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We consider Lagrangians in 3þ 1 dimensions admitting topological defects where there is an additional
coupling between the defect scalar field Φ and the gauge field kinetic term (e.g. BðjΦj2ÞFμνFμν). Such a
dilatonic coupling in the context of a static defect induces a spatially dependent effective gauge charge and
effective mass for the scalar field, which leads to modified properties of the defect core. In particular, the
scale of the core gets modified while the stability properties of the corresponding embedded defects are
also affected. These modifications are illustrated for gauged (Nielsen-Olesen) vortices and for gauged
(’t Hooft–Polyakov) monopoles. The corresponding dilatonic global defects are also studied in the
presence of an external gauge field.
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I. INTRODUCTION

The spacetime variation of fundamental constants [1–3]
like the gravitational constant [4] or the charges of gauge
field interactions [5] is usually implemented at the
Lagrangian level by promoting these constants to scalar
fields [4–6] whose dynamics is determined by potential and
kinetic terms properly chosen to make the allowed varia-
tions consistent with current experiments and cosmological
observations. For example, in order to allow spacetime
variation of the gravitational constant G and the fine
structure constant α ¼ e2=ℏc, we may consider the replace-
ment of the Einstein-Maxwell action

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

c4

16πG0

R − 1

4α0
FμνFμν þ Lm

�
ð1Þ

by a generalization

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

ϕR − ωϕ
ϕ;μϕ

;μ

ϕ
− VϕðϕÞ

− e−2ψ 1

4α0
FμνFμν − ωψ

2
ψ ;μψ

;μ − VψðψÞ
�
; ð2Þ

inspired from the Brans-Dicke (BD) theory [4] (gravita-
tional part) and the Bekenstein [6], Sandvik, Barrow, and
Magueijo [7] BSBM (electromagnetic part) actions. For
free fields, the potentials take the forms VðϕÞ ¼ 1

2
m2

ϕϕ
2,

VðψÞ ¼ 1
2
m2

ψψ
2. In this action the gravitational constantG0

is replaced by the dynamical BD field ϕ as ϕ ¼ 16πG
c4 and the

fine structure constant is replaced by the dynamical BSBM
field ψ as α ¼ α0e2ψ . Laboratory experiments and astro-
physical or cosmological observations impose limits on the
allowed spacetime variations of G [8] and α [9]. These

limits can be translated into constraints on the parameters
ωϕ, ωψ and on the masses of the corresponding scalar
fields. In the limit of infinite values of these parameters, the
dynamics of the scalar fields freeze and the dynamics of the
action (2) reduces to the Einstein-Maxwell action dynam-
ics. The scalar fields ϕ and ψ emerge naturally in the
context of string theory as dilatons [10,11].
The BD parameter ωϕ is dimensionless while the BSBM

parameter ωψ has dimensions of energy squared m2 ∼ l−2
(in units where h ¼ c ¼ 1). If the potentials are ignored
(mϕ ¼ mψ ¼ 0) then the experimental or observational
constraints on ωϕ, ωψ are [8,9,12]

ωϕ > 4 × 104

ð100 MeVÞ2 < ωψ < M2
Pl:

These constraints are based mainly on tests of the equiv-
alence principle and fifth force search experiments as well
as on solar system tests (for ωϕ). When the field masses
are nonzero, the above constraints are significantly
relaxed [13].
In a cosmological setup both fields ϕ and ψ have been

considered as possible dark energy candidates [12,14–20].
In the context of the recent possible detection of temporal
[21–25] and spatial [26] variation of α on cosmological
scales (the α dipole [26,27]), the field ψ has the potential to
play a dual role: the role of inhomogeneous dark energy
and the cause of α variation [12,14–19]. Cosmological
models based on inhomogeneous dark energy are moti-
vated by cosmic microwave background and other cosmic
anomalies [28], which may hint towards deviations from
the cosmological principle on large cosmic scales [28–30].
Negative pressure and large sound velocity would tend to

wipe out any inhomogeneities of this scalar field on all
scales. Topologically nontrivial field configurations how-
ever have the potential to sustain such field inhomogene-
ities on cosmological scales. Such configurations have been
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considered as a possible mechanism to sustain inhomo-
geneous dark energy (topological quintessence [29–31])
possibly combined with correlated spatial variation of fine
structure constant (extended topological quintessence
[28,32]). The later possibility is amplified by the observa-
tional fact that a dipole fit of the dark energy distribution
using Type Ia supernovae leads to a dipole whose direction
is only about 10° away from the α dipole direction [27].
Therefore, topological defects emerging due to topologi-
cally nontrivial configurations of the field ψ (dilatonic
defects) have the potential to play an interesting role in
cosmology [28,33–37]. It is therefore interesting to inves-
tigate their field configuration properties which emerge as
generalizations of the corresponding ordinary defects
where there is no coupling between the scalar field and
the gauge field kinetic term. These properties may be
summarized as follows:

(i) The dilatonic coupling induces spatial variation of
the gauge charge and a spatial variation of the
effective mass of the scalar field. This can lead to
modification of the scale of the gauged topological
defect core.

(ii) The stability of the gauged embedded defects
[38–43] is significantly affected by the dilatonic
coupling due to the spatial variation of the effective
mass of the scalar field [36].

(iii) The dilatonic coupling can lead to the formation of a
scalar field condensate in the core of embedded
defects because it can induce a local instability
which is confined in the core region where the
gauge fields are excited.

(iv) Global embedded defects are unstable without the
dilatonic coupling. However, in the presence of a
dilatonic coupling and an external gauge field, they
can be locally stabilized in their core region.

The goal of the present study is to demonstrate the
existence of dilatonic defect solutions and investigate in
some detail the above properties in the case of dilatonic
vortices and monopoles. This is an extension of a recent
study by two of the authors that focused only on the case of
the dilatonic semilocal (embedded) vortex [36].
The structure of this paper is the following: In the next

section we briefly review the Nielsen-Olesen U(1) gauged
vortex and demonstrate the existence of its dilatonic
generalization. The embedded dilatonic NO vortex is also
defined and its stability is reviewed. In the limit of a trivial
dilatonic coupling the embedded dilatonic gauged vortex
reduces to the semilocal string. The embedded global
dilatonic vortex is also defined and its stability is analyzed
in the context of a localized external gauge (“magnetic”)
field. In section III we define the dilatonic ’tHooft–
Polyakov monopole and consider its embedding in a model
with Oð4Þ symmetry. The embedded global dilatonic
monopole is also defined and its stability is analyzed in
the context of a localized external gauge (“magnetic”) field.

Finally, in section IV we conclude and discuss future
extensions of the present analysis paying special attention
to applications in the case of the dilatonic electroweak
string.

II. DILATONIC VORTICES

A. Dilatonic Nielsen-Olesen vortex

We start this section with a brief review of the Nielsen-
Olesen (NO) vortices without a dilatonic coupling. These
are topologically stable string solutions in the Abelian-
Higgs model [44,45]. The Lagrangian density of this model
is of the form

L ¼ − 1

4e2
FμνFμν þ jDμΦj2 − VðΦÞ; ð3Þ

where Dμ ¼ ∂μ − iAμ is the covariant derivative. Also
VðΦÞ ¼ λ

4
ðΦ�Φ − η2Þ2. The Nielsen-Olesen vortex ansatz

is of the form

Φ ¼ fðrÞeimθ ð4Þ

Aμ ¼ Aθ ¼
uðrÞ
r

θ̂; ð5Þ

where m is the winding number of the complex scalar field
Φ. The vacuum manifold of the model is an S1,

V ¼ fΦ ∈ CjΦ�Φ − η2 ¼ 0g ≅ S1: ð6Þ
When the asymptotic value of the scalar field Φ wraps
around that vacuum manifold, there is a nonzero value of
the winding number of the vortex. This forces the scalar
field to acquire a zero value somewhere in the (xy) plane.
The resulting vortices are topological and they are labelled
by nontrivial elements of the first homotopy group:
π1ðVÞ ¼ π1ðS1Þ ≠ 1. The energy momentum tensor

Tμν ¼ −gμνLþ 2
∂L
∂gμν ð7Þ

is easily obtained by using (3) in (7) with the NO ansatz (4),
(5). Thus, the energy density is obtained as

ρ ¼ f02 þ f2

r2
ðm − uÞ2 þ u02

2r2
þ β

2
ðf2 − 1Þ2; ð8Þ

where the following rescaling was applied:

f → f̄ ¼ ηf ð9Þ

r → r̄ ¼ r
ηe

ð10Þ

and β≡ m2
Φ

m2
A
¼ λ

2e2. Note that the scalar field mass is mΦ ¼ffiffi
λ

p
ηffiffi
2

p , while the gauge field mass is mA ¼ eη. Thus, β is the
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only free parameter of the theory after the rescaling. Also
the rescaled field equations obtained from (3) are

f00 þ f0

r
− f
r2
ðm − uÞ2 − βðf2 − 1Þf ¼ 0 ð11Þ

u00 − u0

r
þ 2f2ðm − uÞ ¼ 0: ð12Þ

The NO boundary conditions to be imposed on (11) and
(12) for winding m are fð0Þ ¼ uð0Þ ¼ 0, fðr → ∞Þ ¼ 1
and uðr → ∞Þ ¼ m. In this study we focus on vortices with
unit winding number (m ¼ 1).
In Fig. 1 we show the solution of the field equations (11)

and (12) with the NO boundary conditions numerically
for β ¼ 5.
In the BPS limit (β ¼ 1) (following [46] and regrouping

the terms of the total energy), the rescaled field equa-
tions (11)–(12) reduce to the following first-order BPS
equations:

f0 þ u − 1

r
f ¼ 0 u0 þ rðf2 − 1Þ ¼ 0: ð13Þ

We now add a dilatonic coupling of the form BðjΦj2Þ ¼
1þ q jΦj2

η2
to the gauge kinetic term of the Abelian-Higgs

model Lagrangian (3) thus generalizing the model to the
dilatonic Abelian-Higgs model,

L ¼ jDμΦj2 − BðΦÞ
4α0

FμνFμν − λ

4
ðΦ�Φ − η2Þ2: ð14Þ

Thus, the fine structure constant α becomes dynamical with
α ¼ α0=BðΦÞ. Notice that this coupling is not the same
BSBM coupling of Eq. (2) even though the two couplings
are similar for small field values. We use this form to
demonstrate the effect of the dilatonic term on the effective

mass of the scalar field. Using the same NO ansatz (4), (5)
the rescaled energy density takes the form

ρ¼ f02þ f2

r2
ð1− uÞ2 þ 1þ qf2

2

�
u0

r

�
2

þ β

2
ðf2 − 1Þ2 ð15Þ

and the field equations are obtained as

f00 þf0

r
− f
r2
ð1−uÞ2−qf

2

�
u0

r

�
2−βðf2−1Þf¼ 0 ð16Þ

u00 − u0

r
þ 2f2

1þ qf2
ð1 − uÞ ¼ 0 ð17Þ

where the (9), (10) rescaling was used.
It is straightforward to show that for small r, the

functions f and u behave as f ∼ r and u ∼ r2, respectively.
As r → ∞ they approach their asymptotic values exponen-
tially with a width w ∼ β−1=2 for f, while for u the width is
independent of β [45].
In the presence of the dilatonic coupling we may define

an effective rescaled mass squared (negative due to sym-
metry breaking) for the scalar field in the core region as

−βeff ¼ −β þ qu02

2r2
ð18Þ

For r ≪ 1, the term qu02

2r2 is OðqÞ, while for r ≫ 1 it
vanishes. Thus, for q > 0 (q < 0), βeff in the core region
decreases (increases) leading to increased (decreased) core
width. This is demonstrated in Fig. 2, where the width of
the dilatonic vortex increases as we increase the value of q.
The rescaled effective mass squared −βeff , shown in Fig. 3,
significantly increases for r < 1.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

r

F
ie

ld
s

u r

f r

5

FIG. 1. The functions fNO and uNO for a string with unit
winding (m ¼ 1) and for β ¼ 5.
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FIG. 2. As we increase q the effective mass of the scalar field
decreases, which leads to increased core width, as discussed
above.
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B. Embedded dilatonic Nielsen-Olesen vortex

The NO vortex can be embedded in various generaliza-
tions of the Abelian-Higgs model including the semilocal
model [47]. This is obtained if we promote the Uð1Þgauge
symmetry to SUð2Þglobal ×Uð1Þlocal. This is achieved by
replacing the complex scalar field Φ by a complex SUð2Þ
doublet.
The Langrangian density is of the form

L ¼ ðDμΦÞ†ðDμΦÞ − BðΦ†ΦÞ
4α0

FμνFμν − λ

4
ðΦ†Φ − η2Þ2:

ð19Þ

The embedded NO vortex ansatz is of the form

Φ ¼
�
Φ1

Φ2

�
¼

�
0

feiθ

�
; ð20Þ

while for the gauge field remains unchanged (4). This time
the vacuum manifold of the configuration is the three-sphere

V ¼ fΦ ∈ C2jΦ†Φ ¼ η2g ≅ S3: ð21Þ

Due to trivial topology of the vacuum in this case
(π1ðS3Þ ¼ 1), the embedded NO vortex can only be
dynamically stable with respect to small perturbations.
The stability analysis of the embedded dilatonic NO vortex
was presented in [36]. Here we briefly sketch the analysis
for completeness. The range of stability for q ¼ 0 is
0 < β < 1 [46,48–50].
The only type of perturbation that is likely to lead to

instability is of the form δΦ1 ¼ g. We focus on a real g as
any added phase would tend to increase the energy of the
perturbations [43]. The perturbed energy density is

ρ ¼ g02 þ f02 þ f2

r2
ð1 − uÞ2 þ u2g2

r2

þ 1

2
ð1þ qðf2 þ g2ÞÞ

�
u0

r

�
2

þ β

2
ðf2 þ g2 − 1Þ2 ð22Þ

and the field equations are

u00 − u0

r
− 2uðf2 þ g2Þ
1þ qðf2 þ g2Þ þ

2f2

1þ qðf2 þ g2Þ ¼ 0 ð23Þ

g00 þ g0

r
− u2g

r2
− q
2

�
u0

r

�
2

g − βðf2 þ g2 − 1Þg ¼ 0 ð24Þ

f00 þ f0

r
− f
r2

ð1 − uÞ2 − q
2

�
u0

r

�
2

f − βðf2 þ g2 − 1Þf ¼ 0:

ð25Þ

Clearly the NO ansatz with g ¼ 0 is an “embedded”
solution to these equations. We assume a dilatonic coupling
of the form

BðΦ†ΦÞ ¼ 1þ qΦ†Φ
η2

; ð26Þ

and we can write the energy of the vortex as

E ¼
Z

∞

0

drr

�
g02 þ f02 þ f2

r2
ð1 − uÞ2 þ u2g2

r2

þ 1

2
ð1þ qðf2 þ g2ÞÞ

�
u0

r

�
2

þ β

2
ðf2 þ g2 − 1Þ2

�
ð27Þ

¼ E0 þ δEg; ð28Þ

where

E0 ¼
Z

∞

0

dr

�
f02 þ f2

r2
ð1 − uÞ2 þ 1

2
ð1þ qf2Þ

�
u0

r

�
2

þ β

2
ðf2 − 1Þ2

�
ð29Þ

is the unperturbed energy and the energy perturbation due
to g can be written as

δEg ¼
Z

∞

0

drrðgÔgÞ; ð30Þ

where Ô is a Schrodinger-like Hermitian operator of the
form
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FIG. 3. The effective mass of the Higgs field −βeff changes
locally around the core where qu02

2r2 is nonzero.
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Ô ¼ − 1

r
d
dr

�
r
d
dr

�
þ u2

r2
þ q

2

�
u0

r

�
2

þ βðf2 − 1Þ: ð31Þ

The Schrodinger potential of Ô is

VSchrodinger ¼
u2

r2
þ q

2

�
u0

r

�
2

þ βðf2 − 1Þ: ð32Þ

For values of the parameters q and β for which Ô has no
negative eigenvalues, we have δEg ≥ 0 and therefore no
instability develops. The plot in Fig. 4 shows the increase of
the stability region as we increase the value of the
parameter q. Note that the plot is not identical to that
shown in Ref. [36] (Fig. 5) since the functional form of the
dilatonic coupling is different in our case (we assume a

power law while an exponential BðΦ†ΦÞ ¼ e
qΦ†Φ
η2 was

assumed in [36]).
Alternatively, the stability analysis may be performed at

the nonlinear level by performing a full minimization of the
energy (27) with respect to f, u, g. In order to achieve this
we used a simple MATHEMATICA code where we performed
the minimization with fixed NO boundary conditions. In
Fig. 6 the f, u, g fields are shown for β ¼ 1.5 and q ¼ 0. As
expected, instability clearly develops in this case since the
perturbation grows in the core while the NO vortex core
size increases out to the boundary where it is artificially
confined by the boundary conditions.
However, as the value of q increases, the value of βeff

decreases and we have a stability improvement. This is
demonstrated in Fig. 7 where it is shown that after energy
minimization, no instability develops for q ¼ 5.5 and the
same value of β ¼ 1.5. Indeed, as we increase the value of q
it becomes more costly energetically for the scalar field to
develop a nonzero value at the defect core (due to the term

1
2
ð1þ qðf2 þ g2ÞÞðu0r Þ2), where the gauge field kinetic term

is nonzero and positive definite.
Finally we point out an interesting effect that occurs for

negative values of q and β < 1. In this case βeff may
become larger than 1 in the core region while away from the
core βeff < 1. Thus the instability develops inside the core
but does not propagate outside where the stability condition
holds. We have verified numerically by energy minimiza-
tion, the existence of such a localized scalar field con-
densate. The corresponding field configuration is shown
in Fig. 8.
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FIG. 4 (color online). The stability region βðqÞ for the em-
bedded dilatonic NO vortex. In this case we have assumed a
power law dilatonic function. Sector I is the stability region while
sector II is the instability region. Notice that for β < 1 a negative
q can destabilize the vortex. In that region the instability leads to a
stable scalar field condensate confined in the core.
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FIG. 5 (color online). The stability region βðqÞ for the
embedded dilatonic NO vortex. An exponential law

(BðΦ†ΦÞ ¼ e
qΦ†Φ
η2 ) is implemented for the dilatonic function

(see also [36]) but this time negative values of q are included.
Sector I is the stability region while sector II is the instability
region. For β < 1 a negative q can destabilize the vortex and lead
to the formation of a scalar field condensate that does not
propagate outside the core.
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FIG. 6. Solutions for fðrÞ, uðrÞ and gðrÞ for the embedded
dilatonic NO vortex for β ¼ 1.5 and q ¼ 0. We notice that, as
expected, for β > 1 the NO vortex is unstable to perturbations
orthogonal to Φ2. This means that above a critical value for β, the
scalar field Φ chooses to develop a component gðrÞ (dashed line)
towards the z direction in order to reduce the increased potential
energy.
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C. Global vortex in an external gauge field

Consider now the global field Lagrangian,

L ¼ ð∂μΦÞ†∂μΦ − 1

4
BðΦ†ΦÞFμνFμν − VðΦ†ΦÞ; ð33Þ

where the gauge Uð1Þ symmetry has been replaced by
a global SUð2Þ, while keeping the gauge field kinetic
term and

VðΦ†ΦÞ ¼ λ

4
ðΦ†Φ − η2Þ2: ð34Þ

Using now the embedded vortex ansatz

Φ ¼
�
δΦ1 ≡ g
feiθ

�
; ð35Þ

we obtain the field equations

g00 þ g0

r
− q
2
B2
zg − ðf2 þ g2 − 1Þ g

2
¼ 0 ð36Þ

f00 þ f0

r
− f
r2

− q
2
B2
zf − ðf2 þ g2 − 1Þ f

2
¼ 0: ð37Þ

The corresponding energy density is

ρ ¼ g02 þ f02 þ f2

r2
þ 1

2
ð1þ qðf2 þ g2ÞÞB2

z

þ 1

4
ðf2 þ g2 − 1Þ2; ð38Þ

where the following rescaling has been used:

f → f̄ ¼ ηf ð39Þ

g → ḡ ¼ ηg ð40Þ

r → r̄ ¼ r

η
ffiffiffi
λ

p ð41Þ

Bz → B̄z ¼ Bzη
2

ffiffiffi
λ

p
: ð42Þ

We assume a Gaussian for the external magnetic field of the
form,

Bz ¼ Bz0e
−r2

r2
0 : ð43Þ

In order to investigate the stability of the embedded global
vortex we first fully minimize the energy with respect to the
f, g fields with the proper boundary conditions.
Using the NO boundary conditions it is trivial to obtain

the solution gðrÞ for various values of the parameters Bz0,
r0. The energy to be minimized is of the form

E ¼
Z

drr

�
f02 þ g02 þ f2

r2
þ 1

2
ð1þ qðf2 þ g2ÞÞðB2

z0e
−r2
r2
0 Þ2

þ 1

4
ðf2 þ g2 − 1Þ2

�
: ð44Þ

In Fig. 9 we show the form of gðrÞ after energy mini-
mization with fixed boundary for various values of Bz0 and
r0. For large magnetic field magnitude, the development of
nonzero field gðrÞ in the core where the gauge field is
excited, becomes energetically costly and therefore no
instability develops there. Away from the core however
the instability remains due to the global nature of the
symmetry and the limited range (r0) of the magnetic field.
Another interesting point would be to examine the

changes induced to the behavior of the unperturbed field
fðrÞ by the insertion of a dilatonic coupling. The term
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FIG. 7. Solutions for fðrÞ, uðrÞ and gðrÞ for the embedded
dilatonic NO vortex for β ¼ 1.5 and q ¼ 5.5. We notice that for a
nonzero value of q we can have vortex solutions for β > 1.
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FIG. 8. Solutions for gðrÞ for the embedded dilatonic NO
vortex for β ¼ 0.9 and q ¼ −0.9, q ¼ −0.5. Notice that g
develops a nonzero value in the core of the defect which remains
localized there as the energy is minimized. A localized scalar field
condensate forms.
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1
2
ð1þ qf2ÞðB2

z0e
−r2
r2
0 Þ2 of the unperturbed energy changes

the effective potential from 1
4
ðf2 − 1Þ (by regrouping the

terms of the unperturbed energy to complete squares) to

Veff ¼
1

4
ðf2 − ð1 − qB2

zÞÞ2 ð45Þ

where we observe that a negative q forces f to increase
in the region where Bz is nonzero (near the core).
This behavior of f is depicted on Fig 10. As expected
for r → ∞, Bz → 0 and we end up with the initial potential.
It is also straightforward to verify the above stability

results considering small perturbations on the embedded
global vortex. The energy (44) may be expressed as the sum
of the unperturbed energy and the energy perturbation due
to g as

E ¼
Z

drr

�
f02 þ f2

r2
þ 1

2
ð1þ qf2ÞðBz0e

−r2
r2
0 Þ2

þ 1

4
ðf2 − 1Þ2

�
þ δEg; ð46Þ

where the energy perturbation due to g can be written as

δEg ¼
Z

∞

0

drrðgÔgÞ ð47Þ

where Ô is a Schroedinger-like Hermitian operator of the
form

Ô ¼ − d2

dr2
− 1

r
d
dr

þ q
2
ðBz0e

−r2
r2
0 Þ2 þ 1

2
ðf2 − 1Þ ð48Þ

and we have kept only terms up to second order in g.
Also the Schrodinger potential corresponding to Ô is

VSchrodinger ¼
q
2
ðBz0e

−r2
r2
0 Þ2 þ 1

2
ðf2 − 1Þ: ð49Þ

The embedded dilatonic global vortex is stable for the
parameter range for which the operator Ô has no negative
eigenvalues. The existence of negative eigenvalues depends
on the depth of the Schrodinger potential (49) shown in
Fig. 11, for three values of the parameter q and fixed Bz0
and r0. Clearly for positive values of q the potential
becomes more repulsive for r < r0. However, for r ≫ r0
the potential remains unaffected. Due to the assumed
limited range of the external magnetic field the operator
Ô is found to have negative eigenvalues for any finite value
of the parameters q, Bz0 and r0. This is demonstrated in
Fig. 12, which shows the solution of the equation

ÔgðrÞ ¼ 0 ð50Þ

with boundary conditions gð0Þ ¼ 1, g0ð0Þ ¼ 1. For r < r0
where the potential is repulsive, the “candidate” zero mode
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FIG. 9. The form of gðrÞ after energy minimization with fixed
boundary for various values of Bz0 and r0.
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FIG. 10. Solution of the unperturbed field fðrÞ for the em-
bedded dilatonic NO Vortex for various values of q. We observe
that fðrÞ rapidly increases at the region where the magnetic field
is significant. This suggests a change of the effective potential. It
also suggests that the scalar field fðrÞ prefers energetically to
adopt a high kinetic energy in order to reduce Veff at that area.
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FIG. 11. The Schroedinger potential of the operator Ô (48)
becomes repulsive for q > 0 and r < r0.
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increases with r, but eventually for large r the attractive
nature of the potential dominates and we get gðrÞ < 0,
indicating the existence of negative eigenvalues. This
behavior of gðrÞ may be interpreted in accordance with
the above energy minimization result, as localized stability
of the dilatonic embedded vortex in the region of the
external magnetic field.

III. MONOPOLES

A. Dilatonic ’t Hooft–Polyakov monopole

Monopoles form in field theories involving symmetry
breaking phase transitions, where the vacuum manifold is
M ≅ S2 [51]. This is the case for example when an SOð3Þ
symmetry gets spontaneously broken to Uð1Þ.
Consider for example the Lagrangian density describing

an Oð3Þ → Oð2Þ symmetry breaking, which accepts mag-
netic ’t Hooft–Polyakov monopole solutions [52] with a
dilatonic coupling,

L ¼ 1

2
ðDμΦaÞðDμΦaÞ − VðΦaÞ − BðΦaÞ

4e20
Fa
μνFaμν; ð51Þ

where BðΦaÞ describes a possible variation of the gauge
charge [and thus for the effective charge we have
e2 ¼ e20=BðΦaÞ], where a ¼ 1, 2, 3 are internal indices.
As usual we define the non-Abelian gauge field strength by

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ e0ϵabcAb

μAc
ν: ð52Þ

The covariant derivatives are written in the usual form,

DμΦa ¼ ∂μΦa þ e0ϵabcabμΦc; ð53Þ

where ϵabc is the Levi-Civita tensor.

The symmetry breaking potential VðΦaÞ is of the usual
form.

VðΦaÞ ¼ λ

4
ðΦaΦa − η2Þ2: ð54Þ

The ’t Hooft–Polyakov monopole ansatz [52] is of the
form

ΦaðrÞ ¼ XðrÞ x
a

r
; ð55Þ

aa0ðrÞ ¼ 0; ð56Þ

aai ðrÞ ¼ ϵiak
xk
e0r2

½WðrÞ − 1�; ð57Þ

where xa are the Cartesian coordinates and r2 ¼ xkxk. XðrÞ
and WðrÞ are radial functions obtained by minimization of
the self-energy, i.e., the mass of the monopole,

E ¼ 4π

Z
∞

0

drr2ρ; ð58Þ

or by solving the field equations. The energy density is
obtained from the Lagrangian (51) as

ρ ¼ T00 ¼ −g00L: ð59Þ

After a rescaling of the form

X → X̄ ¼ ηX ð60Þ

r → r̄ ¼ r
ηe0

; ð61Þ

the energy density becomes

ρ ¼ η

e0

�
BðXÞ

��
W0

r

�
2

þ 1

2

�
1 −W2

r2

�
2
�
þ ðX0Þ2

2

þ
�
WX
r

�
2

þ β

2
ð1 − X2Þ2

�
ð62Þ

with a prime meaning a derivative with respect to the
dimensionless coordinate r. Using (58) we obtain

E ¼ 4πη

e0

Z
∞

0

dr

�
r2

2

�
dX
dr

�
2

þ X2W2 þ βr2

2
ð1 − X2Þ2

þ BðXÞ
��

dW
dr

�
2

þ ð1 −W2Þ2
2r2

��
: ð63Þ

The dimensionless parameter β is defined as in the case of

vortices as β≡ ðmΦ
mA
Þ2, where mΦ ¼

ffiffi
λ

p
ηffiffi
2

p and mA ¼ e0η are

the masses of the scalar and gauge fields, respectively.
Thus β ¼ λ

2e2
0

.
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FIG. 12. The solution of the equation ÔgðrÞ ¼ 0 (50) for
different values of the parameter q. The solution increases with
r for r ≈ r0 when the potential is repulsive (q ¼ 1). However,
eventually the solution ends up negative for large r, leading to
instability. This behavior of gðrÞ confirms the results obtained
from the energy minimization method.
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In order to find the solution to the field equations,
we minimize the energy (63) using the following
boundary conditions: Xðr → ∞Þ ¼ 1, Xðr → 0Þ ¼ 0,
Wðr → ∞Þ ¼ 0, and Wðr → 0Þ ¼ 1.
Without loss of generality we normalize e so that

Bðr → 0Þ ¼ 1. In this section we parametrize the dilatonic
coupling as

BðXÞ ¼ eqX
2

: ð64Þ

In order to obtain the dilatonic ’t Hooft–Polyakov
monopole solution, we minimize the energy (63) using
the above boundary conditions, for several values for the
parameters β and q. In Fig. 13 we show the resulting fields
XðrÞ and WðrÞ when ðq ¼ 0; β ¼ 0.1Þ, ðq ¼ 0; β ¼ 1Þ,
ðq ¼ 1; β ¼ 0.1Þ, ðq ¼ 1; β ¼ 1Þ. For each pair of the
fields XðrÞ and WðrÞ we use the same color for the plot
in order to be easily visible. As in the case of dilatonic
vortices, decreased value of β and increased value of q lead
to a dilatonic monopole with larger core scale.
We have verified that a polynomial form of BðXÞ (i.e.,

BðXÞ ¼ 1þ qX2 leads to similar results (see Fig. 14).

B. Embedded dilatonic monopole

We now consider the embedding of the gauge monopole
[52] in a model with Oð4Þ symmetry [42,53]. This is
achieved by adding in the scalar Φ one more component as

Φ4ðrÞ ¼ gðrÞ: ð65Þ

The embedded monopole potential (semilocal monopole)
takes the form

VðΦaÞ ¼ λ

4
ðXðrÞ2 þ gðrÞ2 − η2Þ2: ð66Þ

Using the methods and arguments of Ref. [42], it is
straightforward to show that the embedded dilatonic
monopole solution in this model is unstable for all values
of parameters. The instability persists because the
embedded gauge groupOð3Þ acts trivially on the additional
field componentΦ4ðrÞ ¼ gðrÞ. In this case it may be shown
that there is a smooth sequence of field configurations
parametrized by a parameter ξ with energy monotonically
decreasing with ξ that starts from the embedded monopole
configuration for ξ ¼ 0 and ends at the vacuum for
ξ ¼ π=2. In view of this simple and powerful result, we
omit presenting the perturbative energy minimization
analysis of the embedded dilatonic monopole, which
involves minimization of the embedded gauged monopole
energy corresponding to the energy density

ρ ¼ η

e0

�
BðXÞ

��
W0

r

�
2

þ 1

2

�
1 −W2

r2

�
2
�
þ ðX0Þ2

2

þ
�
WX
r

�
2

þ ðg0Þ2
2

þ β

2
ð1 − X2 − g2Þ2

�
: ð67Þ

Such an analysis simply verifies the anticipated instability
for all values of the parameters β and q. The corresponding
analysis for the embedded dilatonic global monopole also
leads to instability either using the approach of Ref. [42] or
through direct energy minimization of the density

ρ ¼ η

e0

�
BðXÞðe−

r2

r2
0Þ2 þ ðX0Þ2

2
þ
�
X
r

�
2

þ ðg0Þ2
2

þ β

2
ð1 − X2 − g2Þ2

�
; ð68Þ

X r ,q 0, 1

W r ,q 0, 1

X r ,q 0, 0.1

W r ,q 0, 0.1

X r ,q 1, 1

W r ,q 1, 1

X r ,q 1, 0.1

W r ,q 1, 0.1

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

distance r

Fi
el

ds

B X exp qX^2

FIG. 13 (color online). Solutions for XðrÞ, WðrÞ for the
dilatonic magnetic monopole when BðXÞ ¼ eqX

2

for several
values of the parameters β and q. The same color in the fields
corresponds to the same values of β and q. Notice that as β
increases, the slope of the curves increases and the fields acquire
their vacuum expectation values for smaller r.
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FIG. 14 (color online). Solutions for XðrÞ and WðrÞ for the
dilatonic magnetic monopole when BðXÞ ¼ 1þ qX2 for the
same values of the parameters β and q as in Fig. 13. The same
color in the fields corresponds to the same values of β and q.
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where we have assumed a similar external gauge field as in
the previous section. The field configurations that minimize
the above energy using boundary conditions at r ¼ 10
(Xðr ¼ 10Þ ¼ 1) are shown in Fig. 15.
Notice that as expected the instability tends to expand

outwards leading to the vacuum in regions away from
the external field region. However, for r < r0 where the
external field is significant, the field remains out of the
vacuum due to the effects of the external field which
stabilizes locally the embedded global monopole as in the
case of the embedded global vortex discussed in the
previous section.

IV. PHYSICAL EFFECTS

The NO vortex can be embedded in various other
generalizations of the Abelian-Higgs model. One of the
most interesting cases is the bosonic sector of the standard
Glashow-Salam-Weinberg (GSW) electroweak model. This
bosonic sector corresponds to a symmetry breaking
SUð2ÞL ×Uð1ÞY model with a scalar field Φ in the
fundamental representation of SUð2ÞL. Assuming in addi-
tion a dilatonic coupling, the Lagrangian takes the form

L ¼ − 1

4
BðΦ†ΦÞWa

μνWaμν − 1

4
BðΦ†ΦÞYμνYμν

þ ðDμΦÞ†DμΦ − λ

4
ðΦ†Φ − η2Þ2; ð69Þ

where BðΦ†ΦÞ represents the dilatonic coupling
while Wμν

a ¼ ∂μWa
ν − ∂νWa

ν þ gϵabcWb
μWc

ν and Yμν ¼∂μYν − ∂νYμ are the field strengths for the SUð2ÞL and
Uð1ÞY gauge fields, respectively. Also Dμ ¼ ∂μ −
igτaWa

μ − ig0Yμ is the covariant derivative and g, g0 are
the two gauge couplings (τa are the Pauli matrices).

In the unitary gauge, the Z and A fields are defined as

Zμ ≡ cos θwW3
μ − sin θwYμ;

Aμ ≡ sin θwW3
μ þ cos θwYμ;

ð70Þ

and W�
μ ≡ ðW1

μ∓iW2
μÞ=

ffiffiffi
2

p
are the W bosons. The weak

mixing angle θw is given by tan θw ≡ g0=g; electric charge
is e ¼ gz sin θw cos θw with gz ≡ ðg2 þ g02Þ1=2. After proper
rescaling the only two free parameters of the bosonic sector
become the weak mixing angle and the parameter
β≡m2

H=m
2
z defined as the ratio between the Higgs mass

mH ¼ 2λη over the Z-boson mass mZ ¼ gzη=2.
The simplest embedding of the NO string in the dilatonic

electroweak model corresponds to a Z string along the z
axis described as [54]

Φ ¼
�
Φ1

Φ2

�
¼

�
0

feiθ

�
ð71Þ

Zμ ¼
uðrÞ
r

θ̂ ð72Þ

Aμ ¼ W�
μ ¼ 0; ð73Þ

where f and u are the dilatonic NO solutions. It is
straightforward to show that this is a solution of the
dilatonic GSW bosonic sector equations of motion (or
equivalently an extremum of the GSW dilatonic bosonic
sector energy). However, like the dilatonic semilocal string,
the dilatonic electroweak Z string is unstable and can decay
by unwinding to the vacuum.
The solution (71)–(73) and the electroweak bosonic

sector reduce to the semilocal string model in the limit
sin2 θw ¼ 1 and therefore in this limit the electroweak
string is classically stable for β < 1 and unstable for β > 1.
For sin2 θw < 1 the stability of the electroweak string
persists but for a smaller range of the parameter β [40].
When there is no dilatonic coupling, the physical values of
the parameters β and θw correspond to unstable electroweak
string.
In the presence of a large enough dilatonic coupling, the

corresponding stability region increases arbitrarily as
discussed in Sec. II. We anticipate that this stability
improvement will persist even for the experimentally
measured parameter values θw and β. It is therefore
important to identify the required value of the dilatonic
coupling q for stability of the dilatonic electroweak
string for the measured values of θw and β. We postpone
this analysis for a later publication but we point out that if
the required value of q for stability is consistent with
current experiments, then the possibility of formation of
metastable dilatonic electroweak strings in accelerators
and/or in the early universe arises. In this case we anticipate
the existence of interesting signatures and effects in both
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FIG. 15 (color online). The energy minimizing fields gðrÞ and
XðrÞ as a function of distance r for embedded global dilatonic
monopole, in the presence of a Gaussian external “magnetic”

field e
−r2
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0 for several values of the parameter q, when β ¼ 1 and

r0 ¼ 2. Here we assumed an exponential dilatonic coupling
BðXÞ ¼ eqX

2

.
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accelerator and cosmological setups. In particular such
effects include

(i) Primordial magnetic fields: A gas of metastable
electroweak segments formed during the electro-
weak phase transition is necessarily accompanied by
a gas of electroweak monopoles. The eventual
collapse and disappearance of electroweak strings
removes all the electroweak monopoles but the long
range magnetic field emanating from the monopoles
is expected to remain trapped in the cosmological
plasma. This will then lead to a residual primordial
magnetic field in the present universe. An estimate
of the average flux of this primordial magnetic field
was obtained in [55,56].

(ii) Generation of baryon number-cosmic rays: A gas of
metastable electroweak string segments and loops
would, in general, contain some helicity density of
the Z field. So when the electroweak strings even-
tually annihilate, it is possible that the helicity gets
converted into baryon number [56,57]. In more
exotic models (such as this), strings at the electro-
weak scale that were stable and had superconducting
properties, could also be responsible for baryo-
genesis [58] and the presence of primary antiprotons
in cosmic rays [59].

(iii) Variation of fine structure constant: A dilatonic
coupling in models involving electromagnetism like
the electroweak model, leads naturally to the pos-
sibility of variation of the fine structure constant α.
In the presence of a metastable dilatonic electroweak
string this variation is anticipated to be spatial on the
scale of the core of the dilatonic defect. Such
microscopic localized variation of alpha could be
detectable in accelerators where either metastable
dilatonic electroweak strings or dilaton-Higgs par-
ticles are produced and decay. This effect becomes
more interesting in view of the recent claim for a 4σ
detection of spatial variation of α on cosmological
scales obtained from careful analysis of quasar
absorption spectra [26].

(iv) Signatures in accelerators: Dilatonic dumbells: The
production of solitonic states in particle accelerators
as well as their experimental signatures constitute
open issues that become particularly important in the
context of the existence of metastable electroweak
strings. A rotating electroweak monopole-antimono-
pole pair connected by a Z string and stabilized by a
centrifugal barrier is known as a dumbbell. The
decay signature of such a metastable system was
first studied by Nambu [60], who estimated the
energy and angular momentum of such a system as
well as its lifetime and decay products. In the context
of a dilatonic coupling such a system may get
stabilized not only due to its angular momentum
but also at the field theoretic level. Thus we

anticipate an increased lifetime and a cleaner sig-
nature in accelerators.

Thus, the role of electroweak strings in cosmology
depends on their abundance during and after the electro-
weak phase transition. If this abundance is negligible,
electroweak strings may at best only be relevant in future
accelerator experiments. Such relevance is expected to
increase significantly in the presence of a dilatonic cou-
pling which is anticipated to improve their stability.

V. CONCLUSIONS-DISCUSSION

Topological defects formed in theories where the scalar
field couples to the gauge field strength tensor (dilatonic
defects) have significant novel properties. In particular,

(i) Their core scales can be significantly larger than
the corresponding ordinary defects with minimal
coupling.

(ii) The corresponding embedded defects have modified
stability properties.

(iii) The instability of global dilatonic defects in the
presence of an external gauge field does not proceed
towards the vacuum. Instead it proceeds towards a
field configuration which deviates from the vacuum
in the region where the external gauge field is
excited. This configuration may be interpreted as
a local stabilization of the global embedded defects.

(iv) The instability of the gauged embedded vortex may
proceed (for certain parameter values) towards a
scalar field condensate where the instability is
excited but is confined to the region of the embedded
defect core.

Interesting extensions of this analysis are the following:
(i) Investigation of the stability properties of more

realistic embeddings like the electroweak vortex
[41,43,54,60]. The possible formation of new
electroweak vortices with core condensates repre-
senting confinement of the instability is a particu-
larly interesting prospect. In addition our analysis
hints towards the possible stabilization of the
electroweak vortex for realistic parameter values
in the presence of a dilatonic coupling.

(ii) Investigation of the core properties of other dilatonic
defects like textures, Skyrmions and domain walls in
the presence of external gauge fields. In this case,
there is the possibility of formation of condensates
similar to the one found for the dilatonic gauged
vortex in the parameter region where the embedded
defect is stable but gets destabilized due to the
dilatonic coupling. This mechanism for the forma-
tion of condensates from embedded defects appears
to be generic in the context of dilatonic embedded
defects.

(iii) The presence of dilatonic defects with Hubble scale
cores could naturally induce spatial variation of the
corresponding gauge charges and in particular of the
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fine structure constant. This prospect is interesting in
view of the recent claims of the existence of a fine
structure constant dipole on cosmological scales
obtained from the absorption spectra of quasars
on cosmological scales [26,27]. This class of models
naturally predicts an alignment of the fine structure
constant and dark energy dipoles. Indications for
such an alignment have been observed recently in a
combination of type Ia data and quasar absorption
spectra data [27]. Thus, the detailed study of the
cosmological properties of this class of models
(extended topological quintessence) constitutes an
exciting extension of the present analysis.

(iv) A systematic review of experimental or observatio-
nal constraints on the parameter q and the dilatonic
coupling in realistic theories (e.g., in extensions of
the standard electroweak model) is important in
order to clarify the viability of this class of models.
Clearly, the allowed range of q depends on the mass
of the scalar field and therefore on the parameter β,
as well as on the introduction of the parameter ω

which could stabilize the scalar field through the
kinetic term [see Eq. (2)]. Constraints on the
dilatonic coupling in extensions of the standard
electroweak model [61,62] have recently been im-
posed by the LHC [63–65].

In conclusion, the existence of a dilatonic coupling in field
theories predicting the existence of topological defects
implies the presence of interesting new properties for the
predicted defects, which makes these models worthy of
further investigation.
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