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We give a full investigation on the dynamics of power-law kinetic quintessence LðX;ϕÞ ¼ VðϕÞð−X þ
X2Þ by considering the potential related parameter Γð¼ VV00

V02 Þ as a function of another potential parameter
λð¼ V 0

κV3=2Þ, which correspondingly extends the analysis of the dynamical system of our Universe from two
dimensional to three dimensional. In addition to the critical points found in previous papers, we find a new
de Sitter– like dominant attractor (cp6) and give its stable condition using the center manifold theorem. For
the dark energy dominant solution (cp6 and cp7), it could be distinguished from canonical quintessence
and tachyon models since the sound speed c2s ¼ 0 or c2s ≪ 1. For the scaling solution (cp8), it is very
interesting that the sound speed c2s ¼ 1=5, while it behaves as ordinary matter. We therefore point out that
the power-law kinetic quintessence should have different signatures on the cold dark matter power
spectrum and the cosmic microwave background both at early time, when this scalar field is an early dark
energy with Ωϕ being non-negligible at high redshift, and at late time, when it drives the accelerating
expansion. We still do not know whether there are any degeneracies of the impacts between these two
epoches. They are expected to be investigated in future.
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I. INTRODUCTION

Power-law kinetic quintessence is a kind of k-essence
model, described by the Lagrangian LðX;ϕÞ ¼
VðϕÞð−X þ X2Þ. It is first proposed in one version of k-
inflation models [1]. It is shown that this kind of model,
with higher-order noncanonical kinetic terms instead of the
help of potential terms, can also drive an inflationary
evolution starting from rather generic initial conditions.
It can roll slowly from a high-curvature initial phase down
to a low-curvature phase and can exit inflation to end up
being radiation dominated in a naturally graceful manner
[1]. It appeared as a candidate of dark energy model [2] to
address the late-time accelerating expansion (see for
example, [3–7]). It is very interesting to investigate this
kinetic driven quintessence since it could behavior like a
cosmological constant while the sound speed c2s could
dramatically be far less then 1 or even equal zero [8]. The
dark energy, with its sound speed being very small
compared to the speed of light (namely c2s ≪ 1), is referred
as cold dark energy [9,10]. This feature of low value sound
speed is distinguishable from the standard ΛCDM model
which has a purely nonclustering dark energy component
or the quintessence model with c2s ¼ 1. The effect of c2s →
0 is to suppress the integrated Sachs-Wolfe effect at large
angular scales because the dark energy component can

cluster and then reduce the decay of the gravitational
potential that causes the integrated Sachs-Wolfe effect
[8,11–13]. The low value of sound speed can also enhance
the matter power spectrum that the dark energy clustering
induces at large scales, and the closer is c2s to the speed of
light the smaller is the effect [14]. In addition, combining
cluster abundances with CMB background power spectra
can distinguish a true sound speed of 0.1 from 1 at 99%
confidence [15]. Power-law kinetic quintessence model
was also investigated in the context of a brane world [16].
The dynamics of the power-law kinetic quintessence

with inverse square potential VðϕÞ ∝ ϕ−2 had been inves-
tigated in detail using a phase-space analysis to its critical
points [17]. However, there may exist new critical points
and correspondingly have the new cosmological implica-
tion if the potential is not restricted to the inverse square
potential according to the previous results [18,19]. We
therefore need to study the dynamical evolution of power-
law kinetic quintessence beyond the inverse square poten-
tial to get a full investigation of this model. This full
investigation of the dynamics is really important since the
evolution of the dark energy is essential both in the late time
and in the early time of the Universe. If the dark energy may
have a fraction of the critical densityΩdeðzlssÞ≃ 10−2 at the
CMB last scattering surface rather than ΩdeðzlssÞ≃ 10−9,
and satisfy two requirements of w being significantly
different from −1 and c2s ≪ 1 at that time, the perturbations
in the dark energy will have an appreciable influence on the*wfang@shnu.edu.cn; wfang@cfa.harvard.edu
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matter power spectrum and large scale clustering [15]. It is
well known that the scaling solution satisfies these require-
ments with 0 < Ωde < 1 and wde ¼ wb. In order to inves-
tigate the dynamics of the power-law kinetic quintessence
beyond the inverse square potential, we will rely on the
method described in [18–20]. It helps us to explore
the critical points and the general dynamical behavior of
the power-law kinetic quintessence with nearly arbitrary
potentials rather than just one special potential. We will rely
on the three-dimensional dynamical autonomous systems
for power-law kinetic quintessence obtained in paper [21],
try to find all the critical points under the observable related
variables ðwϕ;Ωϕ; λÞ instead of previous trivial variables
ðx; y; λÞ, and give the cosmological implication. The paper
is organized as follows. We first give the basic framework
and the three-dimensional dynamical system in Sec. II, and
then explore the classical and quantum stabilities and
present the constraint on the value of γϕ in Sec. III. We
give all the critical points of a three-dimensional dynamical
system Eqs. (5), (6), (11), analyze their existence and stable
conditions, and investigate their cosmological properties in
Sec. IV. We finally find the differences of power-law kinetic
quintessence with a cosmological constant, canonical
quintessence, and tachyon, discuss the cosmological impli-
cations, and give our conclusions in Sec. V.

II. BASIC FRAMEWORK AND THREE-
DIMENSIONAL DYNAMICAL SYSTEM

Let us restrict ourselves to a flat universe described by
the FRWmetric, and consider a spatially homogeneous real
scalar field ϕ with noncanonical kinetic energy term. The
Lagrangian density is given as

pϕ ¼ LðX;ϕÞ ¼ VðϕÞð−X þ X2Þ; ð1Þ

where X ¼ 1
2
∇μϕ∇μϕ ¼ 1

2
_ϕ2 for a spatially homogeneous

scalar field. The pressure, energy density and sound speed
of the scalar field could be easily obtained as the following:

ρϕ ¼ 2X
∂p
∂X − p ¼ VðϕÞð−X þ 3X2Þ ð2Þ

H2 ¼
�
_a
a

�
2

¼ 1

3M2
pl

½ρϕ þ ρb� ð3Þ

_H ¼ −
1

2M2
pl

½2VðϕÞð−X þ 2X2Þ þ γbρb�; ð4Þ

where 8πG ¼ κ2 ¼ 1=M2
pl, ρb is the density of a barotropic

fluid component with the equation of state pb ¼ wbρb ¼
ðγb − 1Þρb. γb ¼ 1 for matter and γb ¼ 4=3 for
radiation.
The three-dimensional autonomous dynamical system is

given as follows [21]:

dΩϕ

dN
¼ f1ðΩϕ; γϕ; λÞ ¼ 3ðγb − γϕÞΩϕð1 −ΩϕÞ ð5Þ

dγϕ
dN

¼ f2ðΩϕ; γϕ; λÞ

¼ ðλ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 − 3γϕÞΩϕ

p þ 3γϕÞðγϕ − 2Þð3γϕ − 4Þ
3γϕ − 8

ð6Þ

dλ
dN

¼ λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 − 3γϕÞΩϕ

q �
Γ −

3

2

�
; ð7Þ

where

λ ¼ V 0

κV3=2 ; Γ ¼ VV 00

V 02 ; Ωϕ ¼ ρϕ
3M2

plH
2
: ð8Þ

The equation of state wϕ and the sound speed c2s of dark
energy are as follows:

wϕ ¼ γϕ − 1 ¼ X − 1

3X − 1
;

c2s ¼
p;X

ρ;X
¼ 2X − 1

6X − 1
¼ −γϕ

3γϕ − 8
:

ð9Þ

The above Eqs. (5)–(7) completely describe the dyna-
mical evolution of the power-law kinetic quintessence.
Equation (7) will vanish when Γ ¼ 3=2, then the dynamical
system Eqs. (5)–(7) will reduce to a two-dimensional
autonomous system that corresponds to the inverse square
potential VðϕÞ ¼ ð1

2
κλϕ − c1Þ−2. Authors had obtained this

two-dimensional dynamical autonomous system with the
dimensionless variables ðx; yÞ, and studied the phase-space
properties and the cosmological implications of the critical
points in detail. However, here we give the two-dimensional
autonomous system Eqs. (5)–(6) with the variables being
observation related quantities ðΩϕ; γϕÞ instead of ðx; yÞ. We
will obtain the critical points of the observational quantities
ðΩϕ; γϕÞ directly, so it will be more convenient to study the
properties of the critical points and their cosmological
implications with these new variables. Furthermore, we will
investigate the dynamics of the three-dimensional dynamical
system instead of the two-dimensional dynamical system,
and correspondingly, we can study the dynamics of power-
law kinetic quintessence beyond the inverse square potential.
We will get to know which critical points are the critical
points for all the power-law kinetic quintessence(no matter
with the form of the potentials) and which are only relative to
the concrete potentials. We rely on the method which is
proposed in Refs. [18,20] and then generalized to several
other cosmological contexts [19,22–32].
We briefly introduce the idea of our treatment here.

When the potential is not the inverse square potential, the
potential related parameter Γ ≠ 3

2
. In this case, another

potential related parameter λ is a dynamically changing
quantity, then the system Eqs. (5)–(7) will be not an
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autonomous system any more since Γ is unknown, and
therefore we cannot analyze the phase space like the inverse
square potential exactly. However, since λ is the function of
tachyon field ϕ and Γ is also the function of ϕ, so Γ can be
expressed as a function of λ in principle,

ΓðλÞ ¼ fðλÞ þ 3

2
; ð10Þ

then Eq. (7) becomes

dλ
dN

¼¼ f3ðΩϕ; γϕ; λÞ ¼ λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 − 3γϕÞΩϕ

q
fðλÞ: ð11Þ

Obviously, Eqs. (5)–(6) and Eq. (11) are a dynamical
autonomous system. Given any form of the function fðλÞ,
we can get the corresponding exact expression for the
potential VðϕÞ (see Ref. [19] for details). The three-
dimensional autonomous system Eqs. (5), (6), (11) reduces
to two-dimensional autonomous systems when fðλÞ ¼ 0
(i.e., VðϕÞ ∝ ϕ−2, Γ ¼ 3=2 and λ ¼ constant).
Let us focus on Eq. (11) to show you why we state that

studying the dynamics based on a three-dimensional
system is far superior to a two-dimensional system.
First, all the critical points obtained in a two-dimensional
system when the potential VðϕÞ ∝ ϕ−2 is just the special
case when fðλ�Þ ¼ 0, where λ� is the value that makes
fðλ�Þ ¼ 0. We should keep in mind that there are
many potentials with their fðλÞ could be zero, the inverse
square potential VðϕÞ ∝ ϕ−2 is just the simplest case.
For example, VðϕÞ ¼ V0=ðϕ2 − ϕ2

0Þ corresponds to
fðλÞ ¼ 1=2 − 2=ðV0κ

2λ2Þ[19]. λ� ¼ �2=ðκ ffiffiffiffiffiffi
V0

p Þ makes
fðλ�Þ equal 0. That means all the critical points exist for
inverse square potential will also exist for the potential
VðϕÞ ¼ V0=ðϕ2 − ϕ2

0Þ. Obviously, these critical points will
not exist for the exponential potential VðϕÞ ¼ V0eαϕ since
in this case fðλÞ does not equal 0 (it always equals −1=2).
Second, we can find the new critical points which will not
exist for inverse square potential. We can easily understand
it from Eq. (11). Generally speaking, there are four
possibilities to make Eq. (11) dλ=dN ¼ 0: fðλÞ ¼ 0,
λ ¼ 0, γϕ ¼ 4=3 and Ωϕ ¼ 0. We have discussed earlier
in this paragraph about the case of fðλÞ ¼ 0. We should
emphasize that the last three types of critical points exist
even if the potential is not the inverse square potential. For
the second case λ ¼ 0, the potentials with an extremum
(i.e., V 0 ¼ 0) possess these critical points of λ ¼ 0 since the
potential related parameter λ ¼ V 0=ðκV3=2Þ. In fact, not
only the potentials with an extremum but all those
potentials with λ being zero in function fðλÞ have these
critical points. For example, fðλÞ ¼ βλ − 1

2
, the correspond-

ing potential has an implicit expression as
2βVðϕÞ−1

2 − 1
2
c1lnðVðϕÞÞ ¼ − 1

2
κϕþ c2[19]. However,

for the potential VðϕÞ ¼ V0=ðϕ2 − ϕ2
0Þ as previously

mentioned in this paragraph, there is no such critical point
since fðλÞ ¼ 1=2 − 2=ðV0κ

2λ2Þ; therefore, λ cannot be
zero. For the last two cases γϕ ¼ 4=3 and Ωϕ ¼ 0, the

corresponding critical points even exist irrespective of the
potentials. We will give all the critical points and analyze
their properties in detail in Sec. IV.

III. CLASSICAL AND
QUANTUM STABILITIES

Before we investigate the critical points and their
properties, we consider the range of γϕ as well as the
classical and quantum stabilities of the power-law kinetic
quintessence.
We get the expression γϕ ¼ 1þ wϕ ¼ ð4X − 2Þ=

ð3X − 1Þ from Eq. (9). Since X ¼ _ϕ2=2 > 0, we can easily
get the range of γϕ: γϕ ≥ 2 or γϕ < 4=3. We plot the
evolution of γϕ with respect to X in Fig. 1. However, there
are two constraints on the value of X if we consider the
classical and quantum stabilities. When we consider the
stability of classical perturbations, the sound speed c2s
should be positive. We therefore get that 0 ≤ X < 1=6 or
X ≥ 1=2. We plot the evolution of c2s with respect to X in
Fig. 2. If we consider the quantum stability, which requires
that the perturbed Hamiltonian about a background solution
is positive, demanding that P;X ≥ 0; P;X þ 2XP;XX ≥ 0.
That leads to 2X − 1 ≥ 0 and then we have X ≥ 1=2. So
finally we obtain that X ≥ 1=2 for the stability from both
classical and quantum points of view. What we discuss here
can also be found in detail in Refs. [17,33,34]. We therefore
get the range for γϕ:

0 ≤ γϕ < 4=3ð−1 ≤ wϕ < 1=3Þ: ð12Þ

Obviously, we get above equation Eq. (12) (see Fig. 1)
from the requirements of the classical and quantum
stabilities. However, the interesting thing is that, we can
easily get the similar constraint from a three-dimensional
dynamical system Eq. (6) or Eq. (7) since there is a term

–10

–5

0

5

10

0.2 0.4 0.6 0.8
X

FIG. 1 (color online). The evolution of γϕ with respect to
X. The dash vertical line is X ¼ 1=3, where γϕ → �∞. The
dash horizontal line is γϕ ¼ 4=3, γϕ → 4=3 when
X → ∞. 0 ≤ γϕ ≤ 4=3 is required from the classical and quantum
stabilities.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 − 3γϕÞ

p
. We do not know it is just occasional or there

are some reasons that make the dynamical system give the
similar constraint.

IV. CRITICAL POINTS AND THEIR
COSMOLOGICAL PROPERTIES

Wewill investigate the critical points and their properties
in this section. The critical points can be found by setting
dΩϕ=dN ¼ dγϕ=dN ¼ dλ=dN ¼ 0 while their properties
are determined by the eigenvalues of the Jacobi matrixA of
the three-dimensional nonlinear autonomous system
Eqs. (5), (6), (11). The Jacobi matrix A of each point is
obtained by linearizing the three-dimensional nonlinear
autonomous system Eqs. (5), (6), (11) around each critical
point [18],1

A ¼

2
664
∂f1ðΩϕ; γϕ; λÞ=∂Ωϕ ∂f1ðΩϕ; γϕ; λÞ=∂γϕ ∂f1ðΩϕ; γϕ; λÞ=∂λ
∂f2ðΩϕ; γϕ; λÞ=∂Ωϕ ∂f2ðΩϕ; γϕ; λÞ=∂γϕ ∂f2ðΩϕ; γϕ; λÞ=∂λ
∂f3ðΩϕ; γϕ; λÞ=∂Ωϕ ∂f3ðΩϕ; γϕ; λÞ=∂γϕ ∂f3ðΩϕ; γϕ; λÞ=∂λ

3
775
each critical point

: ð13Þ

Critical point 1(cp1): ðΩϕ ¼ 0; γϕ ¼ 0; λ ¼ λarÞ (λar
means an arbitrary real constant). cp1 always exists
independent of the form of the potential. It is a barotropic
fluid dominated solution. However, since the eigenvalues
of cp1 found from its Jacobi matrix is ð3γb=2;−3; 0Þ, so it
is an unstable saddle point.
Critical point 2 (cp2): ðΩϕ ¼ 0; γϕ ¼ 2; λ ¼ λarÞ. This

point actually does not exist since γϕ ¼ 2 > 4=3.
Critical point 3(cp3): ðΩϕ ¼ 0; γϕ ¼ 4=3; λ ¼ λarÞ.

This point always exists independent of the form of the
potential. It is also a barotropic fluid dominated solution.
The eigenvalues of cp3 is ð3γb=2 − 2; 1; 0Þ, so it is an
unstable saddle point(for barotropic fluid being matter,
γb ¼ 1) or an unstable node point(for barotropic fluid being
radiation, γb ¼ 4=3).
Critical point 4(cp4): ðΩϕ ¼ 1; γϕ ¼ 4=3; λ ¼ λarÞ. This

point always exists independent of the form of the potential.
cp4 is a power-law kinetic quintessence dominated sol-
ution ðΩϕ ¼ 1Þ where this scalar field behaves as radiation
ðγϕ ¼ 4=3Þ. However, it is an unstable node point(whatever
barotropic fluid is matter or radiation) since the eigenvalues
of cp4 is ð4 − 3γb; 1; 0Þ.

Critical point 5(cp5): ðΩϕ ¼ 1; γϕ ¼ 2; λ1Þ, where λ1 ¼
0 or fðλ1Þ ¼ 0. However, this point does not exist since the
value of γϕ should be 0 ≤ γϕ < 4=3.
Critical point 6(cp6): ðΩϕ ¼ 1; γϕ ¼ 0; λ ¼ 0Þ. This

point exists depending on the form of the potential. All
the potentials with λ being zero in function fðλÞ have cp6.
For example, fðλÞ ¼ βλ − 1

2
, the corresponding potential

has an implicit expression as 2βVðϕÞ−1
2 − 1

2
c1 lnðVðϕÞÞ ¼

− 1
2
κϕþ c2 [19]. However, for the potential VðϕÞ ¼

V0=ðϕ2 − ϕ2
0Þ, there is no such critical point since

fðλÞ ¼ 1=2 − 2=ðV0κ
2λ2Þ; therefore, λ cannot be zero.

For the potentials with an extremum(i.e., V 0 ¼ 0, for exam-
ple, VðϕÞ ¼ mϕ2=2þ V0) also possess this critical point
since the potential related parameter λ ¼ V 0=ðκV3=2Þ. cp6 is
very interesting since it corresponds to the Universe domi-
nated by the dark energy which behaves as an cosmological
constant with the sound speed c2s being 0. Furthermore, cp6
could be a stable point since the eigenvalues of this point is
ð−3γb;−3; 0Þ. If a critical point of a linear three-dimensional
dynamical system has the eigenvalues ð−3γb;−3; 0Þ, we can
state directly that it is a stable point even though one of the
eigenvalues equals zero. However, the dynamical system
Eqs. (5), (6), (11) in our paper is a nonlinear system, the
eigenvalues ð−3γb;−3; 0Þ is not enough to determine its
stability [35]. We need to pursue the stable condition using
center manifold theorem [18,35]. The Appendix gives the
detailed process to find the stable condition using the center
manifold theorem.We find that the stable condition forcp6 is
fðλÞjλ¼0 < 0, i.e., fð0Þ < 0.

1Since there are terms of
ffiffiffiffiffiffi
Ωϕ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3γϕ

p
in dynamical

system Eqs. (5), (6), (11), some elements in Jacobi matrix A will
diverge to ∞ for cp1, cp3, and cp4. For these types of critical
points, we used the method of substitution to remove the square
roots and got the well-defined Jacobi matrix A.
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FIG. 2 (color online). The evolution of c2s with respect to X. The
dash vertical line is X ¼ 1=6, where c2s → �∞. The dash
horizontal line is c2s ¼ 1=3, c2s → 1=3 when X → ∞.
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Critical point 71(cp71): ðΩϕ ¼ 1; γϕ ¼ −ð3λ3�þ
λ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9λ2� þ 48

p
Þ=6; λ ¼ λ�Þ, where λ� makes fðλ�Þ ¼ 0.

When −0.508 ≤ λ� ≤ 0, we have 0 ≤ γϕ < 2=3(see
Fig. 3), so it is the condition for accelerating expansion.
This critical point exist for all the potentials with their
fðλ�Þ ¼ 0. The simplest case is the inverse square potential
VðϕÞ ∝ ϕ−2, which is considered in a two-dimensional
system. However, there are many potentials with their
fðλÞ could be zero, the inverse square potential VðϕÞ ∝ ϕ−2

is just the simplest case. We can take VðϕÞ ¼ V0=ðϕ2 −
ϕ2
0Þ corresponding to fðλÞ ¼ 1=2 − 2=ðV0κ

2λ2Þ [19] as an
example. λ� ¼ �2=ðκ ffiffiffiffiffiffi

V0

p Þ when fðλ�Þ ¼ 0. That means
all the critical points exist for inverse square potential
will also exist for the potential VðϕÞ ¼ V0=ðϕ2 − ϕ2

0Þ.
However, these critical points will not exist for the expo-
nential potential VðϕÞ ¼ V0eαϕ since in this case fðλÞ
always equals −1=2. The value of γϕ and the eigenvalues
of this critical point is quite complicated, we will give its
existence and stable condition using numerical analysis.
Considering the constraint Eq. (12) from the requirements of
the classical and quantum stabilities, the existence condition
is −0.842 < λ� ≤ 0. The stable condition is −0.662 ≤ λ� ≤
0 and dfλ� < 0 for both γb ¼ 1 and γb ¼ 4=3, where dfλ� is
the value of dfðλÞ=dλjλ� . We found that the condition for
accelerating expansion −0.508 ≤ λ� ≤ 0 lies in the range of
stable condition; therefore, the accelerating expansion could
be a stable solution.
Critical point 72(cp72): ðΩϕ ¼ 1; γϕ ¼ −ð3λ3�−

λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9λ2� þ 48

p
Þ=6; λ ¼ λ�Þ. When −1.923 ≤ λ� ≤ −1.692

or 0 ≤ λ� ≤ 0.689 or 1.247 ≤ λ� ≤ 1.692, we have 0 ≤
γϕ < 2=3 (see Fig. 3), so it is the condition for accelerating
expansion. The existence condition is −2.095 ≤ λ� ≤
−1.692 or 0 ≤ λ� ≤ 1.692. If γb ¼ 1, the stable condition
is −2.014 ≤ λ� ≤ −1.692 and dfλ� < 0 or 0 ≤ λ� ≤ 0.328

and dfλ� < 0. If γb ¼ 4=3, the stable condition is −2.065 ≤
λ� ≤ −1.692 and dfλ� < 0 or 0 ≤ λ� ≤ 0.328 and dfλ� < 0.
We found the range of the accelerating condition is over-
lapped with the stable condition, so cp72 could be a stable
accelerating expansion solution. The condition for a stable
solution with an accelerating expansion is as follows:
−1.923 ≤ λ� ≤ −1.692 and dfλ� < 0 or 0 ≤ λ� ≤ 0.328
and dfλ� < 0.
The property of cp72 is very similar to cp71, we

therefore refer to cp7 as cp71 and cp72. We are very
interested in these two points since they both could be a
stable solution with Ωϕ ¼ 1 and wϕ being any value
between −1 and −1=3. Both cp6 and cp7 could be a
stable solution with dark energy dominating our Universe.
However cp7 is more interesting than cp6 since the state
equation wϕ of cp7 could be any value between −1 and
−1=3. We find that there is no overlap among the existence
condition of cp6, cp71 and cp72, so they will not exist
simultaneously.
Critical point 8(cp8): ðΩϕ¼3γ2b=½ð4−3γbÞλ2��;γϕ¼γb;

λ¼λ�Þ, where λ� makes fðλ�Þ ¼ 0. This critical point exist
for all the potentials with their fðλ�Þ ¼ 0, similar to the
critical points cp71 and cp72. If barotropic fluid is
radiation (i.e., γb ¼ 4=3), cp8 have no meaning sinceΩϕ ¼
3γ2b=½ð4 − 3γbÞλ2�� → ∞.2 So here barotropic fluid could
only be matter(i.e., γb ¼ 1), then Ωϕ ¼ 3=λ2�; we therefore
obtain jλ�j ≥

ffiffiffi
3

p
to make Ωϕ ≤ 1. The stable condition for

this scaling solution is λ� ≤ −
ffiffiffi
3

p
and dfλ� < 0(stable node

for −2
ffiffiffi
2

p
≤ λ� ≤ −

ffiffiffi
3

p
and stable spiral for λ� < −2

ffiffiffi
2

p
).

cp8 is the scaling solution where neither the scalar field nor
the ordinary matter entirely dominates the Universe. The
scalar field behaves as the ordinary matter in this case.

V. DISCUSSION AND CONCLUSIONS

We have found all the critical points of a three-
dimensional dynamical nonlinear autonomous system of
power-law kinetic quintessence, given their existence and
stable conditions and analyzed their cosmological impli-
cations in Sec. IV. Here we will give the discussions and
conclusions about their cosmological implications.
There are totally eight critical points for the dynamical

system Eqs. (5), (6), (11), but only six critical points(cp1,
cp3, cp4, cp6, cp7, cp8) exist if the classical and quantum
stability was considered. Among these critical points, cp1,
cp3 and cp4 always exist and are independent of the form
of the potentials. However, all of these critical points which
are independent of potentials are unstable. cp1 is an

–1
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–2 –1.5 –1 –0.5 0.5 1 1.5

FIG. 3 (color online). The evolution of γϕ with respect to λ�.
Solid line is for cp71 with γϕ ¼ −ð3λ3� þ λ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9λ2� þ 48

p
Þ=6 while

dashed line is for cp72 with γϕ ¼ −ð3λ3� − λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9λ2� þ 48

p
Þ=6.

Dotted horizontal line is γϕ ¼ 2=3. 0 ≤ γϕ ≤ 2=3 is required for
the accelerating expansion of Universe.

2We can study this special case directly from the dynamical
system Eqs. (5), (6), (11). When γϕ ¼ γb ¼ 4=3, dΩϕ=dN ¼
dγϕ=dN ¼ dλ=dN ¼ 0 for any value of Ωϕ. This critical point
exists independent of the form of the potentials. We can find the
eigenvalues for this point is (0,0,1), so it is an unstable point. In
fact, we find that this point is actually a special case of cp4 with
γb ¼ 4=3.
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unstable saddle point while cp4 is an unstable node. cp3 is
quite special since it is an unstable saddle point when γb ¼
1 (matter) and an unstable node point when γb ¼ 4=3(radi-
ation). From a mathematical point of view, the unstable
node is different from the unstable saddle. All the trajec-
tories of an unstable node will move away from the critical
point to infinite-distant away while some trajectories of a
saddle are drawn to the critical point and other trajectories
recede. So the unstable node and saddle actually have
different cosmological implication even though they are all
unstable.
The existence of other three critical points cp6, cp7 and

cp8 depend on the form of the potentials. It is very
interesting that all these three critical points could be stable
points if some conditions are satisfied. cp6 exists when the
potential related parameter λ could be 0 in the function
fðλÞ. cp7 and cp8 exists when fðλÞ could be 0. These three
critical points cp6, cp7 and cp8 have more important
cosmological implication than cp1, cp3 and cp4. cp6
is a new critical point which is found only in a three-
dimensional dynamical system. cp6 corresponds to the
dark-energy-dominated universe (Ωϕ ¼ 1) where power-
law kinetic quintessence behaves as an cosmological
constant with the sound speed c2s being 0. So cp6 is a
little different from canonical quintessence and tachyon
model since c2s ¼ 1 for both of those scalar field. cp7 and
cp8 correspond to the famous dominant and scaling
attractors, respectively, which are also found in quintes-
sence model [18,36] and tachyon model [19,37]. Similar to
cp6, cp7 are also the dark-energy-dominated attractors
(Ωϕ ¼ 1). However, cp7 is different from cp6 on two
points. The first difference is that cp7 is not a de Sitter– like
dominant attractor since the state equation wϕ of cp7 could
be any value between −1 and −1=3 (see Fig. 3, note that
0 ≤ γϕ ¼ wϕ þ 1 ≤ 2=3) depending on the different value
of λ�. So the value of state equation of dark energywϕ could
be matched to the value from the observational data. The
second difference is that the sound speed c2s is monoton-
ically increasing with γϕ instead of being zero(see Fig. 4).
cp8 is the scaling solution that power-law kinetic quintes-
sence will track the evolution of background matter in the
early time and behaves as the ordinary matter with Ωϕ ¼
3=λ2� and γϕ ¼ 1. We proved in Sec. IV that this scaling is
only possible for ordinary matter(γb ¼ 1), which is differ-
ent from the result obtained in quintessence model [18,36].
Though the existence and stable conditions are different

for cp6, cp7 and cp8, it is very interesting to consider the
possibility that our Universe may evolve continuously from
one stable critical point(cp8, scaling solution) to another
stable one(cp6 or cp7, dark energy dominant solution). We
borrow the idea in Ref. [20] where the author proposed a
scenario of a universe which could evolve from a scaling
attractor to another dark energy dominant attractor by
introducing a field whose value changed by a certain amount
in a short time. Since the change of the value of scalar field ϕ

means the change of the value of λ�, then cp6, cp7 and cp8
could be stable before and after the change of scalar field ϕ.
Actually, we can also obtain these two asymptotical evolu-
tions if the potential VðϕÞ can be approximated to two
different potentials when scalar field ϕ evolves into different
ranges: one admits the scaling solution and another admits
the dark energy dominant solution [38–40]. For these
potentials, the exit of the cosmological evolution from
one attractor solution to another attractor is quite natural,
but the explanation of why we have these special potentials
may require fine-tuning.
In the end of this paper, we would like to discuss cp7 and

cp8 from the observational point of view. The sound speed
c2s in the case of cp7 and cp8 is very special comparing to
other scalar field models, which makes it possible to
distinguish the power-law kinetic quintessence from other
scalar field models using the observational data. The sound
speed c2s of cp7 is monotonically increasing with γϕ instead
of being zero. We can see from Fig. 4 that 0 ≤ c2s ≤ 1=9
when 0 ≤ γϕ ≤ 2=3, and the closer wϕ is to −1, the closer
γϕ is to 0. We also plot the relationship between c2s and γϕ
of canonical quintessence and tachyon in Fig. 4 for
comparing with each other. We can find that the value
of c2s of power-law kinetic quintessence is dramatically less
than the sound speed of canonical quintessence and
tachyon. Since the nature of dark energy can be probed
not only through wϕ but also through its microphysics,
characterized by the sound speed of perturbations to the
dark energy density and pressure. As the sound speed c2s
drops below the speed of light, dark energy inhomogene-
ities increase, affecting both cosmic microwave back-
ground and matter power spectra [12,41]. It is shown
that observational data may distinguish the dark energy
models with the sound speed c2s ≪ 1 from the models with

0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

FIG. 4 (color online). The evolution of the sound speed c2s with
respect to γϕ. Dotted line is for power-law kinetic quintessence
(c2s ¼ −γϕ=ð3γϕ − 8Þ), where c2s is monotonically increasing
from 0 to 1=9 when γϕ varies from 0 to 2=3. Dashed
line is for quintessence(c2s ¼ 1) while solid line is for
tachyon (c2s ¼ 1 − γϕ).
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c2s → 1[13,42–46], so in principle it could be distinguished
from canonical quintessence and tachyon(see Fig. 4). For
the case of cp8, power law kinetic quintessence behaves as
ordinary matter with γϕ ¼ 1. For the ordinary matter(or
dark matter), we know that c2s ¼ 0. However, it is very
interesting to notice here that the sound speed c2s equals 1=5
from Eq. (9). It means that power-law kinetic quintessence
track the evolution of ordinary matter with the same state
equation wm but a different sound speed c2s . This is very
important since the behavior of perturbation in scalar field
dark energy and its consequent effect on the cold dark
matter power spectrum is governed by the state equation wϕ

and the effective speed of sound c2s of dark energy. For the
scaling solution cp8, the dark energy density was non-
negligible(Ωϕ ¼ 3=λ2� ≠ 0) at early times(early dark energy
models [47]). It is shown that as γϕ gets further from 0, the
influence of the sound speed increases; for models with
γϕ ≈ 1 at high redshift there is also the possibility of non-
negligible amounts of early dark energy density. So even
just a couple percent of the total energy density in early
dark energy can dramatically improve the prospects for
detecting dark energy clustering [41]. The impact of early
dark energy fluctuations in both linear and nonlinear
regimes of structure formation had been explored in
Ref. [48]. In these models the energy density of dark
energy is non-negligible at high redshift and the fluctua-
tions in the dark energy component can have the same order
of magnitude of dark matter fluctuations. However, how the
impact will be changed if the c2s equals 1=5 for power-law
kinetic quintessence is not investigated yet. Since power-
law kinetic quintessence are special both in the early
universe where it is an early dark energy tracking the
ordinary matter with c2s ¼ 1=5 and in the late universe
where it drives the accelerating expansion with c2s → 0, it
may be a good suggestion to simultaneously investigate the
perturbations of dark energy at both the early- and late-time
universe, and to explore whether there are any degeneracies
of the impacts between early dark energy and late dark
energy on cold dark matter power spectrum and cosmic
microwave background.
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APPENDIX

In Sec. IV, we pointed out that if the eigenvalues of
Jacobi matrix has one or more eigenvalues with zero real
parts while the rest of the eigenvalues are negative, then
linearization fails to determine the stability properties of
this critical point. Among the six critical points (cp1, cp3,

cp4, cp6, cp7, cp8) investigated in this paper, cp6 is just
such point. So in this Appendix we will show you how we
get the stable condition of cp6 using the center manifold
theorem [35]. The point cp6 is: ðΩϕ; γϕ; λÞ ¼ ð1; 0; 0Þ, and
its three eigenvalues are −3γb, −3 and 0. Firstly, we need to
transfer cp6 to cp60 ðΩ1 ¼ Ωϕ − 1; γϕ; λÞ ¼ ð0; 0; 0Þ for
convenience. In this case, Eqs. (5), (6), (11) can be
rewritten as

dΩ1

dN
¼ −3ðγb − γϕÞΩ1ðΩ1 þ 1Þ ðA1Þ

dγϕ
dN

¼ ðλ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 − 3γϕÞðΩ1 þ 1Þp þ 3γϕÞðγϕ − 2Þð3γϕ − 4Þ

3γϕ − 8

ðA2Þ

dλ
dN

¼ λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 − 3γϕÞðΩ1 þ 1Þ

q
fðλÞ: ðA3Þ

Note that now Ω1, γϕ, λ in Eqs. (A1), (A2), (A3) are very
small variables around cp60 (Ω1 ¼ 0; γϕ ¼ 0; λ ¼ 0).
Function fðλÞ in Eq. (A1) could be taken with the

Taylor series in λ: fðλÞ ¼ fð0Þ þ f1ð0Þλþ f2ð0Þ
2!

λ2 þ � � �,
where fnð0Þ is the value of dnfðλÞ

dλn when λ ¼ 0.
We get the Jacobi matrix A of nonlinear autonomous

dynamical system Eqs. (A1), (A2), (A3) from Eq. (13):

A ¼

2
664
−3γb 0 0

0 −3 −2
ffiffiffi
3

p

0 0 0

3
775: ðA4Þ

The eigenvalues of A and the corresponding eigenvec-
tors are

f−3γb; ½1; 0; 0�g; f−3; ½0; 1; 0�g;�
0;

�
0;−

2ffiffiffi
3

p ; 1

��
:

ðA5Þ

Let M be a matrix whose columns are the eigenvectors
of A, then we can write down M and its inverse matrix T :

M ¼

2
64
1 0 0

0 1 − 2ffiffi
3

p

0 0 1

3
75; T ¼ M−1 ¼

2
64
1 0 0

0 1 2ffiffi
3

p

0 0 1

3
75:
ðA6Þ

Using the similarity transformation T we can transform
A into a block diagonal matrix, that is,
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T AT −1 ¼

2
64
−3γb 0 0

0 −3 0

0 0 0

3
75 ¼

"
A1 0

0 A2

#
; ðA7Þ

where all eigenvalues of A1 have negative real parts while
eigenvalue of A2 has zero real part. We then change the
variables (Ω1; γϕ; λ) in Eqs. (A1), (A2), (A3) to another set
(Ω2; γ1; λ1) as follows:

2
664
Ω2

γ1

λ1

3
775 ¼ T

2
664
Ω1

γϕ

λ

3
775 ¼

2
664
Ω1

γϕ þ 2ffiffi
3

p λ

λ

3
775: ðA8Þ

Then we can rewrite the dynamical system Eqs. (A1),
(A2), (A3) in the form of the new variables:

dΩ2

dN
¼ dΩ1

dN
¼ −3

�
γb − γ1 þ

2ffiffiffi
3

p λ1

�
ðΩ2 þ 1ÞΩ2

¼ G1ðΩ2; γ1; λ1Þ ðA9Þ

dγ1
dN

¼ dγϕ
dN

þ 2ffiffiffi
3

p dλ
dN

¼ 2λ21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4 − 3γ1 þ 2

ffiffiffi
3

p
λ1ÞðΩ2 þ 1Þ

q
fðλ1Þ

þ
ðλ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 − 3γ1 þ 2

ffiffiffi
3

p
λ1ÞðΩ2 þ 1Þ

q
þ 3γ1 − 2

ffiffiffi
3

p
λ1Þðγ1 − 2ffiffi

3
p λ1 − 2Þð3γ1 − 2

ffiffiffi
3

p
λ1 − 4Þ

3γ1 − 2
ffiffiffi
3

p
λ1 − 8

¼ G2ðΩ2; γ1; λ1Þ ðA10Þ

dλ1
dN

¼ dλ
dN

¼ λ21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 − 3γ1 þ 2

ffiffiffi
3

p
λ1ÞðΩ2 þ 1Þ

q
fðλ1Þ

¼ G3ðΩ2; γ1; λ1Þ: ðA11Þ

According to the center manifold theorem, the stable
properties of cp6 is determined by reduced system
Eq. (A11). We set the center manifold for Ω2 and γ1,

Ω2 ¼ h1ðλ1Þ; γ1 ¼ h2ðλ1Þ; ðA12Þ
where h1; h2 are the function of λ1 which satisfy the
following conditions:

h1ð0Þ ¼ 0;
∂h1
∂λ1 ¼ 0; h2ð0Þ ¼ 0;

∂h2
∂λ1 ¼ 0:

ðA13Þ
The center manifold equations are as follows:

G1ðh1ðλ1Þ; h2ðλ1Þ; λ1Þ ¼
∂h1
∂λ1 ·G3ðh1ðλ1Þ; h2ðλ1Þ; λ1Þ

ðA14Þ

G2ðh1ðλ1Þ; h2ðλ1Þ; λ1Þ ¼
∂h2
∂λ1 ·G3ðh1ðλ1Þ; h2ðλ1Þ; λ1Þ:

ðA15Þ

We set h1 ¼ a2λ21 þ a3λ31 þ � � � ; h2 ¼ b2λ21 þ b3λ31 þ � � �
and substitute these series into the center manifold
equations Eqs. (A14), (A15) to find the unknown coef-
ficients a2; b2; a3; b3;… by matching the coefficients
of like powers in λ1 in the left and right sides of equa-
tions Eqs. (A14), (A15). However, we do not know in
advance how many terms of the series of h1; h2 we need.
We start with the simple approximation: h1¼a2λ21þa3λ31;
h2¼b2λ21þb3λ31, and get that a2¼a3¼0,
b2 ¼ − 1

2
þ 4

3
fð0Þ, b3¼4

3
f1ð0Þþ5

9

ffiffiffi
3

p
fð0Þ−

ffiffi
3

p
16
−16

9

ffiffiffi
3

p
fð0Þ2.

We therefore set h1 ¼ a4λ41 þ a5λ51 þ a6λ61 þ a7λ71,
and found a4 ¼ a5 ¼ a6 ¼ a7 ¼ 0. So we finally set
h1 ¼ 0, h2 ¼ ½− 1

2
þ 4

3
fð0Þ�λ21 þ ½4

3
f1ð0Þ þ 5

9

ffiffiffi
3

p
fð0Þ−ffiffi

3
p
16

− 16
9

ffiffiffi
3

p
fð0Þ2�λ31.

So we substitute h1; h2 into the reduced system
Eq. (A11) and rewrite it as follows,

dλ1
dN

¼ λ21
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2

ffiffiffi
3

p
λ1 −

�
4fð0Þ − 3

2

�
λ21 −

�
5

3

ffiffiffi
3

p
fð0Þ − 16

3

ffiffiffi
3

p
fð0Þ2 þ 4f1ð0Þ − 3

ffiffiffi
3

p

16

�
λ31

s
fðλ1Þ; ðA16Þ

where fðλ1Þ can be expanded as fð0Þ þ f1ð0Þλþ � � �. Since λ1 is a very small variable around λ1 ¼ 0, so Eq. (A16) can be
simplified in the neighborhood of λ1 as follows,
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dλ1
dN

¼ 2
ffiffiffi
3

p
fð0Þλ21; ðA17Þ

where fð0Þ is the value of function fðλÞ at λ ¼ 0. The
stability of cp6 will be finally determined by above
simplest reduced system Eq. (A17). It is clear that the
stable condition for dynamical system Eq. (A17) is

fð0Þ < 0: ðA18Þ

So in this Appendix we proved that cp6 is a stable de
Sitter–like dominant attractor when fð0Þ < 0, just as stated
in Sec. IV.
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