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High-energy Coulomb corrections to the parameters of the Molière multiple scattering theory are
obtained. Numerical calculations are presented in the range of the nuclear charge number of the target
atom 6 ⪕ Z ⪕ 92. It is shown that these corrections have a large value for sufficiently heavy elements
of the target material and should be taken into account in describing high-energy experiments with
nuclear targets.
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I. INTRODUCTION

The Coulomb correction (CC) is the difference between
the exact Born parameter ξ ¼ zZα=β1 result and the Born
approximation. At intermediate energies, formulas for the
Coulomb corrections are not available in analytical form
[1]. The analytic formulas for the high-energy CCs are
known as the Bethe-Bloch formulas for the ionization
losses [2] and those for the Bethe-Heitler cross section [3,4]
and the spectrum of bremsstrahlung [3–5].
A similar expression was found for the total cross section

of the Coulomb interaction of hadronic atoms with ordinary
target atoms [6]. Also, Coulomb corrections were obtained
to the cross sections of the quasielastic and elastic electron
scattering [7,8], the coherent electroproduction of vector
mesons [8,9], the pair production in nuclear collisions
[3,4,10,11], and a two-dimensional screened potential in an
impact-parameter space [12].
The specificity of the expressions presented in this work

is that they determine the Coulomb corrections to the
parameters of the Molière multiple scattering theory, i.e.,
the screening angular parameter and some other parameters
of the Molière expansion method [13].
Molière’s theory is of interest for numerous applications

related to particle transport in matter, is widely used in most
of the transport codes, and also presents the most used tool
for taking into account the multiple scattering effects in
experimental data processing (the DIRAC experiment [14]
like many others [15–18]).
As the Molière theory is currently used roughly for

1 MeV–200 GeV proton beams [16,17] and extremely
high-energy cosmic rays and can be applied to investigate
the IceCubes neutrino-induced showers with energies

above 1 PeV [19,20], the role of the high-energy CCs
to the parameters of this theory becomes significant.
Of special importance is the Coulomb correction to the
screening angular parameter, as just this single parameter
enters into other important quantities of the Molière theory
and describes the scattering.
In his original paper, Molière obtained an approximate

semianalytical expression for this parameter, valid to
second order in ξ, where only the first term is determined
quite accurately, while the coefficient in the second term is
found numerically and approximately.
In this work, we obtained for the screening angle and

other parameters of the Molière theory exact analytical
results valid to all orders in ξ. We also evaluated numeri-
cally Coulomb corrections to the Born approximation of
these parameters accounting for all orders in ξ over the
range 6 ⪕ Z ⪕ 92. Additionally, we estimated the accuracy
of the Molière theory in determining the screening angle.
This paper is organized as follows: We start (in Sec. II)

from the consideration of the standard approach to the
multiple scattering theory proposed by Molière. Then, in
Sec. III, we obtain the analytical and numerical results for
the Coulomb corrections to the parameters of the Molière
theory. In Sec. IV, we summarize our results and discuss
some perspectives. The Appendix contains a derivation
of the transport equation for the Bessel-transformed
probability distribution function.

II. MOLIÈRE MULTIPLE SCATTERING THEORY

The small-angle multiple scattering of charged high-
energy particles in the Coulomb field of nuclei is equivalent
to a diffusion process in the angular plane of ~θ ¼ ðθ;φÞ
normal to the incident particle direction z, where θ and φ
indicate the polar and azimuthal angles of the track of the
scattered particle measured with respect to the initial
direction [21,22].
The small-angle approximation assumes that θ is small;

it consists in replacing sin θ ∼ θ, cos θ ∼ 1, and the upper
limit π for θ by infinity. Owing to the axial symmetry of the
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1Here z is the charge number of the scattered particle, Z is the

nuclear charge number of the target atom, α ¼ 1=137 is the fine
structure constant, and β ¼ v=c is the velocity of a projectile in
units of the velocity of light. The dimensionless parameter ξ
governing the validity of the Born approximation becomes exact
for small ξ; it is commonly known as the Born parameter.
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problem in most cases of interest, the distribution
Wðθ;φ; tÞθdθdφ will be independent of the azimuthal
angle, and we will use the quantity Wðθ; tÞθdθ with the
normalization condition

R
Wðθ; tÞθdθ ¼ 1 to represent the

number of projectiles scattered in the angular interval dθ
after traveling through an absorber of a thickness t. Also,
we introduce the differential cross section dσð~χÞ for the

single elastic scattering at a single-scattering angle ~χ ¼
ðχ; ~ϕÞ determined by the polar χ and azimuthal ϕ angles
and assume that sin χ ∼ χ ≪ 1.
The basis for studies of multiple scattering effects within

the semiclassical approach to particle transport in matter is
the Boltzmann transport equation [21]. For a thin homo-
geneous absorber and fast charged particles, the standard
transport (diffusion) equation holds

∂Wðθ; tÞ
∂t ¼ −nWðθ; tÞ

Z
σðχÞχdχ

þ n
Z

Wð~θ − ~χ; tÞσðχÞd2χ; ð1Þ

where n is the density of the scattering centers per unit
volume and d2χ ¼ χdχdϕ=ð2πÞ. The first term in the right-
hand side of (1) describes the decrease in the number of
projectiles from the cone θ, and the second one, the
increase in the cone from the outside of the cone [22].
Following Molière [13,22], we introduce the Bessel

transformation of distribution

gðη; tÞ ¼
Z

∞

0

θJ0ðηθÞWðθ; tÞdθ;

Wðθ; tÞ ¼
Z

∞

0

ηJ0ðηθÞgðη; tÞdη: ð2Þ

Using the folding theorem we can also obtain the transport
equation for gðη; tÞ (see details in the Appendix):

∂gðη; tÞ
∂t ¼ −ngðη; tÞ

Z
∞

0

σðχÞχdχ½1 − J0ðηχÞ�: ð3Þ

Its solution is

gðη; tÞ ¼ exp fNðη; tÞ − N0ð0; tÞg; ð4Þ

Nðη; tÞ ¼ nt
Z

σðχÞχdχJ0ðηχÞ; ð5Þ

where N0 denotes the value of (5) for η ¼ 0, i.e., a total
number of collisions. Molière’s theory is valid for N0 ⩾ 20.
The quantity N0ð0; tÞ − Nðη; tÞ is much smaller than N0

and can be regarded as an effective number of collisions.

Inserting (4) with (5) back into (2), we get

Wðθ; tÞ ¼
Z

∞

0

ηdηJ0ðηθÞ

× exp
�
−nt

Z
∞

0

σðχÞχdχ½1 − J0ðηχÞ�
�
: ð6Þ

This expression, written here with the small-angle approxi-
mation, is independent of the exact form of the single-
scattering law.
If the target thickness satisfies the condition t ≪ l, where

l ¼ 1=ðnσÞ and σ is the total single-scattering cross section,
the distribution function can be written asWðθ; tÞ ¼ ntσ; in
this case it represents the single-scattering probability. In
the case when t ≫ l, the accounting of the multiple
scattering is necessary, and the distribution function should
be determined by (6).
In order to obtain a power series expansion for

Wðθ; tÞ, we first write the small-angle version a modified
Rutherford law

ntσðχÞχdχ ¼ 2χ2cχdχqðχÞ=χ4; ð7Þ

χ2c ¼ 4πntz2ZðZ þ 1Þe4=ðpvÞ2: ð8Þ

The quantity qðχÞ in (7) is the ratio of the actual differential
scattering cross section, written in the form used in [22–24]

dσðχÞ
dO

¼ 2π

�
2zZe2

pv

�
2
�

1

χ2 þ χ20

�
2

; ð9Þ

to the Rutherford one for the unscreened Coulomb potential

dσRðχÞ
dO

¼ 2π

�
2zZe2

pv

�
2 1

χ4
: ð10Þ

Here dO ¼ χdχdϕ represents the angular phase volume; e
is the elementary charge, e2=ℏc ¼ 4πα; p ¼ mv, m, and v
are the mass of the charged scattered particle and its
velocity at large distances from the scattering center which
is assumed to be at rest; χ0 ¼ ℏ=pa, a ¼ 0.885a0Z−1=3, a0
is the Bohr radius, and a denotes the Fermi radius of the
target atom.
The screening factor qðχÞ ¼ χ4=ðχ2 þ χ20Þ2 contains a

deviation from the Rutherford formulas due to the effects
of screening of atomic electrons and the Coulomb correc-
tions arising from multiphoton exchanges between the
scattered particle and the atomic nuclei. It is equal to unity
for large values of χ⩾χ0 and tends to zero at χ ¼ 0.
The physical meaning of χc (8) can be understood from

the requirement that the probability of scattering on the
angles exceeding χc is unity:
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nt
Z

∞

χc

dσðχÞ ¼ 4πntz2ZðZ þ 1Þe4
ðpvÞ2

Z
∞

χc

dχ
χ3

¼ 1:

Typically, χc=χ0 ∼ 100. The given formula is based on
the Rutherford cross section and is the definition of the
angle χc. Here we replace Z2 → ZðZ þ 1Þ keeping in mind
the scattering on atomic electrons. Below, we assume
that z ¼ 1.
In terms of χc, the solution (4) of (3) reads [13,22]

− ln gðη; tÞ ¼ N0ð0; tÞ − Nðη; tÞ

¼ 2χ2c

Z
∞

0

dχ
χ3

qðχÞ½1 − J0ðχηÞ�: ð11Þ

To estimate the value of this integral, we introduce
(following [13,22]) some quantity ς from the region
ðχ0; χcÞ:

χ0 ≪ ς ≪ χ0:

For the part of integral from 0 to ς, we can use a good
approximation 1 − J0ðχηÞ ¼ ðχηÞ2=4, and the integral
becomes

Z
ς

0

dχ
χ3

qðχÞ½1 − J0ðχηÞ� ¼
1

4
η2

Z
ς

0

dχ
χ
qðχÞ: ð12Þ

For the part from ς to infinity, we can put qðχÞ ¼ 1 and
obtain

Z
∞

ς

dχ
χ3

½1 − J0ðχηÞ� ¼
1

4
η2I1ðςηÞ; ð13Þ

I1ðxÞ ¼ 4

Z
∞

x

dt
t3
½1 − J0ðtÞ�

¼ 2

x2
½1 − J0ðxÞ� þ 2

Z
∞

x

dt
t2
J1ðtÞ;

2

Z
∞

x

dt
t2
J1ðtÞ ¼

1

x
J1ðxÞ þ

Z
∞

x

dt
t
J0ðtÞ ð14Þ

with x ¼ ςη. For x ≪ 1, using
R
∞
x J0ðtÞdt=t ¼ lnð2=xÞ−

CE þOðx2Þ we get

Z
∞

ς

dχ
χ3

½1−J0ðχηÞ�¼
1

4
η2½1−CEþ ln2− lnðςηÞþOððςηÞ2Þ�;

ð15Þ

where CE ¼ 0.5772… is the Euler constant.
Considering the contribution of the region χ < ςMolière

introduced the notation of the screening angle

− ln χa ¼ lim
ς→∞

�Z
ς

0

dχ
χ
qðχÞ þ 1

2
− ln ς

�
: ð16Þ

He also proposed a simple functional form for qðχÞ

qðχÞ ¼ χ4=ðχ2 þ χ2aÞ2; ð17Þ

which satisfies (16) and is similar to qðχÞ ¼ χ4=ðχ2 þ χ20Þ2
as χ0 and χa practically do not differ from each other at very
small angles.
Using (17) in (12), substituting the obtained solution,

together with (15), back into (11) and taking into account
the definition

b ¼ ln ðχc=χ0aÞ2 ≡ ln ðχc=χaÞ2 þ 1 − 2CE; ð18Þ
one can get Molière’s expression

ln gðη; tÞ ¼ 1

4
ðχcηÞ2 ln

�
ηχ0a
2

�
2

ð19Þ

for the exponent Nðη; tÞ − N0ð0; tÞ ¼ ln gðη; tÞ of (4). In
the next section this relation between ln gðη; tÞ and lnðχ0aÞ
will be used to obtain an exact expression for the Coulomb
correction to the screening angle.
Next, in order to obtain an expression for the angular

distribution valid for all angles, Molière defined a new
parameter B by the transcendental equation

B − lnB ¼ b: ð20Þ
Through (18), the parameter B depends only on the χa. The
distribution function can be written then as

Wðθ; BÞ ¼ 1

θ̄2

Z
∞

0

ydyJ0ðθyÞe−y2=4 exp
�
y2

4B
ln

�
y2

4

��

with y ¼ χcη and the mean square scattering angle θ̄2.
The Molière expansion method is to consider the term

y2 lnðy2=4Þ=4B as a small parameter. This allows expan-
sion of the angular distribution function in a power series
in 1=B:

Wðθ; BÞ ¼
X∞
n¼0

1

n!
1

Bn Wnðθ; tÞ;

Wnðθ; tÞ ¼
1

θ̄2

Z
∞

0

ydyJ0

�
θffiffiffiffiffi
θ̄2

p y

�
e−y

2=4

�
y2

4
ln

�
y2

4

��
n

;

θ̄2 ¼ χ2cB;
ffiffiffiffiffi
θ̄2

p
¼ χc

ffiffiffiffi
B

p
¼ θe; ð21Þ

where the first term (a Gaussian) with the width θe (i.e., the
angle at which the intensity falls by 1=e) dominates in the
small-angle scattering, and the second and the third terms,
etc., become important only at large angles. This method is
valid for B⩾ 4.5 (b ∼ lnN0 ⩾ 3) and θ̄2 < 1.
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One of the most important results of the Molière theory is
that the scattering is described by a single parameter, the
screening angle χa (χ0a)

χ0a ¼
ffiffiffiffiffiffiffiffiffiffiffi
1.167

p
χa ¼ ½exp ðCE − 0.5Þ�χa ≈ 1.080χa

as the angular distribution depends only on the logarithmic
ratio b of the characteristic angle χc describing the foil
thickness (8) to the screening angle χa (16), which
characterizes the scattering atom.
To find a result valid for large ξ, Molière used the WKB

method and a rather rough approximation in describing the
screening angle

χMa ¼ χBa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3.34ξ2

p
: ð22Þ

This formula is determined only up to second order in ξ; its
coefficient in the second term is found approximately using
an interpolation scheme (see critical remarks on its
deviation in [21,25]).
Below we will use the eikonal approximation to obtain

an exact analytical expression for the Coulomb correction
to the Born screening angle χBa ¼ ffiffiffiffiffiffiffiffiffi

1.13
p

χ0. The accuracy
of the eikonal approximation used below is the accuracy of
the small-angle approximation [26], i.e., 1þOðχ0=χcÞ ¼
1þOð10−2Þ, which is better than one percent.

III. COULOMB CORRECTIONS TO THE
PARAMETERS OF THE MOLIÈRE THEORY

Recall now the relations for the scattering amplitude in
the eikonal approximation (see, e.g., [26,27]):

Að~qÞ ¼ 1

2πi

Z
d2ρ exp

�
−i~q ~ρ
ℏ

�
SðρÞ; ð23Þ

SðρÞ ¼ exp
�
−i

ΦðρÞ
ℏ

�
− 1; ð24Þ

ΦðρÞ ¼ Ze2

β

Z
∞

−∞
dz

1

r
exp

�
−
r
a

�
; ð25Þ

dσðqÞ ¼ jAð~qÞj2d2q; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

q
; ð26Þ

where ~q is the momentum transfer, ðz; ~ρÞ are the longi-
tudinal and transverse coordinates, respectively, and ΦðρÞ
is the eikonal phase in the case of the screened Coulomb
potential with the Thomas-Fermi atom radius a.
It is convenient to introduce a two-dimensional screened

potential VðρÞ that appears in the Landau-Pomeranchuk-
Migdal effect theory when solving a transport equation (see
Appendix A in [12]):

VðρÞ ¼ n
Z

½1 − exp ði~q ~ρÞ�dσðqÞ ð27Þ

¼ n
Z

d2½SðxÞS�ðxÞ − Sð~ρþ ~xÞSðxÞ�; ð28Þ

where ~x ¼ γ~ρ, and γ is the usual relativistic factor of the
scattered particle.
Using (24), (25), and (28) we find the following

expression for the difference ΔVðρÞ between the Born
and the eikonal approximations of this potential, i.e., for the
Coulomb correction ΔCC½VðρÞ�:

ΔVðρÞ ¼ −ΔCC½VðρÞ�≡ −½VðρÞ − VBðρÞ�

¼ n
Z

d2x

�
expfi½Φðj~ρþ ~xjÞ − ΦðxÞ�g

− 1þ 1

2
½Φðj~ρþ ~xjÞ − ΦðxÞ�2

�
; ð29Þ

ΦðxÞ ¼ 2
Ze2

β
K0

�
x
a

�
; ð30Þ

where K0ðx=aÞ is the modified Bessel function.
Note that the equation for the potential VðρÞ (27) can be

written (after performing the angular integration) as

VðρÞ
2πn

¼
Z

½1 − J0ðqρÞ�dσðqÞ: ð31Þ

Comparing this result with

−
ln gðηÞ
nt

¼
Z

½1 − J0ðηχÞ�dσðχÞ; ð32Þ

we obtain the similarity with (31) when accepting
qρ ¼ ηχ; q ¼ pη; ρ ¼ χ=p. So the problem of the deviation
of the potential VðρÞ from the Born one (29) is similar to
problem of deviation of the quantity − ln gðηÞ in the eikonal
approximation from its Born value.
Let us notice also that K0ðx=aÞ is large only for

x=a ≪ 1, and the main contribution in (29) gives the
region x ≪ a, in which

Φðj~ρþ ~xjÞ − ΦðxÞ ¼ ξ ln ½x2=ð~ρþ ~xÞ2�: ð33Þ

Substituting (33) into (29), we obtain the expression for the
difference Δ½− ln gðηÞ� between the Born and the eikonal
approximations of this quantity:

Δ½− lngðηÞ� ¼ΔCC½lngðηÞ�≡ lngðηÞ− lngBðηÞ

¼ ðχcηÞ2
1

4π

Z
d2x

��ð~xþ ~ρÞ2
x2

�
iξ

−1þξ2

2
ln2

ð~xþ ~ρÞ2
x2

�
≡1

2
ðχcηÞ2fðξÞ: ð34Þ
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The accuracy of transformations in going from (31) to (34)
coincides with the accuracy of the eikonal approximation.
For further integration, it is convenient to introduce new

variables. Putting ~x=x2 ¼ ~u and ~κ ¼ ~uþ ~ρ, one obtains

fðξÞ ¼ 1

2π

Z
d2κ

ð~κ − 1Þ4
�
ðκ2Þiξ − 1þ ξ2

2
ln2ðκ2Þ

�

for the function fðξÞ defined by (34). Taking the integral
over the azimuthal angle

Z
2π

0

dϕ
ðκ2 − 2κ cosϕþ 1Þ2 ¼

2πð1þ κ2Þ
j1 − κ2j3 ;

setting κ2 ¼ w, integrating by parts, and introducing the
variable w ¼ e−u (see details in [12]), one can get

fðξÞ ¼ Re
Z

∞

0

e−udu
ð1 − e−uÞ2 ½−iξe

−iξu þ ξ2u�:

After performing another integration by parts and using the
standard representation of the digamma function ψ , the
following universal function of the Born parameter ξ can be
finally obtained:

fðξÞ ¼ Re½ψð1þ iξÞ − ψð1Þ�≡ ξ2
X∞
n¼1

1

nðn2 þ ξ2Þ : ð35Þ

It is known also as the Bethe-Maximon function.
Using (19) in (34), we arrive at the relation

ΔCC½ln gðηÞ� ¼
1

2
ðχcηÞ2ΔCC½lnðχ0aÞ� ¼

1

2
ðχcηÞ2fðξÞ

and, consequently, with account of CE ¼ −ψð1Þ, we get

ΔCC½lnðχ0aÞ� ¼ fðξÞ ¼ Re½ψð1þ iξÞ� þ CE: ð36Þ

Here we used the smallness of the ratios x=a ≪ 1, ρ ∼ x ≪
a and applied the relevant asymptotes of the Bessel function
K0ðzÞ ¼ C − lnðz=2Þ þOðz2Þ. The main reason of such
derivation of relations (34) and (36) is the significantly
different regions of contributions of the screening effects
and the Coulomb corrections. Really, the last ones play the
main role in the region of small impact parameters, where
the number of atom electrons is small and the screening
effects are negligible. These results are valid in the ultra-
relativistic case considered in [12]. They can also be
obtained by using the technique developed in [6].
In order to calculate in ξ the exact absolute correction

ΔCC½lnðχ0aÞ� ¼ fðξÞ and exact relative correction δCC½χa� to
the Born screening angle

δCC½χa� ¼
χa − χBa

χBa
¼ exp ½fðξÞ� − 1; ð37Þ

we must first calculate the values of the function
fðξÞ ¼ Re½ψð1þ iξÞ� þ CE.
The digamma series

ψð1þ ξÞ ¼ 1 − CE −
1

1þ ξ
þ
X∞
n¼2

ð−1Þn½ζðn − 1Þ�ξn−1;

where ζ is the Riemann zeta function and jξj < 1, leads to
the corresponding power series for Re½ψð1þ iξÞ� ¼
Re½ψðiξÞ� and jξj < 2:

Re½ψðiξÞ� ¼ 1 − CE −
1

1þ ξ2

þ
X∞
n¼1

ð−1Þnþ1½ζð2nþ 1Þ − 1�ξ2n:

The function fðξÞ ¼ ξ2
P∞

n¼1½nðn2 þ ξ2Þ�−1 can be repre-
sented in this case as [28]

fðξÞ ¼ 1 −
1

1þ ξ2
þ
X∞
n¼1

ð−1Þnþ1½ζð2nþ 1Þ − 1�ξ2n

¼ 1 −
1

1þ ξ2
þ 0.2021ξ2 − 0.0369ξ4

þ 0.0083ξ6 − � � � : ð38Þ

An equivalent way to estimate fðξÞ (35) to four decimal
figures is to present the sum

P∞
n¼1 ½nðn2 þ ξ2Þ�−1 in the

following form [3]:

X
¼ ð1þ ξ2Þ−1 þ

X∞
n¼1

ð−ξ2Þn−1½ζð2nþ 1Þ − 1�

¼ ð1þ ξ2Þ−1 þ 0.2021 − 0.0369ξ2 þ 0.0083ξ4

− 0.0020ξ6 þ � � � : ð39Þ

Equation (39) is sufficient to evaluate this sum up to
ξ ∼ 0.67, which corresponds to uranium.
The calculation results for

P
(39), function fðξÞ (38),

which is equal to ΔCC½lnðχ0aÞ�, and the relative Coulomb
correction δCC½χa� ¼ exp ½fðξÞ� − 1 (37) at β ¼ 1 and z ¼
1 are given in Table I. Some results from Table I are
illustrated in Fig. 1. It can be seen from Fig. 1 that the
magnitude of δCC½χa� is about 50% for Z ∼ 95. So a large
δCC½χa� value is not surprising as the Coulomb corrections
can become very large even at high energies [8]. The
positive relative CCs are also obtained in [5,9].
The fðZαÞ values computed on the basis of (38) and (39)

coincide up to four decimal digits and show good agree-
ment with the corresponding values of this function from
paper [29]. So fðZαÞ ¼ 0.3129 [29] and fðZαÞ ¼ 0.3125
(Table I) for Z ¼ 79; fðZαÞ ¼ 0.3318 [29] and fðZαÞ ¼
0.3316 (Table I) for Z ¼ 82.
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During our analysis, we omit systematically the contri-
bution of an order of α compared with that of an order of 1.
We emphasize that only the ultrarelativistic case is consid-
ered during our numerical calculations, so β ¼ v=c ¼ 1.
We can also compare (37) with the Molière result δM½χa�:

δCCM½δCC�≡ δCC½χa� − δM½χa�
δM½χa�

¼ ΔCCM½δCC�
δM½χa�

;

δM½χa�≡ χMa − χBa
χBa

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3.34ξ2

p
− 1: ð40Þ

In order to obtain the relative difference between the
approximate χMa and exact χa results

δCCM½χa�≡ ðχa − χMa Þ=χMa ¼ χa=χMa − 1;

we rewrite (37) and (40) as follows:

δCC½χa� þ 1 ¼ χa=χBa ; δM½χa� þ 1 ¼ χMa =χBa

and obtain the expression

δCCM½χa� ¼
δCC½χa� þ 1

δM½χa� þ 1
− 1. ð41Þ

We calculate also the Coulomb corrections to other
important parameters of the Molière theory. Inserting
(18) into (20) and differentiating the latter, we arrive at

ΔCC½b�≡ b − bB ¼ −fðξÞ ¼ ð1 − 1=BBÞ · ΔCC½B�: ð42Þ

Together with (20), this gives the expressions for the
Coulomb correction ΔCC½B� to the width parameter BB:

ΔCC½B�≡ B − BB ¼ fðξÞ=ð1=BB − 1Þ; ð43Þ

ΔCC½B� ¼ δCC½B� − fðξÞ ¼ ΔCC½lnðBÞ� − fðξÞ: ð44Þ

The corrections for θ̄2 ¼ χ2cB and θe ¼ χc
ffiffiffiffi
B

p
are
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FIG. 1 (color online). The Z dependence of the Coulomb
corrections ΔCC, δCC to some parameters of the Molière theory
and the differences ΔCCM, δCCM between exact and approximate
results.

TABLE I. The Z dependence of the Coulomb corrections and differences defined by Eqs. (37)–(43), (46), and (47) for z ¼ 1, β ¼ 1,
and BB ¼ 8.46 [24].

M Z
P

fðξÞ δCC½χa� ΔCCM½δCC� δCCM½δCC� δCCM½χa� δCC½θ̄2� ΔCC½b� ΔCC½B� θe=θBe

C 6 1.2001 0.0023 0.0023 −0.0009 −0.2816 −0.0009 −0.0003 −0.0023 −0.0026 0.9998
Al 13 1.1928 0.0107 0.0108 −0.0041 −0.2764 −0.0040 −0.0014 −0.0107 −0.0121 0.9993
Ti 22 1.1758 0.0303 0.0308 −0.0114 −0.2701 −0.0109 −0.0041 −0.0303 −0.0344 0.9979
Ni 28 1.1602 0.0487 0.0499 −0.0179 −0.2646 −0.0168 −0.0064 −0.0487 −0.0552 0.9968
Mo 42 1.1127 0.1046 0.1103 −0.0360 −0.2459 −0.0314 −0.0140 −0.1046 −0.1186 0.9930
Sn 50 1.0799 0.1436 0.1545 −0.0473 −0.2345 −0.0396 −0.0192 −0.1436 −0.1628 0.9904
Ta 73 0.9710 0.2758 0.3175 −0.0784 −0.1981 −0.0562 −0.0370 −0.2758 −0.3128 0.9817
Pt 78 0.9467 0.3067 0.3590 −0.0840 −0.1895 −0.0582 −0.0411 −0.3067 −0.3478 0.9797
Au 79 0.9414 0.3125 0.3670 −0.0850 −0.1880 −0.0585 −0.0419 −0.3125 −0.3545 0.9793
Pb 82 0.9262 0.3316 0.3930 −0.0890 −0.1846 −0.0600 −0.0445 −0.3316 −0.3760 0.9780
U 92 0.8761 0.3951 0.4845 −0.0985 −0.1689 −0.0622 −0.0530 −0.3951 −0.4481 0.9738
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ΔCC½θ̄2� ¼ χ2c · ΔCC½B�; δCC½θ̄2� ¼ δCC½B�;
2ΔCC½lnðθeÞ�≡ 2 lnðθe=θBe Þ ¼ ΔCC½lnðBÞ�: ð45Þ

After employing of (43) and (44), they finally become

2ΔCC½lnðθeÞ� ¼ δCC½θ̄2� ¼
fðξÞ

1 − BB ; ð46Þ

and the ratio of the widths θe and θBe in (45) reads

θe=θBe ¼ expðδCC½θ̄2�=2Þ: ð47Þ

The Z dependence of the corrections (37)–(39), (42),
(43), (46), the relative differences (40), (41), and the ratio
(47) are presented in Table I (see also Fig. 1).
Table I shows that while the modulus of δCC½θ̄2� value

reaches about 5% for high-Z targets, the maximal δCC½χa�
value is an order of magnitude higher and amounts
approximately to 50% for Z ¼ 92.
It is also obvious that whereas the relative difference

δCCM between exact and approximate results varies
between 17% and 30% over the range 6 ⪕ Z ⪕ 92 for
δCC½χa� (40), it only reaches about 6% for the screening
angle χa itself (41) at Z ¼ 92.
As can be seen from Table I, modules of the corrections

to the parameters b and B reach large values for heavy
target elements. So −ΔCC½B� ∼ 0.45, −ΔCC½b� ∼ 0.40, such
as ΔCC½lnðχ0aÞ� ∼ 0.40 for Z ¼ 92.
Let us notice also that the sizes of the corrections

−δCC½θ̄2� and −ΔCC½B� depending on the parameter BB

increase from 0.053 and 0.448 to 0.112 and 0.551
(Z ¼ 92), respectively, with decreasing BB ¼ 8.46
[24,30] to a minimal BB value 4.5.
It is well known [14,21,22,25,31] that the predictions of

a Gaussian shape with the corresponding value of θ̄2 are not
in good agreement with experimental measurements. The
correction ΔCC½lnðθeÞ� can explain the fact that Molière’s
theory yields too great a width θBe compared with the
experimental value θexe [14,21,25,31].
So the obtained results give θexe =θe ¼ 1.0036 instead of

θexe =θBe ¼ 0.9857 for Z ¼ 79 and BB ¼ 10.30 ([25],
Table II), θexe =θe ¼ 1.0031 instead of θexe =θBe ¼ 0.981 for
Z ¼ 82, and θexe =θe ¼ 1.026, which coincides with
θexe =θBe ¼ 1.026 for Z ¼ 6 ([32], Table V).
Thus, in the description of experiments with nuclear

targets such corrections to the parameters of the Molière
expansion method as ΔCC½lnðχ0aÞ�, δCC½χa�, −ΔCC½b�,
−ΔCC½B�, δCC½θ̄2�, and ΔCC½lnðθeÞ� become signifi-
cant and should be considered, e.g., in the Monte-Carlo
calculations of the angular distributions for their adequate
description. It is necessary in many cases [14–18,24,30,33]
and plays a crucial role, particularly, in the DIRAC
experiment at CERN [14].

IV. SUMMARY AND OUTLOOK

Within the eikonal approach, we have obtained exact
analytical results for the Coulomb corrections to the
parameters χ0a, χa, b, B, θ̄2, and θe of the Molière expansion
method. We also estimated numerically these Coulomb
corrections to the parameters of the Molière theory for
homogeneous absorbers with no energy loss and ultra-
relativistic charged projectiles in the range of nuclear
charge of target atoms from Z ¼ 6 to Z ¼ 92 at β ¼ 1
and studied their Z dependence.
We found that the corrections ΔCC½lnðχ0aÞ�, δCC½χa�,

−ΔCC½b�, and −ΔCC½B� have large values that increase
up to 0.4–0.5 for Z ∼ 95. For instance, the magnitude of
δCC½χa� ranges from around 10% for Z ∼ 40 up to 40%–
50% for Z ∼ 80 − 90. The contribution of such corrections
is larger than experimental errors in the most high-energy
experiments whose measurement accuracy is of order of a
few percent, and these corrections should be appropriately
considered in experimental data processing.
We evaluated the difference and the relative differ-

ence between our results for the screening angle and
those of Molière over the range 6 ⪕ Z ⪕ 92, and we
found that while the values of δCCM½χa� and ΔCCM½δCC�
increase with Z up only to 6% and 10%, respectively, the
relative difference δCCM½δCC� varies between 28% and 17%
over this range of Z. Thus, we can conclude that these
corrections to the approximate Molière result must also be
borne in mind for a rather accurate description of high-
energy experiments with nuclear targets (MUSCAT,
MUCOOL experiments [16], the DIRAC experiment
[14], etc).
The further development of this approach involves the

use of the Coulomb corrections found in the present work
for the calculation of the Coulomb corrections to the
quantities of the classical Migdal theory of the Landau-
Pomeranchuk-Migdal (LPM) effect [34]. The obtained CCs
to the parameters of this theory and its analogue for a thin
layer of matter allow one to eliminate the known discrep-
ancy between the predictions of the Migdal LPM effect
theory and SLAC E-146 experiment results [30] at least for
high-Z targets as well as to improve the agreement between
the predictions of the LPM effect theory analogue for thin
targets and experimental data [33].
The developed approach can be useful for the analysis

of electromagnetic processes in strong crystalline fields
at high energies (CERN-NA63 experiment) [35], in cos-
mic-ray neutrino experiments [18–20], where some data
have appeared, in which LPM suppression is important
(e.g., IceCubes neutrino-induced showers) [19,20]. The
Coulomb corrections to the parameters of the quantum
LPM effect theory to describe the shower production at the
energies exceeding 104 GeV [36], especially to the Migdal
functions GðsÞ and ΦðsÞ, are of special interest there [19].
The corresponding results for these corrections will be the
subject of a separate publication [37].
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APPENDIX: DERIVATION OF THE TRANSPORT
EQUATION FOR THE BESSEL-TRANSFORMED

DISTRIBUTION FUNCTION

We put here the details of inferring Eq. (3). We apply first
the integration operation

R
∞
0 θdθJ0ðηθÞ to both sides of

Eq. (2). Using the definition of the Bessel transform of the
probability distribution (2), we obtain

∂gðη; tÞ
∂t ¼ −ngðη; tÞ

Z
∞

0

σðχÞχdχ

þ n
Z

∞

0

σðχÞχdχIðη; χÞ; ðA1Þ

Iðη; χÞ ¼
Z

2π

0

dϕ
2π

Z
θdθJ0ðηθÞWðj~θ − ~χj; tÞ: ðA2Þ

Applying the opposite Bessel transform to the probability
(2), we get for the last integral

Iðη; χÞ ¼
Z

2π

0

dϕ
2π

Z
θdθJ0ðηθÞ

×
Z

∞

0

η1dη1J0ðη1j~θ − ~χjÞgðη1; tÞ;

where the integration over θ can be performed using the
folding theorem:

Z
2π

0

dϕ
2π

J0ðη1j~θ − ~χjÞ ¼ J0ðη1θÞJ0ðη1χÞ: ðA3Þ

With the means of the orthogonality relation for the Bessel
functions

Z
∞

0

xdxJ0ðxaÞJ0ðxbÞ −
1

a
δða − bÞ; ðA4Þ

we get for Iðη; χÞ:

Iðη; χÞ ¼ gðη; tÞJ0ðηχÞ: ðA5Þ

Inserting (A5) into (A1), we immediately arrive at a final
result:

∂gðη; tÞ
∂t ¼ −ngðη; tÞ

Z
∞

0

σðχÞχdχ½1 − J0ðηχÞ�:

To prove the folding theorem (A3), we use the series
expansion for the Bessel function

J0ðzÞ ¼ 1 −
ðz2=4Þ
ð1!Þ2 þ ðz2=4Þ2

ð2!Þ2 − � � � ;

z2 ¼ η2½θ2 þ χ2 − 2θχ cosϕ�; ðA6Þ

and perform the integration over ϕ:

1

2π

Z
2π

0

ðcosϕÞ2ndϕ ¼ ð2n − 1Þ!!
ð2nÞ!! : ðA7Þ
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