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Direct photons play an important role as electromagnetic probes from the quark-gluon plasma (QGP)
which occurs during ultrarelativistic heavy-ion collisions. In this context, it is of particular interest how the
finite lifetime of the QGP affects the resulting photon production. Earlier investigations on this question
were accompanied by a divergent contribution from the vacuum polarization and by the remaining
contributions not being integrable in the ultraviolet (UV) domain. In this work, we provide a different
approach in which we do not consider the photon number density at finite times, but for free asymptotic
states obtained by switching the electromagnetic interaction according to the Gell-Mann and Low theorem.
This procedure eliminates a possible unphysical contribution from the vacuum polarization and, moreover,
renders the photon number density UV integrable. It is emphasized that the consideration of free asymptotic
states is, indeed, crucial to obtain such physically reasonable results.
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I. INTRODUCTION

Direct photons play an important role as electromagnetic
probes for the quark-gluon plasma (QGP) which occurs
during ultrarelativistic heavy-ion collisions [1–5]. Since
photons interact only electromagnetically with the sur-
rounding hadronic medium their mean free path is much
larger than the spatial extension of the QGP. For that
reason, they leave it almost undisturbed once they have
been produced and therefore provide a direct insight into all
stages of the collision. In this context, it is of particular
interest how nonequilibrium effects such as the finite
lifetime of the QGP affect the resulting photon emission.
Earlier investigations on this question [6–9] found that

this finite lifetime gives rise to contributions from first-
order QED processes, i.e. processes linear in the electro-
magnetic coupling constant, αe, which are kinematically
forbidden in thermal equilibrium. Moreover, the photon
spectrum resulting from these processes flattens into a
power-law decay for photon energies ω~k > 1.5 GeV
(ω~k ¼ j~kj with ~k denoting the three-momentum of the
emitted photon), which would imply that in this domain the
first-order contributions dominate over leading-order ther-
mal contributions. The latter are linear in the electromag-
netic coupling constant, αe, and the strong coupling
constant, αs, in each case and thus of overall second order.

On the other hand, the investigations in [6–8] were
accompanied by spurious transient modes. Because of
these modes the photon number density contained a
divergent contribution from the vacuum polarization for
a given photon energy, ω~k. Moreover, the photon number
density arising from the remaining contributions scaled as
1=ω3

~k
in the ultraviolet (UV) domain. This implies that the

total number density and the total energy density of the
emitted photons are logarithmically and linearly divergent,
respectively.
Recently, we have followed two other approaches in

order to handle these problems in a consistent manner. In
the first approach [10], we have pursued a model descrip-
tion in which we have simulated the finite lifetime of the
QGP by introducing time dependent quark/antiquark
occupation numbers in the photon self-energy. This pro-
cedure allows for a consistent renormalization of the
divergent contribution from the vacuum polarization. It
does not, however, lead to an UV integrable photon number
density for the general case.
At first we had suspected that this shortcoming results

from a violation of the Ward-Takahashi identities within the
model description [10]. For that reason, we have also
pursued a second approach [11], where we have modeled
the creation of the QGP by a Yukawa-like source term in
the QED Lagrangian coupling the quarks and antiquarks to
a purely time dependent, scalar background field. This
effectively assigns the quarks and antiquarks a time
dependent mass, which is consistent with the Ward-
Takahashi identities. We have again restricted ourselves
to first-order and thus purely nonequilibrium QED
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processes. These are kinematically possible in this case
since the quarks and antiquarks obtain additional energy by
the coupling to the time dependent background field.
Similar investigations have been performed in [12–16]
on electron-positron pair annihilation into a single photon
in the presence of a strong laser field. There the preceding
pair creation (and the subsequent annihilation) has been
induced by a time dependent electromagnetic background
field (see also [17–21]).
Another crucial difference to the approaches in [6–8,10]

has been the consideration of the photon number density
not at finite times, but for free asymptotic states employing
the standard Gell-Man and Low switching of the interaction
Hamiltonian. Through this procedure, the photon number
density is not plagued by the aforementioned unphysical
contribution from the vacuum polarization anymore and,
furthermore, has been rendered UV integrable for suitable
mass parametrizations, mðtÞ. In particular, our investiga-
tions have shown that the photon number density indeed
has to be considered for free asymptotic states in order to
obtain such physically reasonable results. In this context,
we have seen that a consistent definition of the photon
number density is actually only possible for such free
asymptotic states, whereas a similar interpretation of the
respective expression is usually not justified at finite times,
t. Such a conceptual problem also occurs if the electro-
magnetic interaction is only switched on from t → −∞ but
not off again for t → ∞, which has been suggested in [22]
in order to implement initial correlations at some t ¼ t0
developing from an uncorrelated initial state at t → −∞.
Hence, the results from [11] raise the question whether the
spurious transient modes encountered in [6–8,10] result
from an ambiguous definition of the “photon number
density” at finite times and whether they are removed if
this quantity is considered for free asymptotic states
instead.
Accordingly, in this work we revisit the previous

approach [10]. This means that we again simulate the time
evolution of the QGP during a heavy-ion collision by
introducing strongly time dependent quark/antiquark occu-
pation numbers in the photon self-energy, but we consider
the photon number density not at finite times, but for free
asymptotic states. Hence, we adhere to our principle
approach from [11] but consider an alternative description
for our time dependent emitting system. We shall demon-
strate that in direct analogy to [11], this procedure again
eliminates a potential unphysical contribution from the
vacuum polarization. Moreover, it leads to an UV inte-
grable photon number density if the time evolution of the
quark/antiquark occupation numbers in the photon self-
energy is described in a physically reasonable manner, i.e.
if it is taken into account that these occupation numbers are
populated over a finite interval of time. In this context, we
emphasize again that considering the photon number
density for free asymptotic states is, indeed, crucial to

obtain such physically reasonable results and that the
spurious transient modes encountered in [6–8] and still
partly in [10] would reappear if this quantity were con-
sidered at finite times.
This paper is organized as follows: in Sec. II, we provide

a detailed description of our (revised) model approach on
first-order photon production from a QGP. In particular, we
demonstrate how we simulate the time evolution of the
QGP by introducing quickly populating, time dependent
quark/antiquark occupation numbers in the photon self-
energy and how our asymptotic description eliminates a
possible unphysical contribution from the vacuum polari-
zation. After that, we present our numerical investigations
in Sec. III. We show that in this present setting, our
description also leads to an UV integrable photon number
density. There we also provide detailed considerations on
the dependence of the photon number density on the time
scale, τ, over which the quark/antiquark occupation num-
bers are assumed to build up. Then we compare our results
to leading-order thermal photon emission in Sec. IV. In
Sec. V, we again highlight the necessity to consider the
photon number density for free asymptotic states before we
finish with a summary and an outlook for future inves-
tigations in Sec. VI. Technical details are given in the
Appendix.

II. ASYMPTOTIC PHOTON NUMBER DENSITY

Before we start with our numerical investigations, we
provide a more extensive description of our model
approach than given in [10]. The starting point is the
photon number density for a homogeneous, but nonsta-
tionary emitting system of deconfined quarks and anti-
quarks. At first order in αe, this quantity is given by

2ω~k

d6nγðtÞ
d3xd3k

¼ 1

ð2πÞ3
Z

t

−∞
dt1

Z
t

−∞
dt2iΠ<

T ð~k; t1; t2Þeiω~kðt1−t2Þ: ð1Þ

Here iΠ<
T ð~k; t1; t2Þ denotes the transverse part of the photon

self-energy, i.e.

iΠ<
T ð~k; t1; t2Þ ¼ γμνð~kÞiΠ<

νμð~k; t1; t2Þ: ð2Þ

γμνð~kÞ is the photon tensor reading

γμνð~kÞ ¼
X
λ¼⊥

ϵμ;�ð~k; λÞϵνð~k; λÞ

¼
�
−gμν − kμkν

ω2
~k

; for μ; ν ∈ f1; 2; 3g
0; otherwise

; ð3Þ

where the sum runs over all physical (transverse) polar-
izations. Moreover, we have introduced the four-vector
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kμ ¼ ðω~k;
~kÞ. The photon self-energy, iΠ<

μνð~k; t1; t2Þ, in turn
is given by the thermal one-loop approximation

iΠ<
μνð~k; t1; t2Þ

¼ e2
Z

d3p
ð2πÞ3 TrfγμS<F ð~q; t1; t2ÞγνS>F ð~p; t2; t1Þg; ð4Þ

where e denotes the electromagnetic coupling and
~q ¼ ~pþ ~k. In thermal equilibrium, the fermion propagators
entering (4) read

S<F ð~q; t1; t2Þ ¼ S<Qð~q; t1; t2Þ þ S<AQð~q; t1; t2Þ; ð5aÞ

S>F ð~p; t1; t2Þ ¼ S>Qð~p; t1; t2Þ þ S>AQð~p; t1; t2Þ; ð5bÞ

with the quark (Q) and antiquark (AQ) components

S<Qð~q; t1; t2Þ ¼ inFðq0Þ
qþm
2q0

· e−iq0ðt1−t2Þ; ð6aÞ

S<AQð~q; t1; t2Þ ¼ i½1 − nFðq0Þ�
q̄ −m
2q0

· eiq0ðt1−t2Þ; ð6bÞ

S>Qð~p; t1; t2Þ ¼ −i½1 − nFðp0Þ�
pþm
2p0

· e−ip0ðt1−t2Þ; ð6cÞ

S>AQð~p; t1; t2Þ ¼ −inFðp0Þ
p̄ −m
2p0

· eip0ðt1−t2Þ: ð6dÞ

Here nFðEÞ is the Fermi-Dirac distribution function

nFðEÞ ¼
1

1þ eβE
; ð7Þ

with β ¼ 1=T and T denoting the temperature of the
system. Moreover, we have introduced the four-vector
notations pμ ¼ ðE~p; ~pÞ and p̄μ ¼ ðE~p;−~pÞ. Here E~p ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is the free relativistic quark/antiquark energy

with p and m describing the absolute value of the three-
momentum, ~p, and the quark/antiquark mass, respectively.
It follows from (6) that expression (4) contains the

contributions from the four first-order QED processes.
These processes are (one-body) quark bremsstrahlung
(QBS), (one-body) antiquark bremsstrahlung (ABS),
quark-antiquark pair annihilation into a single photon
(ANH), and the spontaneous creation of a quark-antiquark
pair together with a photon out of the vacuum (PAC).
Hence it is convenient to split up (4) accordingly, i.e.

iΠ<
μνð~k; t1; t2Þ ¼ iΠQBS

μν ð~k; t1; t2Þ þ iΠABS
μν ð~k; t1; t2Þ

þ iΠANH
μν ð~k; t1; t2Þ þ iΠPAC

μν ð~k; t1; t2Þ; ð8Þ

with the particular contributions given by

iΠQBS
μν ð~k; t1; t2Þ

¼ e2
Z

d3p
ð2πÞ3 TrfγμS<Qð~q; t1; t2ÞγνS>Qð~p; t2; t1Þg; ð9aÞ

iΠABS
μν ð~k;t1; t2Þ

¼ e2
Z

d3p
ð2πÞ3 TrfγμS

<
AQð~q;t1; t2ÞγνS>AQð~p;t2; t1Þg; ð9bÞ

iΠANH
μν ð~k; t1; t2Þ

¼ e2
Z

d3p
ð2πÞ3 TrfγμS

<
Qð~q; t1; t2ÞγνS>AQð~p; t2; t1Þg; ð9cÞ

iΠPAC
μν ð~k; t1; t2Þ

¼ e2
Z

d3p
ð2πÞ3 TrfγμS

<
AQð~q; t1; t2ÞγνS>Qð~p; t2; t1Þg: ð9dÞ

It follows from (6a)–(6d) that the contraction with γμνð~kÞ
yields

iΠQBS
T ð~k; t1; t2Þ

¼ 2e2
Z

d3p
ð2πÞ3

�
1 −

pxðpxþ ω~kÞ þm2

p0q0

�

× nFðq0Þ½1 − nFðp0Þ�e−iðq0−p0Þðt1−t2Þ; ð10aÞ

iΠABS
T ð~k; t1; t2Þ

¼ 2e2
Z

d3p
ð2πÞ3

�
1 −

pxðpxþ ω~kÞ þm2

p0q0

�

× nFðp0Þ½1 − nFðq0Þ�eiðq0−p0Þðt1−t2Þ; ð10bÞ

iΠANH
T ð~k; t1; t2Þ

¼ 2e2
Z

d3p
ð2πÞ3

�
1þ pxðpxþ ω~kÞ þm2

p0q0

�

× nFðq0ÞnFðp0Þe−iðq0þp0Þðt1−t2Þ; ð10cÞ

iΠPAC
T ð~k; t1; t2Þ

¼ 2e2
Z

d3p
ð2πÞ3

�
1þ pxðpxþ ω~kÞ þm2

p0q0

�

× ½1 − nFðq0Þ�½1 − nFðp0Þ�eiðq0þp0Þðt1−t2Þ: ð10dÞ

Here p and x denote the absolute value of the loop
momentum, ~p, and the cosine of the angle between ~p
and ~k, respectively, i.e. ~p · ~k ¼ pω~kx. By making the
substitutions ~p → ~p − ~k and x → −x in (10b), it follows
that this expression agrees with (10a) for all values of t1 and
t2. It is hence convenient to take these two contributions
together as one single contribution describing (one-body)
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quark/antiquark bremsstrahlung (BST), i.e.

iΠBST
T ð~k; t1; t2Þ

¼ 4e2
Z

d3p
ð2πÞ3

�
1 −

pxðpxþ ω~kÞ þm2

p0q0

�

× nFðq0Þ½1 − nFðp0Þ�e−iðq0−p0Þðt1−t2Þ: ð11Þ

Accordingly, the photon number density (1) can be
decomposed as

2ω~k

d6nγðtÞ
d3xd3k

����
BST

¼ 1

ð2πÞ3
Z

t

−∞
dt1

Z
t

−∞
dt2iΠBST

T ð~k;t1; t2Þeiω~kðt1−t2Þ; ð12aÞ

2ω~k

d6nγðtÞ
d3xd3k

����
ANH

¼ 1

ð2πÞ3
Z

t

−∞
dt1

Z
t

−∞
dt2iΠANH

T ð~k;t1; t2Þeiω~kðt1−t2Þ; ð12bÞ

2ω~k

d6nγðtÞ
d3xd3k

����
PAC

¼ 1

ð2πÞ3
Z

t

−∞
dt1

Z
t

−∞
dt2iΠPAC

T ð~k;t1; t2Þeiω~kðt1−t2Þ: ð12cÞ

That (12a)–(12c) correspond to the contribution from the
indicated processes can be seen by carrying out the
multiplication of the respective expression for the photon
self-energy with the factor eiω~kðt1−t2Þ. It follows from (11)
and (10a)–(10d) that this procedure gives rise to an
oscillating behavior in t1 − t2. The corresponding process
can then be deduced from the specific oscillation frequency.
Furthermore, when we show in the Appendix that each of
the contributions (12a)–(12c) can be written as the absolute
square of a first-order QED transition amplitude, this
interpretation also becomes evident from the underlying
spinor structure.
In order to remove the spurious transient modes encoun-

tered in [6–8], we have to find an adequate ansatz for the
fermion propagators (5). For this purpose, we take into
account that the vacuum contribution to (4) occurs for all
times, whereas the medium contributions only occur as
long as the QGP is actually present. The former aspect is
the reason why we have taken the initial time, i.e. the lower
bound of the time integrals entering (1), to −∞. The
aforementioned time dependence is implemented into the
fermion propagators (5) by introducing time dependent
occupation numbers

nFðEÞ → nFðE; tÞ ¼ fðtÞnFðEÞ; ð13Þ

and replacing the fermion occupation numbers and the
number of holes entering the fermion propagators (5) by
their geometric mean from the different points of time, t1
and t2, i.e.

nFðEÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nFðE; t1ÞnFðE; t2Þ

p
; ð14aÞ

1 − nFðEÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − nFðE; t1Þ�½1 − nFðE; t2Þ�

p
: ð14bÞ

By means of this procedure, the coincidence between (10a)
and (10b) is left unchanged. Moreover, the time evolution
of the QGP is coupled to the interaction vertices. As we
demonstrate in the Appendix, this ansatz ensures that
(12a)–(12c) can be written as an absolute square and, as
a consequence, are positive (semi)definite. Therefore, each
of these contributions and thus the overall photon number
density (1) cannot adopt unphysical negative values.
Moreover, the absolute-square representation ensures that
(12a)–(12c) can be identified with the first-order QED
process indicated in each case.
The crucial difference to [10] is that here we do not

consider (1) at finite times, but in the limit t → ∞ for free
asymptotic states. In analogy to [11], such states are
obtained in this limit by introducing an adiabatic switching
of the electromagnetic interaction according to the
Gell-Mann and Low theorem, i.e.

ĤEM → fεðtÞĤEM; with fεðtÞ ¼ e−εjtj and ε > 0:

ð15Þ

As a result, the time integrals entering (1) are effectively
regulated by a factor of e−εjtij with i ¼ 1; 2. At the very end
of our calculation, i.e. after taking the limit t → ∞ in
expression (1), we take the limit ε → 0. As in [11], the
physical photon number density is thus defined as

2ω~k

d6nγ
d3xd3k

¼ lim
ε→0

1

ð2πÞ3
Z

∞

−∞
dt1

Z
∞

−∞
dt2fεðt1Þfεðt2Þ

× iΠ<
T ð~k; t1; t2Þeiω~kðt1−t2Þ: ð16Þ

We shall briefly demonstrate that (16) does not contain any
unphysical contribution from the vacuum polarization. The
latter is extracted from iΠ<

T ð~k; t1; t2Þ by taking the limit
T → 0 (which corresponds to the absence of the medium)
and reads
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iΠ<
T;0ð~k; t1 − t2Þ

¼ 2e2
Z

d3p
ð2πÞ3

�
1þpxðpxþω~kÞ þm2

p0q0

�
eiðq0þp0Þðt1−t2Þ:

ð17Þ

Upon insertion of (17) into (16), we obtain

ω~k

d6nγ
d3xd3k

����
T→0

¼ lim
ε→0

e2

ð2πÞ3
Z

d3p
ð2πÞ3

�
1þ pxðpxþ ω~kÞ þm2

p0q0

�

×

�
2ε

ε2 þ ðq0 þ p0 þ ω~kÞ2
�

2

≤ lim
ε→0

4e2

ð2πÞ3
Z

d3p
ð2πÞ3

�
1þ pxðpxþ ω~kÞ þm2

p0q0

�

×
ε2

ðq0 þ p0 þ ω~kÞ4
¼ 0; ð18Þ

where we have taken into account that q0 þ p0 þ ω~k > 0 in
the second step.

III. NUMERICAL INVESTIGATIONS
AND RESULTS

In the previous section, we have presented the key
features of our earlier model description on finite lifetime
effects on the photon emission from a QGP. Now, we turn
to our numerical investigations within this model approach.
In this context we demonstrate that the consideration of the
photon number density for free asymptotic states leads to
UV integrable photon spectra if the time evolution of the
quark/antiquark occupation numbers is modeled in a
physically reasonable manner. For this purpose, we con-
sider different switching functions, fiðtÞ, for (13). These
switching functions are given by

f1ðtÞ ¼ θðtÞ; ð19aÞ

f2ðtÞ ¼ θðtÞ − signðtÞ
2

e−2jtj=τ; ð19bÞ

f3ðtÞ ¼
1

2

�
1þ tanh

2t
τ

�
; ð19cÞ

and are depicted in Fig. 1.
f1ðtÞ describes an instantaneous formation at t ¼ 0,

whereas f2ðtÞ and f3ðtÞ describe a formation over a finite
interval, τ, in each case. Another difference between the
latter two switching functions is that f2ðtÞ is continuously
differentiable once, whereas f3ðtÞ is continuously differ-
entiable infinitely many times. As in [10], the photon self-
energy, iΠ<

T ð~k; t1; t2Þ, is summed over the two light-quark

flavors, up and down, such that
P

fe
2
f=e

2 ¼ 5=9, and the
three colors. In order to avoid possible infrared and/or
anticollinear singularities the quark/antiquark masses have
been left finite, mu ¼ md ¼ 0.01 GeV.
Figure 2 compares the asymptotic photon spectra for the

different switching functions, fiðtÞ. For f2ðtÞ and f3ðtÞ a
switching time of τ ¼ 1.0 fm=c has been chosen.
For all three parametrizations, the loop integrals entering

(10c)–(10d) and (11) are rendered finite by the Fermi-Dirac
distribution function (7). In particular, this is also the case
for (10d) since the contribution from the vacuum polari-
zation characterized by the term proportional to 1 is
removed under the successive limits t → ∞ and ε → 0,
which also follows from Eqs. (16)–(18). For fðtÞ ¼ f1ðtÞ
representing an instantaneous formation at t ¼ 0, the
photon number density scales as 1=ω3

~k
for large photon

momenta, which means that the total number density and

 0
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τ=1.0 fm/c for both
f2(t) and f3(t)

f1(t)
f2(t)
f3(t)

FIG. 1 (color online). The time evolution of the QGP is
modeled by different switching functions, fiðtÞ.
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FIG. 2 (color online). The scaling behavior of the photon
number density in the UV domain is highly sensitive to the
choice of fðtÞ. In particular, it is rendered UV integrable if the
QGP is assumed to be created over a finite interval of time, τ.
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the total energy density of the emitted photons are
logarithmically and linearly divergent, respectively.
In contrast to [10], however, this artifact is now fully

removed if we turn from an instantaneous formation to a
formation over a finite interval of time, τ, representing a
physically more reasonable scenario. For f2ðtÞ, which is
continuously differentiable once, the photon number den-
sity is suppressed to ∝ 1=ω7

~k
, which means that the total

photon number density and the total energy density are
both UV finite. Moreover, if we turn from f2ðtÞ to f3ðtÞ,
which is continuously differentiable infinitely many times
and hence represents the most physical scenario, the photon
number density is suppressed even further to an exponential
decay in ω~k.
One remarkable feature in this context is that the slope of

the photon spectrum, i.e. the energy scale over which the
photon number density decreases by a factor of 1=e for
large ω~k, coincides with β ¼ 1=T for τ ¼ 1.0 fm=c. This
suggests that the photon spectrum starts looking thermal
with τ increasing from 0 [where it coincides with the one
for f1ðtÞ] if the quark/antiquark occupation numbers are
switched on according to f3ðtÞ. A comparison of the
photon spectra for different switching times, which is
provided in Fig. 3, supports this.
Nevertheless, in this context the exact dependence of the

photon number density on the switching time, τ, is
counterintuitive for f3ðtÞ: if the quark/antiquark occupa-
tion numbers are switched on according to f2ðtÞ, the
suppression of the photon number density in the UV
domain with respect to the instantaneous case becomes
stronger as larger τ’s are chosen, i.e. the more slowly the
formation of the QGP is assumed to take place.
Furthermore, f2ðtÞ reproduces the photon spectrum for
the instantaneous case in the limit τ → 0, as it must be. The
latter is also the case if the quark/antiquark occupation
numbers are switched on by means of f3ðtÞ. In the limit

τ → ∞, however, the photon number density seems to
converge against some finite value and, as a consequence,
to become independent of τ. To the contrary, one would
expect intuitively that in this limit said quantity disappears.
Then one effectively has a static plasma such that first-order
QED processes become kinematically impossible.
In the following, we demonstrate that the latter is indeed

the case. For this purpose, we first consider the photon
spectra for each of the processes contributing to (16)
separately. Figure 4 shows the photon spectra arising from
quark/antiquark bremsstrahlung and quark-antiquark pair
annihilation into a single photon.
We see that the inverse slope of the photon spectrum

arising from quark/antiquark bremsstrahlung seems to
converge against β with increasing τ, and that the photon
number density appears to converge to a finite value in the
limit τ → ∞ for a given photon energy, ω~k. Furthermore,
the photon spectrum arising from quark-antiquark pair
annihilation into a single photon seems to be independent
of τ with its slope also given by β. To the contrary, for
the contribution from the spontaneous creation of a
quark-antiquark pair together with a photon out of the
vacuum one can infer from Fig. 5 that its suppression with
respect to the instantaneous case becomes stronger as larger
τ’s are chosen and that it accordingly disappears in the
limit τ → ∞.
This implies that the apparent saturation of the overall

photon number density in the limit τ → ∞ results from the
contributions from quark/antiquark bremsstrahlung and
quark-antiquark pair annihilation into a single photon.
As one expects intuitively, however, these contributions
(and hence the overall photon number density) do not
saturate but also vanish in the above limit. In order to see
this, one has to consider them for switching times that
exceed the expected (from the phenomenological point of
view) formation time of the QGP of τQGP ≃ 1.0 fm=c [23]
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FIG. 3 (color online). For both f2ðtÞ (left panel) and f3ðtÞ (right panel) the photon spectrum for f1ðtÞ is reproduced in the limit τ → 0.
For f2ðtÞ, the suppression of the photon number density with respect to the instantaneous case becomes stronger as larger τ’s are chosen.
To the contrary, this quantity seems to converge against some finite value with increasing τ for f3ðtÞ with the slope of the photon
spectrum then given by β.
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by several orders of magnitude. This can be inferred from
Fig. 6. For the contribution from the spontaneous creation
of a quark-antiquark pair together with a photon out of the
vacuum, to the contrary, the expected disappearance in the
limit τ → ∞ already becomes visible for switching times
being of the same order of magnitude as the expected
formation time of the QGP.
We shall give an explanation for how such a different

dependence on τ comes about for the individual contribu-
tions to (16). For this purpose, we take into account that each
of them is given by a loop integral over the different loop-
momentum modes contributing to the respective underlying
first-order QED process. Each of these modes is charac-
terized by a specific formation time. For the individual first-
order QED processes, these formation times read

τBSTð~p; ~kÞ ¼
2π

jq0 − p0 − ω~kj
; ð20aÞ

τANHð~p; ~kÞ ¼
2π

q0 þ p0 − ω~k

; ð20bÞ

τPACð~p; ~kÞ ¼
2π

q0 þ p0 þ ω~k

; ð20cÞ

with the denominators denoting the required virtuality, i.e.
the “offshellness” of the respectively considered process. In
Eq. (20a) we have taken into account that the frequency
q0 − p0 − ω~k is negative definite.
For a specific photon-emission mode that contributes to a

particular process to be suppressed with respect to the
instantaneous case, the switching time, τ, has to be chosen
significantly larger than the formation time of the consid-
ered mode. The reason is that then the QGP appears to be
static for this mode by which the associated process
becomes effectively kinematically impossible. When con-
sidering the contribution to the photon number density
from this particular process, this implies that τ has to be
chosen significantly larger than the formation times of all
contributing emission modes such that the disappearance
of respective contribution in the limit τ → ∞ becomes
evident.
On the other hand, for the contributions from quark/

antiquark bremsstrahlung and quark-antiquark pair anni-
hilation into a single photon the formation times of the
collinear (x ¼ 1) and the anticollinear modes (x ¼ −1) in
the domain p ≤ ω~k, respectively, exhibit formation times
exceeding the expected formation time of the QGP by
several orders of magnitude, which can be read from
Table I. (For the sake of clarity, we would like to stress
again that x denotes the cosine of the angle between the
photon momentum, ~k, and the fermion-loop momentum, ~p,
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FIG. 5 (color online). For the contribution arising from the
spontaneous creation of a quark-antiquark pair together with a
photon out of the vacuum, it is evident that its suppression with
respect to the instantaneous case becomes stronger the more
slowly (τ increasing) the formation of the QGP is assumed to take
place and that it eventually disappears in the limit τ → ∞.
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FIG. 4 (color online). Dependence of the contributions from quark/antiquark bremsstrahlung (left panel) and from quark-antiquark
pair annihilation into a single photon (right panel) on the switching time, τ, for f3ðtÞ. The contribution from quark/antiquark
bremsstrahlung seems to saturate in the limit τ → ∞ with the slope of the spectrum then given by β. Furthermore, the photon spectrum
arising from quark-antiquark pair annihilation into a single photon seems to be entirely independent of τ and exhibits the same slope.
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i.e. ~p · ~k ¼ pω~kx, such that the collinear and the anticol-
linear photon-emission modes are characterized by x ¼ 1
and x ¼ −1, respectively.) As a consequence, the switching
time has to be chosen significantly larger than these
formation times and hence by several orders of magnitude
larger than the expected formation time of the QGP such
that it becomes clear that the contributions from quark/
antiquark bremsstrahlung and quark-antiquark pair anni-
hilation into a single photon vanish in the limit τ → ∞.
This can be seen by restricting the integration range

over d3p such that the collinear (quark/antiquark brems-
strahlung) and the anticollinear modes for p ≤ ω~k (quark-
antiquark pair annihilation into a single photon) are
excluded. In this case, the respective contribution decreases
much faster with increasing τ and, depending on the
exact restriction of the integration range, it becomes visible
that both of them disappear for large τ already for values
around 1 fm=c. For the contribution from quark/antiquark

bremsstrahlung, this can be seen in Fig. 7, where the upper
bound of the integration over dx is varied. If we choose
xMAX ¼ 0.9 such that the collinear modes are excluded,
the contribution from quark/antiquark bremsstrahlung
decreases much faster with increasing τ. In particular, it
becomes evident that it disappears in the limit τ → ∞ even
if τ is of the order of 1 fm=c, which coincides with the
expected formation time of the QGP. On the other hand, if
xMAX is increased gradually back to 1 the collinear modes
are successively reincluded such that the decrease of the
bremsstrahlung contribution with increasing τ is delayed
accordingly.
Analogously, the contribution from quark-antiquark pair

annihilation into a single photon decreases considerably
faster with increasing τ if either the anticollinear modes or
the modes for which p ≤ ω~k are excluded. This is shown in
Fig. 8, where the lower bound of the integrations over dp
and dx are varied from 5.2 GeV down to 0 GeV (left panel)
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FIG. 6 (color online). If the photon spectra arising from quark /antiquark bremsstrahlung (left panel) and quark-antiquark pair
annihilation into a single photon are considered for switching times exceeding the expected formation time of the QGP by several orders
of magnitude, one sees that both contributions also vanish in the limit τ → ∞.

TABLE I. Formation times of the collinear modes for the process of quark /antiquark bremsstrahlung (left part)
and of the anticollinear modes for the process of quark-antiquark pair annihilation into a single photon (right part)
for ω~k ¼ 5.0 GeV and mu ¼ md ¼ 0.01 GeV. One can see that the formation times of the collinear modes and of
the anticollinear modes in the domain p ≤ ω~k exceed the expected formation time of the QGP by several orders of
magnitude. In this context, it is particularly remarkable that the formation times in turn decrease by several orders of
magnitude if they are considered for modes outside these domains, i.e. if one decreases x from 1.0 to 0.9 for the
contribution from quark/antiquark bremsstrahlung or if one either increases p from some p ≤ ω~k to 6.0 GeV or x
from −1.0 to −0.9 for the contribution from quark-antiquark pair annihilation into a single photon. In each case, the
formation time is of the same or even in a smaller order of magnitude than the expected formation time of the QGP.

τBSTð~p; ~kÞ ( fm=c) τANHð~p; ~kÞ ( fm=c)
p (GeV) x ¼ 1.0 x ¼ 0.9 p (GeV) x ¼ −1.0 x ¼ −0.9

ω~k ¼ 5.0 GeV 2.0 3.52 × 105 8.70 × 100 1.0 2.01 × 104 1.02 × 101

4.0 9.05 × 105 5.58 × 100 2.0 3.02 × 104 3.97 × 100

6.0 1.66 × 106 4.55 × 100 3.0 3.02 × 104 1.95 × 100

8.0 2.61 × 106 4.04 × 100 4.0 2.01 × 104 1.02 × 100

10.0 3.77 × 106 3.73 × 100 5.0 1.26 × 100 5.62 × 10−1

12.0 5.13 × 106 3.52 × 100 6.0 6.28 × 10−1 3.45 × 10−1
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and from −0.9 down to −1.0 (right panel), respectively. If
we choose either pMIN ¼ 5.2 GeV or xMIN ¼ −0.9 the
anticollinear modes in the domain p ≤ ω~k are excluded,
and the contribution from quark-antiquark pair annihilation
into a single photon decreases much faster with increasing τ
than it does for a full integration over d3p. As a conse-
quence, it becomes evident that this contribution disappears
in the limit τ → ∞ already if τ is chosen around 10 fm=c. If
pMIN and xMIN are gradually decreased back to 0.0 GeV
and −1.0, respectively, the anticollinear modes from
the range p ≤ ω~k are reincluded and the decrease of the
pair-annihilation contribution is effectively delayed.

This shows that the apparent saturation of the contribu-
tions from quark/antiquark bremsstrahlung and quark-
antiquark pair annihilation into a single photon for τ being
varied from 0–1 fm=c results from the large formation
times of the collinear and anticollinear modes in the range
p ≤ ω~k, respectively. To the contrary, for the spontaneous
creation of a quark-antiquark pair together with a photon
out of the vacuum the formation times of all contributing
modes are bounded by

τPACð~p; ~kÞ ≤
2π

2mu;d þ ω~k

; ð21Þ

for a specific photon energy, ω~k, such that the contribution
from this process decreases much faster with increasing τ.
Accordingly, its vanishing in the limit τ → ∞ manifests
itself already for switching times of the same order of
magnitude as the formation time of the QGP.
We have seen that the contributions from quark/

antiquark bremsstrahlung and quark-antiquark pair anni-
hilation into a single photon decrease much faster with
increasing τ if the collinear and the anticollinear modes at
p ≤ ω~k are excluded from the integration over d3p in each
case. Accordingly, said modes lead to an enhancement of
the respective contribution to the overall photon number
density by several orders of magnitude for the physically
motivated choice of τ≃ τQGP ≃ 1.0 fm=c. Such an
enhancement, which eventually might turn into a (anti)
collinear divergence for mu;d → 0, requires a hard thermal
loop (HTL) resummation of the quark/antiquark propaga-
tors. This effectively assigns the quarks and antiquarks a
thermal mass. The full quark/antiquark mass hence reads

mfull;2
u;d ¼ mbare;2

u;d þm2ðTÞ; ð22Þ
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FIG. 7 (color online). Dependence of the contribution arising
from quark/antiquark bremsstrahlung on the switching time, τ,
for different upper bounds, xMAX, for the integration over dx. If
the collinear modes are excluded, this contribution decreases
much faster with increasing τ. As it must be, the actual decreasing
behavior is reproduced if xMAX is increased back to 1.
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FIG. 8 (color online). Dependence of the contribution arising from quark-antiquark pair annihilation into a single photon on the
switching time, τ, with different lower bounds, pMIN, for integration over dp (left panel) and different lower bounds, xMIN, for the
integration over dx (right panel). If the anticollinear modes at p ≤ ω~k are excluded this contribution also decreases much faster with
increasing τ. As expected, the actual decreasing behavior is reproduced if we decrease pMIN back to 1.0 GeV and xMIN back to 1.0,
respectively.
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where we have chosen mbare
u;d ¼ 0.01 GeV, and the thermal

component, mðTÞ, given by

m2ðTÞ ¼ 4παs
3

�
Nc þ

Nf

2

�
T2: ð23Þ

Here Nc and Nf denote the number of colors and flavors,
respectively. If we consider three colors and the two light-
quark flavors, up and down, expression (23) turns into

m2ðTÞ ¼ 16παs
3

T2: ð24Þ

For a temperature of T ¼ 0.3 GeV and αs ≈ 0.3, the
thermal component of the quark/antiquark mass is of the
order of several hundred MeV and hence significantly
larger than the bare component. This in turn implies that if
the thermal component of (22) is taken into account the
actual formation times of the collinear modes and the
anticollinear modes at p ≤ ω~k contributing to the processes
quark/antiquark bremsstrahlung and quark/antiquark pair

annihilation into a single photon, respectively, are signifi-
cantly smaller compared to the case in which only the bare
component is considered. This is shown in Table II.
One hence expects that the contributions from quark/

antiquark bremsstrahlung and quark/antiquark pair anni-
hilation into a single photon then accordingly decrease
considerably faster with increasing τ. As a consequence,
the disappearance of these contributions for τ → ∞ should
become evident even if τ is chosen from the same order of
magnitude as the expected formation time of the QGP. One
can infer from Fig. 9 that this is indeed the case.
In thiswork,we have only presented results on the scenario

in which the quark/antiquark occupation numbers are
switched on and maintained, but not the scenario in which
they are switched back off after a certain period of time, τL, to
take into account the finite lifetime of the QGP during a
heavy-ion collision. The reason is that for the latter scenario
the principle sensitivity of the photon number density on the
switching function,fðtÞ, and the switching time, τ, is as in the
one presented here. Firstly, the photon number density again
scales as 1=ω3

~k
in the UV domain if the quark/antiquark

TABLE II. If the thermal component of the quark /antiquark mass is taken into account, the formation times of the
collinear modes and the anticollinear modes at p ≤ ω~k contributing to the processes of quark/antiquark
bremsstrahlung and quark-antiquark pair annihilation into a single photon, respectively, are significantly smaller
compared to the case where only the bare component is considered. For the thermal component of the quark/
antiquark mass, we have chosen T ¼ 0.3 GeV and αs ≈ 0.3, which implies that mðTÞ ≈ 0.67 GeV.

τBSTð~p; ~kÞ ( fm=c) τANHð~p; ~kÞ ( fm=c)
p (GeV) mu;d ¼ mbare

u;d mu;d ¼ mfull
u;d p (GeV) mu;d ¼ mbare

u;d mu;d ¼ mfull
u;d

ω~k ¼ 5.0 GeV 2.0 3.52 × 105 1.61 × 101 1.0 2.01 × 104 6.81 × 100

4.0 9.05 × 105 4.05 × 101 2.0 3.02 × 104 4.81 × 100

6.0 1.66 × 106 7.38 × 101 3.0 3.02 × 104 5.60 × 10−1

8.0 2.61 × 106 1.16 × 102 4.0 2.01 × 104 2.06 × 10−1

10.0 3.77 × 106 1.67 × 102 5.0 1.26 × 100 1.25 × 10−1

12.0 5.13 × 106 2.27 × 102 6.0 6.28 × 10−1 8.94 × 10−2
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FIG. 9 (color online). Dependence of the contributions from quark/antiquark bremsstrahlung (left panel) and from quark-antiquark
pair annihilation into a single photon (right panel) on the switching time, τ, for the bare and the full quark/antiquark masses. If the
thermal component of the mass is included, both contributions decrease much faster with increasing τ compared to the case where only
the bare masses are considered.
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occupation numbers are switched on and off instantaneously,
with this artifact being removed if both switchings take place
over a finite interval of time, τ, instead. In particular, the
photon spectrum again starts looking thermal with increasing
τ if we consider a switching function being continuously
differentiable infinitely many times. For such a switching
function, the photon number density again seems to converge
against some finite value for τ → ∞, where this apparent
saturation can again be traced back to the large formation
times of the collinear modes and the anticollinear modes at
p ≤ ω~k for the processes of quark/antiquark bremsstrahlung
and quark-antiquark pair annihilation into a single photon,
respectively.
When comparing the exact dependence of the asymptotic

photon spectra within our (revisited) model description to
those from [11], the fact that the slope of the overall photon
spectrum converges against the inverse temperature, β
[provided that the quark/antiquark occupation numbers
are switched on according to f3ðtÞ], might seem unphysical
at first. In [11], we have investigated the photon emission
arising from a change of the quark/antiquark mass. We
have seen that the slope of the resulting photon spectrum
increases with the transition time of the quark/antiquark
mass if the time evolution of the latter is modeled by a
function being continuously differentiable infinitely many
times. Hence, one might expect a similar dependence of the
photon spectra on the switching time, τ, within our revisited
model description if the quark/antiquark occupation num-
bers are switched according to f3ðtÞ since this function is
also continuously differentiable infinitely many times.
Here it is important to point out, however, that within our

(revisited) model description, we always switch on the same
distribution function for the quarks and antiquarks for all
switching functions, fðtÞ, and, in particular, for all consid-
ered switching times, τ. To the contrary, in [11] we pursue
a first-principle approach in which the quark/antiquark
occupation numbers are determined by solving the Dirac
equation with a time dependent mass. This has the direct
consequence that the quark/antiquark occupation numbers
decrease exponentially with increasing momentum, p, and
that the slope of the respective spectrum increases with the
transition time (provided that the mass function is contin-
uously differentiable infinitely many times). This in turn
manifests itself in the form of a very similar sensitivity of the
asymptotic photon spectrum on this time. To the contrary,
such a specific dependence does not occur within our model
description since by construction the latter features quark/
antiquark occupation numbers which solely depend on the
temperature and are hence independent of τ.

IV. COMPARISON TO LEADING-ORDER
THERMAL PHOTON PRODUCTION

The investigations from [6–8] indicated that nonequili-
brium photon production arising from first-order QED
processes possibly dominates over leading-order thermal

photon emission in the UV domain. On the other hand,
these investigations came along with the mentioned spu-
rious transient modes, which in turn questions the explana-
tory power of the comparison performed therein. Since
these modes have been removed in a consistent manner
within this work, we again perform a comparison to
leading-order thermal photon production in order to get
a more significant picture. Here we note again that the
contributions from first-order QED processes to photon
production vanish in a static thermal equilibrium such that
there the first nontrivial contribution starts at two-loop
order. Since a loop expansion does not coincide with a
coupling-constant expansion, resummations of so-called
ladder diagrams are necessary in order to obtain the thermal
rate at second order in the perturbative coupling constants,
i.e. at linear order in αe and at linear order in αs [24].
Within the scope of our investigations on chiral photon

production [11], we have already made a rather rudimen-
tary comparison to leading-order thermal photon emis-
sion by simply integrating the rate from [24] over the
assumed lifetime of the chirally restored phase at constant
temperature. This comparison indicated that (first-order)
nonequilibrium photon production is subdominant com-
pared to leading-order thermal production for photon
energies ω~k ≳ 1.0 GeV.
Since the actual question from [6–8] on the role of finite

lifetime effects on direct photon emission from a QGP is
readdressed within this work, we now perform a more
detailed comparison. In this context we take into account
that the QGP as it occurs in a heavy-ion collision is not a
static medium but instead expands and cools down over a
finite interval of time before it hadronizes finally. To begin
with, the time dependence of the temperature effectively
leads to a time dependent photon-production rate, i.e.

d7nγ
d4xd3k

¼ d7nγðTðtÞÞ
d4xd3k

≡ d7nγðtÞ
d4xd3k

: ð25Þ

In order to obtain the overall photon number accessible to
experiment, one has to convolute (25) with the time
dependent volume, VQGPðtÞ, of the expanding QGP from
the initial time, t0, at which the QGP has thermalized until
the time thad, at which the full hadronic phase is reached.
This leads to

d3nγ
d3k

����
eq:

¼
Z

thad

t0

dtVQGPðtÞ
d7nγðtÞ
d4xd3k

: ð26Þ

For the time evolution of the volume and the temperature of
the QGP, we consider the same fireball model that has been
used in [25] for 0%–20% central Au+Au collisions at
200 AGeV.
When calculating the overall photon number arising

from the first-order nonequilibrium contributions, we
multiply our asymptotic photon number density directly
with the initial volume of the QGP, i.e.
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d3nγ
d3k

����
non-eq:

¼ VQGPðt0Þ
d6nγ
d3xd3k

: ð27Þ

The reason is that the first-order nonequilibrium photon
production occurs during the formation of the QGP, which
we model by the switching-on of the quark/antiquark
occupation numbers. The adiabatic switching-off of the
electromagnetic interaction then removes the artificial
contributions occurring at finite times. As a consequence,
the asymptotic photon number density also has to be
computed for the initial temperature, T0.
For our numerical analysis, we chose the same values

for the parameters of the fireball model as done in [25].
In particular, we assume an initial volume of the QGP of
VQGPðt0Þ ¼ 73:76 fm3 which from the underlying equ-
ation of state leads to an initial temperature of
T0 ¼ 0.36 GeV. For the photon numbers emerging from
the first-order nonequilibrium processes, we chose a
switching time of τ ¼ 1.0 fm=c. Furthermore, these con-
tributions are considered both for the bare and the full
quark/antiquark mass. As a consequence, the thermal mass
is taken with respect to the initial temperature, which
according to (23) leads to mðT0Þ ¼ 0.81 GeV.
Figure 10 compares the photon spectra for first-order

nonequilibrium production to those for leading-order ther-
mal production. If we only take into account the bare
component of the quark/antiquark mass, the nonequili-
brium photon emission exceeds the thermal emission by 1
order of magnitude for photon energies ω~k ≳ 1.0 GeV. At
first sight this seems to support the qualitative picture from
[6–8]. Here it is important to point out, however, that the
photon spectrum for the full quark/antiquark mass is the
more realistic one since the included thermal component
effectively provides the required HTL resummation of the
(anti)collinear photon-emission modes. In this case we see
that in contrast to [6–8], the photon numbers arising from

first-order nonequilibrium processes are clearly below
those arising from leading-order thermal photon production
for ω~k ¼ 1–5 GeV.
On the other hand, the photon spectrum emerging from

leading-order thermal contributions features a steeper
decay that the one from the first-order nonequilibrium
contributions since it incorporates the entire time evolution
of the temperature of the QGP and not only its initial
temperature, T0. This in turn implies that nonequilibrium
photon production becomes dominant somewhere above
ω~k ¼ 5 GeV, which can be inferred from Fig. 11.
This, however, does not effectively change the principle

idea that direct photon production from the QGP phase
during a heavy-ion collision can be addressed by integrat-
ing the leading-order thermal rate on a hydrodynamic
background (quasistatic calculation) and that a full dynamic
treatment is not crucial quantitatively. Comprehensive
comparisons of the contributions from the different sources
of direct photon emission to the overall photon spectra
measured in the RHIC and LHC experiments [26–28] have
shown that medium contributions from the hadronic phase
dominate in the infrared (IR) domain, whereas the photon
emission arising from initial nucleon-nucleon scatterings
and jet-medium interactions outshines the medium con-
tributions both from the QGP and the hadronic phase in the
UV domain. To the contrary, a dominance of the medium
contribution from the QGP phase could only possibly be
observed at intermediate photon energies with the exact
range increasing with the collision energy. On the other
hand, our investigations have shown that for these inter-
mediate energies, leading-order thermal photon production
clearly dominates over the first-order nonequilibrium one.
The principal reason why the contributions from initial

nucleon-nucleon scatterings and jet-medium interactions
dominate over the pure medium contributions from the
QGP and the subsequent hadronic phase in the UV domain
is that the photon spectra from the former two sources flatten
into a power-law decay, whereas those from the latter feature
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FIG. 10 (color online). Comparison of first-order nonequili-
brium photon production to leading-order thermal production. If
one takes into account the full quark /antiquark mass, the former
is subdominant for ω~k ¼ 1–5 GeV.
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FIG. 11 (color online). First-order photon production starts to
dominate over leading-order thermal production forω~k ≳ 7.5 GeV.
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an exponential decay. Such an exponential decay is also
observed for the photon spectra arising from first-order
nonequilibrium production from the QGP. This implies that
even though this photon production starts to dominate over
the leading-order thermal one at photon energies ω~k ≳
5 GeV such that a quasistatic description strictly speaking
becomes invalid in this domain, this does not effectively
matter since the medium contributions from the QGP are
outshone by the contributions from initial nucleon-nucleon
scatterings and jet-medium interactions in any case.

V. REMARKS ON THE IMPORTANCE
OF FREE ASYMPTOTIC STATES

We would like to stress again that the exact sequence of
limits, i.e. taking first t → ∞ and then ε → 0, is crucial to
eliminate a possible unphysical contribution from the
vacuum polarization and, in general, to obtain an UV

integrable photon number density from the medium con-
tributions to iΠ<

T ð~k; t1; t2Þ. If one interchanges both limits,
i.e. if one first takes ε → 0 at some finite time, t, it can be
shown [11] that the contribution from the vacuum polari-
zation does not vanish, but instead turns into

ω~k

d6nγ
d3xd3k

����
T→0

¼ e2

ð2πÞ3
Z

d3p
ð2πÞ3

�
1þpxðpxþω~kÞ þm2

p0q0

�

×
1

ðq0 þp0 þω~kÞ2
: ð28Þ

Since the integration measure, d3p, contributes an addi-
tional factor of p2 to the integrand, the loop integral is
linearly divergent for a given photon energy, ω~k.
Furthermore, since (28) is time independent, it persists
under the subsequent limit t → ∞.
On the other hand, since (28) is time independent and

hence already present before any medium contributions to
(1) can appear, one might still argue that it can be identified
with the virtual cloud of the vacuum and accordingly needs
to be subtracted since it is unobservable. The reason for this
time independence, which suggests such an identification, is
that in contrast to [6–8], our description takes into account
that the vacuum contribution to the photon self-energy
always occurs, whereas for the medium contributions this is
only the case as long as the QGP is actually present. After
subtracting the divergent vacuum contribution and taking
the subsequent limit t → ∞, however, one in general still
encounters the problem that the photon number density
arising from the remaining medium contributions to the
photon self-energy is not integrable in the UV domain. This
is shown in Fig. 12.
As for the correct sequence of limits the photon number

density scales ∝ 1=ω3
~k
for f1ðtÞ. If we turn from f1ðtÞ to

f2ðtÞ or f3ðtÞ, we see, however, that the photon number
density is suppressed to only a slightly steeper decay
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when turning from an instantaneous

switching to a switching over a finite interval of time, τ.
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∝ 1=ω3.8
~k
. For that reason, only the total number density of

the radiated photons is UV finite, whereas their total energy
density remains UV divergent. In particular, the thus
obtained photon number density exceeds the value for
the correct sequence of limits by several orders of
magnitude, which is displayed in Fig. 13.
Here it is important to point out once more that the

interpretation of (1) as a photon number density is only
justified in the limit t → �∞ for finite ε since only then the
electromagnetic field is asymptotically noninteracting. At
finite times, higher order (Fock) contributions to the photon
number density still persist due to the remote interactions.
This implies that taking first ε → 0 at some finite time, t, is
not correct, as then we would have an interacting electro-
magnetic field such that the interpretation of (1) as a photon
number density is not justified. Moreover, such an inter-
pretation remains doubtful even in the limit t → ∞. Since
we would have taken ε → 0 before the electromagnetic
field would not evolve into a noninteracting one. The same
conceptual problem occurs when only using an adiabatic
switching-on of the electromagnetic interaction for t →
−∞ but no adiabatic switching-off for t → ∞. Such a
procedure has been suggested in [22] to describe initial
correlations at some t ¼ t0 evolving from an uncorrelated
initial state at t → −∞.

VI. SUMMARY, CONCLUSIONS AND OUTLOOK

In this work, we have investigated the role of finite
lifetime effects on the photon emission from a rapidly
created quark-gluon plasma (QGP) during a heavy-ion
collision. We have essentially revisited our earlier model
description [10], in which we simulate the time evolution of
the QGP by time dependent quark/antiquark occupation
numbers in the photon self-energy. In contrast to [10], we
have not considered the photon number density at finite
times, but for free asymptotic states, as the former is ill
defined. In analogy to [11], we have seen that this
procedure does eliminate a possible unphysical contribu-
tion from the vacuum polarization and, moreover, leads to
an UV integrable photon number density. This result
confirms the conjecture that the spurious transient modes
encountered in [6–8,10] arise from an ambiguous definition
of the photon number density at finite times. Consequently,
our investigations again support the corresponding concern
raised in [29,30] towards [6–8].
When switching the quark/antiquark occupation num-

bers by an analytic function, which represents the physi-
cally most reasonable scenario, we have seen that the
photon number density apparently converges to a finite
value for large τ if the latter is chosen of the same order of
magnitude as the (phenomenologically) expected formation
time of the QGP, which amounts to τQGP ≃ 1.0 fm=c. In
order to see that the photon number density actually
vanishes in the limit τ → ∞, the switching time has to
be chosen larger than τQGP by several orders of magnitude.

We have shown that this apparent saturation results from
the contributions describing quark/antiquark bremsstrah-
lung and quark-antiquark pair annihilation into a single
photon. In contrast to the spontaneous creation of a quark-
antiquark pair together with a photon out of the vacuum,
both of these processes feature contributions from individ-
ual photon-emission modes for which the formation times
exceed τQGP by several orders of magnitude. In particular,
these modes are the collinear ones for the process of quarks/
antiquark bremsstrahlung and the anticollinear ones at
p ≤ ω~k (with p denoting the absolute value of the loop
momentum) for the process of quark-antiquark pair anni-
hilation into a single photon. On the other hand, the
switching time, τ, has to be chosen significantly larger
than the formation time of all modes contributing to a
specific process such that the disappearance of the con-
tribution from this process (and hence of the overall photon
number density) in the limit τ → ∞ becomes evident. This
can be seen by excluding said modes from the integration
range over d3p. In this case, the contributions from quark/
antiquark bremsstrahlung and quark-antiquark pair anni-
hilation into a single photon decrease much faster with
increasing τ. In particular, it becomes evident that these
contributions vanish for τ → ∞ even if τ is chosen to be of
the same order of magnitude as τQGP.
On the other hand, said (anti)collinear photon-emission

modes lead to a significant (by several orders of magnitude)
enhancement of the respective contributions to the overall
photon number density for τ≃ τQGP. Strictly speaking,
such an enhancement requires an HTL resummation of the
quark/antiquark propagators, by which the quarks and
antiquarks are effectively assigned a thermal mass. This
thermal component of the quark/antiquark mass is by 1–2
orders of magnitude larger than the bare component. If it is
taken into account, the formation times of the aforemen-
tioned (anti)collinear modes hence decrease by several
orders of magnitude. As a consequence, then the contri-
butions from the processes of quark/antiquark bremsstrah-
lung and quark/antiquark pair annihilation into a single
photon decrease much faster with increasing τ.
Finally, we have compared our results to leading-order

thermal photon production yields. We have seen that if one
takes into account the full thermal mass of the quarks and
antiquarks the photon numbers arising from leading-order
thermal photon emission clearly outshine those from first-
order nonequilibrium photon emission for photon energies
of ω~k ¼ 1–5 GeV. On the other hand, our investigations
also show that first-order photon production in turn
dominates for ω~k ≳ 5 GeV. This, however, does not affect
the quantitative accuracy of the recipe to address direct
photon emission from the QGP phase by thermal calcu-
lations since both the thermal and the nonequilibrium
contributions from this phase are outshone by direct photon
emission arising from initial nucleon-nucleon scatterings
and jet-medium interaction in that domain.
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In summary, we have seen that our approach, which
considers the photon number density for free asymptotic
states, leads to physically reasonable results (no vacuum
contribution, UV integrability) for this quantity. This is the
case even though our ansatz for the time evolution of theQGP
during a heavy-ion collision formally violates the Ward-
Takahashi identities for the photon self-energy. The principal
reason is that we (strictly speaking)make ad hoc assumptions
on the two-time dependence of the latter quantity by intro-
ducing time dependent quark/antiquark occupation numbers.
On the other hand, it has been pointed out in [31] that the
conservationofQEDgauge invariance andhenceof theWard-
Takahashi identities remains challenging even if one tries to
calculate the photon self-energy in a self-consistent frame-
work such as the two-particle irreducible (2PI) approach,
where suchassumptionsareabsent.A similar problemusually
occurs when trying to calculate direct photon production
within a transport framework: it has been shown in [32] that
the Thomas-Reiche-Kuhn sum rules, which are a direct
consequence of gauge invariance ofQED, impose restrictions
on the actual applicability of the transport approaches on
photon production from nonequilibrated hot hadronic matter
presented in [33–37].
For our future investigations, however, the actual role of

the Ward-Takahashi identities still requires further consid-
eration. We have seen that even though they are formally
violated within our model approach, this approach never-
theless leads to physically reasonable results for the
(asymptotic) photon number density. At first sight, this
seems to disprove our earlier conjecture that the spurious
transient modes encountered in [6–8] and still partly in [10]
result from a violation of the Ward-Takahashi identities.
Here one has to keep in mind, however, that these identities
can be violated in two different ways:

(i) Firstly, they can be violated directly by making
ad hoc assumptions on the two-time dependence of
the photon self-energy. This was done in [10] by
introducing time dependent occupation numbers in
the one-loop thermal photon self-energy, which on
its own fulfills the Ward-Takahashi identities.

(ii) On the other hand, they can also be violated
indirectly by considering the photon number density
at finite times and using an inadequate definition of
this quantity. This has been the case in [6–8]. The
reason is that the definition of the photon number
density considered therein would only allow for an
accordant interpretation if the electromagnetic in-
teraction was switched off at the point of time, t, at
which said quantity is considered. By means of such
a switching, however, an effective violation of the
Ward-Takahashi identities, which otherwise would
be fulfilled, reoccurs. In this context it is important
to point out that an adequate definition of a transient
particle number density is generally impossible
altogether for fundamental reasons except in some
special settings [38–41].

In particular, within the scope of our model description
such an indirect violation would occur in addition to the
direct one if we considered the photon number density at
finite times. Consequently, it is of particular interest
whether possibly only this indirect violation leads to
artificial results.
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APPENDIX: REPRESENTATION OF THE
PHOTON NUMBER DENSITY AS AN

ABSOLUTE SQUARE

In this appendix, we show that each of the contributions
(12a)–(12c) can be written as the absolute square of a first-
order QED transition amplitude and thus is positive (semi)
definite. For this purpose, we first undo the contraction of
the individual contributions to the photon self-energy with
γμνð~kÞ. Then (12a)–(12c) turn into

2ω~k

d6nγðtÞ
d3xd3k

����
BST

¼ γμνð~kÞ
ð2πÞ3

Z
t

−∞
dt1

Z
t

−∞
dt2iΠBST

νμ ð~k;t1; t2Þeiω~kðt1−t2Þ; ðA1aÞ

2ω~k

d6nγðtÞ
d3xd3k

����
ANH

¼ γμνð~kÞ
ð2πÞ3

Z
t

−∞
dt1

Z
t

−∞
dt2iΠANH

νμ ð~k;t1; t2Þeiω~kðt1−t2Þ; ðA1bÞ

2ω~k

d6nγðtÞ
d3xd3k

����
PAC

¼ γμνð~kÞ
ð2πÞ3

Z
t

−∞
dt1

Z
t

−∞
dt2iΠPAC

νμ ð~k;t1; t2Þeiω~kðt1−t2Þ: ðA1cÞ

It follows from (6a)–(6d) that the contributions to the
uncontracted photon self-energy read
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iΠBST
μν ð~k; t1; t2Þ ¼ 2e2

Z
d3p
ð2πÞ3 Tr

�
γμ

qþm
2q0

γν
pþm
2p0

�
nFðq0Þ½1 − nFðp0Þ�e−iðq0−p0Þðt1−t2Þ; ðA2aÞ

iΠANH
μν ð~k; t1; t2Þ ¼ e2

Z
d3p
ð2πÞ3 Tr

�
γμ

qþm
2q0

γν
p̄ −m
2p0

�
nFðq0ÞnFðp0Þe−iðq0þp0Þðt1−t2Þ; ðA2bÞ

iΠPAC
μν ð~k; t1; t2Þ ¼ e2

Z
d3p
ð2πÞ3 Tr

�
γμ

q̄ −m
2q0

γν
pþm
2p0

�
½1 − nFðq0Þ�½1 − nFðp0Þ�eiðq0þp0Þðt1−t2Þ: ðA2cÞ

When incorporating the time evolution of the QGP into (A2a)–(A2c) according to (13) and (14a)–(14b), these
expressions turn into

iΠBST
μν ð~k; t1; t2Þ ¼ 2e2

Z
d3p
ð2πÞ3 Tr

�
γμ

qþm
2q0

γν
pþm
2p0

�
fBSTðq0; p0; t1ÞfBSTðq0; p0; t2Þe−iðq0−p0Þðt1−t2Þ; ðA3aÞ

iΠANH
μν ð~k; t1; t2Þ ¼ e2

Z
d3p
ð2πÞ3 Tr

�
γμ

qþm
2q0

γν
p̄ −m
2p0

�
fANHðq0; p0; t1ÞfANHðq0; p0; t2Þe−iðq0þp0Þðt1−t2Þ; ðA3bÞ

iΠPAC
μν ð~k; t1; t2Þ ¼ e2

Z
d3p
ð2πÞ3 Tr

�
γμ

q̄ −m
2q0

γν
pþm
2p0

�
fPACðq0; p0; t1ÞfPACðq0; p0; t2Þeiðq0þp0Þðt1−t2Þ: ðA3cÞ

In order to keep the notation short, we have introduced

fBSTðq0; p0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nFðq0; tÞ½1 − nFðp0; tÞ�

p
; ðA4aÞ

fANHðq0; p0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nFðq0; tÞnFðp0; tÞ

p
; ðA4bÞ

fPACðq0; p0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − nFðq0; tÞ�½1 − nFðp0; tÞ�

p
: ðA4cÞ

As the next step, we take into account that

X
s

uð~p; sÞūð~p; sÞ ¼ pþm
2p0

; ðA5aÞ

X
s

vð~p; sÞv̄ð~p; sÞ ¼ p̄ −m
2p0

: ðA5bÞ

With the help of these relations, (A3a)–(A3c) can be further rewritten as

iΠBST
μν ð~k; t1; t2Þ ¼ 2e2

X
r;s

Z
d3p
ð2πÞ3 ½ūð~p; rÞγμuð~q; sÞ� · ½ūð~q; sÞγνuð~p; rÞ�

× fBSTðq0; p0; t1ÞfBSTðq0; p0; t2Þe−iðq0−p0Þðt1−t2Þ; ðA6aÞ

iΠANH
μν ð~k; t1; t2Þ ¼ e2

X
r;s

Z
d3p
ð2πÞ3 ½v̄ð~p; rÞγμuð~q; sÞ� · ½ūð~q; sÞγνvð~p; rÞ�

× fANHðq0; p0; t1ÞfANHðq0; p0; t2Þe−iðq0þp0Þðt1−t2Þ; ðA6bÞ
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iΠPAC
μν ð~k; t1; t2Þ ¼ e2

X
r;s

Z
d3p
ð2πÞ3 ½ūð~p; rÞγμvð~q; sÞ� · ½v̄ð~q; sÞγνuð~p; rÞ�

× fPACðq0; p0; t1ÞfPACðq0; p0; t2Þeiðq0þp0Þðt1−t2Þ: ðA6cÞ

If we now insert (A6a)–(A6c) into (A1a)–(A1b) and make use of relation (3) we can finally rewrite the individual
contributions to the photon number density as

2ω~k

d6nγðtÞ
d3xd3k

����
BST

¼ 2e2

ð2πÞ3
X
λ;r;s

Z
d3p
ð2πÞ3

����ϵμ;�ð~k; λÞūð~p; rÞγμuð~q; sÞ
Z

t

−∞
dufBSTðq0; p0; uÞe−iðq0−p0−ω~kÞu

����
2

; ðA7aÞ

2ω~k

d6nγðtÞ
d3xd3k

����
ANH

¼ e2

ð2πÞ3
X
λ;r;s

Z
d3p
ð2πÞ3

����ϵμ;�ð~k; λÞv̄ð~p; rÞγμuð~q; sÞ
Z

t

−∞
dufANHðq0; p0; uÞe−iðq0þp0−ω~kÞu

����
2

; ðA7bÞ

2ω~k

d6nγðtÞ
d3xd3k

����
PAC

¼ e2

ð2πÞ3
X
λ;r;s

Z
d3p
ð2πÞ3

����ϵμ;�ð~k; λÞūð~p; rÞγμvð~q; sÞ
Z

t

−∞
dufPACðq0; p0; uÞeiðq0þp0þω~kÞu

����
2

: ðA7cÞ

This completes the proof that (12a)–(12c) can be expressed as absolute squares. Furthermore, taking a closer look at the
underlying spinor structures shows that (A7a)–(A7c) can be interpreted as the corresponding first-order QED process.
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