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We study two types of entropic-force models in a homogeneous, isotropic, spatially flat, matter-
dominated universe. The first type is a ΛðtÞ type similar to ΛðtÞCDM (varying-lambda cold dark matter)
models in which both the Friedmann equation and the acceleration equation include an extra driving term.
The second type is a BV type similar to bulk viscous models in which the acceleration equation includes an
extra driving term but the Friedmann equation does not. In order to examine the two types systematically,
we consider an extended entropic-force model that includes a Hubble parameter (H) term and a constant
term in entropic-force terms. The H term is derived from a volume entropy, whereas the constant term is
derived from an entropy proportional to the square of an area entropy. Based on the extended entropic-force
model, we examine four models obtained from combining the H and constant terms with the ΛðtÞ and BV
types. The four models agree well with the observed supernova data and describe the background evolution
of the late universe properly. However, the evolution of first-order density perturbations is different in each
of the four models, especially for low redshift, assuming that an effective sound speed is negligible. The
ΛðtÞ type is found to be consistent with the observed growth rate of clustering, in contrast with the BV type
examined in this study. A unified formulation is proposed as well, in order to systematically examine
density perturbations of the two types.
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I. INTRODUCTION

ΛCDM(lambda cold darkmatter) models are the simplest
cosmological model that can explain an accelerated expan-
sionof the late universe [1–5].However, the standardΛCDM
model (which assumes a cosmological constant Λ and an
additional energy component called dark energy) suffers
from several theoretical problems, e.g., the cosmological
constant problem, the cosmic coincidence problem, etc. [6].
In order to solve the problems, various cosmological models
havebeen suggested, using alternative dark energy,modified
gravity, etc. (see, e.g., Refs. [7–11] and references therein).
In those models, two types of cosmological models have

been extensively examined in an effort to explain an
accelerated expansion of the Universe. The first type is
related to ΛðtÞCDM models, which assume a variable
cosmological term ΛðtÞ [11–23]. In this model, a varying
ΛðtÞ (which corresponds to an extra driving term) is added
to both the Friedmann equation and the Friedmann-
Lemaître acceleration equation, instead of the cosmological
constant Λ. We call this the ΛðtÞ type of cosmological
model. The second type is related to bulk viscous models
(which assume a bulk viscosity of cosmological fluids)
[24–49] and CCDM models (which assume a creation of
cold dark matter) [50–54]. In the bulk viscous and CCDM
models, the Friedmann equation does not include an extra

driving term because dissipation processes are assumed.
We call this the ‘BV (bulk viscous) type’.
Recently, Easson et al. have proposed an entropic-force

model as an alternative explanation for the accelerated
expansion of the Universe [55,56]. We expect that the
entropic-force model [55–65] is related to ΛðtÞ and BV
types. In the entropic-force model, an extra driving term,
i.e., an entropic-force term, is derived from the usually
neglected surface terms on the horizon of the Universe [55].
The entropic-force term can explain the accelerated expan-
sion, without introducing new fields and an exotic energy
component of the Universe such as dark energy. Instead of
dark energy, the entropic-force model assumes that the
horizon of the Universe has an entropy and a temperature
due to the information holographically stored there [55].
For example, the Bekenstein entropy (area entropy) and the
Hawking temperature are used in the original entropic-
force model [55]. The obtained entropic-force term is
usually added to both the Friedmann and acceleration
equations [55–57]. (Note that the entropic-force considered
here is different from the idea that gravity itself is an
entropic-force [66,67].) Accordingly, the original entropic-
force model is ΛðtÞ type. The present authors have
proposed a modified entropic-force model [60] assuming
a generalized black-hole entropy proportional to its vol-
ume, based on appropriate nonadditive generalizations
[68]. The obtained entropic-force terms behave as if they
were an extra driving term for bulk viscous models.*komatsu@se.kanazawa‑u.ac.jp
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Therefore, the present authors have assumed dissipation
processes similar to the bulk viscous model [60]. That is,
the modified entropic-force model corresponds to the BV
type. In this way, entropic-force models proposed so far can
be categorized into ΛðtÞ and BV types, using different
formulations.
In entropic-force models, entropic-force terms depend on

the class of entropy. For example, H2 terms are derived
from an area entropy [55], whereas H terms are derived
from a volume entropy [60], where H is the Hubble
parameter. The entropic-force terms affect the background
evolution of the Universe. Note that we do not discuss
inflation of the early universe. In fact, entropic-force
models which include H2 terms cannot describe a decel-
erating and accelerating universe [20,58,63]. On the other
hand, a modified entropic-force model which includes H
terms can describe a decelerating and accelerating universe
[60]. Of course, the entropic-force terms affect density
perturbations as well. For example, Basilakos et al. have
recently shown that the original entropic-force model
(which includes H2 terms) does not describe cosmological
fluctuations properly without the inclusion of a constant
term [63]. Also, they have found that ΛðtÞCDM models
(similar to the original entropic-force model) are not
consistent with the structure formation data [18].
Furthermore, Li and Barrow have explained that bulk
viscous models (which include H terms) are difficult to
reconcile with astronomical observations of structure for-
mations [40]. The previous works suggest that it is
necessary to consider not only an H term but also a
constant entropic-force term. (Entropic-force models which
include H terms have been recently investigated by
Basilakos and Solà [65].)
The constant term has been examined in ΛðtÞCDM

[11,18–20,63] and CCDM models [50–54], whereas H
terms have been investigated in ΛðtÞCDM [18] and bulk
viscous models [24–49]. In those works, the influence of
the extra driving terms is focused on, and therefore, the
difference between the ΛðtÞ and BV types has not yet been
discussed systematically. This is because the two types are
usually categorized into different models, e.g., ΛðtÞCDM,
CCDM, and bulk viscous models. (Background evolutions
of the Universe in the ΛðtÞCDM and CCDM models have
been discussed in Ref. [23].) However, it is possible to
examine the two types systematically through entropic-
force models. Density perturbations of the two types are
expected to be different from each other, because each
continuity equation of cosmological fluids is different even
if the background evolution of the Universe is the same.
Therefore, in the present study, we examine the properties
of the ΛðtÞ and BV types of entropic-force models. To this
end, we consider an extended entropic-force model which
includesH and constant terms. The constant term is derived
from an entropy proportional to the square of an area
entropy [60].

The remainder of the present paper is organized as
follows. In Sec. II, we present the general Friedmann and
continuity equations and discuss entropic-force models. In
Sec. II A, we present a brief review of two types of standard
entropic-force model, i.e., the ΛðtÞ and BV types. In Sec. II
B, in order to examine the two types systematically, we
consider an extended entropic-force model which includes
H and constant terms. In Sec. III, we briefly review the
density perturbations of the ΛðtÞ and BV types, in the linear
approximation. In addition, we discuss a unified formu-
lation, in order to examine the density perturbations of the
two types systematically. In Sec. IV, based on the extended
entropic-force model, we propose four models obtained
from combining theH and constant terms with the ΛðtÞ and
BV types. In Sec. V, we examine the evolution of the
Universe in the four entropic-force models. Finally, in
Sec. VI, we present our conclusions.

II. GENERAL FRIEDMANN EQUATIONS
AND ENTROPIC-FORCE MODELS

In the present paper, we consider a homogeneous,
isotropic, and spatially flat universe and examine the scale
factor aðtÞ at time t in the Friedmann-Lemaître-Robertson-
Walker metric [58–60]. The general Friedmann equation is
given as �

_aðtÞ
aðtÞ

�
2

¼ HðtÞ2 ¼ 8πG
3

ρðtÞ þ fðtÞ; ð1Þ

and the general acceleration equation is

äðtÞ
aðtÞ ¼

_HðtÞ þHðtÞ2 ¼ −
4πG
3

�
ρðtÞ þ 3pðtÞ

c2

�
þ gðtÞ;

ð2Þ
where HðtÞ is defined by

HðtÞ≡ da=dt
aðtÞ ¼ _aðtÞ

aðtÞ : ð3Þ

G, c, ρðtÞ, and pðtÞ are the gravitational constant, the speed
of light, the mass density of cosmological fluids, and the
pressure of cosmological fluids, respectively. fðtÞ and gðtÞ
are general functions corresponding to extra driving terms
discussed later. We can obtain the general continuity
equation from the general Friedmann and acceleration
equations, because two of the three equations are indepen-
dent. From Eqs. (1) and (2), the general continuity equation
[58] is given by

_ρþ 3
_a
a

�
ρþ p

c2

�
¼ 3

4πG
H

�
−fðtÞ −

_fðtÞ
2H

þ gðtÞ
�
: ð4Þ

For ΛCDM models [7,8], both fðtÞ and gðtÞ are set to be
Λ=3, where Λ is a cosmological constant. Therefore, the
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right-hand side of Eq. (4) is 0 [69]. However, in general, the
right-hand side of Eq. (4) is nonzero.
For example, a non-zero right-hand side of the general

continuity equation appears in ΛðtÞCDM models [11–23]
in which fðtÞ ¼ gðtÞ is assumed. The original entropic-
force model suggested by Easson et al. [55,56] is similar to
ΛðtÞCDM models, as discussed later. Substituting fðtÞ ¼
gðtÞ into Eq. (4), we have

_ρþ 3
_a
a

�
ρþ p

c2

�
¼ −

3

8πG
_fðtÞ ½ΛðtÞ type�: ð5Þ

This is the general continuity equation for the ΛðtÞ type.
The right-hand side of Eq. (5) is not 0 when fðtÞ is not
constant. The ΛðtÞ type can be interpreted as a kind of
energy exchange cosmology in which the transfer of energy
between two fluids is assumed [70], e.g., interacting
quintessence [71], the interaction between matter and
radiation [72], the interaction between dark energy and
dark matter [73], or the interaction between holographic
dark energy and dark matter [74].
As another example, a non-zero right-hand side of the

general continuity equation appears in bulk viscous
models, in which a bulk viscosity ξ of cosmological
fluids is assumed [24–49]. (An effective pressure pe,
e.g., peðtÞ ¼ pðtÞ − 3ξHðtÞ, is assumed as well.)
Consequently, the Friedmann equation for the bulk viscous
model does not include extra driving terms, i.e., fðtÞ ¼ 0.
The bulk viscosity is usually the only thing that can
generate an entropy in a homogeneous and isotropic
universe [29]. The relationship between entropic-force
and bulk viscosity has been discussed in Ref. [60]. In fact,
cosmological equations for a modified entropic-force
model examined in Ref. [60] are similar to those for the
bulk viscous model. (As discussed later, similar cosmo-
logical equations are used in CCDM models [50–54].)
Substituting fðtÞ ¼ 0 into Eq. (4), we have

_ρþ 3
_a
a

�
ρþ p

c2

�
¼ 3

4πG
HgðtÞ ½BV type�: ð6Þ

This is the general continuity equation for the BV type. We
emphasize that the right-hand side of Eq. (6) is not 0, even
if gðtÞ is constant, e.g., gðtÞ ¼ Λ=3. That is, Eq. (6) is
essentially different from Eq. (5). It is expected that the
difference between Eqs. (5) and (6) affects the evolution of
density perturbations, even if the background evolution of
the Universe is the same.
It is possible to consider two types of entropic-force

models, namely, the ΛðtÞ and BV types, and in Sec. II A,
we review the two types of standard entropic-force model.
In Sec. II B, we discuss an extended entropic-force model
which includes H and constant entropic-force terms. The
derivation of the entropic-force terms is summarized in
Appendix A. We can deriveH2,H, and constant terms from

an area entropy Sr2, a volume entropy Sr3, and an entropy
Sr4 proportional to r4H, respectively, where rH is the Hubble
horizon (radius) given by c=H.
Cosmological equations for the above discussed models

are similar to those for entropic-force models examined in
this study although the theoretical backgrounds are
different. We expect that the present study can help to
investigate the cosmological models from different
viewpoints.

A. Two types of standard entropic-force model

In entropic cosmology, the horizon of the Universe is
assumed to have an associated entropy and an approximate
temperature due to the information holographically stored
there [55,56]. In Secs. II A 1 and II A 2, we present the ΛðtÞ
and BV types, respectively. We note that entropic-force
models discussed here are different from holographic dark
energy models [74], although the holographic principle
[75] is applied to both models.

1. ΛðtÞ type ½f ðtÞ ¼ gðtÞ�
For the ΛðtÞ type [fðtÞ ¼ gðtÞ], we briefly review the

original entropic-force model suggested by Easson et al.
[55,56]. Note that we neglect high-order terms for quantum
corrections because we do not discuss the inflation of the
early universe. In the original entropic-force model,
entropic-force terms are summarized [57] as

fðtÞ ¼ α1H2 þ α2 _H; ð7Þ

gðtÞ ¼ β1H2 þ β2 _H; ð8Þ
where α1 and α2 are expected to be given as

α1 ¼ β1 and α2 ¼ β2: ð9Þ

The four coefficients α1, α2, β1, and β2 are dimensionless
constants. In Refs. [56,57], it was argued that the extrinsic
curvature at the surface was likely to result in something
like

α1 ¼ β1 ¼ 3=ð2πÞ and α2 ¼ β2 ¼ 3=ð4πÞ: ð10Þ

In this way, general functions for the original entropic-force
model are expected to be given by

fðtÞ ¼ gðtÞ: ð11Þ
This type, i.e., the ΛðtÞ type, has been the most typically
examined entropic-force model [63]. The formulation can
be interpreted as a modification of the left-hand side of the
Einstein equation. The H2 terms are derived from the
Bekenstein entropy [55], as shown in Appendix A 1.
H2 and _H terms included in Eqs. (7) and (8) have been

investigated in ΛðtÞCDM models [21,63]. In those works,
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the influence of _H terms was found to be similar to that of
H2 terms. This implies that the _H terms can be neglected
[60]. In fact, Easson et al. first proposed that the derived
entropic-force terms are H2 terms; i.e., _H terms are not
included in the entropic-force terms [55]. A similar fact was
discussed in our previous works [58,60]. Therefore, we
neglect _H terms, i.e., α2 ¼ β2 ¼ 0.
As examined in Refs. [20,58,60,63], H2 and _H terms

cannot describe a decelerating and accelerating universe
predicted by the standard ΛCDM model. For example,
Basilakos et al. have shown it is not the H2 and _H terms,
but rather an extra constant term that is important for
describing a decelerating and accelerating universe [63].
The extra constant term for ΛðtÞCDM models is naturally
obtained from an integral constant of the renormalization
group equation for the vacuum energy density [11,19]. A
similar constant term appears in the creation of cold dark
matter (CCDM) models [50–54]. The CCDM model
assumes a dissipation process based on gravitationally
induced particle creation proposed by Prigogine et al.
[76]. That is, the CCDM model corresponds to the BV
type, as discussed in the next subsection.

2. BV type ½f ðtÞ ¼ 0�
For the BV type [fðtÞ ¼ 0], we briefly review a modified

entropic-force model based on an effective pressure [60].
The model discussed here is similar to both bulk viscous
models [24–49] and to the CCDM models [50–54]. This is
because an effective pressure is used in the two models,
assuming dissipative processes.
In entropic-force models, H2 terms are derived from the

Bekenstein entropy (area entropy), whereas H terms are
derived from a generalized black-hole entropy (volume
entropy) [60]. The H2 and H terms can be considered as
extra driving terms. Consequently, general functions are
given by

fðtÞ ¼ α1H2 þ α̂3H; ð12Þ

gðtÞ ¼ β1H2 þ β̂3H: ð13Þ

When we assume an effective pressure [60], α1 and α̂3 are
given as

α1 ¼ 0 and α̂3 ¼ 0: ð14Þ

α̂3 and β̂3 are dimensional constants defined by

α̂3 ≡ α3H0 and β̂3 ≡ β3H0; ð15Þ

where H0 is the Hubble parameter at the present time t0.
The four coefficients α1, β1, α3, and β3 are dimensionless
constants. In this case, i.e., when we consider an effective
pressure, the Friedmann equation does not include an extra
driving term [60]. (The formulation corresponds to a

modification of the energy-momentum tensor of the
Einstein equation.) Accordingly, general functions are
summarized as

fðtÞ ¼ 0; ð16Þ

gðtÞ ¼ β1H2 þ β̂3H: ð17Þ

Because of the H term, this model can predict a decelerat-
ing and accelerating universe, as in the case for a fine-tuned
standard ΛCDM model [60]. However, as mentioned
previously, similar cosmological models were found to
be difficult to reconcile with astronomical observations of
structure formations. Previous works imply that it is
difficult to reconcile the standard entropic-force model
with the structure formation data, without including con-
stant terms. However, we can derive a constant entropic-
force term from an entropy Sr4 proportional to r4H, as shown
in Appendix A 3. Therefore, in the next subsection, we
consider an extended entropic-force model which includes
the constant term. Note that we assume Sr4 as one of the
possible entropies.

B. Extended entropic-force model

In this subsection, we consider an extended entropic-
force model which includes H2, H, and constant entropic-
force terms, in order to examine the ΛðtÞ and BV types.
Similar extra driving terms have been discussed in various
cosmological models, e.g., ΛðtÞCDM, CCDM, and bulk
viscous models [77]. However, their theoretical back-
grounds are different from those of the entropic-
force model.
As shown in Appendix A, the H2, H, and constant terms

are derived from an area entropy Sr2, a volume entropy Sr3,
and an entropy Sr4 proportional to r4H, respectively. Using
the three terms, the general functions are given by

fðtÞ ¼ α1H2 þ α̂3H þ α̂4; ð18Þ

gðtÞ ¼ β1H2 þ β̂3H þ β̂4; ð19Þ

where α̂3, β̂3, α̂4, and β̂4 are defined by

α̂3 ≡ α3H0; β̂3 ≡ β3H0;

α̂4 ≡ α4H2
0; β̂4 ≡ β4H2

0: ð20Þ

The six coefficients α1, β1, α3, β3, α4, and β4 are
dimensionless constants. The ΛðtÞ and BV types are
determined from the dimensionless coefficients.
We now consider the extended entropic-force model.

From Eq. (18), the modified Friedmann equation is
written as
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�
_a
a

�
2

¼ H2 ¼ 8πG
3

ρþ α1H2 þ α̂3H þ α̂4; ð21Þ

and, from Eq. (19), the modified acceleration equation is
written as

ä
a
¼ _H þH2 ¼ −

4πG
3

ð1þ 3wÞρþ β1H2 þ β̂3H þ β̂4;

ð22Þ

where w is given by

w ¼ p
ρc2

: ð23Þ

w represents the equation of state parameter for a generic
component of matter. For nonrelativistic matter (or a
matter-dominated universe) w is 0, and for relativistic
matter (or a radiation-dominated universe) w is 1=3. In
the present paper, we focus on a matter-dominated uni-
verse, i.e., w ¼ 0. Note that, for generality, we leave w in
the following discussion. Coupling [ð1þ 3wÞ × Eq. (21)]
with [2 × Eq. ð22Þ] and rearranging, we obtain

_H ¼ dH
dt

¼ −C1H2 þ Ĉ3H þ Ĉ4; ð24Þ

where

C1 ¼
3ð1þ wÞ − α1ð1þ 3wÞ − 2β1

2
; ð25Þ

Ĉ3 ¼
α̂3ð1þ 3wÞ þ 2β̂3

2
; and Ĉ4 ¼

α̂4ð1þ 3wÞ þ 2β̂4
2

:

ð26Þ
C1 is a dimensionless parameter, whereas Ĉ3 and Ĉ4 are
dimensional parameters. Using Eq. (20), dimensionless
parameters C3 and C4 are given by

C3 ¼
Ĉ3

H0

¼ α3ð1þ 3wÞ þ 2β3
2

; ð27Þ

C4 ¼
Ĉ4

H2
0

¼ α4ð1þ 3wÞ þ 2β4
2

: ð28Þ

The values of the six coefficients (α1, β1, α3, β3, α4, and β4)
for the ΛðtÞ type are different from those for the BV type.
However, as shown in Sec. V, it is possible to determine two
sets of six parameters under the condition that C1, C3, and
C4 for the ΛðtÞ type are the same as those for the BV type.
In this case, we can obtain the same solution from Eq. (24).
That is, the background evolution of the Universe of the BV
type is equivalent to that of the ΛðtÞ type. However, the

continuity equation for the ΛðtÞ type [Eq. (5)] is different
from Eq. (6) for the BV type. [Equation (24) is essentially
the same as a general ΛðtÞCDM model examined by
Basilakos et al. [18]. The solutions of Eq. (24) are
summarized in Appendix B.]
In Eqs. (18) and (19), the H2 terms with α1 and β1 are

entropic-force terms. The influence of the H2 entropic-
force terms is included in C1 [Eq. (25)]. However, original
H2 terms cannot describe a decelerating and accelerating
universe [60]. Therefore, in this study, we neglect the H2

entropic-force terms. That is, α1 and β1 are set to be 0.
As mentioned above, H terms and constant terms (Ccst

terms) are derived from a volume entropy and an entropy
proportional to r4H, respectively. Accordingly, we consider
the H and constant Ccst terms separately. We call them the
‘H version’ and ‘Ccst version’, respectively. TheH and Ccst
versions are discussed in Secs. II B 1 and II B 2, respec-
tively. In the following, we assume that C1, C3, and C4 are
positive constants.

1. H version

For the H version, the general functions are given by

fðtÞ ¼ α̂3H; ð29Þ

gðtÞ ¼ β̂3H: ð30Þ

Consequently, Eq. (24) is given as

_H ¼ −C1H2 þ Ĉ3H; ð31Þ

where C1 and Ĉ3 are given by Eqs. (25) and (26),
respectively. When fðtÞ ¼ 0, Eqs. (29)–(31) correspond
to bulk viscous models studied in Refs. [24–49]. The
formulation of theH version is essentially equivalent to that
examined in our previous work [60]. The evolution of the
Hubble parameter is given as

H
H0

¼
�
1 −

C3

C1

��
a
a0

�
−C1 þ C3

C1

; ð32Þ

where a0 represents the scale factor at the present time and
C3 is Ĉ3=H0 given by Eq. (27).

2. Ccst version

For the Ccst version, the general functions are given by

fðtÞ ¼ α̂4; ð33Þ

gðtÞ ¼ β̂4: ð34Þ

Therefore, Eq. (24) is given as

_H ¼ −C1H2 þ Ĉ4; ð35Þ
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where C1 and Ĉ4 are given by Eqs. (25) and (26),
respectively. Using C4 ¼ Ĉ4=H2

0 [Eq. (28)], the evolution
of the Hubble parameter is given as�

H
H0

�
2

¼
�
1 −

C4

C1

��
a
a0

�
−2C1 þ C4

C1

: ð36Þ

When fðtÞ ¼ gðtÞ, Eqs. (33)–(36) are equivalent to those
for the standard ΛCDMmodel. The solution is summarized
in Appendix C.

III. FIRST-ORDER DENSITY PERTURBATIONS

In the present paper, we examine density perturbations of
the ΛðtÞ and BV types, in the linear approximation. To this
end, we usually use two methods separately. Accordingly, in
Sec. III A, we present the two methods. In Sec. III A 1, we
review first-order density perturbations of the ΛðtÞ type,
according to thework of Basilakos et al. [18]. In Sec. III A 2,
we review first-order density perturbations of the BV type,
according to the work of Jesus et al. [53]. The two methods
are expected to be summarized, using a neo-Newtonian
approach proposed by Lima et al. [78]. Therefore, in
Sec. III B, we discuss a unified formulation based on the
neo-Newtonian approach, in order to observe the density
perturbations of the two types systematically. In the present
study, we focus on a matter-dominated universe.

A. Two methods for density perturbations

In this subsection, we present two methods to examine
density perturbations of the ΛðtÞ and BV types. In Secs. III
A 1 and III A 2, we review first-order density perturbations
of the ΛðtÞ and BV types, respectively.

1. Density perturbations of the ΛðtÞ type
Density perturbations in ΛðtÞCDM models have been

closely examined, e.g., see the work of Basilakos et al. [18].
In fact, formulations of the ΛðtÞ type discussed here are
essentially equivalent to the ΛðtÞCDM model. Therefore,
we only briefly review density perturbations of the ΛðtÞ
type, according to Ref. [18]. To this end, we assume a
matter-dominated universe (w ¼ 0), i.e., a pressureless
fluid. Substituting p ¼ 0 into Eq. (5), the continuity
equation for the ΛðtÞ type becomes

_ρþ 3
_a
a
ρ ¼ −

3

8πG
_fðtÞ: ð37Þ

This equation is equivalent to the equation examined in
Ref. [18], when 8πG ¼ c≡ 1 and 3_fðtÞ ¼ _ΛðtÞ. (We
consider the mass density for matter [79].) In Ref. [18],
Basilakos et al. have focused on models where the time
dependence of ΛðtÞ appears always at the expense of an
interaction with matter. The model can be interpreted as an
energy exchange cosmology, in which the transfer of

energy between two fluids is assumed [70]. Similarly, in
the present study, we assume an interchange of energy
between the bulk (the Universe) and the boundary (the
horizon of the Universe) [64], as if it were an energy
exchange cosmology. Consequently, the time evolution
equation for the matter density contrast δ≡ δρm=ρm, i.e.,
the perturbation growth factor, is given by [79]

δ̈þ ð2H þQÞ_δ − ½4πGρ − 2HQ − _Q�δ ¼ 0; ð38Þ

where

ρ ¼ 3

8πG
ðH2 − fðtÞÞ; Q ¼ −

3

8πG

_fðtÞ
ρ

: ð39Þ

In the present paper, ρm is replaced by ρ, because we
consider a single-fluid-dominated universe. [Note that ρ
included in Eq. (38) represents ρ̄ corresponding to a
homogenous and isotropic solution for the unperturbed
equations (the Friedmann, acceleration, and continuity
equations). For simplicity, ρ̄ is replaced by ρ when we
present the time evolution equation for δ.] Substituting
Eq. (39) into Eq. (37), we obtain the continuity equation as

_ρþ 3
_a
a
ρ ¼ Qρ: ð40Þ

When 8πG ¼ c≡ 1 and 3_fðtÞ ¼ _ΛðtÞ, Eqs. (39) and (40)
are equivalent to those examined in Ref. [18]. Basilakos
et al. investigated density perturbations in various types of
variable cosmological terms [18]. Therefore, we employ
their theoretical solutions, as discussed in Secs. IVA and
IV B. (In Sec. III B, we discuss a unified formulation, in
order to examine the ΛðtÞ and BV types systematically.)
We note that it is necessary to define explicitly the

functional form of the fðtÞ component, in order to solve
the above differential equation. As described in Ref. [18],
the approach based on Eq. (38) implies that dark energy
perturbations are negligible. This is justified in most cases
[18,80]. (For details, see Ref. [18].) In the present study, we
consider an interchange of energy between the bulk and the
boundary. Accordingly, we assume that boundary pertur-
bations are negligible.

2. Density perturbations of the BV type

The BV type discussed here is similar to both bulk
viscous models [24–49] and CCDM models [50–54]. This
is because these models assume dissipation processes and
therefore an effective pressure must be employed. In
particular, density perturbations in the CCDM model have
been closely examined, e.g., see the work of Jesus et al.
[53]. Accordingly, we review the density perturbations of
the BV type according to Ref. [53].
In the present paper, we assume a matter-dominated

universe (w ¼ 0), i.e., a pressureless fluid. Substituting
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p ¼ 0 into Eq. (6), the general continuity equation for the
BV type is given by

_ρþ 3
_a
a
ρ ¼ 3

4πG
HgðtÞ: ð41Þ

This equation is essentially equivalent to the equation
examined in Ref. [53]. To confirm this, we consider an
effective pressure pe due to dissipation processes. The
effective pressure pe is given by pe ¼ pþ pc, where pc is
the creation pressure for constant specific entropy in the
CCDM model [53]. In the present study, we interpret pc as
a pressure derived from an entropic-force on the horizon of
the Universe. Substituting p ¼ 0 into pe ¼ pþ pc, we
have pe ¼ pc. According to Ref. [53], pc for a CDM
component can be expressed as

pc ¼ −
ρc2Γ
3H

; ð42Þ

where Γ is given as

Γ ¼ 3

4πG
HgðtÞ
ρ

: ð43Þ

Therefore, Eq. (41) can be written as

_ρþ 3
_a
a
ρ ¼ Γρ: ð44Þ

Note that ρ is the mass density for matter. In the CCDM
model, Γ is the creation rate of CDM particles. In the
present study, we interpret Γ as a parameter for entropy
production processes. From Eq. (42), the equation of state
parameter is given by −Γ=ð3HÞ. Although Eq. (44) is
similar to Eq. (40), Γ is different from Q. (In Sec. III B, we
discuss a unified formulation based on a neo-Newtonian
approach [53,78], in order to examine the ΛðtÞ and BV
types systematically.)
In general, a perturbation analysis in cosmology requires

a full relativistic description [53]. This is because the
standard nonrelativistic (Newtonian) approach works
well only when the scale of perturbation is much less
than the Hubble radius and the velocity of peculiar motions
is small in comparison to the Hubble flow. However,
such difficulties are circumvented by the neo-Newtonian
approximation, as described in Ref. [53]. In fact, Jesus et al.
[53] closely investigated density perturbations in the
CCDM model corresponding to the BV type. Therefore,
we employ their formulations. In our units, setting c ¼ 1,
the time evolution equation for the matter density contrast δ
is given by

δ̈þ
�
2H þ Γþ 3c2effH −

Γ _H −H _Γ
Hð3H − ΓÞ

�
_δ

þ
�
3ð _H þ 2H2Þ

�
c2eff þ

Γ
3H

�

þ 3H

�
_c2eff − ð1þ c2effÞ

Γ _H −H _Γ
Hð3H − ΓÞ

�

− 4πGρ

�
1 −

Γ
3H

�
ð1þ 3c2effÞ þ

k2c2eff
a2

�
δ ¼ 0; ð45Þ

where an effective sound speed, c2eff , is defined by

c2eff ≡ δpc

δρ
: ð46Þ

For simplicity, we set c ¼ 1 when we present the time
evolution equation for δ. Jesus et al. assumed c2eff ¼ c2effðtÞ
and that the spatial dependence of δ is proportional to eik·x,
where the comoving coordinates x (which are related to the
proper coordinates r) are given by x ¼ r=a. In Ref. [53],
c2eff is considered to be a new degree of freedom, and the
influence of c2eff on the density perturbations is examined in
detail. In this paper, we consider c2eff ¼ 0. We explain the
reason in Sec. IV C.
In the present study, we assume a spatially flat universe,

and therefore, the Friedmann equation is 4πGρ ¼ 3H2=2.
In addition, for numerical purposes, we employ a new
independent variable [53] defined by

η≡ lnð ~aðtÞÞ; where ~aðtÞ ¼ aðtÞ
a0

: ð47Þ

Using these equations, Eq. (45) can be rearranged as

δ00 þ FðηÞδ0 þGðηÞδ ¼ 0; ð48Þ

where FðηÞ and GðηÞ [53] are given by

FðηÞ ¼ 2þ 3c2eff þ
ΓþH0

H
−

ΓH0 −HΓ0

Hð3H − ΓÞ ; ð49Þ

GðηÞ ¼
�
Γ
H

− 1

��
Γ
2H

þ 3

2
þ 3c2eff

�
þ 3c20eff

− 3ð1þ c2effÞ
ΓH0 −HΓ0

Hð3H − ΓÞ þ
k2c2effe

−2η

H2
: ð50Þ

It should be noted that 0 represents the differential with
respect to η, i.e., d=dη. We can apply Eqs. (48)–(50) to
various models for the BV type. For example, the CCDM
model proposed by Lima, Jesus, and Oliveira [51] (the LJO
model) was closely examined in Ref. [53]. Formulations of
the LJO model are equivalent to those of a BV-Ccst model
which includes a constant entropic-force term, as discussed
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in the next section. In addition, we can apply Eqs. (48)–(50)
to a BV-H model which includes an H term. We discuss
density perturbations in the BV-H and BV-Ccst models in
Secs. IV C and IV D, respectively.
The LJO model discussed above is obtained for a

constant gðtÞ. In the LJO model [53], Γ is defined by

Γ ¼ 3 ~ΩΛ

�
ρc0
ρ

�
H; ð51Þ

where ~ΩΛ is a constant parameter and ρc0 is the present
value of the critical density given by ρc0 ¼ 3H2

0=ð8πGÞ. In
a spatially flat matter-dominated universe, the Hubble
parameter is given by H ¼ H0½ð1 − ~ΩΛÞ ~a−3 þ ~ΩΛ�1=2.
This equation is equivalent to Eq. (36) when C1 ¼ 3=2
and ~ΩΛ ¼ C4=C1.

B. Unified formulation for the ΛðtÞ and BV types

In Secs. III A 1 and III A 2, we reviewed first-order
density perturbations of the ΛðtÞ and BV types separately.
In this subsection, in order to examine entropic-forcemodels
systematically, we discuss a unified formulation for theΛðtÞ
and BV types, using a neo-Newtonian approach. The neo-
Newtonian approach was proposed by Lima et al. [78],
following earlier ideas developed by McCrea [81] and
Harrison [82], in order to describe a Newtonian universe
with pressure [53]. In fact, first-order density perturbations
of the BV type discussed in Sec. III A 2 are derived from the
neo-Newtonian approach.
As shown in Sec. II, the general Friedmann, acceleration,

and continuity equations are given by Eqs. (1), (2), and (4),
respectively. In order to discuss a unified formulation in a
matter-dominated universe (p ¼ 0), we consider the con-
tinuity equation written as

_ρþ 3
_a
a
ρ ¼ Uρ; ð52Þ

where U is given by

U ¼
�
Q ðΛðtÞ typeÞ;
Γ ðBV typeÞ: ð53Þ

Q [Eq. (39)] and Γ [Eq. (43)] are written as

Q ¼ −
3

8πG

_fðtÞ
ρ

; ð54Þ

Γ ¼ 3

4πG
HgðtÞ
ρ

: ð55Þ

Basic hydrodynamical equations for the neo-Newtonian
approach are shown in Refs. [53,78]. The basic equations
are suitable for describing the BV type. However, it is

necessary to consider the ΛðtÞ type as well, in order to
discuss the unified formulation. Therefore, in the present
study, we take into account the fundamental equations for
the ΛðtÞ type (examined in the work of Arcuri and Waga
[79]) as well. Consequently, the basic hydrodynamical
equations for the unified formulation can be written as�∂u

∂t
�

r
þ ðu ·∇rÞu ¼ −∇rΦ −

∇rpc

ρþ pc
c2
; ð56Þ

�∂ρ
∂t
�

r
þ∇r · ðρuÞ þ Θ ¼ 0; ð57Þ

∇2
rΦ ¼ 4πGðρþ lÞ; ð58Þ

where u is the velocity of a fluid element of volume and Φ
is the gravitational potential. For the unified formulation, Θ
and l are given as

Θ ¼
(
−Qρ ¼ 3_fðtÞ

8πG ðΛðtÞ typeÞ;
pc
c2 ∇r · u ðBV typeÞ;

ð59Þ

l ¼
(
− ΛðtÞ

4πG ¼ − 3fðtÞ
4πG ðΛðtÞ typeÞ;

3pc
c2 ðBV typeÞ:

ð60Þ

Equations (56)–(58) correspond to the Euler, continuity,
and Poisson equations, respectively. Using the basic
hydrodynamical equations, we have calculated the time
evolution equation for the matter density contrast δ,
according to the work of Jesus et al. [53]. The derivation
of the equation is essentially the same as the derivation
shown in Ref. [53]. (For details, see Ref. [53].) Therefore,
we do not discuss this in the present paper. Alternatively,
we will examine whether the obtained equation is con-
sistent with the equations for the ΛðtÞ and BV types.
Setting c ¼ 1, using the linear approximation, and

neglecting extra terms, the time evolution equation for δ
can be written as

δ̈þ
�
Hð2þ3c2eff−3uÞ− _wc

1þwc

�
_δ

þ
�
3ð _Hþ2H2Þðc2eff −uÞ

þ3H

�
_c2eff − _u−

_wc

1þwc
ðc2eff−uÞ

�

−4πGρð1þwcÞð1þ3c2effÞþ
k2c2eff
a2

�
δ¼0; ð61Þ

where u, wc, and c2eff are defined by

u≡ −
U
3H

¼
(
− Q

3H ðΛðtÞ typeÞ;
− Γ

3H ð¼ wcÞ ðBV typeÞ; ð62Þ
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wc ≡ −
Γ
3H

¼
(
0 ðΛðtÞ typeÞ;
− Γ

3H ðBV typeÞ; ð63Þ

c2eff ≡ δpc

δρ
¼

(
0 ðΛðtÞ typeÞ;
δpc
δρ ðBV typeÞ: ð64Þ

Equation (61) is the unified equation. In Eq. (61), ρ
represents ρ̄, i.e., a homogenous and isotropic solution
for the unperturbed equations. For simplicity, we set c ¼ 1
and replace ρ̄ with ρ when we present the time evolution
equation for δ. Note that the values of the three parameters
(u, wc, and c2eff ) for the ΛðtÞ type are different from those
for the BV type, as shown in Eqs. (62)–(64) and discussed
in the following paragraph.
In the unified formulation, we consider an effective

pressure pe because the BV type assumes the effective
pressure, where pe is given by pe ¼ pþ pc ¼ pc in the
matter-dominated universe. For the BV type, we interpret
pc as a pressure derived from an entropic-force on the
horizon of the Universe. As discussed in Sec. III A 2, pc
for the BV type can be expressed as pc ¼ −ρc2Γ=ð3HÞ
[Eq. (42)]. Therefore, the equation of state parameter for
the BV type is given by wc ¼ −Γ=ð3HÞ. In contrast, for
the ΛðtÞ type, we neglect the effective pressure, i.e.,
pc ¼ 0. Therefore, the effective pressure for the two
types is written as

pc ¼
(
0 ðΛðtÞ typeÞ;
− ρc2Γ

3H ðBV typeÞ: ð65Þ

This indicates that c2eff , Γ, and wc are 0 when we
consider the ΛðtÞ type in the matter-dominated universe.
Consequently, the three parameters are summarized as
shown in Eqs. (62)–(64). (As discussed in Secs. IV C
and IV D, we assume c2eff ¼ 0 for the BV type.
However, in this subsection, we leave c2eff in
Eq. (61), in order to clarify the difference between
the ΛðtÞ and BV types.)
We now examine the unified equation. To this end,

we first consider the ΛðtÞ type. As discussed above,
we can neglect the effective pressure for the ΛðtÞ
type. Accordingly, c2eff and wc are neglected as well.
Substituting wc ¼ 0, _wc ¼ 0, c2eff ¼ 0, and _c2eff ¼ 0 into
Eq. (61) gives

δ̈þ½Hð2−3uÞ�_δþ½−3uð _Hþ2H2Þ−3H _u−4πGρ�δ¼ 0;

ð66Þ

where u for the ΛðtÞ type [Eq. (62)] is given by

u ¼ −
Q
3H

and therefore _u ¼ −
_QH −Q _H

3H2
: ð67Þ

Substituting Eq. (67) into Eq. (66), and rearranging, we
have

δ̈þ ð2H þQÞ_δ − ½4πGρ − 2HQ − _Q�δ ¼ 0; ð68Þ

where the mass density ρ for the ΛðtÞ type (in a
homogeneous, isotropic, and spatially flat universe) is
given by the general Friedmann equation:

ρ ¼ 3

8πG
ðH2 − fðtÞÞ ðΛðtÞ typeÞ: ð69Þ

The obtained equation [Eq. (68)] is equivalent to
Eq. (38). That is, the unified equation recovers the
equation for the ΛðtÞ type discussed in Sec. III A 1. In
the following, we use Eq. (38) [Eq. (68)], in order to
examine density perturbations of the ΛðtÞ type.
When we consider the BV type, u is replaced by wc

[Eq. (62)]. Substituting u ¼ wc and _u ¼ _wc into Eq. (61),
and rearranging, we have

δ̈þ
�
Hð2þ 3c2eff − 3wcÞ −

_wc

1þ wc

�
_δ

þ
�
3ð _H þ 2H2Þðc2eff − wcÞ

þ 3H

�
_c2eff − ð1þ c2effÞ

_wc

1þ wc

�

− 4πGρð1þ wcÞð1þ 3c2effÞ þ
k2c2eff
a2

�
δ ¼ 0; ð70Þ

where wc for the BV type [Eq. (63)] is given by

wc ¼−
Γ
3H

and therefore
_wc

1þwc
¼ Γ _H−H _Γ
Hð3H−ΓÞ : ð71Þ

We can confirm that Eq. (70) is more complicated than
Eq. (66), due to extra terms based on an effective pressure.
Substituting Eq. (71) into Eq. (70), we obtain

δ̈þ
�
2H þ Γþ 3c2effH −

Γ _H −H _Γ
Hð3H − ΓÞ

�
_δ

þ
�
3ð _H þ 2H2Þ

�
c2eff þ

Γ
3H

�

þ 3H

�
_c2eff − ð1þ c2effÞ

Γ _H −H _Γ
Hð3H − ΓÞ

�

− 4πGρ

�
1 −

Γ
3H

�
ð1þ 3c2effÞ þ

k2c2eff
a2

�
δ ¼ 0; ð72Þ

where ρ for the BV type (in a homogeneous, isotropic, and
spatially flat universe) is given by
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ρ ¼ 3

8πG
H2 ðBV typeÞ; ð73Þ

because fðtÞ ¼ 0. Equation (72) is equivalent to Eq. (45)
for the BV type shown in Sec. III A 2. Therefore, we can
obtain Eqs. (48)–(50) from the unified equation. In the
following, we use Eqs. (48)–(50), in order to examine
density perturbations of the BV type.
In this subsection, we proposed a unified formulation for

the ΛðtÞ and BV types, using a neo-Newtonian approach.
The unified formulation considered here can help to discuss
density perturbations of the ΛðtÞ and BV types systemati-
cally. Of course, it is possible to examine the density
perturbations of the ΛðtÞ and BV types separately, as shown
in Secs. III A 1 and III A 2.

IV. THE FOUR ENTROPIC-FORCE MODELS

In Sec. II A, we presented the ΛðtÞ and BV types of
entropic-force models. In Sec. II B, we proposed the H and
Ccst versions which include H and constant entropic-force
terms, respectively. Therefore, in the present paper, we
examine four models obtained from combining the H and
Ccst versions with the ΛðtÞ and BV types. The four models,
ΛðtÞ-H, ΛðtÞ-Ccst, BV-H, and BV-Ccst, are summarized in
Table I.
To examine the four models, we consider a matter-

dominated universe given by

w ¼ 0: ð74Þ

As mentioned in Sec. II B, we neglect H2 terms in the
entropic-force terms, i.e., α1 ¼ β1 ¼ 0. Substituting α1 ¼
β1 ¼ 0 and w ¼ 0 into Eq. (25) gives C1 ¼ 1.5. We define
C1 for amatter-dominated universe asCm, which is given by

C1;m ≡ Cm ¼ 1.5ð¼ 3=2Þ: ð75Þ

In the standard cosmology, the Universe for C1 ¼ 3=2
corresponds to a matter-dominated universe [7,8].
We present formulations of the four models in the

following subsections. (We note that the background
evolution of the Universe in the four models depends on

the two equations Eqs. (31) and (35). Therefore, the
background evolution in the ΛðtÞ type is the same as that
in the BV type.)

A. ΛðtÞ-H model

For the ΛðtÞ-H model, the general functions are written
as

fðtÞ ¼ gðtÞ ¼ β̂3H: ð76Þ

As shown in Eq. (32), the evolution of the Hubble
parameter for the H version can be rearranged as

Eð ~aÞ≡ H
H0

¼
�
1 −

C3

Cm

��
a
a0

�
−Cm þ C3

Cm

¼
�
1 −

C3

Cm

�
~a−Cm þ C3

Cm
; ð77Þ

where Eð ~aÞ represents the normalized Hubble parameter
H=H0 and ~a is the normalized scale factor a=a0. In
Eq. (77), C1 has been replaced by Cmð¼ 3=2Þ [Eq. (75)].
In the present study, C3 is determined through fitting

with a fine-tuned standard ΛCDM model, as discussed in
Sec. V. Using the obtained C3 and substituting w ¼ 0 and
α3 ¼ β3 into Eq. (27), we have

β3 ¼
2

3
C3: ð78Þ

Similarly, β̂3 is given by ð2=3ÞC3H0.
We now discuss density perturbations. To this end, we

employ density perturbations of the ΛðtÞ type shown in
Sec. III A 1. (For a unified formulation based on a neo-
Newtonian approach, see Sec. III B.) Substituting Eq. (76)
into Eq. (37), we obtain [83]

_ρþ 3
_a
a
ρ ¼ −

3

8πG
β̂3 _H: ð79Þ

Consequently, the time evolution equation for the pertur-
bation growth factor in the ΛðtÞ-H model is given by

δ̈þ ð2H þQÞ_δ − ½4πGρ − 2HQ − _Q�δ ¼ 0; ð80Þ

ρ ¼ 3

8πG
ðH2 − β̂3HÞ; Q ¼ −

3

8πG
β̂3 _H
ρ

: ð81Þ

The above equations are equivalent to a ‘Λ ∝ H model’
examined by Basilakos et al. [18]. Based on their solutions,
the perturbation growth factor is written as

δð ~aÞ ¼ J ~a−3=2
Z

~a

0

dx

x3=2EðxÞ2 ; ð82Þ

where J is given by

TABLE I. The four entropic-force models. The four models are
obtained from combining the H and Ccst versions with the ΛðtÞ
and BV types. β̂3 and β̂4 are dimensional constants defined by
Eq. (20).

Model fðtÞ gðtÞ
ΛðtÞ-H β̂3H β̂3H
ΛðtÞ-Ccst β̂4 β̂4
BV-H 0 β̂3H
BV-Ccst 0 β̂4
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J ¼ 3

2

�
1 −

C3

Cm

�
2
� C3

Cm

1 − C3

Cm

�2=3

¼ 3

2

�
1 −

C3

Cm

�
4=3

�
C3

Cm

�
2=3

: ð83Þ

EðxÞ for the H version is given by Eq. (77). Therefore, we
can examine the perturbation growth factor for the ΛðtÞ-H
model using the determined C3 and Cm ¼ 3=2. We note
that C3=Cm included in Eqs. (77) and (83) behaves as if it
were the density parameter ΩΛ for Λ in the Λ ∝ H model
[18]. Similarly, 1 − C3

Cm
behaves as if it were the density

parameter Ωm for matter in the Λ ∝ H model. Note that Ωm
is given by 1 −ΩΛ, when we assume a flat universe and
neglect the density parameter Ωr for the radiation. In this
study, the C3=Cm term depends on an entropic-force
derived from a volume entropy.

B. ΛðtÞ-Ccst model

For the ΛðtÞ-Ccst model, the general functions are written
as

fðtÞ ¼ gðtÞ ¼ β̂4: ð84Þ

The formulation of this model is equivalent to the standard
ΛCDM model. As shown in Eq. (36), the evolution of the
Hubble parameter for the Ccst version is given as

Eð ~aÞ2 ¼
�
H
H0

�
2

¼
�
1 −

C4

Cm

�
~a−2Cm þ C4

Cm
; ð85Þ

where C1 has been replaced by Cmð¼ 3=2Þ and ~a repre-
sents a=a0. This equation is equivalent to the solution of the
standard ΛCDM model. Therefore, the constant term
C4=Cm behaves as if it were ΩΛ in the standard ΛCDM
model. Similarly, 1 − C4

Cm
behaves as if it were Ωm in the

standard ΛCDM model in a flat universe. In this study, we
determine C4 from ΩΛ of a fine-tuned standard ΛCDM
model, as discussed in Sec. V. Accordingly, we can obtain
β4 from the determinedC4. Substituting w ¼ 0 and α4 ¼ β4
into Eq. (28), β4 is written as

β4 ¼
2

3
C4: ð86Þ

Similarly, β̂4 is given by ð2=3ÞC4H2
0.

In order to discuss density perturbations of the ΛðtÞ type,
we substitute Eq. (84) into Eqs. (37) and (39) to give

_ρþ 3
_a
a
ρ ¼ 0; Q ¼ 0: ð87Þ

Substituting Q ¼ 0 into Eq. (38), the time evolution
equation for the perturbation growth factor is written as

δ̈þ 2H _δ − 4πGρδ ¼ 0: ð88Þ

Solving Eq. (88), we obtain the well-known perturbation
growth factor [18,84] given as

δð ~aÞ ¼
5ð1 − C4

Cm
ÞEð ~aÞ

2

Z
~a

0

dx
x3EðxÞ3 ; ð89Þ

where EðxÞ for the Ccst version is calculated from Eq. (85).
This solution is the same as the standard ΛCDM model.
Note that we assume an entropy Sr4 proportional to r4H in a
matter-dominated universe [85].

C. BV-H model

For the BV-H model, the general functions are written as

fðtÞ ¼ 0; gðtÞ ¼ β̂3H: ð90Þ

As shown in Eq. (77), the evolution of the Hubble
parameter for the H version is given by

Eð ~aÞ≡ H
H0

¼
�
1 −

C3

Cm

�
~a−Cm þ C3

Cm
: ð91Þ

In the present study, C3 is determined through fitting with a
fine-tuned standard ΛCDM model. Consequently, the
obtained C3 for the BV-H model is the same as that for
the ΛðtÞ-H model. Substituting w ¼ 0 and α3 ¼ 0 into
Eq. (27), β3 is given by

β3 ¼ C3: ð92Þ

The obtained β3 ¼ C3 is slightly different from β3 ¼
ð2=3ÞC3 [Eq. (78)] for the ΛðtÞ-H model.
We now examine the density perturbations. As discussed

in Sec. III A 2, when p ¼ 0, the general continuity equation
for the BV type [Eq. (41)] is written as

_ρþ 3
_a
a
ρ ¼ 3

4πG
HgðtÞ: ð93Þ

In addition, the parameter Γ for entropy production
processes [Eq. (43)] is written as

Γ ¼ 3

4πG
HgðtÞ
ρ

: ð94Þ

In the following, we apply the method proposed in
Ref. [53] to the BV-H model.
For the BV-H model, gðtÞ is given by β̂3Hð¼ β3H0HÞ.

Substituting Eq. (92) into this equation, we have

gðtÞ ¼ C3H0H: ð95Þ

Substituting Eq. (95) into Eq. (94), Γ is given by

EVOLUTION OF THE UNIVERSE IN ENTROPIC … PHYSICAL REVIEW D 89, 123501 (2014)

123501-11



Γ ¼ 3

4πG
C3H0H2

ρ
: ð96Þ

Using the critical density ρc0 ¼ 3H2
0=ð8πGÞ and Cm ¼ 3=2

[Eq. (75)], we can rearrange Eq. (96) as

Γ ¼ 3

4πG
C3H0H2

ρ
¼ 2C3

�
ρc0
ρ

�
H2

H0

¼ 3

�
C3

Cm

��
ρc0
ρ

�
H2

H0

¼ 3 ~ΩΛH

�
ρc0
ρ

�
H2

H0

; ð97Þ

where ~ΩΛH
for the BV-H model is given as

~ΩΛH
¼ C3

Cm
: ð98Þ

We emphasize that ~ΩΛH
is not the density parameter for Λ,

but is a constant parameter, although ~ΩΛH
behaves as if it

were the density parameter for Λ.
When we examine the BV type, the time evolution

equation for the perturbation growth factor is given by
Eq. (45) which includes c2eff terms, as shown in Secs. III A 2
and III B. In the present study, we assume c2eff ¼ 0, in order
to ensure an equivalence between the neo-Newtonian and
general relativistic approaches. This is because the neo-
Newtonian equation [Eq. (45)] is equivalent to the general
relativistic equation for a single-fluid-dominated universe
only when c2eff ¼ 0, as examined in the work of Reis [86].
The equivalence is closely discussed in the recent work of
Ramos et al. [87]. (Substituting Eq. (97) into Eq. (42), we
have a time-dependent effective pressure pc. Accordingly,
c2s is not 0, where c2s is defined by c2s ≡ _pc=_ρ. This implies
nonadiabatic perturbations because c2eff ≠ c2s [86,87].)
As discussed above, in the present study, we consider

c2eff ¼ 0. Therefore, Eqs. (48)–(50) are written as

δ00 þ FðηÞδ0 þGðηÞδ ¼ 0; ð99Þ

where

FðηÞ ¼ 2þ ΓþH0

H
−

ΓH0 −HΓ0

Hð3H − ΓÞ ; ð100Þ

GðηÞ ¼
�
Γ
H

− 1

��
Γ
2H

þ 3

2

�
− 3

ΓH0 −HΓ0

Hð3H − ΓÞ : ð101Þ

In Eqs. (99)–(101), 0 represents the differential with respect
to η, i.e., d=dη, where η≡ lnð ~aðtÞÞ [Eq. (47)]. It should be
noted that H and Γ included in Eqs. (99)–(101) for the
BV-H model are different from those for the LJO
model [53].

From Eqs. (91), (97), and (98), Γ=H can be rearranged as

Γ
H

¼ 3 ~ΩΛH

�
ρc0
ρ

�
H
H0

¼ 3 ~ΩΛH

�
H0

H

�
2 H
H0

¼ 3 ~ΩΛH

ð1 − ~ΩΛH
Þ ~a−Cm þ ~ΩΛH

¼ 3 ~ΩΛH
~aCm

ð1 − ~ΩΛH
Þ þ ~ΩΛH

~aCm

¼ 3 ~ΩΛH
e
3
2
η

1 − ~ΩΛH
þ ~ΩΛH

e
3
2
η
; ð102Þ

where ρc0=ρ is replaced by ðH0=HÞ2 using the Friedmann
equation. Also, ~aCm is replaced by e3η=2 using Cm ¼ 3=2
and ~a ¼ eη. Similarly, we obtain

ΓþH0

H
¼ − 3

2
ð1 − ~ΩΛH

Þ þ 3 ~ΩΛH
e
3
2
η

1 − ~ΩΛH
þ ~ΩΛH

e
3
2
η

; ð103Þ

ΓH0 −HΓ0

Hð3H − ΓÞ ¼
− 3

2
~ΩΛH

e
3
2
η

1 − ~ΩΛH
þ ~ΩΛH

e
3
2
η
: ð104Þ

From Eqs. (102)–(104), FðηÞ can be arranged as

FðηÞ ¼ ð1 − ~ΩΛH
Þ þ 13 ~ΩΛH

e
3
2
η

2ð1 − ~ΩΛH
þ ~ΩΛH

e
3
2
ηÞ ; ð105Þ

or

FðηÞ ¼
ð1 − C3

Cm
Þ þ 13 C3

Cm
e
3
2
η

2ð1 − C3

Cm
þ C3

Cm
e
3
2
ηÞ ; ð106Þ

and GðηÞ can be arranged as

GðηÞ ¼ 3f4 ~Ω2
ΛH
e3η − ð1 − ~ΩΛH

Þ2g
2ð1 − ~ΩΛH

þ ~ΩΛH
e
3
2
ηÞ2

þ 9 ~ΩΛH
e
3
2
η

2ð1 − ~ΩΛH
þ ~ΩΛH

e
3
2
ηÞ ; ð107Þ

or

GðηÞ ¼
3f4ðC3

Cm
Þ2e3η − ð1 − C3

Cm
Þ2g

2ð1 − C3

Cm
þ C3

Cm
e
3
2
ηÞ2 þ

9 C3

Cm
e
3
2
η

2ð1 − C3

Cm
þ C3

Cm
e
3
2
ηÞ :

ð108Þ

Using FðηÞ and GðηÞ, we can numerically solve the
differential equation [Eq. (99)] for the BV-H model.
To solve this, we employ the initial conditions of the
Einstein–de Sitter growing model [53]. The initial con-
ditions are set to be δð ~aiÞ ¼ ~ai and δ0ð ~aiÞ ¼ ~ai,
where ~ai ¼ ai=a0 ¼ 10−3.
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D. BV-Ccst model

For the BV-Ccst model, the general functions are written
as

fðtÞ ¼ 0; gðtÞ ¼ β̂4: ð109Þ

As shown in Eq. (85), the evolution of the Hubble
parameter for the Ccst version is given by

Eð ~aÞ2 ¼
�
H
H0

�
2

¼
�
1 −

C4

Cm

�
~a−2Cm þ C4

Cm
: ð110Þ

In the present study, we determine C4 from ΩΛ of a fine-
tuned standard ΛCDM model, as discussed in Sec. V. That
is, the obtained C4 for the BV-Ccst model is the same as C4

for the ΛðtÞ-Ccst model. Substituting w ¼ 0 and α4 ¼ 0 into
Eq. (28), β4 is given by

β4 ¼ C4: ð111Þ

The obtained β4 ¼ C4 is slightly different from β4 ¼
ð2=3ÞC4 [Eq. (86)] for the ΛðtÞ-Ccst model.
We now examine the density perturbations. When p ¼ 0,

the general continuity equation for the BV type [Eq. (41)] is
written as

_ρþ 3
_a
a
ρ ¼ 3

4πG
HgðtÞ; ð112Þ

and the parameter Γ [Eq. (43)] is written as

Γ ¼ 3

4πG
HgðtÞ
ρ

: ð113Þ

For the BV-Ccst model, gðtÞ is given by β̂4 ¼ Ĉ4 ¼ C4H2
0.

Substituting gðtÞ ¼ C4H2
0, ρc0 ¼ 3H2

0=ð8πGÞ, and Cm ¼
3=2 into Eq. (113) and rearranging, we have

Γ ¼ 3

4πG
HðC4H2

0Þ
ρ

¼ 2C4

�
ρc0
ρ

�
H

¼ 3

�
C4

Cm

��
ρc0
ρ

�
H ¼ 3 ~ΩΛ

�
ρc0
ρ

�
H; ð114Þ

where ~ΩΛ for the BV-Ccst model is given as

~ΩΛ ¼ C4

Cm
: ð115Þ

Note that ~ΩΛ is not the density parameter for Λ, but is a
constant parameter, although ~ΩΛ behaves as if it were the
density parameter for Λ. The above equations are equiv-
alent to those for the LJO model [51,53]. For example,
Eq. (114) is the same as Eq. (51).
When we examine the BV type, the time evolution

equation for the perturbation growth factor is given by

Eq. (45). In the present study, we consider c2eff ¼ 0, in order
to ensure an equivalence between the neo-Newtonian
and general relativistic approaches [86], as discussed in
Sec. IV C. Of course, we can expect c2eff ¼ 0 for the
BV-Ccst model [53]. For example, substituting Eq. (114)
into Eq. (42), we obtain a constant effective pressure.
Therefore, we expect that the pressure perturbation δpc
should vanish, i.e., c2eff ≡ δpc=δρ ¼ 0. However, strictly
speaking, the constant effective pressure is not equivalent to
δpc ¼ 0. Accordingly, in the present paper, we explicitly
assume c2eff ¼ 0. (We obtain c2s ¼ 0 from the constant
effective pressure since c2s is defined by _pc=_ρ. This
indicates adiabatic perturbations because c2eff ¼ c2s
[86,87]. The influence of c2eff is closely examined in
Ref. [53].) Consequently, Eqs. (48)–(50) can be written as

δ00 þ FðηÞδ0 þGðηÞδ ¼ 0; ð116Þ

where

FðηÞ ¼ 2þ ΓþH0

H
−

ΓH0 −HΓ0

Hð3H − ΓÞ ; ð117Þ

GðηÞ ¼
�
Γ
H

− 1

��
Γ
2H

þ 3

2

�
− 3

ΓH0 −HΓ0

Hð3H − ΓÞ : ð118Þ

Substituting Eqs. (110), (114), and (115) into Eqs. (117)
and (118) and rearranging, FðηÞ and GðηÞ [53] can be
summarized as

FðηÞ ¼ ð1 − ~ΩΛÞ þ 16 ~ΩΛe3η

2ð1 − ~ΩΛ þ ~ΩΛe3ηÞ
¼

ð1 − C4

Cm
Þ þ 16 C4

Cm
e3η

2ð1 − C4

Cm
þ C4

Cm
e3ηÞ ;

ð119Þ

GðηÞ ¼ 3f4 ~Ω2
Λe6η − ð1 − ~ΩΛÞ2g

2ð1 − ~ΩΛ þ ~ΩΛe3ηÞ2
þ 9 ~ΩΛe3η

1 − ~ΩΛ þ ~ΩΛe3η

¼ 9ð1 − ~ΩΛÞ2
2ð1 − ~ΩΛ þ ~ΩΛe3ηÞ2

þ 3ð5 ~ΩΛe3η − 2þ 2 ~ΩΛÞ
1 − ~ΩΛ þ ~ΩΛe3η

¼
9ð1 − C4

Cm
Þ2

2ð1 − C4

Cm
þ C4

Cm
e3ηÞ2 þ

3ð5 C4

Cm
e3η − 2þ 2 C4

Cm
Þ

1 − C4

Cm
þ C4

Cm
e3η

:

ð120Þ

The evolution of δ is solved numerically, using the initial
conditions of the Einstein–de Sitter growing model [53], as
described in Sec. IV C.

V. EVOLUTION OF THE UNIVERSE IN THE
FOUR ENTROPIC-FORCE MODELS

We examine the evolution of the Universe in the four
entropic-force models, ΛðtÞ-H, ΛðtÞ-Ccst, BV-H, and
BV-Ccst. To discuss the properties of the four models,
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we determine four dimensionless constants, α3, α4, β3, and
β4, from the background evolution of the Universe. The
obtained constants for the four models are summarized in
Table II. (Several parameters are 0 based on our definition
of each model. For example, for the ΛðtÞ-H model, both α4
and β4 are 0, because constant terms with α4 and β4 are
neglected in this model.)
For the H version (i.e., the ΛðtÞ-H and BV-H models),

C4 is 0. Accordingly, for the H version, we determine C3

through fitting with a fine-tuned standard ΛCDM model
[5]. To this end, we use the luminosity distance, as
examined in Ref. [60]. After C3 and C4 are obtained,
the four dimensionless constants α3, α4, β3, and β4, are
determined from Eqs. (27) and (28). (For the ΛðtÞ type, we
have β3 ¼ ð2=3ÞC3 and β4 ¼ ð2=3ÞC4, whereas we have
β3 ¼ C3 and β4 ¼ C4 for the BV type.) The luminosity
distance [88] is generally given by

�
H0

c

�
dL ¼ ð1þ zÞ

Z
1þz

1

dy
FðyÞ ; ð121Þ

where the integrating variable y, the function FðyÞ, and the
redshift z are given by

y ¼ a0
a
; FðyÞ ¼ H

H0

; and z≡ a0
a
− 1: ð122Þ

Substituting Eq. (32) into Eq. (121), we obtain the
luminosity distance for the H version. For the standard
ΛCDM model, the luminosity distance of a spatially flat
universe is given as

�
H0

c

�
dL ¼ ð1þ zÞ

Z
z

0

dx½ð1þ xÞ2ð1þΩmxÞ

− xð2þ xÞΩΛ�−1=2; ð123Þ

where Ωm and ΩΛ represent the density parameters for
matter and Λ, respectively. In the standard ΛCDM model,

Ωm and ΩΛ are given by Ωm ¼ ρm
ρc0

¼ 8πGρm
3H2

0

and ΩΛ ¼ Λ
3H2

0

[89]. Here ρm is the density of matter, including baryonic
and dark matter. In the present paper, we consider a
spatially flat universe given by Ωtotal ¼ Ωm þ ΩΛ ¼ 1,
neglecting the density parameter Ωr for the radiation
[58–60]. In particular, we consider the Universe in which
ðΩm;ΩΛÞ ¼ ð0.315; 0.685Þ. This universe is obtained from
a fine-tuned standard ΛCDM model, which takes into
account the recent Planck 2013 best fit values [5].
As examined in Ref. [60], we determine C3 for the H

version, through fitting with the fine-tuned standardΛCDM
model, minimizing the function given by

χ2ðC3Þ ¼
XNz

i¼0

�
dL;ΛðzÞ − dLðz;C3Þ

dL;ΛðzÞ
�
2

; ð124Þ

where dL;ΛðzÞ and dLðz;C3Þ are the luminosity distances
for the fine-tuned standard ΛCDM model and the H
version, respectively. Through fitting, C3 is approximately
determined to be 0.884 [60]. The dimensionless constants
for the ΛðtÞ-H and BV-H models are summarized in
Table II.
Next, we determine the dimensionless constants for

the Ccst version, i.e., the ΛðtÞ-Ccst and BV-Ccst models.
To this end, we determine C4. As shown in Eq. (36), the
evolution of the Hubble parameter for the Ccst version is
given as

�
H
H0

�
2

¼
�
1 −

C4

C1

��
a
a0

�
−2C1 þ C4

C1

; ð125Þ

where C1 can be replaced by Cm ¼ 3=2 [Eq. (75)].
Equation (125) is equivalent to the solution of the standard
ΛCDM model. This implies that the constant term C4=C1

behaves like ΩΛ in the standard ΛCDM model. Therefore,
we determineC4 fromC1ΩΛ, without fitting. Consequently,
C4 is determined to be C1ΩΛ ¼ 1.5 × 0.685≃ 1.03. The
dimensionless constants for the ΛðtÞ-Ccst and BV-Ccst
models are summarized in Table II.
To observe the properties of the H and Ccst versions, the

luminosity distance dL is shown in Fig. 1. The H version
corresponds to the ΛðtÞ-H and BV-H models, whereas the
Ccst version corresponds to the ΛðtÞ-Ccst and BV-Ccst
models. As shown in Fig. 1, both the H and Ccst versions
agree well with the supernova data points. This is because,
for theH version, C3 ¼ 0.884 is determined through fitting
with a fine-tuned standard ΛCDMmodel. (The background
evolution of the Universe in the Ccst version is the same as
that in the fine-tuned standard ΛCDM model.) In addition,
as discussed in Ref. [60], the H and Ccst versions can
describe a decelerating and accelerating universe. To
confirm this, we examine a temporal deceleration param-
eter q defined by

TABLE II. Dimensionless constants for the four entropic-force
models. We consider a matter-dominated universe, i.e.,
C1 ¼ Cm ¼ 1.5. For the ΛðtÞ-H and BV-H models, C3 is
determined through fitting with the luminosity distance of a
fine-tuned standard ΛCDM model [60]. For the ΛðtÞ-Ccst and
BV-Ccst models, C4 is calculated from C1ΩΛ, where ΩΛ is 0.685
based on the Planck 2013 results [5]. For details, see the text.

Parameter ΛðtÞ-H ΛðtÞ-Ccst BV-H BV-Ccst

α3 ð2=3ÞC3 0 0 0
α4 0 ð2=3ÞC4 0 0
β3 ð2=3ÞC3 0 C3 0
β4 0 ð2=3ÞC4 0 C4

C1 1.5 1.5 1.5 1.5
C3 0.884 0 0.884 0
C4 0 1.03 0 1.03
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q≡ −
�

ä
aH2

�
; ð126Þ

where positive q represents deceleration and negative q
represents acceleration (ä=a is equal to _H þH2).
Substituting Eq. (31) or Eq. (35) into Eq. (126), and using
Ĉ3 ¼ C3H0 or Ĉ4 ¼ C4H2

0, we obtain q for the H version
or the Ccst version, respectively, given as

q ¼
(
C1 −

C3

H=H0
− 1 ðH versionÞ;

C1 −
C4

ðH=H0Þ2 − 1 ðCcst versionÞ:
ð127Þ

From Eq. (127), we can calculate each temporal deceler-
ation parameter. As shown in Fig. 2, both the H and Ccst
versions describe a decelerated and accelerated expansion
of the Universe in low redshift. In this way, theH version is
similar to the Ccst version, when we focus on the back-
ground evolution of the Universe. Note that the original
entropic-force model [55,56] cannot describe a decelerating
and accelerating universe [20,63], because H and constant
entropic-force terms are not included.
We now examine first-order density perturbations in the

four models. To this end, we observe the evolution of the
perturbation growth factor δ. As described in the previous
section, δ for the BV-H and BV-Ccst models is numerically
solved by using the initial conditions of the Einstein–de
Sitter growing model, i.e., δð ~aiÞ ¼ ~ai and δ0ð ~aiÞ ¼ ~ai,
where ~ai ¼ ai=a0 ¼ 10−3. In contrast, we calculate δ for
the ΛðtÞ-H and ΛðtÞ-Ccst models without using the initial
conditions. Consequently, we find that δð ~aiÞ for the ΛðtÞ-H
model is slightly smaller than 10−3. Therefore, δ for the
ΛðtÞ-H model is normalized so that δð ~aiÞ ¼ ~ai ¼ 10−3 is
satisfied. The normalized values are plotted in Fig. 3. The
normalization for the ΛðtÞ-H model does not influence the
following discussion. (The ΛðtÞ-Ccst model satisfies
δð ~aiÞ ¼ ~ai ¼ 10−3 without normalization.)
For small a=a0 (a=a0 ⪅ 0.1), δ increases with a=a0, as

shown in Fig. 3. Thereafter, the increase of δ for the
ΛðtÞ-H, BV-H, and BV-Ccst models tends to gradually
slow. For a=a0 ⪆ 1, δ for the three models decreases,
whereas δ for the ΛðtÞ-Ccst does not decrease. It is clearly
shown that density perturbations for the ΛðtÞ-Ccst and BV-
Ccst models are different from each other. However, as
mentioned previously, the background evolution of the
Universe in the BV-Ccst model is the same as that for
the ΛðtÞ-Ccst model. Similarly, density perturbations for the
ΛðtÞ-H and BV-H models are different from each other
although the background evolution in the two models is the
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FIG. 1 (Color online) (color online). Dependence of luminosity
distance dL on redshift z. The H version corresponds to the
ΛðtÞ-H and BV-H models, whereas the Ccst version corresponds
to the ΛðtÞ-Ccst and BV-Ccst models. The open diamonds with
error bars are supernova data points taken from Ref. [3]. For the
supernova data points, H0 is set to 67.3 km=s=Mpc [5]. Dimen-
sionless constants for the H and Ccst versions are summarized in
Table II. Note that dL for the H version is equivalent to dL
examined in our previous work [60].
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FIG. 2 (Color online) (color online). Dependence of temporal
deceleration parameter q on redshift z. The H version corre-
sponds to the ΛðtÞ-H and BV-H models, whereas the Ccst version
corresponds to the ΛðtÞ-Ccst and BV-Ccst models.
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FIG. 3 (Color online) (color online). Evolution of density
perturbation growth factor δ in the four entropic-force models.
Note that δ for the ΛðtÞ-H model is normalized (see the text).
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same. In addition, for a=a0 ⪆ 0.5, δ for the BV types
decreases significantly, in comparison with the ΛðtÞ types.
Finally, we observe the evolution of an indicator of

clustering, namely, the growth rate of clustering [84]. (For
the ΛðtÞCDM and CCDMmodels, the growth rate has been
closely examined, e.g., see Refs. [18,53].) The growth rate
fðzÞ of clustering is calculated as

fðzÞ ¼ d ln δ
d ln a

¼ −ð1þ zÞ d ln δ
dz

: ð128Þ

The evolution of the growth rate of clustering in the four
models is shown in Fig. 4. The observed data points are
taken from a summary of Ref. [53]. Note that each original
data point is given in Refs. [90–96]. As shown in Fig. 4, for
high z (z⪆ 2), the growth rate fðzÞ of each model is
positive and is likely consistent with the observed data
points. For low z (z⪅ 1), fðzÞ for the ΛðtÞ-H, BV-H, and
BV-Ccst models tends to be negative and disagrees with the
observed growth rate. This is because, as shown in Fig. 3, δ
for the three models decays at high a=a0 (corresponding to
low z). As shown in Fig. 2, the H version (i.e., the ΛðtÞ-H
and BV-H models) can describe a decelerating and accel-
erating universe predicted by the standard ΛCDM model.
However, the ΛðtÞ-H and BV-H models disagree with the
observed growth rate of clustering [Fig. 4]. In addition, the
BV-Ccst model disagrees with the observed growth rate,
although its background evolution is the same as the
ΛðtÞ-Ccst model. Of course, as examined in Ref. [53],
the BV-Ccst model agrees with the observed growth rate if
c2eff is set to be −1 assuming that c2eff is a free parameter.
However, in the present paper, we do not consider the case
for c2eff ≠ 0, as discussed in Sec. IV D.
In contrast, fðzÞ for the ΛðtÞ-Ccst model agrees well with

the observed growth rate, even for low z, as shown in Fig. 4.
This is because the formulation of the ΛðtÞ-Ccst model is
equivalent to that of the standard ΛCDM model. We find
that the ΛðtÞ types (i.e., the ΛðtÞ-H and ΛðtÞ-Ccst models)

are consistent with the observed growth rate, in comparison
with the examined BV types (i.e., the BV-H and BV-Ccst
models). This indicates that the ΛðtÞ type, especially the
ΛðtÞ-Ccst model, is suitable for describing structure
formations. Note that an entropy Sr4 proportional to r4H
is required for the ΛðtÞ-Ccst model, as discussed in
Appendix A 3.
In the present paper, we study the evolution of the

Universe in the four entropic-force models, obtained by
combining theH and constant entropic-force terms with the
ΛðtÞ and BV types. Similar results have been examined in
bulk viscous models, CCDM models, and ΛðtÞCDM
models. For example, cosmological models similar to the
BV-H, BV-Ccst, and ΛðtÞ-H models have been closely
investigated in Refs. [40], [53], and [18], respectively.
Our results are consistent with those examined in the
previous works.

VI. CONCLUSIONS

Entropic-force models are categorized into two types.
The first is the ΛðtÞ type similar to ΛðtÞCDM models, and
the second is the BV type similar to bulk viscous models
(and CCDM models). In order to examine the two types
systematically, we have considered an extended entropic-
force model which includes H and constant Ccst terms. In
particular, we have focused on the H and Ccst terms
separately, in a homogeneous, isotropic, and spatially flat
matter-dominated universe. The constant entropic-force
term considered here is derived from an entropy Sr4
proportional to r4H, assuming Sr4 as one of the possible
entropies.
In the present paper, we have examined four models, the

ΛðtÞ-H, ΛðtÞ-Ccst, BV-H, and BV-Ccst models, which are
obtained from combining the H and Ccst terms with the
ΛðtÞ and BV types. The four models agree well with
observed supernova data points and describe a decelerated
and accelerated expansion of the Universe. In order to
examine first-order density perturbations in the four mod-
els, we used two formulations proposed by Basilakos et al.
[18] and Jesus et al. [53]. The two formulations can be
summarized using a neo-Newtonian approach and, there-
fore, we have proposed a unified formulation which helps
to observe the two formulations systematically. In addition,
we have extended the formulation, in order to study the BV-
H model. Consequently, for large a=a0, the perturbation
growth factor δ for the ΛðtÞ-H, BV-H, and BV-Ccst models
decreases, whereas δ for ΛðtÞ-Ccst does not decrease.
Therefore, for low redshift, the growth rate for the
ΛðtÞ-H, BV-H, and BV-Ccst models tends to be negative
and disagrees with the observed growth rate. It is found that
for low redshift, H versions (i.e., the ΛðtÞ-H and BV-H
models) are not consistent with structure formations,
though the H version describes a decelerating and accel-
erating universe. In contrast, the growth rate for the
ΛðtÞ-Ccst model agrees well with the observed growth

-2.0

-1.0

0.0

1.0

2.0

0 1 2 3 4

Λ(t)-CcstΛ(t)-H

BV-H

BV-Ccst

FIG. 4 (Color online) (color online). Evolution of the growth
rate fðzÞ of clustering in the four entropic-force models. The
closed circles with error bars are the observed data points taken
from a summary of Ref. [53].
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rate. Interestingly, the BV-Ccst model disagrees with the
observed growth rate, although its background evolution of
the Universe is the same as that of the ΛðtÞ-Ccst model.
(Note that we have assumed c2eff ¼ 0 in the present study.
The BV-Ccst model agrees with the observed growth rate if
c2eff is considered to be a free parameter, as examined by
Jesus et al. [53].)
It is also found that ΛðtÞ types (the ΛðtÞ-H and ΛðtÞ-Ccst

models) are consistent with the observed growth rate, in
contrast with BV types (the BV-H and BV-Ccst models).
Therefore, in entropic-force models, the ΛðtÞ type is likely
suitable for describing density perturbations or structure
formations. Through the present study, we have revealed
fundamental properties of the two types of entropic-force
models systematically. Of course, similar cosmological
models have been discussed in bulk viscous models
[40], CCDM models [53], and ΛðtÞCDM models [18].
Our results are related to those cosmological models
although the theoretical backgrounds are different.

APPENDIX A: DERIVATION OF
ENTROPIC-FORCE TERMS

In the entropic cosmology suggested by Easson et al.
[55], the horizon of the Universe is assumed to have an
associated entropy and an approximate temperature. In this
paper, we use the Hubble horizon as the preferred screen,
because the apparent horizon coincides with the Hubble
horizon in a spatially flat universe [55]. (If we consider a
spatially nonflat universe, we would use the apparent
horizon as the preferred screen rather than the Hubble
horizon.) The Hubble horizon (radius) rH is given by

rH ¼ c
H
: ðA1Þ

The temperature T on the Hubble horizon is given by

T ¼ ℏH
2πkB

× γ ¼ ℏ
2πkB

c
rH

γ; ðA2Þ

where kB and ℏ are the Boltzmann constant and the reduced
Planck constant, respectively. The reduced Planck constant
is defined by ℏ≡ h=ð2πÞ, where h is the Planck constant.
As described in Refs. [58–60], the temperature considered
here is obtained by multiplying the horizon temperature,
ℏH=ð2πkBÞ, by γ, a non-negative free parameter on the
order of Oð1Þ. (A similar parameter for the screen temper-
ature has been discussed in Refs. [55,61].) In the present
study, we use the temperature on the horizon, assuming
thermal equilibrium states based on a single holographic
screen [55,56].
In the following, we discuss three entropic-force terms,

the H2, H, and constant terms, which are derived from an
area entropy Sr2, a volume entropy Sr3, and an entropy Sr4
proportional to r4H, respectively. In Secs. A 1 and A 2, we

derive the H2 and H terms, according to the works of
Easson et al. [55] and the present authors [60]. In Sec. A 3,
we derive the constant entropic-force term from Sr4
proportional to r4H.

1. H2 terms derived from the area entropy Sr2
In the original entropic-force model [55,56], an asso-

ciated entropy on the Hubble horizon is given as

Sr2 ¼
kBc3

ℏG
AH

4
; ðA3Þ

where AH is the surface area of a sphere with the Hubble
radius rH. This is the Bekenstein entropy (area entropy)
which is proportional to AH and r2H [58–60]. Substituting
AH ¼ 4πr2H into Eq. (A3), and using rH ¼ c=H, we have

Sr2 ¼
kBc3

ℏG
AH

4
¼

�
πkBc5

ℏG

�
1

H2
¼ K

1

H2
; ðA4Þ

where K is a positive constant [58,60] given by

K ¼ πkBc5

ℏG
: ðA5Þ

The entropic-force F can be given by

F ¼ −
dE
dr

¼ −T
dS
dr

�
¼ −T

dS
drH

�
; ðA6Þ

where the minus sign indicates the direction of increasing
entropy or the screen corresponding to the horizon [55].
The entropic-force Fr2 derived from the area entropy Sr2 is
given as

Fr2 ¼ −T
dSr2
drH

¼ −γ
c4

G
: ðA7Þ

Therefore, the pressure pr2 [55] is given by

pr2 ¼
Fr2

AH
¼ −γ

c4

G
1

4πðc=HÞ2 ¼ −γ
c2

4πG
H2: ðA8Þ

Since Eq. (A8) indicates negative pressure, the entropic-
force model can explain an accelerated expansion of the
late universe [55]. The pressure pr2 is proportional
to H2 which corresponds to entropic-force terms. In
Refs. [55,60], the acceleration equation is given as

ä
a
¼ −

4πG
3

�
ρþ 3p

c2

�
þ γH2: ðA9Þ

The last term, i.e., the γH2 term, is the so-called entropic-
force term derived from the area entropy Sr2.
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2. H terms derived from the volume entropy Sr3
In this subsection, instead of area entropy, we consider a

volume entropy [60]. Recently, Tsallis and Cirto have
suggested a generalized black-hole entropy using appro-
priate nonadditive generalizations for d-dimensional
systems [68]. In their study, a nonadditive entropy (for a
set of W discrete states) is defined by

Sδg ¼ kB
XW
i¼1

pi

�
ln

1

pi

�
δg ðδg > 0Þ; ðA10Þ

where pi is a probability distribution [68]. (For other
nonextensive entropies, e.g., Tsallis’s entropy [97], see
Ref. [98].) When δg ¼ 1, Sδg recovers the Boltzmann-Gibbs
entropy. Tsallis and Cirto demonstrated that a generalized
black-hole entropy can be written as

Sδg¼3=2

kB
∝
�
SB
kB

�3
2

; ðA11Þ

where the event horizon area of a black hole is used for the
Bekenstein black-hole entropy SB. As examined in our
previous study [60], we apply this entropy to an entropy for
entropic cosmology. Using AH ¼ 4πr2H, we have the
entropy S on the Hubble horizon evaluated as

S ∝ A
3
2

H ∝ r3H: ðA12Þ

Accordingly, we assume the volume entropy Sr3 given by

Sr3 ¼
πkBc3

ℏG
× ζr3H; ðA13Þ

where ζ is a non-negative free parameter and is a
dimensional constant [60]. Substituting rH ¼ c=H into
Eq. (A13), we obtain

Sr3 ¼
πkBc3

ℏG
× ζ

�
c
H

�
3

¼ Kcζ
1

H3
; ðA14Þ

where K is πkBc5=ðℏGÞ given by Eq. (A5). Therefore, the
entropic-force Fr3 derived from the volume entropy Sr3
[60] is given as

Fr3 ¼ −T
dSr3
drH

¼ −γ
c4

G

�
3cζ
2

1

H

�
: ðA15Þ

The pressure pr3 is given as

pr3 ¼
Fr3

AH
¼ −γ

c2

4πG
3cζ
2

H: ðA16Þ

The obtained entropic-force term is anH term, unlike in the
case of the original entropic-force model. That is, the H

term is derived from the volume entropy Sr3. As examined
in Ref. [60], the entropic-force model which includes theH
term describes a decelerating and accelerating universe.

3. Constant terms derived from an entropy
Sr4 proportional to r4H

In this subsection, we assume an entropy Sr4 propor-
tional to r4H, which is defined by

Sr4 ¼
πkBc3

ℏG
× ψr4H; ðA17Þ

where ψ is a non-negative free parameter and a dimensional
constant. Of course, the origin of such an entropy is not
clear. However, it is possible to consider Sr4 as a possible
entropy if extra dimensions were assumed. Substituting
rH ¼ c=H into Eq. (A17), we obtain

Sr4 ¼
πkBc3

ℏG
× ψr4H ¼ Kc2ψ

1

H4
; ðA18Þ

where K is πkBc5=ðℏGÞ [Eq. (A5)]. Substituting Eqs. (A2)
and (A17) into Eq. (A6), and using rH ¼ c=H, we have the
entropic-force Fr4 given as

Fr4 ¼ −T
dSr4
drH

¼ −
ℏ

2πkB

c
rH

γ ×
d

drH

�
πkBc3

ℏG
× ψr4H

�

¼ −γ
c4

G
ð2ψr2HÞ ¼ −γ

c4

G

�
2c2ψ

1

H2

�
: ðA19Þ

From Eq. (A19), the pressure pr4 derived from Sr4 is
given as

pr4 ¼
Fr4

AH
¼ −γ

c4

G

�
2c2ψ

1

H2

�
1

4πr2H

¼ −γ
c4

G

�
2c2ψ

1

H2

�
1

4πðc=HÞ2 ¼ −γ
c2

4πG
ð2c2ψÞ:

ðA20Þ

The constant term (similar to a cosmological constant) is
derived from Sr4 proportional to r4H. While the origin of Sr4
is not clear and it is therefore important to ultimately clarify
the origin of Sr4, we do not discuss this in the present study,
though we assume Sr4 as a possible model. Note that a
similar constant term can be obtained if a bulk viscosity ξ of
cosmological fluids is given by ξ ∝ 1=H (∼1=T).

APPENDIX B: BACKGROUND EVOLUTION IN
AN EXTENDED ENTROPIC-FORCE MODEL

We review the background evolution of the Universe
in an extended entropic-force model given by Eq. (24). In
fact, Eq. (24) is essentially the same as the equation for a
general ΛðtÞCDM model examined in Ref. [18]. From
Eq. (24), we have

NOBUYOSHI KOMATSU AND SHIGEO KIMURA PHYSICAL REVIEW D 89, 123501 (2014)

123501-18



Z
H

þ∞

dy

−C1y2 þ Ĉ3yþ Ĉ4

¼ t; ðB1Þ

where we consider C1 > 0, Ĉ3 ≥ 0, and Ĉ4 ≥ 0, except the
case for Ĉ3 ¼ Ĉ4 ¼ 0. Using Ĉ3 ¼ C3H0 and Ĉ4 ¼ C4H2

0

[Eqs. (27) and (28)], and rearranging, we obtain

H
H0

¼ ðC3 þ AÞ exp½AH0t� − C3 þ A
2C1ðexp½AH0t� − 1Þ ; ðB2Þ

a
a0

¼
ðexp½AH0t� − 1Þ 1

C1 exp½C3−A
2C1

×H0t�
ðexp½AH0t0� − 1Þ 1

C1 exp½C3−A
2C1

×H0t0�
; ðB3Þ

where A and H0t0 are given by

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
3 þ 4C1C4

q
; ðB4Þ

H0t0 ¼ ln

�
2C1 − C3 þ A
2C1 − C3 − A

�1
A

: ðB5Þ

We can apply the above solutions to both the ΛðtÞ and BV
types. The solutions are equivalent to those for the general
ΛðtÞCDM model [18].

APPENDIX C: Ccst VERSION

We examine solutions of an entropic-force model which
includes constant terms, i.e., the Ccst version. To this end,
we neglectH terms from the extended entropic-force model
given by Eqs. (18) and (19). That is, we assume
α̂3 ¼ β̂3 ¼ 0, and therefore Ĉ3 of Eq. (24) is 0. In addition,
we assume that C1 is a positive constant, in a single-fluid-
dominated universe. In the following, we extend our
solution method discussed in Refs. [58,60], focusing on
the background evolution of the Universe.
When Ĉ3 ¼ 0, we can rearrange Eq. (24) as

_H ¼ dH
dt

¼ −C1H2 þ Ĉ4: ðC1Þ

Therefore, we have

dH
dN

¼ −C1H þ Ĉ4

H
; ðC2Þ

where N is defined by

N ≡ ln a and therefore dN ¼ da
a
: ðC3Þ

We can solve Eq. (C2) when C1 and Ĉ4 are constant. (We
consider Ĉ4 to be a non-negative free parameter.) When C1

and Ĉ4 are constant, Eq. (C2) is integrated as

Z
dH

−C1H þ Ĉ4

H

¼
Z

dN: ðC4Þ

Solving this integral, and using N ¼ ln a, we have

C1H2 − Ĉ4 ¼ Da−2C1 ; ðC5Þ

and dividing this equation by C1 gives

H2 −
Ĉ4

C1

¼ D
C1

a−2C1 ; ðC6Þ

where D is an integral constant. Dividing Eq. (C6) by
H2

0 − ðĈ4=C1Þ ¼ ðD=C1Þa−2C1

0 , we have

H2 − ðĈ4=C1Þ
H2

0 − ðĈ4=C1Þ
¼

�
a
a0

�
−2C1

: ðC7Þ

Rearranging Eq. (C7) and substituting C4 ¼ Ĉ4=H2
0

[Eq. (28)] into the resulting equation, we obtain

�
H
H0

�
2

¼
�
1 −

1

H2
0

Ĉ4

C1

��
a
a0

�
−2C1 þ 1

H2
0

Ĉ4

C1

¼
�
1 −

C4

C1

��
a
a0

�
−2C1 þ C4

C1

; ðC8Þ

where C1 and C4 are determined from Eqs. (25) and (28),
respectively.
Finally, we discuss the time evolution of the scale factor.

To this end, Eq. (C8) is rearranged as

~H2 ¼ ð1 − BÞ ~a−2C1 þ B; ðC9Þ

where ~H, ~a, and B are defined by

~H ≡ H
H0

; ~a≡ a
a0

; B≡ C4

C1

: ðC10Þ

Multiplying Eq. (C9) by ~a2, we obtain

~H2 ~a2 ¼ ~a2½ð1 − BÞ ~a−2C1 þ B�: ðC11Þ

Substituting ~H ~a ¼ ðd ~a=dtÞ=H0 [58,60] into Eq. (C11) and
rearranging, we have

1

H0

d ~a
dt

¼ ~a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − BÞ ~a−2C1 þ B

q
: ðC12Þ

Integrating Eq. (C12), we obtain

Z
~a

1

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − BÞx−2C1 þ B

p ¼
Z

t

t0

H0dt ¼ H0ðt − t0Þ:

ðC13Þ
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Solving this integral yields

1

2
ffiffiffiffi
B

p
C1

ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=B − 1Þ ~a−2C1 þ 1

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=B − 1Þ ~a−2C1 þ 1

p �
¼ H0ðt − t0Þ:

ðC14Þ
Moreover, solving Eq. (C14) for ~a and substituting
Eq. (C10) into the resulting equation, we have

a
a0

¼

2
64
� ffiffiffiffi

C4

C1

q
þ 1

	
exp½2 ffiffiffiffiffiffiffiffiffiffiffi

C4C1

p
H0ðt − t0Þ� þ

ffiffiffiffi
C4

C1

q
− 1

2
ffiffiffiffi
C4

C1

q
exp½ ffiffiffiffiffiffiffiffiffiffiffi

C4C1

p
H0ðt − t0Þ�

3
75

1
C1

;

ðC15Þ
and rearranging this gives

a
a0

¼
"
coshð

ffiffiffiffiffiffiffiffiffiffiffi
C4C1

p
tH0

Þ þ
ffiffiffiffiffiffi
C1

C4

s
sinhð

ffiffiffiffiffiffiffiffiffiffiffi
C4C1

p
tH0

Þ
# 1

C1

;

ðC16Þ

where tH0
is defined by

tH0
≡H0ðt − t0Þ: ðC17Þ

The equivalent equations have been extensively examined
in ΛCDM and ΛðtÞCDM models. Note that the constant
term considered here is derived from an entropy Sr4
proportional to r4H.
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