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Time evolution of a black hole lattice universe with a positive cosmological constant Λ is simulated. The
vacuum Einstein equations are numerically solved in a cubic box with a black hole in the center. Periodic
boundary conditions on all pairs of opposite faces are imposed. Configurations of marginally trapped
surfaces are analyzed. We describe the time evolution of not only black hole horizons, but also
cosmological horizons. Defining the effective scale factor by using the area of a surface of the cubic
box, we compare it with that in the spatially flat dust dominated Friedmann-Lemaître-Robertson-Walker
(FLRW) universe with the same value of Λ. It is found that the behavior of the effective scale factor is well
approximated by that in the FLRW universe. Our result suggests that local inhomogeneities do not
significantly affect the global expansion law of the Universe irrespective of the value of Λ.
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I. INTRODUCTION

The so-called “black hole lattice universe” has been first
investigated by Lindquist and Wheeler in 1957 [1]. They
regularly arranged N potions of the Schwarzschild space-
time on a virtual three-sphere (N ¼ 5, 8, 16, 24, 120 and
600), and discussed the evolution of this lattice universe
based on the intuitively derived junction conditions
between the Schwarzschild shell and the three-sphere.
The black hole lattice universe is often used as one of
the tools to evaluate the effects of local nonlinear inho-
mogeneities on the global expansion. Recently, black hole
lattice universe models have been revisited by several
authors [2–12]. Time symmetric initial data for N-black
hole systems on a virtual three-sphere have been analyzed
in Refs. [4,12]. Time evolution of the eight-black hole
system has been performed and analyzed in Ref. [7]. Initial
data for a black hole inside a cubic box with a periodic
boundary condition have been constructed and analyzed in
Refs. [3,8], and those time evolutions have been inves-
tigated in Refs. [2,7]. We call this cubic lattice model the
“black hole universe” in this paper. The purpose of this
paper is to extend the black hole universe so that it admits a
positive cosmological constant.
In Ref. [2], it has been reported that, if the box size of

the black hole universe is sufficiently larger than the
horizon radius, the global expansion law can be well
approximated by that in the Einstein-de Sitter universe.
Our final purpose is to check this fact with a positive
cosmological constant. Since our universe is likely to be
filled with dark energy components, such as the positive

cosmological constant, it is important to investigate the
effect of local nonlinear inhomogeneities on the global
expansion law with the cosmological constant. In all the
references listed above, the cosmological constant is set to
be zero. Therefore, solving technical problems to consider
nonzero cosmological constant cases, we investigate it in
this paper.
One of the nontrivial technical problems is how to

construct an initial data set which is appropriate as an
initial condition for the time evolution. In this paper, we
describe a procedure to construct puncture initial data for
the black hole universe with a positive cosmological
constant. Another interesting problem is to find different
kinds of marginal surfaces. As in the case of the Kottler
(Schwarzschild-de Sitter) solution, the black hole universe
with a positive cosmological constant can have not only
black hole horizons but also de Sitter cosmological hori-
zons. As far as we know, it is the first time to numerically
find the S2 cosmological horizons without any symmetry
which makes it possible to reduce the number of the
effective dimension. To check the existence and structure of
marginal surfaces is very useful to understand the space-
time structure.
This paper is organized as follows. In Sec. II, we describe

how to construct initial data of the black hole universe with
a positive cosmological constant. Then, we analyze the
structure of the initial data in Sec. III searching for different
kinds of marginal surfaces. In Sec. IV, time evolutions are
described. The evolution of the configuration of marginal
surfaces and the expansion law are discussed there.
Section V is devoted to a summary.
In this paper, we use the geometrized units in which the

speed of light and Newton’s gravitational constant are one,
respectively.
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II. INITIAL DATA

A. Constraint equations

Let us consider solutions of vacuum Einstein equations
with a positive cosmological constant Λ described by the
intrinsic metric γij and the extrinsic curvature Kij. The
Hamiltonian constraint and the momentum constraint
equations are given by

Rþ K2 − KijKij − 2Λ ¼ 0; ð1Þ

DjK
j
i −DiK ¼ 0; ð2Þ

where R and Di are the Ricci scalar curvature and the
covariant derivative with respect to γij, and K ¼ γijKij.
We perform conformal decomposition in a conventional
way as follows:

γij ¼ Ψ4 ~γij; ð3Þ

Kij ¼ Ψ−10
�
~DiXj þ ~DjXi −

2

3
~γij ~DkXk þ Âij

TT

�

þ 1

3
Ψ−4 ~γijK; ð4Þ

where Ψ≔ðdet γijÞð1=12Þ, ~Di is covariant derivative with
respect to the conformal metric ~γij, and Âij

TT satisfies

~DjÂ
ij
TT ¼ 0; ~γijÂ

ij
TT ¼ 0: ð5Þ

To minimize effects of artificial gravitational radiation,
we assume

~γij ¼ δij; ð6Þ

Âij
TT ¼ 0; ð7Þ

where δij is the Kronecker’s delta. Then, from Eqs. (1) and
(2), we obtain

ΔΨþ 1

8
ð ~LXÞijð ~LXÞijΨ−7 −

1

12
K2Ψ5 þ 1

4
ΛΨ5 ¼ 0; ð8Þ

ΔXi þ 1

3
∂i∂jXj −

2

3
Ψ6∂iK ¼ 0; ð9Þ

where

ð ~LXÞij≔∂iXj þ ∂jXi −
2

3
δij∂kXk: ð10Þ

First, we need to solve these constraint equations in
appropriate settings for puncture initial data with Λ > 0.

B. Puncture structure with Λ

In this paper, we adopt the Cartesian coordinate system
x ¼ ðx; y; zÞ. We consider a cubic region D given by
−L ≤ x ≤ L, −L ≤ y ≤ L and −L ≤ z ≤ L with periodic

boundary conditions on all pairs of faces opposite to each
other. Thus, the domain D is homeomorphic to the three
torus T3. The black hole is represented by a structure like
the Einstein-Rosen bridge around the origin Oðx ¼ 0Þ;
therefore, the origin corresponds to the asymptotic infinity.
The origin O is often called the “puncture.” Since the
infinity is not a region of the spacetime, our initial data
D − fOg is homeomorphic to T3 with one point removed.
In the rest of this section, we describe how to construct the
puncture initial data with Λ > 0.

1. Constant mean curvature slice in the Kottler universe

First, we consider a constant mean curvature (CMC)
slice in the exact Kottler solution (Schwarzschild-de Sitter)
to understand the puncture structure with Λ (see
Refs. [13,14] for details of CMC slices in the Kottler
solution). Line elements of the Kottler solution are given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð11Þ

where

fðrÞ ¼ 1 −
2M
r

−
Λr2

3
: ð12Þ

Let us consider a time slice given by

t ¼ hðrÞ: ð13Þ

The unit normal vector field to this time slice can be
expressed as

nμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f−1 − fh02

p ½f−1ð∂tÞμ þ fh0ð∂rÞμ�; ð14Þ

where ð∂tÞμ and ð∂rÞμ are coordinate basis vectors. The
CMC slice condition with the mean curvature K is given by

∇μnμ ¼ −K⇔
1

r2
∂rðr2nrÞ ¼ −K

⇐nr ¼ −
1

3
Kr

⇔f−1ð1 − f2h02Þ ¼ 1=Fðr;M;Λ; KÞ

¼
�
1 −

2M
r

−
1

3
Λr2 þ 1

9
K2r2

�
−1
; ð15Þ

where we have dropped the integration constant and
defined Fðr;M;Λ; KÞ as

Fðr;M;Λ; KÞ≔
�
1 −

2M
r

−
1

3
Λr2 þ 1

9
K2r2

�
: ð16Þ

The induced metric on the time slice is given by

dl2 ¼ Fðr;M;Λ; KÞ−1dr2 þ r2dΩ2: ð17Þ
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Transformation to the isotropic coordinate can be per-
formed as follows:

dl2 ¼ Ψ4ðdR2 þ R2dΩ2Þ; ð18Þ

R ¼ C exp

�
�
Z

r

rmin

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr;M;Λ; KÞp

�
; ð19Þ

Ψ ¼
ffiffiffiffiffiffiffiffi
r=R

p
; ð20Þ

where rmin is the throat radius given by
Fðrmin;M;Λ; KÞ ¼ 0. The minus sign branch is used in
the region inside the throat. For this branch, the puncture
structure requires

R ¼ 0 for r → ∞: ð21Þ

This requirement can be satisfied by setting

K2 ¼ 3Λ: ð22Þ

This implies that we need to impose this condition near the
origin of the numerical box. Under this condition, the
conformal factor Ψ is given by

Ψ ¼ 1þ M
2R

; ð23Þ

where we have set the integration constant C as C ¼ M=2
to fix the mass of the black hole measured in the infinity
inside the black hole as M (see Ref. [3]).

2. Form of K and the asymptotic solution
near the origin

In this paper, we adopt the following form of K:

KðxÞ ¼ KΛ þ ðKb − KΛÞWðRÞ; ð24Þ

where R≔jxj, KΛ ¼ −
ffiffiffiffiffiffi
3Λ

p
, and

WðRÞ ¼

8>><
>>:

0 for 0 ≤ R ≤ l

σ−36½ðR − σ − lÞ6 − σ6�6 for l ≤ R ≤ lþ σ

1 for lþ σ ≤ R

.

ð25Þ

Kb is a constant determined by an integrability condition
discussed below. We set l ¼ 0.1M and σ ¼ L − 0.2M.
The asymptotic solution near the center is given by

Xi ≃ 0; ð26Þ

Ψ≃ 1þ M
2R

: ð27Þ

To extract the 1=R divergence, we define a new variable
ψ as follows:

ψðxÞ≔ΨðxÞ − M
2R

½1 −WðRÞ�: ð28Þ

Then, the Hamiltonian constraint becomes

Δψ ¼ Δ
�
M
2R

WðRÞ
�
−
1

8
ð ~LXÞijð ~LXÞijΨ−7

þ 1

12
K2Ψ5 −

1

4
ΛΨ5: ð29Þ

3. Integrability condition and equations

Integrating Eq. (8) over the physical domain D − fOg,
we obtain the following equation:

2πM þ 1

8

Z
D−fOg

ð ~LXÞijð ~LXÞijΨ−7dx3

−
1

12
ðV1K2

b þ 2V2KΛKb − V3K2
ΛÞ ¼ 0; ð30Þ

where

V1≔
Z
D−fOg

W2Ψ5d3x; ð31Þ

V2≔
Z
D−fOg

ð1 −WÞWΨ5d3x; ð32Þ

V3≔V1 þ 2V2: ð33Þ

This equation is the integrability condition and we choose
the value of Kb so that Eq. (30) is satisfied. That is, Kb
cannot be freely chosen but it must be appropriately fixed
through the numerical iteration.
Introducing Z defined by

Z≔∂iXi; ð34Þ

we can derive the following coupled elliptic equations:

Δψ ¼ Δ
�
M
2R

WðRÞ
�
−
1

8
ð ~LXÞijð ~LXÞijΨ−7

þ 1

12
K2Ψ5 −

1

4
ΛΨ5;

ΔZ ¼ 1

2
∂iðΨ6∂iKÞ;

ΔXi ¼ −
1

3
∂iZ þ 2

3
Ψ6∂iK:

We solve these equations by using the same procedure
described in Ref. [3].
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III. MARGINAL SURFACES

As is explicitly shown below, in our initial data, there are
four marginal surfaces at most: two cosmological horizons
(CHs) and two white hole horizons (WHs) or black hole
horizons (BHs), if the cosmological constant is smaller
than the Nariai bound Λ ¼ 1=ð9M2Þ [15,16]. We focus on
Λ < 1=ð9M2Þ cases in this paper.
Hereafter, we use the words “inner,” “outer,” “ingoing,”

and “outgoing” based on the value of the numerical
coordinate x. That is, the innermost region is near the
puncture and outermost region is near the boundary of the
numerical box.
The expansions of the future directed null vector fields

normal to a two surface are given by

χ� ¼ ðγij − sisjÞð�Disj − KijÞ; ð35Þ

where si is the outgoing unit vector on the initial hyper-
surface which is normal to the two surface. The subscript
“þ” means outgoing and “−” means ingoing null expan-
sion. If the initial hypersurface is passing through a black
hole region as in the case Λ ¼ 0 [3], there are two black
hole horizons (future outer trapping horizons in terms of
Ref. [17]). In this case, the outer black hole horizon (OBH)
satisfies χþ ¼ 0, and the inner black hole horizon (IBH)
satisfies χ− ¼ 0. If the initial hypersurface is passing
through a white hole region, two white hole horizons (past
outer trapping) exist. In this case, the outer white hole
horizon (OWH) satisfies χ− ¼ 0, and the inner white hole

horizon (IWH) satisfies χþ ¼ 0. In addition, we have
cosmological horizons(past inner trapping). The inner
cosmological horizon (ICH) satisfying χþ ¼ 0 always
exists inside IBH or IWH, although we may not always
find it due to the low resolution of numerical grids. If the
box size L is sufficiently large and 1=ð9M2Þ > Λ > 0, we
can find the outer cosmological horizon (OCH) satisfying
χ− ¼ 0 outside OBH or OWH.
Equations for marginal surfaces can be rewritten as

χþ ¼ 0⇔Disi − K þ Kijsisj ¼ 0

for IWHðOBHÞ and ICH; ð36Þ

χ− ¼ 0⇔Disi þ K − Kijsisj ¼ 0

for OWHðIBHÞ andOCH. ð37Þ

Assuming that the marginal surfaces are expressed by
R ¼ hðϑ;φÞ in the spherical coordinate, we can rewrite
Eqs. (36) and (37) as

∂2h
∂ϑ2 þ cotϑ

∂h
∂ϑþ 1

sin2ϑ
∂2h
∂φ2

− ð2 − ηÞh ¼ ηhþ S�ðhÞ;
ð38Þ

where η is a constant and S� is a complicated function of h
and geometric quantities (see e.g. [18]). We set η ¼ 3 for
CHs and η ¼ 1 for WHs (BHs). Although the reason is not
clear, our experience shows that if we set η ¼ 1 (η ¼ 3), we
cannot find CHs (BHs and WHs) irrespective of the initial
trial for the iteration [19].
In our settings, we may find four kinds of possible

horizon configurations. For each case, existing horizons
can be listed from inside to outside as follows:
(a) ICH, IWH, OWH
(b) ICH, IWH, OWH, OCH
(c) ICH, IBH, OBH
(d) ICH, IBH, OBH, OCHFIG. 1 (color online). Possible hypersurface configurations.

inner horizons (Λ=0.100M-2, L=2.6M)
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FIG. 2 (color online). Inner (left) and outer (right) marginal surfaces with Λ ¼ 0.1=M2, L ¼ 2.6M. The left panel is a closeup figure of
the central part of the right panel. This configuration is classified in case (b).
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To understand these configurations, it is convenient to
consider the Carter-Penrose diagram of the Kottler solution
with an outside portion removed. A schematic figure of
possible configurations is described in Fig. 1.
We briefly show the configuration of marginal

surfaces on initial hypersurfaces. We note that, differently
from the Λ ¼ 0 case in Ref. [3], the hypersurface may
pass through the white hole region for a sufficiently large
value of Λ. In this subsection, we only show the cases in
which the hypersurface is passing through the white hole
region, that is, cases (a) or (b). As is shown in Fig. 2, there
are four marginal surfaces for Λ ¼ 0.1=M2 and L ¼ 2.6M.
If we increase the value of Λ to 0.111=M2, two pairs of
WHs and CHs get closer as shown in Fig. 3 and all
marginal surfaces disappear for Λ > 1=ð9M2Þ. If we
decrease the value of L to 2M, OCH disappears as is
shown in Fig. 4.

IV. TIME EVOLUTION

A. Settings and constraint violation

We solve the following evolution equations by using
the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-
malism [20,21]:

∂γij
∂t ¼ −2Kij; ð39Þ

∂Kij

∂t ¼ Rij þ KKij − 2KikKk
j − Λγij: ð40Þ

We describe line elements of the spacetime as follows:

ds2 ¼ −N2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ð41Þ

inner horizons (Λ=0.111M-2, L=2.6M)
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outer horizons (Λ=0.111M-2, L=2.6M)
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FIG. 3 (color online). Inner (left) and outer (right) marginal surfaces with Λ ¼ 0.111=M2, L ¼ 2.6M. The left panel is a closeup figure
of the central part of the right panel. This configuration is classified in case (b).

inner horizons (Λ=0.100M-2, L=2.0M)
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FIG. 4 (color online). Inner (left) and outer (right) marginal surfaces with Λ ¼ 0.1=M2, L ¼ 2M. The left panel is a closeup figure of
the central part of the right panel. This configuration is classified in case (a).
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FIG. 5 (color online). Time evolution of the L1 norm of the
Hamiltonian constraint violation. The value is appropriately
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Following the previous paper [2], we use the following
gauge conditions:

� ∂
∂t − βi

∂
∂xi

�
N ¼ −2NðK − KcÞ; ð42Þ

∂βi
∂t ¼ Bi; ð43Þ

∂Bi

∂t ¼ ∂ ~Γi

∂t −
3

4M
Bi; ð44Þ

where ~Γi≔− ∂j ~γ
ij and Kc is the value of K at the vertex

of the box.
Numerical simulations are performed with the coordi-

nate grid intervals Δx=M ¼ 4=51, 4=115, 4=179, and
4=243. The convergence of the Hamiltonian constraint
violation is demonstrated in Fig. 5 for the case of
Λ ¼ 10−4=M2. We also show the convergence of the
expansion law defining an effective scale factor in
Sec. IV C.

B. Evolution of marginal surfaces

1. Appearance of OCH

One typical example (Λ ¼ 0.1=M2 and L ¼ 2M) is
shown in Fig. 6. As is shown in Fig. 4 there is no OCH
for this case at the initial time. After the time evolution, at a

inner horizons (Λ=0.100M-2, L=2.0M, t=0.2M)
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outer horizons (Λ=0.100M-2, L=2.0M, t=0.2M)
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FIG. 6 (color online). Inner (left) and outer (right) marginal surfaces with Λ ¼ 0.1=M2, L ¼ 2M on the time slice given by t ∼ 0.2M.
The left panel is a closeup figure of the central part of the right panel. This configuration is classified in case (b).
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FIG. 7 (color online). For Λ ¼ 10−3=M2 and L ¼ 2M, the initial hypersurface is passing through the white hole region and these
marginal surfaces are WHs (left). After the time evolution, the time slice crosses the bifurcation two surface and the marginal surfaces
become BHs (right). Note that, while IWH and OBH satisfy χþ ¼ 0, OWH and IBH satisfy χ− ¼ 0.
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time t ∼ 0.2M, the OCH appears near the boundary of the
box. That is, the horizon configuration can change from
case (a) to case (b) through time evolution (see. Fig. 1).

2. Bifurcation surface crossing

The other typical example is the bifurcation surface
crossing. As is shown in Fig. 7, for Λ ¼ 10−3=M2 and
L ¼ 2M, IWH (χþ ¼ 0) exists outside OWH (χ− ¼ 0).
After the time evolution, at the time t ∼ 0.15M, the surface
satisfying χþ ¼ 0 comes out outside the surface satisfying
χ− ¼ 0. This implies that the hypersurface is passing
through the black hole region and those surfaces are
BHs. That is, the transitions from (a) to (c) or from (b)
to (d) may happen through time evolution.

C. Cosmic expansion

We obtain the geodesic slices parametrized by the proper
time τ by using the same procedure described in Ref. [2].
Then, we calculate the effective scale factor defined by

aA≔
ffiffiffiffiffiffiffiffiffiffi
AðτÞ

p
; ð45Þ

where A is the proper area of a surface on the geodesic
slice. On the other hand, the scale factor for flat dust
Friedmann-Lemaître-Robertson-Walker (FLRW) with Λ
can be written as

aFLRW

¼af

� ð1−exp½ ffiffiffiffiffiffi
3Λ

p ðtþtfÞ�Þ2
ð1þexp½ ffiffiffiffiffiffi

3Λ
p ðtþtfÞ�Þ2−ð1−exp½

ffiffiffiffiffiffi
3Λ

p ðtþtfÞ�Þ2
�1=3

;

ð46Þ

where we have two free parameters tf and af . We fix these
parameters by fitting this form to results of numerical
calculation.
Results are shown in Figs. 8 and 9. Here, the evolution of

the effective scale factor is fitted by aFLRW. The fitted
values for tf and af are listed in Table I. In Fig. 9, we show
the deviation of the effective scale factors from aFLRW. This
figure explicitly shows that, if the box size of the black
hole universe is sufficiently larger than the horizon radius,
the global expansion law can be well approximated by a
corresponding flat dust FLRW universe irrespective of the
value of the positive cosmological constant. We also show
the convergence of the result with smaller grid intervals
in Fig. 9.

V. SUMMARY

In this work, a black hole lattice universe model with a
positive cosmological constant has been simulated. The
construction of puncture initial data with a positive cos-
mological constant has been described in Sec. II. The
vacuum Einstein equations in a cubic box with a black hole
in the center have been numerically solved with periodic
boundary conditions by using the BSSN formalism [20,21].
Configurations of marginal surfaces on the initial hyper-
surfaces and those time evolution have been analyzed. We
found two impressive transitions of the configuration in
time evolution: the appearance of the outer cosmological
horizon and the bifurcation surface crossing. Finally,
comparing the effective scale factor defined by the surface
area and the scale factor for the corresponding flat dust
FLRW universe, we have concluded that the expansion
law of the black hole universe can be well approximated
by that of the corresponding flat dust FLRW universe in
the sufficiently late time irrespective of the value of the
cosmological constant.
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FIG. 9 (color online). Deviation of the effective scale factors from aFLRW. We also show the convergence of the result with smaller grid
intervals in this figure.

TABLE I. The fitted values for tf and af .

ΛM2 10−3 10−4 10−5

tf 3.29M 3.21M 3.18M
af 29.2M 62.8M 135.3M
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