/014
http://dx.doi.org/10.1103/PhysRevD.82.106009
http://dx.doi.org/10.1155/2010/156180
http://dx.doi.org/10.1103/PhysRevLett.106.181301
http://dx.doi.org/10.1103/PhysRevLett.106.181301
http://dx.doi.org/10.1088/1475-7516/2012/01/034
http://dx.doi.org/10.1088/1475-7516/2012/01/034


[69] C. T. Byrnes and K.-Y. Choi, Adv. Astron. 2010, 724525
(2010).

[70] T. Suyama, T. Takahashi, M. Yamaguchi, and S.
Yokoyama, J. Cosmol. Astropart. Phys. 12 (2010) 030.

[71] D. H. Lyth, Phys. Rev. Lett. 78, 1861 (1997).
[72] D. Battefeld and T. Battefeld, J. High Energy Phys. 07

(2010) 063.
[73] N. Seiberg and E. Witten, Nucl. Phys. B426, 19 (1994);

B430485(E) (1994).
[74] N. Seiberg and E. Witten, Nucl. Phys. B431, 484 (1994).
[75] E. Witten, Nucl. Phys. B460, 335 (1996).
[76] K. A. Intriligator and N. Seiberg, Nucl. Phys. B, Proc.

Suppl. 45, 1 (1996).
[77] A. Strominger, Nucl. Phys. B451, 96 (1995).
[78] E. Witten, Nucl. Phys. B443, 85 (1995).
[79] S. H. Katz, D. R. Morrison, and M. R. Plesser, Nucl. Phys.

B477, 105 (1996).
[80] M. Bershadsky, K. A. Intriligator, S. Kachru, D. R.Morrison,

V. Sadov, and C. Vafa, Nucl. Phys. B481, 215 (1996).
[81] E. Witten, Nucl. Phys. B460, 541 (1996).
[82] J. Bagger and I. Giannakis, Phys. Rev. D 56, 2317 (1997).
[83] S. Watson, Phys. Rev. D 70, 066005 (2004).
[84] L. Kofman, A. D. Linde, X. Liu, A. Maloney, L. McAllister,

and E. Silverstein, J. High Energy Phys. 05 (2004) 030.
[85] S. P. Patil and R. Brandenberger, Phys. Rev. D 71, 103522

(2005).
[86] S. P. Patil and R. H. Brandenberger, J. Cosmol. Astropart.

Phys. 01 (2006) 005.
[87] T. Battefeld and S. Watson, Rev. Mod. Phys. 78, 435

(2006).
[88] T. J. Battefeld, S. P. Patil, and R. H. Brandenberger, Phys.

Rev. D 73, 086002 (2006).
[89] S. Cremonini and S. Watson, Phys. Rev. D 73, 086007

(2006).
[90] B. Greene, S. Judes, J. Levin, S. Watson, and A. Weltman,

J. High Energy Phys. 07 (2007) 060.
[91] D. J. H. Chung, E. W. Kolb, A. Riotto, and I. I. Tkachev,

Phys. Rev. D 62, 043508 (2000).
[92] O. Elgaroy, S. Hannestad, and T. Haugboelle, J. Cosmol.

Astropart. Phys. 09 (2003) 008.
[93] A. E. Romano and M. Sasaki, Phys. Rev. D 78, 103522

(2008).
[94] D. Green, B. Horn, L. Senatore, and E. Silverstein, Phys.

Rev. D 80, 063533 (2009).
[95] E. Silverstein and A. Westphal, Phys. Rev. D 78, 106003

(2008).
[96] J. C. Bueno Sanchez and K. Dimopoulos, Phys. Lett. B

642, 294 (2006); 647526(E) (2007).
[97] J. C. Bueno Sanchez and K. Dimopoulos, J. Cosmol.

Astropart. Phys. 10 (2007) 002.
[98] P. Brax and E. Cluzel, J. Cosmol. Astropart. Phys. 03

(2010) 016.
[99] T. Matsuda, J. Cosmol. Astropart. Phys. 11 (2010) 036.

[100] P. Brax and E. Cluzel, J. Cosmol. Astropart. Phys. 04
(2011) 014.

[101] W. Lee, K.-W. Ng, I.-C. Wang, and C.-H. Wu, Phys. Rev.
D 84, 063527 (2011).

[102] T. Moroi, K. Mukaida, K. Nakayama, and M. Takimoto, J.
High Energy Phys. 06 (2013) 040.

[103] G. D’Amico, R. Gobbetti, M. Kleban, and M. Schillo,
J. Cosmol. Astropart. Phys. 11 (2013) 013.

[104] L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev.
D 56, 3258 (1997).

[105] T. Battefeld and N. Shuhmaher, Phys. Rev. D 74, 123501
(2006).

[106] T. Battefeld, A. Eggemeier, and J. T. Giblin, Jr., J. Cosmol.
Astropart. Phys. 11 (2012) 062.

[107] B. A. Bassett, S. Tsujikawa, and D. Wands, Rev. Mod.
Phys. 78, 537 (2006).

[108] R. Allahverdi, A. Ferrantelli, J. Garcia-Bellido, and A.
Mazumdar, Phys. Rev. D 83, 123507 (2011).

[109] R. Allahverdi, K. Enqvist, J. Garcia-Bellido, and A.
Mazumdar, Phys. Rev. Lett. 97, 191304 (2006).

[110] R. Allahverdi, A. Kusenko, and A. Mazumdar, J. Cosmol.
Astropart. Phys. 07 (2007) 018.

[111] R. Allahverdi, K. Enqvist, J. Garcia-Bellido, A. Jokinen,
and A. Mazumdar, J. Cosmol. Astropart. Phys. 06 (2007)
019.

[112] N. Barnaby, E. Pajer, and M. Peloso, Phys. Rev. D 85,
023525 (2012).

[113] N. Barnaby, R. Namba, and M. Peloso, Phys. Rev. D 85,
123523 (2012).

[114] E. Silverstein and D. Tong, Phys. Rev. D 70, 103505
(2004).

[115] M. Alishahiha, E. Silverstein, and D. Tong, Phys. Rev. D
70, 123505 (2004).

[116] D. Battefeld and S. Kawai, Phys. Rev. D 77, 123507
(2008).

[117] D. Battefeld, Nucl. Phys. B, Proc. Suppl. 192–193, 126
(2009).

[118] D. Battefeld, T. Battefeld, and J. T. Giblin, Phys. Rev. D
79, 123510 (2009).

[119] J. Braden, L. Kofman, and N. Barnaby, J. Cosmol.
Astropart. Phys. 07 (2010) 016.

[120] N. Barnaby, Z. Huang, L. Kofman, and D. Pogosyan, Phys.
Rev. D 80, 043501 (2009).

[121] N. Barnaby and Z. Huang, Phys. Rev. D 80, 126018
(2009).

[122] N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu, and
P. Zhou, Phys. Rev. D 86, 103508 (2012).

[123] A. D. Dolgov and D. P. Kirilova, Sov. J. Nucl. Phys. 51,
172 (1990) [Yad. Fiz. 51, 273 (1990)].

[124] J. H. Traschen and R. H. Brandenberger, Phys. Rev. D 42,
2491 (1990).

[125] B. A. Bassett, Phys. Rev. D 58, 021303 (1998).
[126] B. A. Bassett and F. Tamburini, Phys. Rev. Lett. 81, 2630

(1998).
[127] G. N. Felder, J. Garcia-Bellido, P. B. Greene, L. Kofman,

A. D. Linde, and I. Tkachev, Phys. Rev. Lett. 87, 011601
(2001).

[128] J. F. Dufaux, G. N. Felder, L. Kofman, M. Peloso, and
D. Podolsky, J. Cosmol. Astropart. Phys. 07 (2006) 006.

[129] T. Battefeld and R. Easther, J. Cosmol. Astropart. Phys. 03
(2007) 020.

[130] D. Battefeld and T. Battefeld, J. Cosmol. Astropart. Phys.
11 (2009) 010.

[131] J. Elliston, D. J. Mulryne, D. Seery, and R. Tavakol,
J. Cosmol. Astropart. Phys. 11 (2011) 005.

DIANA BATTEFELD, THORSTEN BATTEFELD, AND DANIEL FIENE PHYSICAL REVIEW D 89, 123523 (2014)

123523-10

http://dx.doi.org/10.1155/2010/724525
http://dx.doi.org/10.1155/2010/724525
http://dx.doi.org/10.1088/1475-7516/2010/12/030
http://dx.doi.org/10.1103/PhysRevLett.78.1861
http://dx.doi.org/10.1007/JHEP07(2010)063
http://dx.doi.org/10.1007/JHEP07(2010)063
http://dx.doi.org/10.1016/0550-3213(94)90124-4
http://dx.doi.org/10.1016/0550-3213(94)00449-8
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://dx.doi.org/10.1016/0550-3213(95)00610-9
http://dx.doi.org/10.1016/0920-5632(95)00626-5
http://dx.doi.org/10.1016/0920-5632(95)00626-5
http://dx.doi.org/10.1016/0550-3213(95)00287-3
http://dx.doi.org/10.1016/0550-3213(95)00158-O
http://dx.doi.org/10.1016/0550-3213(96)00331-8
http://dx.doi.org/10.1016/0550-3213(96)00331-8
http://dx.doi.org/10.1016/S0550-3213(96)90131-5
http://dx.doi.org/10.1016/0550-3213(95)00625-7
http://dx.doi.org/10.1103/PhysRevD.56.2317
http://dx.doi.org/10.1103/PhysRevD.70.066005
http://dx.doi.org/10.1088/1126-6708/2004/05/030
http://dx.doi.org/10.1103/PhysRevD.71.103522
http://dx.doi.org/10.1103/PhysRevD.71.103522
http://dx.doi.org/10.1088/1475-7516/2006/01/005
http://dx.doi.org/10.1088/1475-7516/2006/01/005
http://dx.doi.org/10.1103/RevModPhys.78.435
http://dx.doi.org/10.1103/RevModPhys.78.435
http://dx.doi.org/10.1103/PhysRevD.73.086002
http://dx.doi.org/10.1103/PhysRevD.73.086002
http://dx.doi.org/10.1103/PhysRevD.73.086007
http://dx.doi.org/10.1103/PhysRevD.73.086007
http://dx.doi.org/10.1088/1126-6708/2007/07/060
http://dx.doi.org/10.1103/PhysRevD.62.043508
http://dx.doi.org/10.1088/1475-7516/2003/09/008
http://dx.doi.org/10.1088/1475-7516/2003/09/008
http://dx.doi.org/10.1103/PhysRevD.78.103522
http://dx.doi.org/10.1103/PhysRevD.78.103522
http://dx.doi.org/10.1103/PhysRevD.80.063533
http://dx.doi.org/10.1103/PhysRevD.80.063533
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://dx.doi.org/10.1016/j.physletb.2006.09.045
http://dx.doi.org/10.1016/j.physletb.2006.09.045
http://dx.doi.org/10.1016/j.physletb.2006.09.070
http://dx.doi.org/10.1088/1475-7516/2007/10/002
http://dx.doi.org/10.1088/1475-7516/2007/10/002
http://dx.doi.org/10.1088/1475-7516/2010/03/016
http://dx.doi.org/10.1088/1475-7516/2010/03/016
http://dx.doi.org/10.1088/1475-7516/2010/11/036
http://dx.doi.org/10.1088/1475-7516/2011/04/014
http://dx.doi.org/10.1088/1475-7516/2011/04/014
http://dx.doi.org/10.1103/PhysRevD.84.063527
http://dx.doi.org/10.1103/PhysRevD.84.063527
http://dx.doi.org/10.1007/JHEP06(2013)040
http://dx.doi.org/10.1007/JHEP06(2013)040
http://dx.doi.org/10.1088/1475-7516/2013/11/013
http://dx.doi.org/10.1103/PhysRevD.56.3258
http://dx.doi.org/10.1103/PhysRevD.56.3258
http://dx.doi.org/10.1103/PhysRevD.74.123501
http://dx.doi.org/10.1103/PhysRevD.74.123501
http://dx.doi.org/10.1088/1475-7516/2012/11/062
http://dx.doi.org/10.1088/1475-7516/2012/11/062
http://dx.doi.org/10.1103/RevModPhys.78.537
http://dx.doi.org/10.1103/RevModPhys.78.537
http://dx.doi.org/10.1103/PhysRevD.83.123507
http://dx.doi.org/10.1103/PhysRevLett.97.191304
http://dx.doi.org/10.1088/1475-7516/2007/07/018
http://dx.doi.org/10.1088/1475-7516/2007/07/018
http://dx.doi.org/10.1088/1475-7516/2007/06/019
http://dx.doi.org/10.1088/1475-7516/2007/06/019
http://dx.doi.org/10.1103/PhysRevD.85.023525
http://dx.doi.org/10.1103/PhysRevD.85.023525
http://dx.doi.org/10.1103/PhysRevD.85.123523
http://dx.doi.org/10.1103/PhysRevD.85.123523
http://dx.doi.org/10.1103/PhysRevD.70.103505
http://dx.doi.org/10.1103/PhysRevD.70.103505
http://dx.doi.org/10.1103/PhysRevD.70.123505
http://dx.doi.org/10.1103/PhysRevD.70.123505
http://dx.doi.org/10.1103/PhysRevD.77.123507
http://dx.doi.org/10.1103/PhysRevD.77.123507
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.050
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.050
http://dx.doi.org/10.1103/PhysRevD.79.123510
http://dx.doi.org/10.1103/PhysRevD.79.123510
http://dx.doi.org/10.1088/1475-7516/2010/07/016
http://dx.doi.org/10.1088/1475-7516/2010/07/016
http://dx.doi.org/10.1103/PhysRevD.80.043501
http://dx.doi.org/10.1103/PhysRevD.80.043501
http://dx.doi.org/10.1103/PhysRevD.80.126018
http://dx.doi.org/10.1103/PhysRevD.80.126018
http://dx.doi.org/10.1103/PhysRevD.86.103508
http://dx.doi.org/10.1103/PhysRevD.42.2491
http://dx.doi.org/10.1103/PhysRevD.42.2491
http://dx.doi.org/10.1103/PhysRevD.58.021303
http://dx.doi.org/10.1103/PhysRevLett.81.2630
http://dx.doi.org/10.1103/PhysRevLett.81.2630
http://dx.doi.org/10.1103/PhysRevLett.87.011601
http://dx.doi.org/10.1103/PhysRevLett.87.011601
http://dx.doi.org/10.1088/1475-7516/2006/07/006
http://dx.doi.org/10.1088/1475-7516/2007/03/020
http://dx.doi.org/10.1088/1475-7516/2007/03/020
http://dx.doi.org/10.1088/1475-7516/2009/11/010
http://dx.doi.org/10.1088/1475-7516/2009/11/010
http://dx.doi.org/10.1088/1475-7516/2011/11/005


[132] J. Elliston, D. Mulryne, D. Seery, and R. Tavakol, Int. J.
Mod. Phys. A 26, 3821 (2011) [Int. J. Mod. Phys. Conf.
Ser. 03, 203 (2011)].

[133] J. Elliston, L. Alabidi, I. Huston, D. Mulryne, and
R. Tavakol, J. Cosmol. Astropart. Phys. 09 (2012) 001.

[134] J. R. Fergusson, M. Liguori, and E. P. S. Shellard, Phys.
Rev. D 82, 023502 (2010).

[135] P. D. Meerburg, Phys. Rev. D 82, 063517 (2010).
[136] T. Battefeld and J. Grieb, J. Cosmol. Astropart. Phys. 12

(2011) 003.

PARTICLE PRODUCTION DURING INFLATION IN LIGHT … PHYSICAL REVIEW D 89, 123523 (2014)

123523-11

http://dx.doi.org/10.1142/S0217751X11054280
http://dx.doi.org/10.1142/S0217751X11054280
http://dx.doi.org/10.1142/S2010194511001292
http://dx.doi.org/10.1142/S2010194511001292
http://dx.doi.org/10.1088/1475-7516/2012/09/001
http://dx.doi.org/10.1103/PhysRevD.82.023502
http://dx.doi.org/10.1103/PhysRevD.82.023502
http://dx.doi.org/10.1103/PhysRevD.82.063517
http://dx.doi.org/10.1088/1475-7516/2011/12/003
http://dx.doi.org/10.1088/1475-7516/2011/12/003

