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We obtain the dipolar anisotropies in the arrival directions of ultrahigh energy cosmic rays diffusing from
nearby extragalactic sources. We discuss both the energy regime of spatial diffusion and the quasirectilinear
one leading to just angular diffusion at higher energies. We obtain analytic results for the anisotropies from
a single source, which are validated using two different numerical simulations. For a scenario with a few
sources in the local supercluster (with the closest source at a typical distance of few to tens of Mpc), we
discuss the possible transition between the case in which the anisotropies are dominated by a few sources at
energies below few EeV towards the regime in which many sources contribute at higher energies. The effect
of a nonisotropic source distribution is also discussed, showing that it can significantly affect the observed
dipole.
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I. INTRODUCTION

The actual sources of the cosmic rays (CRs) are still
unknown, although it is believed that the vast majority of
those observed with energies E < 0.1 EeV (where
EeV≡ 1018 eV) are of galactic origin, probably acceler-
ated in supernova explosions, while those with energies
above few EeV are most likely of extragalactic origin,
probably accelerated in active galaxies or gamma ray
bursts. The precise energy at which the transition between
galactic and extragalactic CRs takes place is under debate,
with different proposals locating it near the second knee (a
steepening of the spectrum at ∼0.1 EeV) or near the ankle
(a flattening of the spectrum observed at ∼4 EeV).
The main observables available to infer the CR proper-

ties are the energy spectrum, the composition indicators,
and the anisotropies in the arrival directions measured at
different angular scales. In particular, the changes in the
slope of the spectrum just mentioned could, for instance, be
indicating a change in the propagation properties (such as
an enhanced escape from the Galaxy starting at the second
knee) or a change in the source population (such as the
dominance of the extragalactic component above the
ankle), and some combination of these can also take place
at intermediate energies. In addition, other effects such as
the impact of pair production energy losses on extragalactic
protons interacting with the CMB or diffusion effects from
nearby sources can also contribute in shaping the spectrum
at EeV energies.
Regarding the measured composition, the Kascade-

Grande surface detector experiment [1] found a spectral
steepening of the heavy component at about 8 × 1016 eV,
just where an iron knee is expected if the knee at about 3 to
5 × 1015 eV is caused by a decrease in the flux of light
primaries (protons and/or helium), in scenarios in which the
acceleration or the confinement of CRs in the Galaxy

depend on the rigidity of the particles. At EeV energies,
measurements of the maxima in the air shower develop-
ment as well as its fluctuations, determined using the
fluorescence technique [2,3], suggest that the composition
is predominantly light. On the other hand, upper bounds on
dipole and quadrupole anisotropies at these energies [4]
significantly constrain models in which a light component
has a galactic origin. Actually, the large-scale anisotropies
in right ascension reported by Auger are below ∼2% at EeV
energies and show a marginally significant indication of a
transition from a direction near RA≃ 270° below 1 EeV,
which is consistent with the direction of the Galactic center,
towards directions near RA≃ 100° above the ankle energy,
with an amplitude increasing to the several percent level
near 10 EeV.
In this paper we want to consider in detail the predictions

for the anisotropies produced by a nearby extragalactic
source in the case in which CRs diffuse due to the presence
of sizeable turbulent magnetic fields in the local super-
cluster, so that spatial diffusion is relevant, having in mind
that this may significantly contribute to the CR anisotropies
at EeV energies. Some studies of this kind were performed
in the past [5], and here we improve on the treatment of the
diffusion effects, adopting a more accurate energy depend-
ence for the diffusion coefficients, and we obtain a detailed
matching between the diffusive and quasirectilinear
regimes, finding analytic fits to the results and validating
them with different numerical simulations of CR trajecto-
ries in turbulent fields. We also discuss the possible
transition between a few sources contributing at low
energies to a regime where many sources contribute at
higher energies, considering also the effects of their
possibly nonisotropic spatial distribution. As byproducts
of this work we provide in Sec. III detailed fits to the
diffusion coefficients as a function of the energy for
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Kolmogorov and Kraichnan turbulence, covering the tran-
sition between the resonant and nonresonant regimes. We
also provide in Appendix B simple fits to the proton
attenuation lengths that allow for an analytic treatment of
the effects of proton energy losses.

II. TURBULENT MAGNETIC FIELDS AND
DIFFUSIVE PROPAGATION

Turbulent magnetic fields may be produced in the
Universe from the evolution of primordial seeds affected
by the process of structure formation. This typically leads
to magnetic fields with strength correlated with the matter
density (B ∝ ρ2=3 due to the flux conservation during the
collapse), and hence being enhanced in dense regions such
as superclusters while suppressed in the voids.
Extragalactic magnetic fields may also result from galactic
outflows, in which galactic B fields are transported by
winds into the intra-cluster medium. Although magnetic
fields with μG strengths have been measured in cluster
cores, at supercluster scales they are expected to be smaller,
and values from nG up to ∼100 nG have been considered,
adopting for their coherence length typical values of order
0.1–1 Mpc [6].
We will start by considering individual CR sources in the

local supercluster, at distances rs < 100 Mpc, assuming for
simplicity that a uniform isotropic turbulent magnetic field
is present within the diffusion region. The field will be
characterized by a root mean square strength
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hB2ðxÞi

p
. An important property is the distribution

of the magnetic energy density w on different length scales,
usually described adopting a power law in Fourier space
wðkÞ ∝ k−m. For instance, a Kolmogorov spectrum of
turbulence corresponds to m ¼ 5=3, and is obtained when
the initial energy is injected at the maximum scale Lmax and
is then transferred to lower scales by wave interactions until
it dissipates at the scale Lmin. Alternatively, the Kraichnan
spectrum with m ¼ 3=2 is expected to result in the case of
MHD waves.
Several magnetic field properties are discussed in the

Appendix A. In particular the coherence length of the field
lc, defined as in [7,8], satisfies

lc ¼
Lmax

2

m − 1

m
1 − ðLmin=LmaxÞm
1 − ðLmin=LmaxÞm−1 ð1Þ

where Lmin and Lmax are the minimum and maximum
scales of the turbulence spectrum. Note that in the case in
which Lmin ≪ Lmax, as we will consider in the following,
one has lc ≃ Lmax=5 for Kolmogorov, while lc ≃ Lmax=6
for Kraichnan turbulence. An effective Larmor radius can
be introduced as

rL ¼ E
ZeB

≃ 1.1
E=EeV
ZB=nG

Mpc; ð2Þ

with Ze the particle charge. A crucial quantity to character-
ize the particle diffusion is the critical energy Ec, defined
such that rLðEcÞ ¼ lc and hence given by

Ec ¼ ZeBlc ≃ 0.9Z
B
nG

lc
Mpc

EeV: ð3Þ

This critical energy separates the regimes of resonant
diffusion at low energies, in which particles have large
deflections induced by their interactions with the B field
modes with scales comparable to the Larmor radius, and the
nonresonant regime at high energies in which the deflec-
tions after traversing a distance lc are small, typically of
order δ≃ lc=rL.
For isotropic diffusion the particle flux is given by

~J ¼ −D~∇n, with n the particle density and D the diffusion
coefficient, and hence the average distance from the sources
rðtÞ after CRs travel for a time t satisfies hrðtÞ2i ¼ 6Dt.
The diffusion length lD ≡ 3D=c characterizes the distance
after which the deflection of the particles is ≃1 rad. In
particular for E ≪ Ec one has that lD ≃ aLlcðE=EcÞα, with
α≡ 2 −m, while for E ≫ Ec one has lD ≃ aHlcðE=EcÞ2,
since in the latter regime one needs to traverse N ≃ lD=lc
coherent domains to have a total deflection δ≃ 1 rad,
where δ≃ ffiffiffiffi

N
p ðlc=rLÞ results from the random angular

diffusion of the CR trajectory. The low- and high-energy
coefficients aL;H are of order unity and will be discussed in
Sec. IV, together with a detailed fit to the diffusion length in
the transition region at intermediate energies. As long as the
source distance is much larger than lD, spatial diffusion of
the CR particles will take place. At sufficiently large
energies lD will become larger than rs and one will enter
the quasirectilinear regime in which the total deflection of
the particles arriving from the source is less than 1 rad, and
hence only some angular diffusion will occur but not the
spatial diffusion. The onset of the quasirectilinear regime
corresponds to the condition rs ≃ lD, and hence this
happens for E > Erect ≡ Ec

ffiffiffiffiffiffiffiffiffiffi
rs=lc

p
(where we assumed

that Erect > Ec so that D ∝ E2, which is indeed the case
if rs ≫ lc).
The extragalactic CR diffusion can modify the spectrum

of the particles reaching the Earth, specially at low energies
(E=Z < EeV) due to a magnetic horizon effect [9–12], and
can also be crucial in the determination of the anisotropies
observed, as we discuss below.

III. COSMIC RAY DENSITY AND
LARGE-SCALE ANISOTROPIES

We are interested in the first place in computing the
dipolar component of the arrival direction distribution of
cosmic rays coming from a source at a given distance rs in
the presence of a turbulent magnetic field. In particular, we
want to study its dependence on the energy of the particles
and consider the transition from the diffusive propagation at
low energies to the quasirectilinear propagation at high
energies.
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In the diffusion regime, the density n of ultrarelativistic
particles propagating from a source located at ~xs in an
expanding universe obeys the equation

∂n
∂t þ 3HðtÞn − bðE; tÞ ∂n∂E − n

∂b
∂E −

DðE; tÞ
a2ðtÞ ∇2n

¼ QsðE; tÞ
a3ðtÞ δ3ð~x − ~xsÞ; ð4Þ

where ~x denotes the comoving coordinates, aðtÞ is the scale
factor of the expanding universe,HðtÞ≡ _a=a is the Hubble
constant andDðE; tÞ is the diffusion coefficient. The source
function QsðE; tÞ gives the number of particles produced
per unit energy and time. The energy losses of the particles
are described by

dE
dt

¼ −bðE; tÞ; bðE; tÞ ¼ HðtÞEþ bintðEÞ: ð5Þ

This includes the energy redshift due to the expansion of
the universe and energy losses due to the interaction with
radiation backgrounds, that in the case of protons include
pair production and photo-pion production due to inter-
actions with the CMB background (see Appendix B).
In the static case (setting HðtÞ ¼ 0 and for time

independent D) and in the absence of energy losses
(b ¼ 0) the solution for an impulsive source at t ¼ 0
(QsðE; tÞ ¼ QsðEÞδðtÞ) is given by

nðrs; t; EÞ ¼
QsðEÞ expð−r2s=ð4DtÞÞ

ð4πDtÞ3=2 ; ð6Þ

with rs ¼ j~x − ~xsj being the comoving distance to the
source. For a steady source the solution, obtained by
integrating Eq. (6) over time, is given by

nðrs; EÞ ¼
QsðEÞ

4πrsDðEÞ : ð7Þ

The solution for a static universe but including energy
losses, bint ≠ 0, was obtained by Syrovatsky [13], and the
general solution in an expanding universe was obtained by
Berezinsky and Gazizov [14], and is

nðEÞ ¼
Z

zmax

0

dz

���� dtdz
����QsðEg; zÞ

exp ½−r2s=4λ2�
ð4πλ2Þ3=2

dEg

dE
; ð8Þ

where zmax is the maximum source redshift (note that in the
diffusion regime redshift has the meaning of time rather
than distance) and EgðE; zÞ is the original energy at redshift
z of a particle having energy E at present (z ¼ 0). The
source function Qs will be assumed for definiteness to
correspond to a power law spectra, QsðEgÞ ¼ fðzÞE−γ

g , up
to a maximum energy Emax. In principle the source
emissivity could depend on redshift through the factor

fðzÞ, but for simplicity we will consider in this work
nonevolving sources with constant fðzÞ. The Syrovatsky
variable is given by

λ2ðE; zÞ ¼
Z

z

0

dz

���� dtdz
����ð1þ zÞ2DðEg; zÞ; ð9Þ

with λðE; zÞ having the meaning of the typical distance
diffused by CRs from the site of their production with
energy EgðE; zÞ at redshift z until they are degraded down
to energy E at the present time. On the other hand,

���� dtdz
���� ¼ 1

H0ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ zÞ3Ωm þΩΛ

p ; ð10Þ

where H0 ≃ 70 km=s=Mpc is the present Hubble constant,
Ωm ≃ 0.3 the matter content and ΩΛ ≃ 0.7 the cosmologi-
cal constant contribution at present.
From the solution for the density just described, valid in

the diffusive regime, the amplitude of the dipolar compo-
nent of the arrival direction distribution can be obtained as

~Δ ¼ 3~J
n

¼ 3D
~∇n
n

¼ Δr̂s; ð11Þ

where r̂s indicates that the dipole maximum points in the
direction of the source. For the static case without energy
losses and for a steady source, the dipole amplitude reduces to

Δ ¼ 3DðEÞ
rs

: ð12Þ

When the effect of the universe expansion and/or the
interaction energy losses are relevant, the dipolar anisotropy
in the diffusive regime can be obtained from Eq. (11) and
directly differentiating the density in Eq. (8).
For very large energies the propagation becomes more

rectilinear, so that the diffusion approximation ceases to be
valid, with the arrival directions appearing increasingly
clustered around the source location. In particular, in the
limit of small deflections the dispersion of the arrival
directions with respect to the source direction is given (in
the static case and without energy losses) by [7]

hθ2i ¼ ðZeÞ2B2lcrs
6E2

¼ rs
6lc

�
Ec

E

�
2

: ð13Þ

In the general case the dipolar component of the
anisotropy can be computed as follows. The distribution
of the arrival directions û of particles from a source at ~rs ≡
rsr̂s only depends on the angle between û and ~rs,
θ ¼ acosðû · r̂sÞ, and can be expanded in Legendre poly-
nomials as

ΦðûÞ ¼ fðcos θÞ ¼ Φ0 þ Φ1û · r̂s þ…: ð14Þ
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The expansion coefficients can be computed from

Φ0¼
1

4π

Z
ΦðûÞdΩ¼ 1

2

Z
1

−1
fðcosθÞdcosθ;

Φ1¼
3

4π

Z
ΦðûÞû · r̂sdΩ¼ 3

2

Z
1

−1
fðcosθÞcosθdcosθ: ð15Þ

The dipole amplitude is then given by

Δ ¼ Φ1

Φ0

¼ 3hcos θi ð16Þ

and points towards the source direction. For perfectly
rectilinear propagation one has hcos θi ¼ 1 so that
Δ ¼ 3. This is the expected value as the distribution is a
delta function in the source direction and its expansion in
Legendre polynomials would correspond to

δðΩÞ ¼ 1

4π
ðP0ðcos θÞ þ 3P1ðcos θÞ þ…Þ

¼ 1

4π
ð1þ 3 cos θ þ…Þ: ð17Þ

In the quasirectilinear regime of small deflections, replac-
ing hcos θi≃ 1 − hθ2i=2 and using Eq. (13), the dipolar
anisotropy can be written as

Δ≃ 3

�
1 −

rs
12lc

�
Ec

E

�
2
�
: ð18Þ

In the next section we will compute the dipolar
anisotropy in the full range of energies and distances to
the source, covering the transition from spatial diffusion to
the quasirectilinear regime using numerical simulations of
particles propagating in a turbulent magnetic field. By
following many particles of a given energy in a turbulent
magnetic field hcos θi can be computed as the mean cosine
of the angle between the original direction of the CR
velocity and the vector describing its position when the
particles pass at a distance rs from the original point. In this
way the dipolar anisotropy can be numerically obtained for
all energies, and we will be able to match the results from
the diffusive and quasirectilinear regimes.

IV. SIMULATIONS OF CHARGED PARTICLE
PROPAGATION IN A TURBULENT

MAGNETIC FIELD

The evolution of the direction of propagation n̂ of
particles with charge Ze in the turbulent field is followed
by integrating the Lorentz equation,

dn̂
dt

¼ Zec
EðtÞ n̂ × ~Bð~x; tÞ: ð19Þ

We will only consider the case of protons in the following,
thus Z ¼ 1, although if energy losses can be ignored all

results also apply to the case of nuclei by replacing E by
E=Z (the inclusion of energy losses in the case of nuclei is
complicated by the fact that photo-disintegration processes
change the nuclear masses and lead to the production of
secondary nucleons). The presence of the magnetic field
does not change the magnitude of the velocity (nor the
particle energy), it only modifies the propagation direction.
The dependence with time appearing in Eq. (19) arises due
to the redshift in the expanding universe and from energy
losses due to the interaction of the protons with the CMB
radiation. We also included in Eq. (19) a possible evolution
of ~B with time.
We will first consider the static case, neglecting the time

variation of both the energy E and the magnetic field ~B. We
solve the propagation equation for a large number of
particles using two different approaches, a full numerical
integration of Eq. (19) in particular realizations of the
turbulent magnetic field and an integration of a stochastic
differential equation describing the scattering of charged
particles in randomly oriented magnetic cells.

A. Full numerical integration

In our first approach, the trajectories of charged particles
are solved by numerical integration of the Lorentz
equation (19). The turbulent magnetic field is modeled
by a superposition of Fourier modes as described in
Appendix A. No energy losses are included in this case.
We follow the trajectories of a large number of particles,
each in a different realization of the turbulent magnetic
field. At each integration step we evaluate the rectilinear
distance r between the origin and the particle position, as
well as the angle θ between its initial velocity and its
position vector. We show in Fig. 1 the results for the
quantity hr2ðtÞi=6t, averaged over all the simulated tra-
jectories, in units of Mpc2=Myr, as a function of the elapsed
time t and for several values of the energy around Ec. The
field parameters were chosen for these simulations as in
Ref. [11]: B ¼ 10 nG, Lmax ¼ 1 Mpc. The left panel
corresponds to a Kolmogorov spectrum of turbulence while
the right panel to a Kraichnan spectrum. The results
correspond to protons, but also apply to nuclei with E
replaced by E=Z (since energy losses are not considered
here). The diffusion coefficientDðEÞ is the value of hr2i=6t
at the plateau, when sufficient time has elapsed for the
particles to reach the diffusive regime. The values of D as a
function of the energy are shown in Fig. 2. The results for
the case of Kolmogorov turbulence are comparable to
those in Ref. [11]. As anticipated, D ∝ E2 for E > Ec

andD ∝ E2−m at sufficiently low energies. We will show in
the next section that a stochastic approach allows an
analytic derivation of the diffusion coefficient at high
energies, given by DðEÞ ¼ 4

3
clcðE=EcÞ2, which is verified

by the numerical solutions. We then fit the numerical
results with the function
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DðEÞ ¼ c
3
lc

�
4

�
E
Ec

�
2

þ aI

�
E
Ec

�
þ aL

�
E
Ec

�
2−m

�
: ð20Þ

A term with a linear dependence upon the energy, inter-
polating the transition between the resonant and nonreso-
nant diffusion regimes, was added to improve the fit around
Ec.

1 The coefficients aL and aI are obtained from a fit to the

numerical results. For a Kolmogorov spectrum (m ¼ 5=3),
aL ≈ 0.23 and aI ≈ 0.9. In the case of a Kraichnan
spectrum (m ¼ 3=2), aL ≈ 0.42 and aI ≈ 0.65.
The anisotropy in the distribution of arrival directions as

a function of the distance to the source and the energy of the
particles was also evaluated numerically. Each time a
trajectory crossed a surface of radius rs centered at the
source we evaluated cos θ, and then we averaged over all
the trajectories and over all the crossings for each trajectory.
We verified that, as expected, Δ ¼ 3hcos θi ¼ 3DðEÞ=rs
for rs ≫ lD, when the spatial diffusion regime is reached.
At large distances the dipole amplitude Δ also depends on
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FIG. 1 (color online). Values of hr2ðtÞi=6t as a function of time evaluated from numerical integration of the Lorentz equation for
several values of the energy of protons around Ec. The turbulent magnetic field has strength B ¼ 10 nG and maximum scale of
turbulence Lmax ¼ 1 Mpc. The magnetic energy distributions are of the Kolmogorov (left panel) and Kraichnan (right panel) type. The
diffusion coefficientDðEÞ is the value at the plateau. The logarithm of the energy (in units of eV) is displayed over some of the plateaus.
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FIG. 2 (color online). Diffusion coefficient DðEÞ (in units of Mpc2=Myr) evaluated numerically (dots) and fit through Eq. (20) (solid
line). The field parameters are as in Fig. 1. The asymptotic values 4c

3
lcðE=EcÞ2 at high energies and aL c

3
lcðE=EcÞð2−mÞ at low energies

are also shown (dotted lines). The left panel corresponds to a Kolmogorov spectrum (m ¼ 5=3, aL ≈ 0.23) and the right panel to a
Kraichnan energy distribution (m ¼ 3=2, aL ≈ 0.42).

1The physical origin of the interpolating term proportional to
aI might be related to the residual effects on the resonant
diffusion of the B modes with long wavelength, which may
generate nonisotropic diffusion and also lead to drift effects (the
Hall diffusion scaling indeed linearly with E).
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the time of source activity, and is larger than its asymptotic
value if the stationary regime has not yet been reached. This
is related to the “magnetic horizon” effect [9–12], which
prevents particles reaching beyond a certain distance even
if the source was active over Hubble times. This depend-
ence is not relevant for our present purposes, since these
situations also require consideration of energy losses,
which we will do through Eq. (8). Here we are interested
in the transition from quasirectilinear to diffusive propa-
gation. We illustrate in Fig. 3 the results for the anisotropy
Δ as a function of the distance to the source for several
representative values of the energy. Along with the numeri-
cal results we plot a function that provides a good fit ofΔ as
a function of E and rs:

ΔðE; rsÞ≃ 3DðEÞ
crs

�
1 − exp

�
−

crs
DðEÞ −

7

18

�
crs
DðEÞ

�
2
��

:

ð21Þ

For large values of rs it tends to the value in Eq. (12) valid
for diffusion, while the expansion to first-order in
crs=DðEÞ coincides with the approximation in Eq. (18)
valid for the quasirectilinear regime of small deflections
over a coherence length. The complete function provides a
good fit across the different regimes, from the quasirecti-
linear propagation to the full spatial diffusion.

B. Stochastic differential equation

The propagation of protons in the presence of a turbulent
homogeneous and isotropic field can also be simulated by
numerically integrating a stochastic differential equation as

proposed in Ref. [7]. Within this approach it is possible to
describe the propagation in the nonresonant regime when
the deflection in a distance equal to the coherence length lc
is small, including both the quasirectilinear propagation
regime and a regime of spatial diffusion if the propagation
distance is larger than the diffusion length.
The magnetic scatterings of the protons lead to angular

diffusion of the propagation direction n̂ with an angular
diffusion coefficient given by [7]

Dij ≡ hΔniΔnji
2cΔt

¼ lc
8

�
ZeB
E

�
2

Pij ≡D0Pij; ð22Þ

where Pij ≡ ðδij − ninjÞ is the tensor projecting to the
plane orthogonal to n̂≡ ðn1; n2; n3Þ.
The evolution of the unit vector n̂ is followed by

numerically integrating a stochastic differential equation.
At each step the particle moves a distance lc and its
direction of propagation suffers a stochastic change

ðΔn̂Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2lcD0

p
Pijξj; ð23Þ

where repeated indices are summed and (ξ1; ξ2; ξ3) are
three Wiener processes drawn at each step from a Gaussian
distribution with unit dispersion, so that hξji ¼ 0
and hξ2ji ¼ 1.
The new propagation direction is obtained as

n̂ðtþ ΔtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jΔn̂j2

q
n̂ðtÞ þ Δn̂; ð24Þ

which preserves the norm of n̂. The new position of the
particle is given by

~xðtþ ΔtÞ ¼ ~xðtÞ þ lcn̂ðtÞ: ð25Þ

By following a large number of particles for a large enough
time and counting the number of times that the particles
cross spherical caps of different radius r around the initial
point, the density of particles as a function of the distance to
the source can be determined. This is illustrated in Fig. 4 for
different values of the ratio E=Ec, showing the transition
from nðrÞ ∝ r−2 at small r, corresponding to the quasirecti-
linear propagation, to nðrÞ ∝ r−1 in the diffusive regime.
The transition between these regimes takes place at a radius
rt which becomes larger for increasing energies:
rt ≃ lcðE=EcÞ2. The value of the diffusion coefficient
can be obtained from the plateau value in the D≃
hr2ðtÞi=6t vs t plot, as described in the previous section.
The results of the stochastic simulations nicely match
the full propagation results in the regime in which the
deflections are small in each coherence length distance. In
Appendix B of Ref. [7] an analytic solution was obtained as

 0.1
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>
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FIG. 3 (color online). Anisotropy Δ ¼ 3hcos θi as a function of
the distance to the source rs, for some representative values of the
energy: E=Ec ¼ 1=3; 1; 3; 6. The fit provided by Eq. (21) is
shown by the solid line. The result obtained through numerical
solution of the trajectories of charged particles in the turbulent
field is shown by squares. A Kolmogorov spectrum was used for
illustration, with B ¼ 3 nG and lc ¼ 1 Mpc. The critical energy
is Ec ≈ 2.7 EeV. The result from the numerical integration of the
stochastic approach is shown by dots (for E=Ec ¼ 3; 6).
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hr2ðtÞi ¼ 1

D0

�
ct −

1

2D0

ð1 − expð−2D0ctÞÞ
�
; ð26Þ

with D0 defined in Eq. (22) and given by

D0 ¼
1

8lc

�
Ec

E

�
2

: ð27Þ

The spatial diffusion coefficient is obtained from the
limiting value of hr2ðtÞi=6t for ct ≫ D−1

0 , and using
Eq. (26) one finds that

DðEÞ ¼ c
6D0

¼ 4c
3

�
E
Ec

�
2

lc; ð28Þ

corresponding to the high-energy limit in Eq. (20). This
implies in particular that the coefficient aH introduced in
Sec. II is aH ¼ 4.
Finally, by computing the mean cosine of the angle

between the original direction and the position vector of the
particles when they cross a cap at a given radial distance r
one can obtain the dipolar anisotropy from Eq. (16). This is
shown in Fig. 3, which also displays the results from the
full numerical simulation as well as the approximation in
Eq. (21), and a very good agreement is indeed obtained.
Within the framework of these stochastic simulations it is

not difficult to take into account the effects of the expansion
of the universe and the proton energy losses due to
interactions with the CMB radiation. The coordinate ~r
now refers to the comoving coordinate. In the case of the
expanding universe we can include the possible variation of
the magnetic field amplitude with the redshift, that we can
take as BðzÞ ¼ Bð0Þð1þ zÞ2−μ, where the factor ð1þ zÞ2
arises from the flux conservation and the index μ was
introduced in Ref. [14] to account for magneto-hydro-
dynamic effects, and was taken there as μ ¼ 1, as we will
adopt in the simulations. The critical energy dependence

with z is EcðzÞ ¼ Ecð0Þð1þ zÞ1−μ. The coherence length
will typically scale as lcðzÞ ¼ lcð0Þ=ð1þ zÞ.
We backtrack protons from the observation time at z ¼ 0

in time steps adapted such that the change in the comoving
coordinates jΔ~rj is equal to lcð0Þ in each step,
cjΔtj ¼ jΔ~rj=ð1þ zÞ. This corresponds to a step in redshift
jΔzj ¼ lcð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p
H0=c. Due to energy

losses from redshift and from the interactions with the
CMB we have to take into account that particles arriving to
z ¼ 0 with energy Eð0Þ had a larger energy EgðzÞ at each
previous step, and the inclusion of these effects is per-
formed as described in Appendix B. Then, in each step the
particle moves a comoving distance lcð0Þ and the propa-
gation direction suffers a stochastic change given by

ðΔn̂Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0ðzÞlcð0Þ=ð1þ zÞ

p
Pijξj; ð29Þ

where

D0ðzÞ ¼
1

8lcð0Þ
�
Ecð0Þ
EgðzÞ

ð1þ zÞ3−2μ
�

2

: ð30Þ

The new propagation direction is obtained from

n̂ðzþ ΔzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jΔn̂j2

q
n̂ðzÞ þ Δn̂ ð31Þ

and the new comoving coordinate from

~xðzþ ΔzÞ ¼ ~xðzÞ þ lcð0Þn̂ðzÞ: ð32Þ
In this way we can follow the proton trajectories back in
time. In order to compute the expected dipole anisotropy of
particles from a source at comoving distance rs, for any
given arrival energy Eð0Þ we backtrack the trajectories of a
large number of particles and compute the mean cosine of
the angle between the initial direction and the position
when the particles pass at a comoving distance rs from
the original point. When taking the mean we have to
include a weight factor for each particle equal to
½EgðzÞ=Eð0Þ�−γdEg=dE, where the first factor takes into
account that for a source emitting protons with a spectrum
E−γ there will be less particles with the higher energy EgðzÞ
required to reach the observer with a given Eð0Þ, and the
second factor takes into account the change in the energy
bin width from the emission to the observation.
We show in Fig. 5 the dipole anisotropy resulting from

one single source located at a comoving distance of 25, 50,
100, 200, or 400 Mpc (from top to bottom) as a function of
the energy. Blue dots show the results obtained from the
integration of the stochastic differential equation while
solid lines show the results from the solution to the
diffusion equation [using Eqs. (11) and (8)]. A very good
agreement is seen in the overlapping region. A spectral
index γ ¼ 2 and a maximum energy Emax ¼ 1021 eV are
considered in all the examples. The magnetic field
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FIG. 4 (color online). Cosmic ray density as a function of the
distance to the source for values of the ratio between the energy
and the critical energy of E=Ec ¼ 3; 6; 12; 24 (solid lines, from
top to bottom). Dashed lines show the r−1 dependence valid in the
regime of spatial diffusion.
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coherence length was taken as lc ¼ 1 Mpc. In the left panel
we considered B ¼ 1 nG, leading to Ec ¼ 0.9 EeV, while
in the right panel we considered B ¼ 3 nG, corresponding
to Ec ¼ 2.7 EeV. A close similarity of the results in both
plots is apparent when the energy is rescaled by a factor 3,
i.e., corresponding to the same values of E=Ec, although
due to the dependence of the energy losses with energy the
scaling is not exact.

V. LARGE-SCALE ANISOTROPY FROM
MANY SOURCES

In the previous section the dipolar anisotropy from an
individual source in the presence of a turbulent magnetic
field was computed as a function of the source distance and
of the CR energy. In a realistic situation the total cosmic ray
flux will probably originate from a set of several (or many)
sources. The total dipolar component of the flux will
mainly depend on the location and intensities of the nearest
sources and on whether there is an inhomogeneous dis-
tribution of the sources at large scales. If there are several
sources contributing to the flux, the dipolar anisotropy can
be obtained from the superposition of the individual source
dipoles through

~ΔðEÞ ¼
XN
i¼1

ni
nt
ðEÞ~ΔiðEÞ; ð33Þ

where N is the number of sources giving a non-negligible
contribution to the flux at energy E, ni=nt measures the
fraction of the flux coming from the ith source and ~ΔiðEÞ is
the dipole anisotropy of the flux from source i computed in
the previous section and shown in Fig. 5.
In order to estimate the relative contribution to the

anisotropy of the different sources as a function of their
distance to the observer we will make the simplifying
assumption that the sources are steady and have equal
intrinsic intensities, so that for each energy the relative
contribution to the flux from different sources will only
depend on the distance to the source ri. The product nðrÞr2
is shown in Fig. 6 for different energies (arbitrary nor-
malization). At low energies, where particles are diffusing,
we can see a large enhancement of the flux with respect to
the typical n ∝ r−2 behavior characteristic of rectilinear
propagation, followed by a drop at large distances corre-
sponding to the magnetic horizon effect. For large energies
the diffusion enhancement disappears as particles travel
more straight and they can also arrive from larger distances.

 0.001

 0.01

 0.1

 1

 0.1  1  10

∆

E [EeV]

 0.001

 0.01

 0.1

 1

 0.1  1  10

∆

E [EeV]

FIG. 5 (color online). Dipole amplitude for one source located at a comoving distance of 25, 50, 100, 200, and 400 Mpc (from top to
bottom) for a coherence length of the magnetic field of lc ¼ 1 Mpc and an amplitude B ¼ 1 nG (left panel) and B ¼ 3 nG (right panel).
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FIG. 6 (color online). Density of cosmic rays nðrÞ times r2 as a function of the distance from the source to the observer for
different observed energies. Left panel: for B ¼ 1 nG and E ¼ 0.9; 1.5; 2.6; 4.4; 7.4; 12:5; 21:2, and 36 EeV (red solid lines from
top-left to bottom-right) and E ¼ 0.1 and 0.3 EeV (blue dashed lines). Right panel: same for B ¼ 3 nG and
E ¼ 2.7; 4.6; 7.7; 13:1; 22:2; 37:6; 63:8, and 108 EeV (red solid lines) and E ¼ 0.3 and 0.95 EeV (blue solid lines).
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For the largest energies the maximum distance from which
sources contribute is limited due to energy losses (GZK
horizon), and a bump in the flux appears at large distances
due to the pile-up caused by the effect of the photo-pion
production threshold. We have made the simplifying
assumption of uniform and isotropic magnetic turbulence,
which may be a crude approximation at very large distances
due to the presence of voids and filamentary structures in
the matter distribution. We note however that sources at
distances much larger than ∼100 Mpc are not expected to
give a large contribution to the anisotropy in the energy
range where a detailed modeling of diffusion effects could
be relevant. We have also assumed nonevolving sources for
simplicity. If sources were much brighter in the past one
may expect a relatively smaller anisotropic component
relative to the background that diffused for longer times.
The fact that the sources are distributed in different sky

directions means that the vector sum in Eq. (33) will
generally lead to a smaller dipole amplitude when many
sources contribute. In the case that only few sources are
relevant, the direction of these particular sources will
determine the dipolar anisotropy, while if many sources
are relevant, the overall large-scale distribution of the
sources, in particular whether the distribution has a non-
vanishing dipole component, can have a significant effect.
In order to quantify the total amplitude of the dipolar

anisotropy we performed some simple simulations. Starting
withonesourceat a randomdirectionin thesky, that represents
the closest source, we subsequently added new sources in
random directions and computed the new total dipolar
anisotropy using Eq. (33). The radial distances from the
observer to the sources are taken as the mean expected value
for the i-th closest source in anhomogeneousdistribution, that
isgivenby hrii ¼ ð3=4πρÞ1=3Γðiþ 1=3Þ=ði − 1Þ!,whereρ is
the density of sources.We show in Fig. 7 the amplitude of the
dipole and thedispersionobtained in1000simulations for two
different values of the source density: ρ ¼ 10−5 Mpc−3, for
which the closest source is at a mean distance hr1i≃ 25 Mpc
(solid lines), andρ ¼ 10−4 Mpc−3, forwhich hr1i≃ 11 Mpc

(dashed lines). For ρ ¼ 10−5 Mpc−3 the dipole amplitude
rises from about 1% at E ¼ 0.1 EeV to ∼2% at 1 EeV and
∼8% at 10 EeV. For ρ ¼ 10−4 Mpc−3 an anisotropy smaller
by a factor of about 2 results, asmanymore sources contribute
to the total flux in this case. The results are shown for two
values of the amplitude of the turbulent magnetic field, B ¼
1 nG (left panel) and B ¼ 3 nG (right panel). A slightly
smaller anisotropy amplitude results for the larger turbulent
field. At the largest energies, above the GZK cutoff, a steep
increaseof theanisotropyresultsas thenumberofcontributing
sources decreases. Note that the computations are performed
using the stochastic results (Sec. IVB) for energies above Ec,
while below Ec the diffusion solution from Sec. III is used.
This explains the small jumpsobserved in the plots atE≃ Ec.
One should also keep in mind that fixing the distances

to the sources to the mean expected values and considering
equal intrinsic luminosity sources leads to an
underestimation of the dispersion in the plots, although
the mean values should not be much affected by these
approximations.
We can also wonder how close to the direction towards

the closest source is expected to be the direction of the total
dipole. The mean and dispersion in 1000 simulations of the
cosine of the angle between them is shown in Fig. 8. We see
that the mean angle in the case B ¼ 1 nG and ρ ¼
10−5 Mpc−3 (left panel, solid lines) rises from about 20°
at E ¼ 0.1 EeV to ∼45∘ for 1 EeV and 55° for
E > 10 EeV. These values increase a bit for larger densities
and decrease for larger B (right panel).
The previous results hold for homogeneously distributed

sources. If the sources themselves have instead an inho-
mogeneous distribution around the observer, in particular
with their distribution having a nonvanishing dipole, a
further contribution to the anisotropy is expected. If the
local distribution of cosmic ray sources follows the local
distribution of matter, actually a nonvanishing dipole is
expected. This dipolar component of the matter distribution
is indeed known to be responsible for the Local Group
peculiar velocity with respect to the rest frame of the CMB,
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FIG. 7 (color online). Mean and dispersion of the total dipole amplitude as a function of the energy. Left panel: for a turbulent
magnetic field of B ¼ 1 nG and a density of sources ρ ¼ 10−5 Mpc−3 (red solid lines) and ρ ¼ 10−4 Mpc−3 (blue dashed lines). Right
panel: same for B ¼ 3 nG.
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that actually gives rise to the observed CMB dipole. The
dipolar component of the mass distribution in our neigh-
borhood has been estimated using different catalogs of
galaxies as for example the 2 Micron All-Sky Redshift
Survey (2MRS), showing that the resulting dipole seem-
ingly converges when sources up to a distance ∼90 Mpc
are included [15].
The effect of the local inhomogeneity of the source

distribution in the predicted large-scale anisotropies can be
included in the simulations by choosing the positions of the
sources in our neighborhood from some catalog represent-
ing the local distribution of matter. To describe the local
distribution of matter we use a volume limited subsample2

of the 2MRS catalog up to 100 Mpc [16]. We have then
selected the position of the required number of sources
(according to the density considered) from this subsample
of 2MRS galaxies. On the other hand, the locations of

sources farther away were assumed to be isotropically
distributed. We show in Fig. 9 the change in the mean
dipole amplitude when the inhomogeneous source distri-
bution is considered for a density ρ ¼ 10−5 Mpc−3 and a
turbulent field of B ¼ 1 nG. An enhancement of the dipole
amplitude of about 70% on average is observed with
respect to the isotropic case.

VI. SUMMARY AND DISCUSSION

We have considered in detail the diffusion of charged
particles in turbulent magnetic fields, obtaining through
numerical simulations of the trajectories expressions for the
diffusion coefficients. We focused in the computation of the
dipolar anisotropies, matching the analytic and numerical
results of the high-energy regime of angular diffusion
(quasirectilinear propagation) with the low- energy regime
of spatial diffusion. We illustrated the results for typical
values of Ec ≃ 1–3 EeV and lc ≃ 1 Mpc, showing that the
dipole amplitude resulting from sources with number
densities of 10−5 to 10−4 Mpc−3 are at the level of
0.5%–1% at 0.1 EeV energies, increasing to 1%–2% at
1 EeV, and up to 3%–10% at 10 EeV (Fig. 4). When the
anisotropy in the local (within 100 Mpc) distribution of
sources, modeled following the 2MRS galaxy catalog, is
taken into account, an increase in the expected dipole
amplitude typically by a factor 1.5 to 2 is predicted. In this
case this contribution would point in the approximate
direction of the motion of the Local Group with respect
to the CMB rest frame,3 since it is just the anisotropy in the
galaxy distribution that is ultimately responsible for both
the proper motion of the Local Group and for the
anisotropy in the CR source distribution. These anisotro-
pies are significantly larger than the ones that would result
from the Compton-Getting effect [17] if CRs were isotropic
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FIG. 8 (color online). Mean and dispersion of the cosine of the angle between the directions of the total dipole and that of the closest
source as a function of the energy. Left panel: for a turbulent magnetic field of B ¼ 1 nG and a density of sources ρ ¼ 10−5 Mpc−3 (red
solid lines) and ρ ¼ 10−4 Mpc−3 (blue dashed lines). Right panel: same for B ¼ 3 nG.
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FIG. 9 (color online). Mean amplitude of the total expected
dipole when local sources within 100 Mpc are distributed like
galaxies in the 2MRS catalog (blue dashed lines) considering a
density ρ ¼ 10−5 Mpc−3 and a turbulent field with B ¼ 1 nG.
For reference, the red line shows the expected amplitude for
uniformly distributed sources for the same parameters.

2Considering only objects with d < 100 Mpc and absolute
magnitude in the K band MK < −23:4

3In the rest frame of the CMB the Local Group moves towards
the direction ðα; δÞ ¼ ð163°;−27°Þ [15].
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in the rest frame of the CMB, which would be at the level of
∼0.6% almost independently of the energy.
It should be mentioned that the further deflections of the

CRs caused by the galactic magnetic field (mostly by the
regular component), not included in this work, would
modify the CR dipole amplitude and direction as well as
generate higher order multipoles in the arrival directions
distribution (see [18]). This effect could reduce to some
extent the amplitudes obtained here for energies below
few EeV.
Finally, in this work we obtained the dipolar anisotropies

under the assumption of a proton CR composition (which is
consistent with the observations at EeV energies and also
compatible with measurements at higher energies by the
HiRes and Telescope Array experiments [3]). However, if
the CR composition were to become heavier above a few
EeV, as suggested by the Auger Observatory measurements
[2], the anisotropies above the ankle would depend on the
details of the actual source composition.
The dipolar amplitudes computed in this work are of

interest to interpret the recent results obtained by the Auger
Observatory hinting at nonvanishing dipolar amplitudes at
energies above ∼1 EeV [4], and the possible connection of
these results with the nonuniform distribution of nearby
sources should be further scrutinized.

ACKNOWLEDGMENTS

This work is supported by CONICET and ANPCyT,
Argentina.

APPENDIX A: TURBULENT FIELD

The turbulent magnetic field is modeled as a Gaussian
random field with zero mean and root mean square value
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hB2ðxÞi

p
. This can be described by a superposition

of Fourier modes as [7,8,19]

Bið~xÞ ¼
Z

d3k
ð2πÞ3 Bið~kÞeið~k·~xþϕið~kÞÞ; ðA1Þ

where the phases ϕið~kÞ are random. Under the assumption
of isotropic and homogeneous turbulence the average of the
random Fourier modes verify

hBið~kÞBjð~k0Þi ¼
wðkÞ
k2

Pijð2πÞ6δð~kþ ~k0Þ: ðA2Þ

The projection tensor Pij ¼ δij − kikj=k2 guarantees that

the field is solenoidal ( ~∇ · ~B ¼ 0) . The function wðkÞ
describes the distribution of magnetic energy density on
different scales. We consider generic power laws,

wðkÞ ¼ B2

8π
k−m

ðm − 1Þð2π=LmaxÞm−1

1 − ðLmin=LmaxÞm−1 ; ðA3Þ

for 2π=Lmax ≤ k ≤ 2π=Lmin, and zero otherwise. The
case of a Kolmogorov spectrum corresponds to a spectral
index m ¼ 5=3, and the value m ¼ 3=2 describes a
Kraichnan spectrum. The spectrum is normalized such
that hj~Bð~xÞj2i ¼ B2.
The correlation length lc is defined through

Z
∞

−∞
dlh~Bð0Þ · ~Bð~xðlÞÞi≡ B2lc; ðA4Þ

where the point ~xðlÞ is displaced with respect to the origin
by a distance l along a fixed direction. The integral in the
lhs of Eq. (A4) can be computed using Eqs. (A1) and (A2),
and leads to

π

Z
∞

0

dk
k
wðkÞ ¼ B2

8π
lc; ðA5Þ

which can be used to express lc in terms of Lmin and Lmax as
written in Eq. (1) in the main text. If the spectrum is either
very steep ðm ≫ 1Þ or very narrow-band ðLmin ∼ LmaxÞ,
then Lc ≃ L max=2. If the spectrum is broadband ðLmax ≫
LminÞ then lc ≃ L max=5 for a Kolmogorov energy distri-
bution while lc ≃ L max=6 for a Kraichan spectrum.
The numerical realization of the turbulent field used in

this work was obtained with the superposition of N
independent modes, with random directions of the wave

vector ~k. The direction of ~Bð~kÞ was chosen randomly in the

plane orthogonal to ~k, in order to automatically fulfill the

condition ~∇ · ~B ¼ 0. The amplitude of each mode j~Bð~kÞj
was drawn from a Gaussian distribution with zero mean
and root mean square equal to B, withm ¼ 5=3 orm ¼ 3=2
for a Kolmogorov or a Kraichnan spectrum respectively.
The wave numbers of the modes were distributed with a
constant logarithmic spacing between kmin ¼ 2π=Lmax and
kmax ¼ 2π=Lmin, since more modes are required at larger
scales for a better approximation to isotropic turbulence.
Lmin was taken as Lmax=50 for high energies, and as rL=9
for energies at which this quantity becomes smaller. The
number of modes used was larger for larger energies to
guarantee convergence. The numerical solution of the
Lorentz equation in the turbulent field was performed with
a fourth-order Runge-Kutta method.

APPENDIX B: INCLUSION OF ENERGY LOSSES

The energy losses are described by the coefficients
b ¼ −dE=dt, so that the energy loss length can be
introduced as

λ≡ −c
�
1

E
dE
dt

�
−1

¼ −
cE
bðEÞ : ðB1Þ

In general the losses can be split as b ¼ bz þ bint, where bz
results from redshift losses just due to the expansion of the
Universe, i.e.,
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bz ¼ −
E

1þ z
dz
dt

ðB2Þ

with

dz
dt

¼ −H0ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ zÞ3Ωm þΩΛ

q
: ðB3Þ

The term bint results from the interactions with the photon
backgrounds, mostly the CMB one but in the case of nuclei
also the IR and optical/UV ones.
Focusing the attention on the attenuation of the protons,

the interactions are just with the CMB and arise from
photo-pion processes (pγ → πþn; π0p) and from pair
production (pγ → eþe−p), i.e., bint ¼ bπN þ beþe−p. The
attenuation lengths can be obtained from the cross sections
and inelasticities of the processes, and here we introduce a
convenient analytic fit to those results, accurate at the few
% level in the relevant energy ranges (1017–1020 eV for pair
production and 3 × 1019–1021 eV for photo-pion produc-
tion). Introducing the function FðA; B;C; EÞ≡
A expðBECÞ, with E in EeV, we find, fitting the results
in [20], that the present time (z ¼ 0) proton attenuation

length for photo-pion production has the approximate
expression

λz¼0
πN ðEÞ≃ Fð11:5; 686;−1.2; EÞ Mpc; ðB4Þ

while the proton attenuation length for pair production can
be expressed as

λz¼0
eþe−p ≃ ½Fð300; 4.42;−0.6; EÞ

þ Fð51; 1.61; 0.14; EÞ� Mpc: ðB5Þ

In Fig. 10 we show the proton attenuation lengths com-
puted in [20] (with dots) and the corresponding analytic fits
just introduced (in solid lines).
On the other hand, since the CMB photon density scales

as ð1þ zÞ3 while its temperature as TCMB ∝ ð1þ zÞ, one
can show that for protons

bintðE; zÞ ¼ ð1þ zÞ2bintðð1þ zÞEÞ: ðB6Þ
The energy EgðE; zÞ that a CR had at redshift z, given that
its present energy at redshift z ¼ 0 is E, is obtained by
numerically integrating the equation

dE0

dz
¼ E0

1þ z
þ ð1þ zÞbz¼0

int ðð1þ zÞE0Þ
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ zÞ3Ωm þΩΛ

p ; ðB7Þ

and the change in the energy bin width from the time of
production at redshift zg to the present time is [21]

dEg

dE
¼ ð1þ zgÞ exp

�
1

H0

Z
zg

0

dz
ð1þ zÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ zÞ3Ωm þ ΩΛ

p

×
dbz¼0

int ðE0Þ
dE0

����
E0¼ð1þzgÞE

�
; ðB8Þ

where the derivative of the energy loss coefficient can be
easily obtained from the analytic fits introduced before.
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