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The cosmological dynamics of gravitational clustering satisfies an approximate invariance with respect
to the cosmological parameters that is often used to simplify analytical computations. We describe how this
approximate symmetry gives rise to angular-averaged consistency relations for the matter density
correlations. This allows one to write the (lþ n) density correlation, with l large-scale linear wave
numbers that are integrated over angles, and n fixed small-scale nonlinear wave numbers, in terms of
the small-scale n-point density correlation and l prefactors that involve the linear power spectra at the
large-scale wave numbers. These relations, which do not vanish for equal-time statistics, go beyond the
already known kinematic consistency relations. They could be used to detect primordial non-Gaussianities,
modifications of gravity, limitations of galaxy biasing schemes, or to help design analytical models of
gravitational clustering.
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I. INTRODUCTION

After the results of the WMAP and Planck missions
[1,2], which have already uncovered a lot of information
from the cosmic microwave background data, surveys of
the large-scale structure of the Universe promise to be an
important and complementary probe of cosmological
scenarios [3,4]. In particular, they should shed light on
the properties of the dark matter and dark energy compo-
nents. Unfortunately, even without considering the very
complex processes of galaxy and star formation [5–8] and
focusing on the large-scale properties where gravity is the
dominant driver, exact or well-controlled predictions for
the statistical properties of the density and velocity fields
are difficult. Large scales can be described by standard
perturbative approaches [9,10], which can be improved to
some degree by using resummation schemes [11–19].
However, these methods cannot reach the truly nonlinear
regime where shell-crossing effects become important
[20–22]. Small scales are studied through numerical
simulations or phenomenological models [23] that rely
on information gained through these simulations. However,
these scales are difficult to model with high accuracy, even
with simulations, and it would be useful to have analytical
results that go beyond low-order perturbation theory.
Some exact results have recently been obtained [24–30]

in the form of “kinematic consistency relations.” They
relate the (lþ n)-density correlation, with l large-scale
wave numbers and n small-scale wave numbers, to the
n-point small-scale density correlation, with l prefactors
that involve the linear power spectrum at the large-scale
wave numbers. These relations, obtained at the leading
order over the large-scale wave numbers kj0, arise from the
equivalence principle (in standard scenarios). It ensures that
small-scale structures respond to a large-scale perturbation

(which at leading order corresponds to a constant gravi-
tational force over the extent of the small-size object) by a
uniform displacement. Therefore, these relations express a
kinematic effect, due to the displacement of small-scale
structures between different times. This also means that
(at this order) they vanish for equal-time statistics, as a
uniform displacement has no impact on the statistical
properties of the density field observed at a given time.
In practice, it is difficult to measure different-time

density correlations, as correlations between different red-
shift planes along our light cone (hence over distances of
order c=H0) are very small. Therefore, it would be useful to
obtain similar relations that apply to single-time density
correlations. This means that we must go beyond the
kinematic effect and investigate how small-scale density
fluctuations respond to nonuniform gravitational forces.
At leading order over the large-scale wave numbers, this is
given by the response to a change of the background
density, which also corresponds to a large-scale curvature
of the gravitational potential.
In this paper, we show how this problem can be

addressed by using an approximate symmetry of the
cosmological gravitational dynamics.
In Sec. II, we recall how most of the dependence on

cosmological parameters can be absorbed by a remapping
of the time coordinate, t → DþðtÞ, where DþðtÞ is the
linear growing mode. This is a well-known approximate
symmetry of the cosmological gravitational dynamics that
is often used in analytical methods (e.g., perturbative
schemes) to simplify the computations. Then, in Sec. III
we show how this invariance dictates the response of
density fluctuations to a small change of the background
density, which corresponds to a change of the cosmological
parameters Ωm and ΩK . This allows us to derive consis-
tency relations that go beyond the kinematic effect and
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remain nontrivial for the equal-time density correlations.
In Sec. IV, we explicitly check this relation for the matter
density bispectrum, at leading order of perturbation theory.
We also present a fully nonlinear check in one dimension
(using the fact that the Zel’dovich approximation becomes
an exact solution), which provides a check for all many-
body density correlations or polyspectra up to all orders of
perturbation theory (and beyond the shell-crossing regime
if we consider the system as defined by the Zel’dovich
solution). We discuss our results and conclude in Sec. V.

II. APPROXIMATE SYMMETRY OF THE
COSMOLOGICAL GRAVITATIONAL DYNAMICS

On scales much smaller than the horizon, where the
Newtonian approximation is valid, the equations of motion
read as [31]

∂δ
∂t þ

1

a
∇ · ½ð1þ δÞv� ¼ 0; ð1Þ

∂v
∂t þHv þ 1

a
ðv ·∇Þv ¼ − 1

a
∇ϕ; ð2Þ

∇2ϕ ¼ 4πGρ̄a2δ; ð3Þ
where aðtÞ is the scale factor, H ¼ _a=a the Hubble
expansion rate, δ ¼ ðρ − ρ̄Þ=ρ̄ the density contrast, and v ¼
adx=dt the peculiar velocity. Here, we use the single-
stream approximation to simplify the presentation, but the
results remain valid beyond shell crossing. Linearizing
these equations over fδ; vg, one obtains the linear growth
ratesD�ðtÞ, which are the independent solutions of [10,31]

D̈þ 2H _D − 4πGρ̄D ¼ 0: ð4Þ
For an Einstein–de Sitter universe, where aðtÞ ∝ t2=3, the
linear growing mode is DþðtÞ ∝ a ∝ t2=3 and the linear
decaying mode is D−ðtÞ ∝ a−3=2 ∝ t−1. For a generic
cosmology, with a nonzero cosmological constant and
curvature, one must numerically solve Eq. (4).
As usual [11,32,33], it is convenient to make the change

of variables

η ¼ lnDþ; v ¼ _afu; ϕ ¼ ð _afÞ2φ; ð5Þ
where f ¼ d lnDþ=d ln a. Then, the equations of motion
read as

∂δ
∂ηþ∇ · ½ð1þ δÞu� ¼ 0; ð6Þ

∂u
∂η þ

�
3Ωm

2f2
− 1

�
uþ ðu · ∇Þu ¼ −∇φ; ð7Þ

∇2φ ¼ 3Ωm

2f2
δ; ð8Þ

where ΩmðtÞ is the matter density cosmological parameter
as a function of time, which obeys 4πGρ̄ ¼ ð3=2ÞΩmH2.
It happens that for standard cosmologies (i.e., within

general relativity), Ωm=f2 is always very close to 1 (which
is exact for the Einstein–de Sitter case) [31]. Then, making
the approximation Ωm=f2 ≃ 1 removes all explicit time
dependence in the equations of motion (6)–(8) and sim-
plifies the analytical computations. This also removes all
explicit dependence on the cosmological parameters. In
particular, within a perturbative framework, one can use the
results obtained for the Einstein–de Sitter case by making
the replacement aðtÞ → DþðtÞ [34,35]. The accuracy of
this approximation was investigated in Refs. [13,17], where
it was found that it performs to better than 1% at redshift
z ¼ 0 for k ≤ 2h Mpc−1, and 0.1% at z ¼ 1 on these scales.
The approximation performs increasingly well at high
redshift in the matter era (where we recover the
Einstein–de Sitter cosmology). Although it degrades on
small scales at z ¼ 0, this approximation is used by most
perturbative approaches [11–19] to simplify computations
(in particular, it allows one to use the explicit exponential
form of the linear response function or propagator adapted
from the Einstein–de Sitter case, with factors eη and e−3η=2
[11,12,36]). Thus, it provides a sufficient approximation on
perturbative scales and in the highly nonlinear regime at
low redshift it is not the main source of inaccuracy, as
uncertainties on the halo mass function, for instance, lead to
greater error bars [22].
This approximate symmetry does not rely on the

single-stream approximation, and instead of the Euler
equations (2) and (7), we can use the equation of motion
of the trajectories xðq; tÞ of the particles. It reads as

∂2x
∂t2 þ 2H

∂x
∂t ¼ − 1

a2
∇ϕ; ð9Þ

which becomes with the time coordinate η

∂2x
∂η2 þ

�
3Ωm

2f2
− 1

� ∂x
∂η ¼ −∇φ; ð10Þ

where φ is the rescaled gravitational potential (8). This
explicitly shows that it satisfies the same approximate
symmetry. Therefore, our results are not restricted to the
perturbative regime and also apply to small nonlinear scales
governed by shell-crossing effects, as long as the approxi-
mation Ωm=f2 ≃ 1 is sufficiently accurate (but this also
means that we are restricted to scales dominated by
gravity).
This standard approximation means that all the depend-

ence on cosmological parameters is encapsulated in the
linear growing mode DþðtÞ. In this paper, we investigate
the consequences of this approximate symmetry of the
equations of motion, in terms of the “squeezed” limit of
density correlations. This corresponds to Fourier-space
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(lþ n) density correlations h~δðk0
1Þ…~δðk0

lÞ~δðk1Þ…~δðknÞi,
where the wave numbers kj0 are much smaller than all other
wave numbers ki and within the linear regime. Our method
relies on the fact that a large-scale spherically symmetric
perturbation of the initial density contrast is similar to a
change of the mean density ρ̄, from whence the cosmo-
logical parameters arise, from the point of view of a much
smaller region at the center of this initial perturbation.

III. ANGULAR-AVERAGED CONSISTENCY
RELATIONS

We first consider the case of a single large-scale wave
number k0 and we generalize to several large-scale wave
numbers kj0 in Sec. III C 3.

A. Correlation and response functions

Because the cosmological density and velocity fields are
statistically homogeneous and isotropic, it is often con-
venient to work in Fourier space. In this paper, we denote
with a tilde Fourier-space fields, defining the Fourier
transform as

δðxÞ ¼
Z

dkeik·x ~δðkÞ: ð11Þ

To compare theoretical predictions with observations, one
often computes correlation functions, hδðx1Þ…δðxnÞi, or
multispectra, h~δðk1Þ…~δðknÞi. In particular, the power
spectrum PðkÞ is defined as

h~δðk1Þ~δðk2Þi ¼ δDðk1 þ k2ÞPðk1Þ; ð12Þ
where the Dirac factor arises from statistical homogeneity.
We also denote with the subscript “L” the linear fields
obtained by linearizing the equations of motion (1)–(3), and
with the subscript “L0” the linear fields today, at z ¼ 0.
Throughout this paper, we assume as usual that the linear
decaying modes have had time to become negligible by the
times of interest. Then, the initial conditions are fully
defined by the linear growing mode, which is also set by the
linear density field today δL0ðxÞ, which we assume to be
Gaussian.
In analytical approaches, especially in perturbative

schemes that use field-theoretic tools [11,12,14,36–40],
it is convenient to introduce response functions (also called
propagators or Green functions), which we define in real
space as

Rl;nðx0
1;…;x0

l;x1; t1;…;xn; tnÞ

¼
�
Dl½δðx1; t1Þ…δðxn; tnÞ�
DδL0ðx0

1Þ…DδL0ðx0
lÞ

�
; ð13Þ

and similarly in Fourier space (throughout this paper,
we denote by the letter D the functional derivative).
The quantities (13) describe how the nonlinear density

field, at positions and times fx1; t1;…;xn; tng, responds
to changes of the initial conditions [defined by δL0ðxÞ] at
positions fx1

0;…;xl
0g.

As described, for instance, in Ref. [30], for Gaussian
initial conditions, correlations between the nonlinear
density contrast δ and the linear density contrast δL0 that
defines the initial conditions can be written in terms of
response functions. This gives in Fourier space [30]

h~δL0ðk0Þ~δðk1; t1Þ…~δðkn; tnÞi

¼ PL0ðk0Þ
�
D½~δðk1; t1Þ…~δðkn; tnÞ�

D~δL0ð−k0Þ

�
; ð14Þ

where PL0ðk0Þ is the linear power spectrum of the initial
conditions δL0. This provides a simple method to obtain
consistency relations for the density correlations by com-
puting the response function [i.e., the last term in Eq. (14)]
associated with a large-scale perturbationΔδL0 of the initial
condition.
The leading-order effect that arises in the large-scale

limit, k0 → 0, is a constant force, −∇ðΔϕL0Þ, and velocity,
ΔvL0, over the small-scale region of size R, with
ðk0RÞ ≪ 1. This also corresponds to a zero local density
perturbation, because in the linear regime we have δL ∝
∇vL (up to time-dependent factors), as seen from the
continuity equation (1). This leads to a uniform displace-
ment of small-scale structures. Then, one obtains kinematic
consistency relations [24–30] that express a correlation of
the form h~δL0ðk0

1Þ…~δL0ðk0
lÞ~δðk1; t1Þ…~δðkn; tnÞi, with l

low wave numbers and n high wave numbers, as a product
of l linear power spectra PL0ðk0jÞ with the small-scale

nonlinear correlation h~δðk1; t1Þ…~δðkn; tnÞi, at lowest order
over kj0. Because this corresponds to a uniform displace-
ment, this leading-order result vanishes at equal times,
t1 ¼ � � � ¼ tn ¼ t, and the results obtained for different
times t1 ≠ � � � ≠ tn simply describe how small-scale
patches have moved in between these times because of
the force exerted by a large-scale perturbation.
In this paper, we go beyond the kinematic effect recalled

above and we consider the effect of a nonzero large-scale
density fluctuation, that is, a nonzero curvature of the
gravitational potential. This higher-order effect does not
vanish for equal-time statistics because the large-scale
perturbation of the gravitational potential curvature leads
to a deformation of the small-scale structure (mostly a
space-time dilatation, as the overall collapse is accelerated
or decelerated). This leads to consistency relations for
density correlations that remain nontrivial for single-time
correlations. To remove constant gradients, which are
absorbed by the kinematic effect and do not contribute
to equal-time statistics, and to mimic a constant large-scale
density fluctuation (and isotropic curvature of the gravita-
tional potential), we consider spherical averages that read
in configuration space as
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Cn
W ¼

Z
dx0Wðx0ÞhδL0ðx0Þδðx1; t1Þ…δðxn; tnÞi; ð15Þ

and in Fourier space as

~Cn
W ¼ ð2πÞ3

Z
dk0 ~Wðk0Þh~δL0ðk0Þ~δðk1; t1Þ…δðkn; tnÞi;

ð16Þ

where Wðx0Þ [and its Fourier transform ~Wðk0Þ] is a large-
scale window function. Using Eq. (14) and its configuration-
space counterpart, Eqs. (15) and (16) read as

Cn
W ¼

Z
dxdx0WðxÞCL0ðx;x0Þ

�
D½δðx1; t1Þ…δðxn; tnÞ�

DδL0ðx0Þ
�
;

ð17Þ

where CL0 is the linear density correlation of the initial
conditions, and

~Cn
W ¼ð2πÞ3

Z
dk0 ~Wðk0ÞPL0ðk0Þ

�
D½~δðk1; t1Þ…~δðkn; tnÞ�

D~δL0ð−k0Þ

�
:

ð18Þ

By definition of the functional derivatives, these expres-
sions also mean that we must consider the change of the
small-scale density correlation at linear order over a
perturbation ΔδL0, as

Cn
W ¼ d

dε

����
ε¼0

hδðx1; t1Þ…δðxn; tnÞiε ð19Þ

and

~Cn
W ¼ d

dε

����
ε¼0

h~δðk1; t1Þ…~δðkn; tnÞiε; ð20Þ

where h…iε is the statistical average with respect to the
Gaussian initial conditions δL0, when the linear density
field is modified as

δLðxÞ → δLðxÞ þ εDþðtÞ
Z

dx0Wðx0ÞCL0ðx;x0Þ ð21Þ

or

~δLðkÞ → ~δLðkÞ þ εDþðtÞð2πÞ3 ~WðkÞPL0ðkÞ: ð22Þ

Here and in the following, we normalize the linear growth
rate and the linear density field as δLðx; tÞ ¼ DþðtÞδL0ðxÞ.
The spherical average over a much larger scale than
the region of interest of size R in Eq. (21) ensures that
over this small patch the density perturbation ΔδL0 ≃
ε
R
dx0Wðx0ÞCL0ðx0Þ is constant (at leading order over k0R).

A similar idea was investigated in Ref. [41] in the context
of single-field inflation, where it was noticed that the effect
of a large-scale fluctuation is similar to changing the
curvature of the universe, from the point of view of a
small-scale region. However, this leads to a consistency
relation between a (1þ n) correlation such as Eq. (15) and
a small-scale n-point correlation in a different universe. As
such, it cannot be directly measured because we have
access to only one universe (unless one compares different
large-scale regions characterized by different large-scale
mean densities). In this paper, focusing on the late-time
universe during the matter and dark energy epochs, we
show in the next section how the approximate symmetry
recalled in Sec. II allows us to derive consistency relations
between correlations measured in the same universe. This is
because this symmetry provides a link between the cos-
mological gravitational dynamics in different Friedmann-
Lemaître-Robertson-Walker cosmologies.

B. Effect of a large-scale density perturbation

From the point of view of a small region, a much larger-
scale almost uniform perturbation to the initial density
contrast is similar to a change of the background density ρ̄.
Then, following Ref. [31], we first recall that such a small
change of the background also corresponds to a linear
growing mode of the density contrast. Thus, we consider
two universes with close cosmological parameters, defined
at the background level by the functions fρ̄ðtÞ; aðtÞg and
fρ̄0ðtÞ; a0ðtÞg. The dynamics of the reference universe (i.e.,
our Universe) is given by the Friedmann equations,

_a2

a2
¼ 8πG

3
ðρ̄þ ρ̄ΛÞ − K

a2
; ð23Þ

ä
a
¼ − 4πG

3
ρ̄þ 8πG

3
ρ̄Λ; ð24Þ

where we included the contributions from a cosmological
constant and a curvature term and the dot denotes a
derivative with respect to the time t. The auxiliary universe
fρ̄0ðtÞ; a0ðtÞg, denoted with a prime, obeys the same
equations with the change fρ̄; a; Kg → fρ̄0; a0; K0g (the
constant dark energy density ρ̄Λ is not changed). It only
differs from the reference universe by a small amount, of
order ϵ, with

ρ̄a3 ¼ ρ̄0a03 ¼ ρ̄0; a0 ¼ a½1 − ϵðtÞ�;
ρ̄0 ¼ ρ̄½1þ 3ϵðtÞ�: ð25Þ

Here and in the following, we only keep terms up to linear
order over ϵ. Substituting Eq. (25) into the second
Friedmann equation (24) written for the auxiliary universe,
we obtain

̈ϵþ 2H_ϵ − 4πGρ̄ϵ ¼ 0: ð26Þ
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As is well known [31], we recover the evolution
equation (4) of the linear growth rates D�ðtÞ. This is
because spherically symmetric shells evolve independently
as separate universes (before shell crossing), thanks to
Birkhoff’s theorem, and their density difference behaves as
the linear growth rate (in the linear regime). Thus, we write

ϵðtÞ ¼ DþðtÞϵ0: ð27Þ

We now turn to the density and velocity fluctuations.
In the reference universe, they follow the equations of
motion (1)–(3). In the auxiliary universe, we have the same
equations of motion with primed variables. For our
purpose, these two sets of variables actually describe the
same physical system, with two different choices for the
background density ρ̄ around which we study fluctuations.
For instance, in the case ϵ > 0, a density contrast δ0 with a
zero mean in the primed frame appears as a density contrast
δwith a nonzero positive mean. Thus, a large-scale uniform
density fluctuation ΔδL0 in the reference frame is absorbed
by going to the primed frame. This will allow us to study
the effect of a large-scale density fluctuation as in
Eqs. (21)–(22).
Because both frames refer to the same physical system,

we have

r0 ¼ r ¼ a0x0 ¼ ax; ρ̄0ð1þ δ0Þ ¼ ρ̄ð1þ δÞ; ð28Þ

where r ¼ r0 is the physical coordinate. Thus, we have the
relations

x0 ¼ ð1þ ϵÞx; δ0 ¼ δ − 3ϵð1þ δÞ;
v0 ¼ v þ _ϵax; ð29Þ

where we used Eq. (25) and only kept terms up to linear
order over ϵ. Then, we can check that if the fields
fδ0; v0;ϕ0g satisfy the equations of motion (1)–(3) in the
primed frame, the fields fδ; v;ϕg satisfy the equations of
motion (1)–(3) in the unprimed frame, with the gravita-
tional potential transforming as

ϕ0 ¼ ϕ − a2ð̈ϵþ 2H_ϵÞx2=2: ð30Þ

This remains valid beyond shell crossing: if the trajec-
tories x0ðq; tÞ satisfy the equation of motion (9) in the
primed frame, the trajectories xðq; tÞ ¼ ð1 − ϵÞx0ðq; tÞ
satisfy the equation of motion (9) in the unprimed frame,
with the gravitational potentials transforming as in Eq. (30).
Linearizing over the density contrast, the peculiar

velocity, and the perturbation ϵ, we have

δL ¼ δL
0 þ 3ϵ; vL ¼ vL0 − _ϵax;

ϕL ¼ ϕL
0 þ a2ð̈ϵþ 2H_ϵÞ x

2

2
: ð31Þ

In agreement with the remark above, we can again check
that if fδL0; vL0;ϕL

0g is a valid linear growing mode in the
primed frame, fδL; vL;ϕLg is a valid linear growing mode
in the unprimed frame. Moreover, the density contrast δ is
equal to δ0, up to the dilatation (29), to which is added the
uniform contribution 3ϵðtÞ that corresponds to a homo-
geneous linear growing mode, as seen from Eq. (27).
We can now compute the dependence of small-scale

density correlations on ϵ0, that is, on changes of the
background density. Thus, we consider the response
function

Rn
ϵ0 ¼

�∂½~δðk1; t1Þ…~δðkn; tnÞ�
∂ϵ0

�
ϵ0¼0

: ð32Þ

As described above, adding a nonzero background ϵ
corresponds to changing the initial background density
from the reference ρ̄ to the primed density ρ̄0. This modifies
the growth of large-scale structures, as the latter evolve in a
new cosmology, defined by a new set of cosmological
parameters. In particular, starting from a concordance
ΛCDM flat cosmology with Ωm þ ΩΛ ¼ 1, the change
of the background density generates a curvature termK=a2.
For a given set of initial conditions δL0, the new field δϵ0 ,
measured in the reference frame with the added background
ϵ, can be expressed in terms of the density contrast δ0 in the
primed frame, where ϵ has been absorbed by the change
ρ̄ → ρ̄0, through the mapping (29). This gives

δϵ0ðx; tÞ ¼ ð1þ 3ϵÞδ0½ð1þ ϵÞx; t� þ 3ϵ; ð33Þ

which reads in Fourier space as

~δϵ0ðk; tÞ ¼ ~δ0½ð1 − ϵÞk; t� þ 3ϵδDðkÞ: ð34Þ

Next, we use the approximate symmetry described in
Sec. II to write that the density contrast only depends on the
cosmological parameters through the linear growth rate
DþðtÞ, whence ~δ0ðk; t;Ωm

0;ΩΛ
0;ΩK

0Þ ¼ ~δðk; Dþ0ðtÞÞ,
where ~δðk; DþÞ is the functional that gives the nonlinear
density contrast for any set of cosmological parameters, for
a given initial condition of the zero-mean linear density
contrast. Thus, Eq. (34) reads as

~δϵ0ðk; tÞ ¼ ~δ½ð1 − ϵÞk; Dþϵ0 � þ 3ϵδDðkÞ; ð35Þ

where Dþϵ0 is the linear growth rate that is modified with
respect to the initial Dþ by the perturbation ϵ. Then, the
derivative of the density contrast with respect to ϵ0 reads as

∂ ~δðk; tÞ
∂ϵ0

����
ϵ0¼0

¼ ∂Dþϵ0

∂ϵ0
����
0

∂ ~δ
∂Dþ

−DþðtÞk ·
∂ ~δ
∂k ; ð36Þ

where we disregarded the Dirac factor that does not
contribute for wave numbers k ≠ 0.
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We need to compute the dependence of the linear
growing mode Dþϵ0 on ϵ0. The linear growth rates Dþ
and D0þ obey Eq. (4), with unprimed and primed Hubble
and density factors. Writing D0þðtÞ ¼ DþðtÞ þ yðtÞ, where
y is of order ϵ, we obtain at linear order

ÿþ 2H _y − 4πGρ̄y ¼ 2 _Dþ _ϵþ 12πGρ̄Dþϵ: ð37Þ

By definition of the matter density cosmological parameter
Ωm, the mean density also obeys

4πGρ̄ ¼ 3

2
ΩmH2 ≃ 3

2

_D2þ
D2þ

; ð38Þ

where in the last expression we again used the approxi-
mation Ωm ≃ f2 associated with the approximated sym-
metry discussed in Sec. II. Then, using η ¼ lnDþ as the
time coordinate, Eq. (37) becomes

d2y
dη2

þ 1

2

dy
dη

− 3

2
y ¼ 13

2
ϵ0e2η; ð39Þ

which gives

yðtÞ ¼ 13

7
ϵ0DþðtÞ2;

∂Dþϵ0

∂ϵ0
����
0

¼ 13

7
DþðtÞ2: ð40Þ

This result was also obtained in Appendix D of Ref. [42].
Then, Eq. (36) also reads as

∂ ~δðk; tÞ
∂ϵ0

����
ϵ0¼0

¼ DþðtÞ
�
13

7

∂ ~δ
∂ lnDþ

− k ·
∂ ~δ
∂k

�
; ð41Þ

which corresponds in configuration space to

∂δðx; tÞ
∂ϵ0

����
ϵ0¼0

¼ DþðtÞ
�
3δþ 13

7

∂δ
∂ lnDþ

þ x ·
∂δ
∂x

�
: ð42Þ

Equation (42) also follows from Eq. (33), where we
disregard the constant factor 3ϵ because we consider
small-scale wave numbers k ≠ 0. In configuration space,
this means that these relations are valid up to a constant
density, which is irrelevant because we consider small-scale
structures and disregard zero-mode (infinitely large-scale)
normalizations.
This gives the impact of a large-scale uniform density

perturbation, or a change of the background density, on the
small-scale nonlinear density field. Indeed, from Eq. (31),
the variable ϵ0 corresponds to a change of the linear density
contrast of

ΔδL0 ¼ 3ϵ0: ð43Þ

C. Consistency relations

1. One large-scale wave number

The comparison of Eq. (43) with Eq. (21) gives

ϵ0 ¼
ε

3

Z
dx0Wðx0ÞCL0ðx0Þ; ð44Þ

where we used the fact that W is a large-scale window and
the integral over x0 is independent of the position x in the
small-scale region, at leading order in the ratio of scales.
This gives

Cn
W ¼ 1

3

Z
dx0Wðx0ÞCL0ðx0Þ

∂hδðx1; t1Þ…δðxn; tnÞiϵ0
∂ϵ0 ;

ð45Þ

and using Eq. (42), we obtain

Cn
W →

Z
dx0Wðx0ÞCL0ðx0Þ

×
Xn
i¼1

Dþi

3

�
3þ 13

7

∂
∂ lnDþi

þ xi ·
∂
∂xi

�

× hδðx1; t1Þ…δðxn; tnÞi: ð46Þ

The small-scale correlation hδðx1; t1Þ…δðxn; tnÞi is invari-
ant through translations, thanks to statistical homogeneity.
However, the dilatation operators xi · ∂=∂xi break this
invariance when the times ti are not identical. Indeed, as
described in Sec. III B, the change of the background
density ρ̄ due to the uniform density fluctuation (43) leads
to a modified Hubble flow. This breaks the translation
invariance for different-time statistics, as defining a differ-
ent Hubble flow selects the origin from which comoving
particles separate along with the global expansion. This is
due to the large-scale approximation for the filter W where
we considered that the small-scale region has a zero width
at the center of the larger-scale fluctuation. To explicitly
enforce this configuration, we set the center of the modified
Hubble flow at the center of the small-scale region by
writing

Cn
W ¼

Z
dx0Wðx0ÞCL0ðx0Þ

Xn
i¼1

Dþi

3

�
3þ 13

7

∂
∂ lnDþi

þ
�
xi − 1

n

Xn
j¼1

xj

�
·
∂
∂xi

�
hδðx1; t1Þ…δðxn; tnÞi;

ð47Þ

which is explicitly invariant through uniform translations
of fxig, as all terms only depend on relative distances.
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In agreement with the remark above, Eq. (47) is identical to
Eq. (46) when all times are equal,Dþ1 ¼ � � � ¼ Dþn. Using
the definition (15), this gives the configuration-space
consistency relation

Z
dx0Wðx0ÞhδL0ðx0Þδðx1; t1Þ…δðxn; tnÞi

¼
Z

dx0WCL0ðx0Þ
Xn
i¼1

Dþi

3

�
3þ 13

7

∂
∂ lnDþi

þ
�
xi − 1

n

Xn
j¼1

xj

�
·
∂
∂xi

�

× hδðx1; t1Þ…δðxn; tnÞi: ð48Þ

As explained above, this relation holds in the large-scale
limit for the filter W, and up to uniform offsets for the
density contrasts δi [i.e., the equality is valid when one
integrates both sides with arbitrary weights WiðxiÞ that
have a zero mean,

R
dxiWiðxiÞ ¼ 0].

It is often more convenient to work in Fourier space
(because the linearized equations of motion become diago-
nal). Because of statistical homogeneity, multispectra con-
tain a Dirac factor that we explicitly factor out by defining

h~δðk1Þ…~δðknÞi ¼ h~δðk1Þ…~δðknÞi0δDðk1 þ � � � þ knÞ:
ð49Þ

To simplify the analysis, it is convenient to consider
h~δ1…~δni0 in Eq. (49) as a function of fk1;…;kn−1g only,
by substituting for kn ¼ −ðk1 þ � � � þ kn−1Þ. Using the
invariance through translations of hδ1…δni, which givesP

n
i¼1 ∂=∂xi · hδ1…δni ¼ 0, we can write the dilatation

factors of Eq. (48) (denoted as the overall operator D,
without the factor 1=3) as

D · hδ1…δni ¼
�Xn−1

i¼1

�
Dþiðxi − xnÞ þ

Dþn −Dþi

n

×
Xn−1
j¼1

ðxj − xnÞ
�
·
∂
∂xi

	
hδ1…δni: ð50Þ

Using the Fourier transform of the density correlation as in
Eq. (49) and integrating over kn, this yields

D · hδ1…δni ¼
Z

dk1…dkn−1
��Xn−1

i¼1

Dþiki ·
∂
∂ki

þ
Xn−1
i;j¼1

Dþn −Dþi

n
ki ·

∂
kj

�
ei
P

n−1
i¼1

ki·ðxi−xnÞ
	

× h~δ1…~δni0: ð51Þ
Integrating by parts, using ∂=∂kn · h~δ1…~δni0 ¼ 0 and
k1 þ � � � þ kn ¼ 0, this also reads as

D · hδ1…δni ¼ −
Z

dk1…dkn−1ei
P

n−1
i¼1

ki·ðxi−xnÞ

×

�
3
n − 1

n

Xn
i¼1

Dþi þ
Xn
i;j¼1

�
δKi;j − 1

n

�

×Dþiki ·
∂
∂kj

�
h~δ1…~δni0; ð52Þ

where δKi;j is the Kronecker symbol. Therefore, Eq. (48)
reads in Fourier space as

Z
dΩk0

4π
h~δL0ðk0Þ~δðk1; t1Þ…~δðkn; tnÞi0k0→0

¼ PL0ðk0Þ
Xn
i¼1

Dþi

�
1

n
þ 13

21

∂
∂ lnDþi

−Xn
j¼1

�
δKi;j − 1

n

�
ki

3
·
∂
∂kj

�

× h~δðk1; t1Þ…~δðkn; tnÞi0; ð53Þ

where Ωk0 is the unit vector along the direction of k0.
On large scales we recover the linear theory, with
~δðk0; t0Þ≃Dþðt0Þ~δL0ðk0Þ. Thus, Eq. (53) also reads as

Z
dΩk0

4π
h~δðk0; t0Þ~δðk1; t1Þ…~δðkn; tnÞi0k0→0

¼ PLðk0; t0Þ
Xn
i¼1

Dþi

Dþðt0Þ
�
1

n
þ 13

21

∂
∂ lnDþi

−Xn
j¼1

�
δKi;j − 1

n

�
ki

3
·
∂
∂kj

�

× h~δðk1; t1Þ…~δðkn; tnÞi0: ð54Þ

Because we wrote the operator that acts over h~δ1…~δni0
in a symmetric form, in Eqs. (53)–(54) we can use any
appropriate form for h~δ1:::~δni0 [i.e., we can write the n-point
correlation as a function of fk1;…;ki−1;kiþ1;…;kng, as
ki can be replaced by −ðk1 þ � � � þ ki−1 þ kiþ1 þ � � � þ
knÞ for any index i, or keep it as a function of the n wave
numbers fk1;…;kng, because of the constraint k1 þ � � � þ
kn ¼ 0].
In contrast with the kinematic consistency relations that

express the transport of small-scale structures by large-
scale fluctuations [24–30], the angular-averaged relations
(54) do not vanish when all times are equal. Indeed, they go
beyond this kinematic effect and express the deformation of
small-scale structures by a large-scale isotropic curvature of
the gravitational potential. When all times are equal,
t0 ¼ t1 ¼ � � � ¼ tn ¼ t, Eq. (54) becomes
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Z
dΩk0

4π
h~δðk0; tÞ~δðk1; tÞ…~δðkn; tÞi0k0→0

¼ PLðk0; tÞ
�
1þ 13

21

∂
∂ lnDþ

− 1

3

Xn
i¼1

∂
∂ ln ki

�

× h~δðk1; tÞ…~δðkn; tÞi0; ð55Þ

where we used k1 þ � � � þ kn ¼ 0.
A nice property of the single-time consistency relation

(55) is that it only involves single-time correlations on both
sides (as opposed, for instance, to a relation that would
involve the partial time derivative with respect to only one
time ti on the right-hand side). Moreover, thanks to the
approximate symmetry discussed in Sec. II, both sides
involve density correlations in the same (our) universe.
This is because, although the effect of a large-scale
curvature is similar to a change of cosmological parame-
ters, the approximate symmetry allows us to express the
density correlations in the modified cosmology in terms of
the correlations measured in the original universe, through
a rescaling of space and time coordinates. Therefore, the
angular-averaged consistency relations (55) can be mea-
sured and tested in our Universe. However, this requires
measuring the evolution with time of the density correla-
tions to estimate the time derivative on the right-hand side.

2. Bispectrum

In practice, one does not measure density correlations up
to very high orders, which become increasingly noisy, and
most observational constraints from density correlations
come from the two-point and three-point correlations.
This corresponds in Fourier space to the power spectrum
Pðk1; t1; t2Þ ¼ h~δðk1; t1Þ~δðk2; t2Þi0 and bispectrum Bðk1;
k2; k3; t1; t2; t3Þ ¼ h~δðk1; t1Þ~δðk2; t2Þ~δðk3; t3Þi0. (In prac-
tice, one measures single-time statistics, but for complete-
ness we also consider the different-time statistics.) Taking
into account the constraint k0 þ k1 þ k2 ¼ 0 by writing
k1 ¼ k − k0=2 and k2 ¼ −k − k0=2, with some arbitrary
wave number k, Eq. (54) reads for n ¼ 2 as

Z
dΩk0

4π
B

�
k0;k − k0

2
;−k − k0

2
; t0; t1; t2

�
k0→0

¼ PLðk0; t0Þ
Dþðt0Þ

�
Dþ1 þDþ2

2

�
1 − 1

3

∂
∂ ln k

�

þ 13

21

�
D2

þ1

∂
∂Dþ1

þD2
þ2

∂
∂Dþ2

��
Pðk; t1; t2Þ: ð56Þ

When all times are equal to t, this becomes, in agreement
with Eq. (55),

Z
dΩk0

4π
B

�
k0;k − k0

2
;−k − k0

2
; t

�
k0→0

¼ PLðk0; tÞ
�
1þ 13

21

∂
∂ lnDþ

− 1

3

∂
∂ ln k

�
Pðk; tÞ: ð57Þ

3. Several large-scale wave numbers

It is possible to generalize the single-time consistency
relation (55) to l large-scale wave numbers by an iterative
procedure, as long as they follow a hierarchy k10 ≪
k20 ≪ � � � ≪ kl0, because the angular average and the
derivative ∂=∂ ln k commute. This gives

kj0 ≪ k0jþ1∶
Z Yl

j¼1

dΩkj
0

4π

�Yl
j¼1

~δðkj
0Þ
Yn
i¼1

~δðkiÞ
�0

k0j→0

¼ L1
0…Ll

0 · h~δðk1Þ…~δðknÞi0; ð58Þ

where the operators Lj
0 read as

Lj
0 ¼ PLðk0j; tÞ

�
1þ 13

21

∂
∂ lnDþ

− 1

3

Xl
m¼jþ1

∂
∂ ln k0m

−
1

3

Xn
i¼1

∂
∂ ln ki

�
: ð59Þ

The operators Lj
0 do not commute. This comes from the

fact that the relation (58) is obtained from the iterated use of
Eq. (55), where the large-scale limits are taken in a specific
order, starting with k10 and finishing with kl0, in agreement
with the hierarchy k10 ≪ k20 ≪ � � � ≪ kl0. Expanding the
product L1

0…Ll
0 gives increasingly long expressions as

the number l of large-scale modes grows and we do not
pursue this matter here.

4. Multicomponent case

If there are several fluids in the system, for instance,
when we separate dark matter and baryons, each compo-
nent ðαÞ follows the equations of motion (1)–(2) or (6)–(7),
written in terms of each doublet fδðαÞ; vðαÞg or fδðαÞ;uðαÞg.
The gravitational potential φ now obeys the Poisson
equation ∇2φ ¼ ð3ΩmÞ=ð2f2Þ

P
αðΩðαÞ=ΩmÞδðαÞ. Because

all fluids are subject to the same gravitational potential,
in the linear growing mode all density contrasts δðαÞ and
velocities vðαÞ are equal (and the mean density ratios
ΩðαÞ=Ωm remain constant). Then, assuming as for the
single-fluid case that decaying modes have had time to
become negligible, the single-fluid consistency relations
(54)–(58) extend at once to the multifluid case.
This is no longer true when some fluids are subject

to nongravitational forces that introduce new scales. For
instance, when pressure forces or astrophysical processes,
such as outflows from supernovae, have an impact on the
baryon dynamics, the invariance with respect to changes of
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cosmological parameters (in the approximation Ωm=f2 ≃ 1)
is broken. Indeed, these new processes generically introduce
different explicit dependencies on density and time scales
that cannot be reduced to functions of Ωm=f2. Thus, our
results only hold in the regime where gravity is the
dominant force.

D. Comments on the derivation of the
consistency relations

The consistency relations (54)–(55), and their derivation
through the effect of large-scale perturbations in Sec. III B,
may appear somewhat counterintuitive, and we comment in
this section on some points that may seem puzzling.
As explained in Sec. III A, the consistency relations

derive from the exact relation (14), which shows how the
correlation between n small-scale nonlinear modes and a
large-scale linear mode can be obtained from the mean
response of the small-scale modes to the large-scale mode.
Then, the procedure presented in Secs. III B and III C
describes how to obtain this response by identifying the
large-scale mode with a change of the background density.
This gives rise to Eqs. (33)–(34), which are the first

nontrivial result (no approximation has been used at this
stage). However, they may already raise several questions
that we address in turn.
First, it might seem that Eqs. (33)–(34), which give the

impact of a large-scale perturbation on the small-scale
nonlinear density contrast, contradict linear theory where
different Fourier modes are known to decouple. This is not
the case, because in the linear regime these equations read
as δϵ0 ¼ δ0 þ 3ϵ for Eq. (33), as in the first expression of
Eq. (31), and as ~δϵ0 ¼ ~δ0 þ 3ϵδDðkÞ. This merely means
that in the linear regime different growing mode solutions
superpose. Since ϵ0 corresponds to a uniform density shift,
it gives rise to the Dirac factor in Eq. (34), and we recover
the fact that in the linear regime different wave numbers
are decoupled (hence a perturbation at k0 → 0 only affects
the same mode with k ¼ k0 → 0). Therefore, there is no
contradiction between Eqs. (33)–(34) and linear theory.
In the nonlinear regime, different wave numbers become

coupled, in agreement with the rescaling and amplification
found in the first terms on the right-hand sides of
Eqs. (33)–(34). However, one may worry that a first-order
expansion over ϵ may not be sufficient to evaluate the
response of small-scale nonlinear density contrasts. For
instance, let us consider a single one-dimensional plane
wave for the small-scale initial perturbation. This fluc-
tuation will collapse at some time t� to build an infinite-
density two-dimensional sheet, of zero thickness. If we add
a small linear large-scale mode ϵ, the collapse time t� will
be changed to a slightly different value t� þ Δt�. Then, for
any nonzero ϵ andΔt�, the impact on the densities at time t�
along the position of the pancake is not small and not
proportional to ϵ (since it is the difference between infinity
and a finite value). However, this is a pathological case that

appears with a zero probability: in this example it only
occurs at the precise time t� at the position of the pancake.
At later times, there remains an infinite-density sheet in
both the zero-ϵ and nonzero-ϵ cases, and the main change is
to slightly modify its position and mass. This still gives a
large deviation if we measure the density contrast at the
precise position of the sheet, but this is no longer the case if
we perform some smoothing over an arbitrarily small
window or if we consider the Fourier-space density contrast
~δðkÞ (which actually integrates over all space).
Here, it is more convenient to think in terms of the

particle trajectories xðq; tÞ. Then, using the fact that the
Fourier-space density contrast can be written as a function
of the particle positions, in a form similar to the one-
dimensional expression (74) used below, we can see that as
long as particle trajectories display a first-order expansion
over ϵ, a similar expansion holds for the Fourier-space
density contrast, even though shell crossings and infinite-
density sheets may have appeared. This point will become
obvious in Sec. IV B, where we show that the consistency
relations are actually exact in one dimension until shell
crossing, and even remain exact after shell crossings if
we consider the Zel’dovich dynamics itself instead of
the one-dimensional gravitational dynamics (both systems
only being identical before shell crossing).
In three dimensions, even more pathological examples can

be found, where particle trajectories themselves are singular
with respect to small perturbations. For instance, spherically
symmetric solutions with purely radial trajectories are
strongly unstable with respect to nonspherical perturbations
and the linear growth rate actually diverges [43]. Then,
infinitesimal perturbations are sufficient to initiate the
virialization of the cloud and generate significant transverse
motions. However, these cases again appear with a zero
probability (initial conditions are not exactly spherically
symmetric with purely radial motions) and they should not
impair the derivation presented in Secs. III B and III C.
The identification of the response of the system to a

large-scale mode with the response to a change of the
background density might seem puzzling, as even a large-
scale mode is constrained to have a zero mean. However, it
is rather clear that from the point of view of a small-scale
region located at the center of the larger-scale perturbation,
the latter acts as a uniform change of the background
density. This is explicitly shown by the fact that Eq. (26),
which describes the evolution of the difference between
two close backgrounds, is identical to the evolution
equation (4) of the linear growth rates D�ðtÞ. This is
because they follow from the same fundamental set of
equations, that describe the gravitational force.
Explicit examples that also clarify these points are

presented in the next section, where we check the con-
sistency relations at lowest order of perturbation theory for
the bispectrum in three dimensions, and at all orders for all
polyspectra in one dimension.
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IV. EXPLICIT CHECKS

The angular-averaged consistency relations (54)–(55) are
valid at all orders of perturbation theory and also beyond
the perturbative regime, including shell-crossing effects,
within the accuracy of the approximation Ωm=f2 ≃ 1 (and
as long as gravity is the dominant process).
We now provide two explicit checks of the angular-

averaged consistency relations (54)–(55). First, we check
these relations for the lowest-order case n ¼ 2, that is, for
the bispectrum, at lowest order of perturbation theory.
Second, we present a fully nonlinear and nonperturbative
check, for arbitrary n-point polyspectra, in the one-
dimensional case.

A. Perturbative check

Here we briefly check the consistency relations for the
lowest order case, n ¼ 2, given by Eqs. (56)–(57), at lowest
order of perturbation theory. At this order, the density
bispectrum reads as [10]

Bðk1;k2;k3; t1; t2; t3Þ
¼ Dþ1Dþ2D2

þ3PL0ðk1ÞPL0ðk2Þ

×
�
10

7
þ
�
k1
k2

þ k2
k1

�
k1 · k2

k1k2
þ 4

7

�
k1 · k2

k1k2

�
2
�

þ 2perm: ð60Þ

where “2perm.” stands for two other terms that are obtained
from permutations over the indices f1; 2; 3g.
In the small-k0 limit we obtain

Bðk0;k1;k2; t0; t1; t2Þk0→0

¼ Dþ0Dþ1D2
þ2PL0ðk0ÞPL0ðk1Þ

×

�
10

7
þ k1 · k0

k02
þ 4

7

�
k1 · k0

k1k0

�
2
�
þ ð1↔2Þ: ð61Þ

Here we used the fact that the term in the bracket in Eq. (60)
vanishes as k23 for k3 → 0, whereas PL0ðk3Þ ∼ kns3 with
ns ≲ 1. [If this is not the case, that is, there is very little
initial power on large scales, we must go back to the
consistency relation in the form of Eq. (53) rather than
Eq. (54). However, this is not necessary in realistic models.]
Then, taking into account the constraint k0 þ k1 þ k2 ¼ 0
by writing k1 ¼ k − k0=2 and k2 ¼ −k − k0=2 as in
Eq. (56), and expanding Eq. (61) over k0, we obtain

Bk0→0 ¼ D0þDþ1D2
þ2PL0ðk0Þ

×

�
PL0ðkÞ

�
13þ 8μ2

14
þ k
k0
μ

�

−
dPL0ðkÞ
d ln k

μ2

2

�
þ ð1↔2Þ; ð62Þ

where μ ¼ ðk · k0Þ=ðkk0Þ. The integration over angles gives
Z

dΩk0

4π
Bk0→0 ¼ D0þDþ1Dþ2

Dþ1 þDþ2

2
PL0ðk0Þ

×

�
47

21
PL0ðkÞ − 1

3

dPL0ðkÞ
d ln k

�
: ð63Þ

On the other hand, the right-hand side of Eq. (56)
reads as

Z
dΩk0

4π
Bk0→0 ¼ D0þPL0ðk0Þ

�
Dþ1 þDþ2

2

�
1 − 1

3

∂
∂ ln k

�

þ 13

21

�
D2

þ1

∂
∂Dþ1

þD2
þ2

∂
∂Dþ2

��

×Dþ1Dþ2PL0ðkÞ ð64Þ

and we recover Eq. (63). This provides a check of Eq. (56)
and also of the single-time relation (57), which is a
particular case of Eq. (56). Alternatively, the same pro-
cedure applied to the single-time bispectrum provides a
direct check of Eq. (57).
Therefore, we have checked the angular-averaged con-

sistency relation (54) for the bispectrum, at leading order of
perturbation theory, within the approximate symmetry
Ωm=f2 ≃ 1 discussed in Sec. II. In this explicit check,
the use of this approximate symmetry appears at the level
of the expression (60) of the bispectrum, which only
involves the linear growing mode Dþ. An exact calculation
would give prefactors for the terms in the bracket that show
new but weak dependencies on time and cosmology (and
that are unity for the Einstein–de Sitter case) [10]. These
deviations from Eq. (60) are usually neglected [for instance,
when the cosmological constant is zero, they were shown to
be well approximated by factors like ðΩ−2=63

m − 1Þ that are
very small over the range of interest [44]].

B. One-dimensional nonlinear check

The explicit check presented in Sec. IVA only applies up
to the lowest order of perturbation theory. Because the goal
of the consistency relations is precisely to go beyond low-
order perturbation theory, it is useful to obtain a fully
nonlinear check. This is possible in one dimension, where
the Zel’dovich solution [45] becomes exact (before shell
crossing) and all quantities can be explicitly computed.
Because of the change of dimensionality, we also need to
rederive the one-dimensional form of the consistency
relations. We present the details of our computations in
the Appendix, and only give the main steps in this section.

1. One-dimensional equations of motion

First, as described in Appendix A 1, by using the change
of variables (A12) the one-dimensional equations of motion
can be written as
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∂δ
∂ηþ

∂
∂x ½ð1þ δÞu� ¼ 0; ð65Þ

∂u
∂η þ ½κðtÞ − 1�uþ u

∂u
∂x ¼ −∂φ

∂x ; ð66Þ

∂2φ

∂x2 ¼ κðtÞδ; ð67Þ

where we introduced the factor κðtÞ defined by

κðtÞ ¼ 4πGðtÞρ̄ðtÞDþðtÞ2
_DþðtÞ2

: ð68Þ

As explained in Appendix A 1, we generalized the system to
the case of a time-dependent Newton’s constant GðtÞ. This
allows us to obtain scale factors aðtÞ that expand forever as
power laws, as in Eq. (A6), in a fashion that mimics the
Einstein–de Sitter three-dimensional cosmology.
Thus, κðtÞ plays the role of the ratio 3Ωm=ð2f2Þ encoun-

tered in the three-dimensional case in Eqs. (6)–(8). In the
one-dimensional cosmology (A6) with c1 ¼ 0, it is a
constant given by κ0 ¼ −ðαþ 2Þ=ðαþ 1Þ. Then, the
three-dimensional approximation Ωm=f2 ≃ 1 used in the
main text corresponds in our one-dimensional toy model to
the approximation κ ≃ κ0. That is, we neglect the depend-
ence of κ on the cosmological parameters (here the coef-
ficient c1) and the dependence on the background is fully
contained in the change of variables (A12). This is the one-
dimensional approximate symmetry that is the equivalent of
the three-dimensional approximate symmetry used in the
previous sections. The generalization to the case of a time-
dependent Newton’s constant is not important at a formal
level, because it does not modify the form of the equations of
motion. However, it is necessary for this approximate
symmetry to make practical sense, so that we can find
a regime where κ is approximately constant [here, around
c1 ¼ 0 with the choice (A5)].
The fluid equations (65)–(67) only apply to the single-

stream regime, but we can again go beyond shell crossings
by using the equation of motion of trajectories, which
reads as

∂2x
∂η2 þ ½κðtÞ − 1� ∂x∂η ¼ −∂φ

∂x ; ð69Þ

where φ is the rescaled gravitational potential (67). This is
the one-dimensional version of Eq. (10) and it explicitly
shows that particle trajectories obey the same approximate
symmetry, before and after shell crossings.

2. One-dimensional consistency relations

To derive the consistency relations, we can follow the
method described in the previous sections for the three-
dimensional case. In a fashion similar to the analysis of

Sec. III B, we first derive in Appendix A 2 the impact of a
large-scale linear density perturbation on the small-scale
nonlinear density field. This gives in Fourier space

∂ ~δðk; tÞ
∂ϵ0

����
ϵ0¼0

¼ DþðtÞ
� ∂ ~δ
∂ lnDþ

− k
∂ ~δ
∂k

�
; ð70Þ

which corresponds in configuration space to

∂δðx; tÞ
∂ϵ0

����
ϵ0¼0

¼ DþðtÞ
�
δþ ∂δ

∂ lnDþ
þ x

∂δ
∂x

�
: ð71Þ

As expected, we recover the same forms as in Eqs. (41)–(42),
but with different numerical coefficients because the dimen-
sion of space has changed.
To obtain the one-dimensional consistency relations, we

follow the method described in Sec. III C. The factors of
1=3 are replaced by unity and we use the result (70). Then,
Eq. (54) becomes

1

2

X
�k0

h~δðk0; t0Þ~δðk1; t1Þ…~δðkn; tnÞi0k0→0

¼ PLðk0; t0Þ
Xn
i¼1

Dþi

Dþðt0Þ
�
1

n
þ ∂
∂ lnDþi

−Xn
j¼1

�
δKi;j − 1

n

�
ki

∂
∂kj

�

× h~δðk1; t1Þ…~δðkn; tnÞi0: ð72Þ

The three-dimensional angular average
R
dΩk0=ð4πÞ of

Eq. (54) is replaced by the one-dimensional average
1
2

P
�k0 over the two directions of k0 (i.e., the two signs

of k0). When all times are equal, t0 ¼ t1 ¼ � � � ¼ tn ¼ t,
Eq. (55) becomes

1

2

X
�k0

h~δðk0; tÞ~δðk1; tÞ…~δðkn; tÞi0k0→0

¼ PLðk0; tÞ
�
1þ ∂

∂ lnDþ
−Xn

i¼1

∂
∂ ln ki

�

× h~δðk1; tÞ…~δðkn; tÞi0: ð73Þ

3. One-dimensional explicit checks

As is well known, in one dimension the Zel’dovich
approximation [45] is actually exact before shell crossing.
We briefly check this property in Appendix A 3 on the
generalized system (A7)–(A9), where Newton’s constant
can vary with time. Then, using the conservation of matter,
ð1þ δÞdx ¼ dq, the Fourier-space nonlinear density con-
trast can be written as [37,46]
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~δðkÞ ¼
Z

dx
2π

e−ikxδðxÞ ¼
Z

dq
2π

e−ikxðqÞ − δDðkÞ: ð74Þ

Using the solution Eq. (A26), and disregarding the Dirac
term for k ≠ 0, this gives the usual expression

~δðk; tÞ ¼
Z

dq
2π

e−ikqþ
R

dk0eik0q k
k0
~δLðk0;tÞ: ð75Þ

The explicit nonlinear expression (75) allows us to check
the one-dimensional consistency relations (72)–(73).
We present in Appendix A 4 two different checks.
First, in Appendix A 4 a, following the derivation of

the consistency relations, we check that the impact of a
large-scale perturbation on the nonlinear density contrast
is given by Eq. (70). This is the key relation from which
the consistency relations derive and it provides a first
one-dimensional nonlinear check.
Second, in Appendix A 4 b, we directly check the

consistency relations (72)–(73) from the explicit expres-
sions of the density polyspectra, without going through the
intermediate step that considers the impact of a large-scale
linear perturbation on the small-scale nonlinear density
contrast. Thus, this also provides a check of the reasoning
that underlies the derivation of these relations.

4. One-dimensional nonlinear and
nonperturbative validity

The explicit checks presented in Appendix A 4 show that
the consistency relations (72)–(73) are actually exact in the
one-dimensional case, before shell crossing. Here there is a
simplification, as compared with the three-dimensional
case, that makes the consistency relations exact beyond
the approximation of constant κ. This is because the
nonlinear density contrast (75) only depends on the linear
growing mode DþðtÞ and the approximation of constant κ
is not needed. This is also apparent in Eqs. (A23)–(A25) or
Eq. (A27). For the solution (A26), the right-hand sides of
Eqs. (A24) and (A27) cancel out and we obtain a dynamics
that only involves the linear growing mode DþðtÞ as the
rescaled time coordinate. Then, for this class of solutions
the symmetry that is the basis of the consistency relations is
actually exact (before shell crossing).
This one-dimensional toy model provides an explicit

nonlinear check of the consistency relations. This also
ensures that they are valid to all orders of perturbation
theory. However, because the single-stream equations of
motion (A7)–(A9) and the solution (75) only apply before
shell crossing, which is a nonperturbative effect, this one-
dimensional gravitational toy model does not provide an
explicit check in terms of nonperturbative shell-crossing
contributions.
On the other hand, we can also consider the Zel’dovich

solution (A26), and the associated density contrast (75), as
a second one-dimensional toy model (which is no longer

related to “gravitational” forces). This second system only
coincides with the one-dimensional gravitational dynamics
before shell crossing and departs from it afterwards, but it is
also a well-defined system at all times. Then, we can apply
the same reasoning that underlies the derivation of the
consistency relations to this system, which satisfies the
same symmetries. From this point of view, the solution (75)
now provides an explicit nonlinear check of the consistency
relations that also applies beyond shell crossing.
As noticed above, it happens that in this one-dimensional

case the function κðtÞ does not appear in the solution (75),
so that the approximation κ ≃ κ0 is not needed and the
consistency relations (and the underlying symmetry) are
exact, up to shell crossing for the one-dimensional gravi-
tational dynamics, and even beyond shell crossing when
we consider the second toy model defined by the solution
(A26). Therefore, the time dependence of the scale factor
aðtÞ and of κðtÞ is irrelevant and we could as well keep the
usual case of a time-independent Newton’s constant G, with
a finite collapse time of the system. Nevertheless, it is nice
to consider the generalized one-dimensional system (A5)
that can mimic the usual three-dimensional cosmological
expansion up to infinite time. Moreover, if we consider the
true one-dimensional gravitational dynamics, which
departs from the Zel’dovich solution (A26) after shell
crossing, the function κðtÞ will appear in the nonperturba-
tive shell-crossing terms, when the right-hand side of
Eq. (A27) no longer cancels out. Then, the consistency
relations are only approximate in the shell-crossing regime,
up to the accuracy of the κ ≃ κ0 approximation.

V. CONCLUSION

As explained in the previous sections, the angular-
averaged consistency relations (54)–(55) only rely on the
approximate symmetry discussed in Sec. II, which states
that the dependence on cosmological parameters can be
absorbed through the mapping t → Dþ of the time coor-
dinate (within the approximation Ωm=f2 ≃ 1). Therefore,
our results are not restricted to the perturbative regime and
also apply to small nonlinear scales governed by shell-
crossing effects, as long as the approximationΩm=f2 ≃ 1 is
sufficiently accurate.
We have also pointed out that these relations are actually

exact in one-dimensional gravitational systems until shell
crossing, and even beyond shell crossing for the Zel’dovich
dynamics itself (which departs from one-dimensional
gravity after shell crossing).
It is difficult to extend these results to the galaxy number

density field in a rigorous fashion, because galaxy for-
mation is not expected to satisfy the approximate symmetry
of Sec. II. For instance, cooling processes and star
formation introduce new time and density scales, which
means that the time-coordinate mapping t → Dþ is not
sufficient to absorb all cosmological dependence.
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However, these effects are likely to be subdominant if we
assume, as in halo models, that galaxies are closely related
to the dark matter density field. Thus, in most analytical
approaches, one writes the galaxy number density fluctua-
tions as a functional of the matter density fluctuations at the
same time, δgðx; tÞ ¼ δg½δð:; tÞ�. In the popular local bias
model, this is simplified as a function of the local density
contrast, smoothed over some scale R, δgðx; tÞ ¼
δg½δRðx; tÞ� ¼

P∞
n¼1

bn
n! δRðx; tÞn. However, this introduces

an explicit model dependence, especially as the trans-
formation (29) modifies the amplitude of the density
contrast, which leads to a change of the number of halos
in the framework of halo models. Then, the simplest
method to derive consistency relations for the galaxy
distribution from the matter density relations (54)–(58) is
to start from an explicit galaxy bias model, that allows one
to express galaxy correlations in terms of matter correla-
tions. Then, one can directly use Eqs. (54) and (58) and
obtain constraints on the galaxy correlations. The simplest
case is the constant linear bias model, where δg ¼ b1δ, with
a scale-independent bias b1 that only depends on the galaxy
type (mass, luminosity, etc.). Then, Eqs. (54) and (58)
directly extend to the galaxy density field, up to a factor b1.
In more general models of galaxy clustering, one takes

into account higher orders or keeps a functional depend-
ence, δgðxÞ ¼ δg½δð:Þ�. In particular, one can use some
derivative expansion of this functional, so that the galaxy
density field also involves the deformation tensor or higher-
order derivatives of the smoothed density field (e.g.,
Ref. [47]). Then, the general relation (14), where the
nonlinear matter density contrasts ~δðki; tiÞ are replaced
by the galaxy number density contrasts ~δgðk; tiÞ, is still
valid, because it only assumes that the field ~δg is a
functional of the Gaussian field ~δL0 [30]. This allows
one to write again Eqs. (17) or (18) for the galaxy density
field. Next, one can write the derivatives Dδg=DδL0 in
terms of derivatives of the matter density contrast δ, and use
Eqs. (41) or (42). However, in the generic case this gives
expressions that involve the matter density field and cannot
be written back in terms of the galaxy density field in a
simple manner.
A detection (beyond the range authorized by the finite

accuracy of the approximationΩm=f2 ≃ 1) of a violation of
Eqs. (54) and (58), written in terms of the galaxy number
density if that is possible, would signal a breakdown of the
underlying galaxy biasing scheme. To remove this degen-
eracy, one can also use weak gravitational lensing obser-
vations, which directly probe the matter density field.
On the other hand, these consistency relations rely on

the Gaussian hypothesis for the initial conditions. Indeed,
this assumption is used to derive Eq. (14) [30], which is
the basis of subsequent relations. Then, a violation of the
angular-averaged consistency relations could signal pri-
mordial non-Gaussianities. Other possible interpretations
could be effects from nonzero decaying modes, or a

departure from the “standard” cosmological scenarios,
for instance a modified-gravity model where the approxi-
mation Ωm=f2 ≃ 1 is strongly violated or where new terms
in the equations of motion show an explicit dependence on
cosmology (on the background density) that does not have
the form Ωm=f2.
Apart from these observational aspects, these angular-

averaged consistency relations (54)–(58) might be used as a
check of numerical simulations or algorithms. From a more
theoretical perspective, they could also help in designing
models for the matter density correlations. In particular,
perturbative approaches, which often explicitly use the
approximation Ωm=f2 ≃ 1 to simplify the analysis, attempt
to go beyond the standard perturbation theory by including
partial resummations of higher-order diagrams. They can
also be seen as different closure schemes, where one
implements different truncations of the infinite hierarchy
between n- and nþ 1-point density correlations. (The
standard perturbation theory amounts to setting all corre-
lations above some finite order N to zero, while resumma-
tion schemes can be seen as assuming a specific ansatz for
theN þ 1 correlation, expressed in terms of the lower-order
ones, to close the hierarchy at order N.) Then, Eqs. (54) and
(58) might serve as a guideline to write this N þ 1
correlation in terms of the lower-order correlations. We
leave such investigations to future works.
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APPENDIX: ONE-DIMENSIONAL EXAMPLE

It is interesting to check the consistency relations
obtained in this paper by using a simple one-dimensional
example that can be exactly solved. This is provided by the
Zel’dovich dynamics [45], which is exact in one dimension
(before shell crossing).

1. One-dimensional equations of motion

In physical coordinates, the one-dimensional continuity,
Euler and Poisson equations, read as

∂ρ
∂t þ

∂
∂r ðρνÞ ¼ 0; ðA1Þ

∂ν
∂t þ ν

∂ν
∂r ¼ −∂Ψ

∂r ; ðA2Þ

∂2Ψ
∂r2 ¼ 4πGðtÞρ; ðA3Þ

where ρðr; tÞ and νðr; tÞ are the one-dimensional density and
velocity fields. Here we generalized the one-dimensional
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gravitational dynamics to the case of a time-dependent
Newton’s constant GðtÞ. The background solution corre-
sponds to ν ¼ Hr and Ψ ¼ 2πGρ̄r2, with H ¼ _a=a. The
one-dimensional continuity equation yields ρ̄ ¼ ρ̄0=a and
the Euler equation gives

ä
a
¼ −4πGðtÞρ̄; ðA4Þ

which corresponds to the Friedman equation. In the three-
dimensional case, the expansion of the universe gives
ρ̄ ∝ a−3, which dilutes the gravitational attraction (as
1=r2), and there are ever-expanding solutions (without
cosmological constant). In the one-dimensional case, we
have ρ̄ ∝ a−1 and the gravitational force is not diluted by
the expansion. (As is well known, in one dimension the
gravitational force is constant and independent of the
distance between particles before shell crossing.) Then,
there are no ever-expanding solutions and the system
collapses after a finite time. However, by generalizing to
a time-dependent Newton’s constant GðtÞ, we can again
obtain solutions that expand forever. Thus, we can consider
the power-law models

−2 < α < −1∶ GðtÞ ¼ G0

�
t
t0

�
α

; ðA5Þ

which lead to the expansion laws

aðtÞ ¼ − 4πG0ρ̄0t20
ðαþ 1Þðαþ 2Þ

�
t
t0

�
αþ2

þ c1t; ðA6Þ

where c1 is an arbitrary integration constant. The case
c1 ¼ 0 is the one-dimensional version of the standard three-
dimensional Einstein–de Sitter cosmology, while the term
c1t plays the role of the three-dimensional curvature term.
We can now switch to comoving coordinates, with

x ¼ r=a, v ¼ ν −Hr, ρ ¼ ρ̄ð1þ δÞ, ϕ ¼ Ψþ aäx2=2,
and we obtain the one-dimensional version of Eqs. (1)–(3),

∂δ
∂t þ

1

a
∂
∂x ½ð1þ δÞv� ¼ 0; ðA7Þ

∂v
∂t þHvþ 1

a
v
∂v
∂x ¼ − 1

a
∂ϕ
∂x ; ðA8Þ

∂2ϕ

∂x2 ¼ 4πGðtÞρ̄a2δ: ðA9Þ

Linearizing these equations, we obtain the evolution
equation of the linear modes of the density contrast.
It takes the same form as the usual three-dimensional
equation (4),

D̈þ 2HðtÞ _D − 4πGðtÞρ̄ðtÞD ¼ 0; ðA10Þ

but with a time-dependent Newton’s constant and the
one-dimensional scale factor (A6). In particular, in the
case where c1 ¼ 0 in Eq. (A6), which corresponds to
the three-dimensional Einstein–de Sitter cosmology, with
a scale factor aðtÞ that keeps expanding forever but at a
decelerated rate, we have the power-law linear growing and
decaying modes

c1 ¼ 0∶ DþðtÞ ∝ t−α−1; D−ðtÞ ∝ t−α−2: ðA11Þ

In a fashion similar to the change of variables (5), we
make the change of variables

η ¼ lnDþ; v ¼ a _Dþ
Dþ

u; ϕ ¼
�
a _Dþ
Dþ

�2

φ; ðA12Þ

and we obtain the equations of motion (65)–(68) given in
the main text. We can again go beyond shell crossings by
using the equation of motion of trajectories (69).

2. One-dimensional background density perturbation

To derive the one-dimensional consistency relations, we
can follow the method described in the main text for the
three-dimensional case and first consider the impact of small
changes to the background density. As in Eq. (25), we
consider two universes with close cosmological parameters,

a0 ¼ a½1 − ϵðtÞ�; ρ̄0 ¼ ρ̄½1þ ϵðtÞ�; ðA13Þ

and substituting into the “Friedmann equation” (A4) we
obtain

̈ϵþ 2H_ϵ − 4πGðtÞρ̄ϵ ¼ 0: ðA14Þ

Again, we recover the evolution equation (A10) of the linear
density modes and we can write ϵðtÞ ¼ ϵ0DþðtÞ. Next, the
change of frame described in Eq. (29) becomes

x0 ¼ ð1þ ϵÞx; δ0 ¼ δ − ϵð1þ δÞ; v0 ¼ vþ _ϵax;

ðA15Þ

and δL ¼ δL
0 þ ϵ. This means that, as in Eq. (33), the

background density perturbation ϵ is absorbed by the change
of frame as

δϵ0ðx; tÞ ¼ ð1þ ϵÞδ0½ð1þ ϵÞx; t� þ ϵ; ðA16Þ

which reads in Fourier space as

~δϵ0ðk; tÞ ¼ ~δ0½ð1 − ϵÞk; t� þ ϵδDðkÞ: ðA17Þ

Using the approximate symmetry κ ≃ κ0, we neglect
the dependence of the dynamics on variations of κ, so that
the impact of the background only comes through the
mapping (A12). Therefore, as in Eq. (35), we write
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~δϵ0ðk; tÞ ¼ ~δ½ð1 − ϵÞk;Dþϵ0 � þ ϵδDðkÞ, where Dþϵ0 is the
linear growth rate that is modified with respect to the initial
Dþ by the perturbation ϵ. Then, the derivative of the density
contrast with respect to ϵ0 reads as

∂ ~δðk; tÞ
∂ϵ0

����
ϵ0¼0

¼ ∂Dþα0

∂ϵ0
����
0

∂ ~δ
∂Dþ

−DþðtÞk
∂ ~δ
∂k ; ðA18Þ

where we disregarded the Dirac factor that does not
contribute for wave numbers k ≠ 0.
Next, writing again the linear growing mode in the

primed frame as D0þðtÞ ¼ DþðtÞ þ yðtÞ, and substituting
into Eq. (A10) with the primed background, we obtain the
one-dimensional version of Eq. (37) as

ÿþ 2H _y − 4πGρ̄y ¼ 2 _Dþ _ϵþ 4πGρ̄Dþϵ: ðA19Þ
Using Eqs. (68) and (A10), this can be written in terms of
the time coordinate η ¼ lnDþ as

d2y
dη2

þ ðκ − 1Þ dy
dη

− κy ¼ ðκ þ 2Þϵ0e2η; ðA20Þ

which gives (using the approximation of constant κ)

yðtÞ ¼ ϵ0DþðtÞ2;
∂Dþϵ0

∂ϵ0
����
0

¼ DþðtÞ2: ðA21Þ

Then, Eq. (A18) also reads as Eq. (70) in Fourier space, and
Eq. (71) in configuration space, where again we disre-
garded the constant factor ϵ because we consider small-
scale wave numbers with k ≠ 0.
Next, this gives the one-dimensional consistency rela-

tions (72)–(73) as described in Sec. IV B 2.

3. Zel’dovich solution

Making the change of variable [48]

v ¼ a _Dþw; ϕ ¼ 4πGρ̄a2Dþψ ; ðA22Þ
and using DþðtÞ as the time coordinate, the equations of
motion (A7)–(A9) can be written as

∂δ
∂Dþ

þ ∂
∂x ½ð1þ δÞw� ¼ 0; ðA23Þ

∂w
∂Dþ

þ w
∂w
∂x ¼ − κ

Dþ

�∂ψ
∂x þ w

�
ðA24Þ

∂2ψ

∂x2 ¼ δ

Dþ
: ðA25Þ

Then, we can check that w ¼ −∂ψ=∂x is a solution of
the equations of motion, with the continuity and Euler
equations reducing to ∂w=∂Dþ þ w∂w=∂x ¼ 0. This gives
the solution

xðq; tÞ ¼ qþDþðtÞsL0ðqÞ; ðA26Þ
for the trajectories of the particles, where q is the
Lagrangian coordinate and sðq; tÞ ¼ DþsL0 the nonlinear
displacement field, which is identical to the linear dis-
placement field in this one-dimensional case. This solution
breaks down after shell crossing, as the gravitational force
on a particle changes when there is some exchange of
matter between the left and right sides of this particle. Then,
the fluid equations no longer apply and we must solve the
equation of motion of the particles, which reads as

∂2x
∂D2þ

¼ − κ

Dþ

� ∂x
∂Dþ

þ ∂ψ
∂x

�
: ðA27Þ

The displacement field is related to the linear density
contrast by

δLðq; tÞ ¼ DþðtÞδL0ðqÞ with δL0 ¼ − dsL0
dq

; ðA28Þ

which also reads as

sðq; tÞ ¼
Z þ∞

−∞
dkeikq

i
k
~δLðk; tÞ: ðA29Þ

Then, using the conservation of matter, the Fourier-space
nonlinear density contrast can be written as Eq. (75).

4. Check of the one-dimensional consistency
relations

a. Impact of a large-scale perturbation on the
nonlinear density contrast

To check the validity of the one-dimensional consistency
relations from the exact solution (75), we simply need the
change of the nonlinear density contrast ~δðkÞ when we
make a small perturbation ΔδL to the initial conditions on
much larger scales. Let us consider the impact of a small
large-scale perturbation ΔδL to the initial conditions. Here
we also restrict to even perturbations, Δ~δLð−k0Þ ¼
Δ~δLðk0Þ, as the consistency relations studied in this paper
apply to spherically averaged statistics, which correspond
to the �k0 averages in the one-dimensional relations
(72)–(73). Then, expanding Eq. (75) up to first order over
ΔδL, and over powers of k0, we obtain

k0 → 0∶Δ~δðkÞ¼
�Z

dk0Δ~δLðk0Þ
�

×
Z

dq
2π

e−ikqþ
R
dk00eik00q k

k″
~δLðk00ÞðikqÞ: ðA30Þ

Here the limit k0 → 0means that we consider a perturbation
of the initial conditions Δ~δLðk0Þ that is restricted to low
wave numbers k0 < Λ with a cutoff Λ that goes to zero (i.e.,
that is much smaller than the wave numbers k and 2π=q of
interest).
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On the other hand, from the expression (75) we obtain at
once the exact result

∂ ~δ
∂ lnDþ

− k
∂ ~δ
∂k ¼

Z
dq
2π

e−ikqþ
R

dk00eik00q k
k00
~δLðk00ÞðikqÞ:

ðA31Þ
The comparison with Eq. (A30) gives

k0 → 0∶ Δ~δðkÞ ¼
�Z

dk0Δ~δLðk0Þ
�� ∂ ~δðkÞ

∂ lnDþ
− k

∂ ~δðkÞ
∂k

�

ðA32Þ
The consistency relations (72)–(73) only rely on the

expression (70), which also reads (at linear order over ϵ0) as

Δ~δðkÞ ¼ ϵ0DþðtÞ
� ∂ ~δðkÞ
∂ lnDþ

− k
∂ ~δðkÞ
∂k

�
: ðA33Þ

Since we have ϵ0 ¼ ΔδL=Dþ, we recover Eq. (A32).

b. Explicit check on the density polyspectra

Instead of looking for the impact of a large-scale linear
perturbation on the nonlinear density contrast, as in the
previous section, we can directly check the consistency
relations in their forms (72) or (73). Considering for
simplicity the equal-time polyspectra (73), we define

Enðk0;k1;…;kn; tÞ≡ h~δLðk0; tÞ~δðk1; tÞ…~δðkn;tÞi

¼Dþ

�
~δL0ðk0Þ

Z
dq1…dqn
ð2πÞn e−i

P
n
j¼1

kjqj

×eDþ
R
dk=k~δL0ðkÞ

P
n
j¼1

kje
ikqj

�
; ðA34Þ

where in the last expression we used Eq. (75). The
Gaussian average over the initial conditions ~δL0 gives

En ¼ −PLðk0Þ
k0

Z
dq1…dqn
ð2πÞn

Xn
j¼1

kje−ik
0qj

× e−i
P

n
j¼1

kjqje
−D2

þ=2
R

dk=k2PL0ðkÞ
���Pn

j¼1
kje

ikqj

���2
: ðA35Þ

Making the changes of variable q1 ¼ q10 þ qn;…;
qn−1 ¼ qn−10 þ qn, the argument of the last exponential
does not depend on qn. Then, the integration over qn yields
a Dirac factor δDðk0 þ k1 þ � � � þ knÞ, that we factor out
by defining En ¼ E0

nδDðk0 þ k1 þ � � � þ knÞ, with a primed
notation as in Eq. (49), and we replace kn by
−ðk0 þ k1 þ � � � þ kn−1Þ. Finally, in the limit k0 → 0 we
expand the terms e−ik0qj up to first order over k0, and we
obtain

k0 → 0∶ E0
n ¼ PLðk0Þ

Z
dq1…dqn−1
ð2πÞn−1

×

�
1þ i

Xn−1
j¼1

kjqj

�
e−i

P
n−1
j¼1

kjqj

× e
−D2

þ=2
R

dk=k2PL0ðkÞ
���Pn−1

j¼1
kjðeikqj−1Þ

���2
:

ðA36Þ

Proceeding in the same fashion, the n-point polyspectra
read as

Pn ≡ h~δðk1; tÞ…~δðkn; tÞi0

¼
Z

dq1…dqn−1
ð2πÞn−1 e−i

P
n−1
j¼1

kjqj

× e
−D2

þ=2
R

dk=k2PL0ðkÞ
���Pn−1

j¼1
kjðeikqj−1Þ

���2
: ðA37Þ

Then, we can explicitly check from the comparison with
Eq. (A36) that we have the relation

k0 → 0∶ En
0 ¼ PLðk0Þ

�
1þ ∂

∂ lnDþ
−Xn−1

j¼1

∂
∂ ln kj

�
Pn;

ðA38Þ

and we recover the consistency relation (73). [In Eq. (A38)
the right-hand side does not involve kn because it has been
replaced by −ðk1 þ � � � þ kn−1Þ in Eq. (A37), using the
Dirac factor δDðk1 þ � � � þ knÞ.]
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