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High-energy Coulomb corrections to the parameters of the Moliere multiple scattering theory are
obtained. Numerical calculations are presented in the range of the nuclear charge number of the target
atom 6 € Z <€ 92. It is shown that these corrections have a large value for sufficiently heavy elements
of the target material and should be taken into account in describing high-energy experiments with

nuclear targets.
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I. INTRODUCTION

The Coulomb correction (CC) is the difference between
the exact Born parameter & = zZa/, ﬂl result and the Born
approximation. At intermediate energies, formulas for the
Coulomb corrections are not available in analytical form
[1]. The analytic formulas for the high-energy CCs are
known as the Bethe-Bloch formulas for the ionization
losses [2] and those for the Bethe-Heitler cross section [3,4]
and the spectrum of bremsstrahlung [3-5].

A similar expression was found for the total cross section
of the Coulomb interaction of hadronic atoms with ordinary
target atoms [6]. Also, Coulomb corrections were obtained
to the cross sections of the quasielastic and elastic electron
scattering [7,8], the coherent electroproduction of vector
mesons [8,9], the pair production in nuclear collisions
[3,4,10,11], and a two-dimensional screened potential in an
impact-parameter space [12].

The specificity of the expressions presented in this work
is that they determine the Coulomb corrections to the
parameters of the Moliere multiple scattering theory, i.e.,
the screening angular parameter and some other parameters
of the Moliere expansion method [13].

Moliere’s theory is of interest for numerous applications
related to particle transport in matter, is widely used in most
of the transport codes, and also presents the most used tool
for taking into account the multiple scattering effects in
experimental data processing (the DIRAC experiment [14]
like many others [15-18]).

As the Moliere theory is currently used roughly for
1 MeV-200 GeV proton beams [16,17] and extremely
high-energy cosmic rays and can be applied to investigate
the IceCubes neutrino-induced showers with energies
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'Here z is the charge number of the scattered particle, Z is the
nuclear charge number of the target atom, a = 1/137 is the fine
structure constant, and § = v/c is the velocity of a projectile in
units of the velocity of light. The dimensionless parameter &
governing the validity of the Born approximation becomes exact
for small &; it is commonly known as the Born parameter.
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above 1 PeV [19,20], the role of the high-energy CCs
to the parameters of this theory becomes significant.
Of special importance is the Coulomb correction to the
screening angular parameter, as just this single parameter
enters into other important quantities of the Moliere theory
and describes the scattering.

In his original paper, Moliere obtained an approximate
semianalytical expression for this parameter, valid to
second order in &, where only the first term is determined
quite accurately, while the coefficient in the second term is
found numerically and approximately.

In this work, we obtained for the screening angle and
other parameters of the Moliere theory exact analytical
results valid to all orders in £&. We also evaluated numeri-
cally Coulomb corrections to the Born approximation of
these parameters accounting for all orders in & over the
range 6 € Z € 92. Additionally, we estimated the accuracy
of the Moliere theory in determining the screening angle.

This paper is organized as follows: We start (in Sec. II)
from the consideration of the standard approach to the
multiple scattering theory proposed by Moliere. Then, in
Sec. III, we obtain the analytical and numerical results for
the Coulomb corrections to the parameters of the Moliere
theory. In Sec. IV, we summarize our results and discuss
some perspectives. The Appendix contains a derivation
of the transport equation for the Bessel-transformed
probability distribution function.

II. MOLIERE MULTIPLE SCATTERING THEORY

The small-angle multiple scattering of charged high-
energy particles in the Coulomb field of nuclei is equivalent
to a diffusion process in the angular plane of 6 = (6, )
normal to the incident particle direction z, where € and ¢
indicate the polar and azimuthal angles of the track of the
scattered particle measured with respect to the initial
direction [21,22].

The small-angle approximation assumes that 6 is small;
it consists in replacing sinf ~ 6, cos8 ~ 1, and the upper
limit z for @ by infinity. Owing to the axial symmetry of the
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problem in most cases of interest, the distribution
W (0, p,1)0d0dgp will be independent of the azimuthal
angle, and we will use the quantity W(0,1)0d6 with the
normalization condition [ W(6,1)0d6 = 1 to represent the
number of projectiles scattered in the angular interval d6f
after traveling through an absorber of a thickness 7. Also,
we introduce the differential cross section do(y) for the

single elastic scattering at a single-scattering angle y =

(xs (E) determined by the polar y and azimuthal ¢ angles
and assume that siny ~ y < 1.

The basis for studies of multiple scattering effects within
the semiclassical approach to particle transport in matter is
the Boltzmann transport equation [21]. For a thin homo-
geneous absorber and fast charged particles, the standard
transport (diffusion) equation holds

% = —nW(0, t)/rf()())(d)(

tn / W -7 0000y, (1)

where n is the density of the scattering centers per unit
volume and d?y = ydydd¢/(2x). The first term in the right-
hand side of (1) describes the decrease in the number of
projectiles from the cone 6, and the second one, the
increase in the cone from the outside of the cone [22].

Following Moliere [13,22], we introduce the Bessel
transformation of distribution

g(n.1) = A " 005(n0)W (0. 1)do,

W(o.1) = A " ndo(n0)g(n, t)dn. (2)

Using the folding theorem we can also obtain the transport
equation for g(7, 1) (see details in the Appendix):

20— —ngl. ) [ oeredelt ~sotu)). - 3)

Its solution is

9(n, 1) = exp {N(n, 1) = No(0, 1)}, 4)

N(p.1) = nt / o ey o). (5)

where N, denotes the value of (5) for =0, i.e., a total
number of collisions. Moliere’s theory is valid for N = 20.
The quantity Ny(0,7) — N(n,t) is much smaller than N
and can be regarded as an effective number of collisions.
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Inserting (4) with (5) back into (2), we get

W(,1) = A " ndndo(no)

cexp{ -t [ otozaelt - aml ). ©

This expression, written here with the small-angle approxi-
mation, is independent of the exact form of the single-
scattering law.

If the target thickness satisfies the condition t < /, where
I = 1/(no) and o is the total single-scattering cross section,
the distribution function can be written as W (6, t) = nto; in
this case it represents the single-scattering probability. In
the case when 7> [, the accounting of the multiple
scattering is necessary, and the distribution function should
be determined by (6).

In order to obtain a power series expansion for
W(0, 1), we first write the small-angle version a modified
Rutherford law

nto()ydy = Zrexdrq(x) /2, (7)
2 =4mntz?Z(Z + 1)e*/(pv)>. (8)

The quantity g(y) in (7) is the ratio of the actual differential
scattering cross section, written in the form used in [22-24]

) )

to the Rutherford one for the unscreened Coulomb potential

dor(r) _ <2z2e2>2 1 (10

do pv )yt

Here dO = ydydd¢ represents the angular phase volume; e
is the elementary charge, e?/fic = 4xa; p = mv, m, and v
are the mass of the charged scattered particle and its
velocity at large distances from the scattering center which
is assumed to be at rest; y, = #/pa, a = 0.885a,Z7'/3, a,
is the Bohr radius, and a denotes the Fermi radius of the
target atom.

The screening factor g(y) = y*/(x* + x3)* contains a
deviation from the Rutherford formulas due to the effects
of screening of atomic electrons and the Coulomb correc-
tions arising from multiphoton exchanges between the
scattered particle and the atomic nuclei. It is equal to unity
for large values of y=y, and tends to zero at y = 0.

The physical meaning of y. (8) can be understood from
the requirement that the probability of scattering on the
angles exceeding y,. is unity:
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= 1.

o Axnt?Z(Z + 1)e* [~d
nt/ doly) = antz*Z( 2+ Je / _)3(
Xe (pv) e X

Typically, y./xo ~ 100. The given formula is based on
the Rutherford cross section and is the definition of the
angle y.. Here we replace Z> — Z(Z + 1) keeping in mind
the scattering on atomic electrons. Below, we assume
that z = 1.

In terms of y,, the solution (4) of (3) reads [13,22]

= No(0,1) = N(n,1)

=2x%f°j—’§qom1 — oG], (1)

—Ing(n.t)

To estimate the value of this integral, we introduce
(following [13,22]) some quantity ¢ from the region

(XO’ZC):
Xo K¢ < Y-
For the part of integral from 0 to ¢, we can use a good

approximation 1 —J(yn) = (yn)>/4, and the integral
becomes

| %t = = g [*Zat. 12

For the part from ¢ to infinity, we can put ¢(y) = 1 and
obtain

[ K= an) = enen. 13

2 [T G0 =n+ [T (14)

with x = gr/ For x < 1, using [® Jo()dt/t = In(2/x) —

Cr + O(x?*) we get

/ f‘[l Tolgm)]| =21 €+ 1n2—In(en) + O((en)?))

(15)
where Cr = 0.5772... is the Euler constant.

Considering the contribution of the region y < ¢ Moliere
introduced the notation of the screening angle
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d 1
—lnxa—lim[/g—xq()()—l———lng. (16)
0o X 2

£—00

He also proposed a simple functional form for g(y)

q(e) =1/ 0+ 25)% (17)

which satisfies (16) and is similar to g(y) = y*/(x* + x3)*
as yo and y,, practically do not differ from each other at very
small angles.

Using (17) in (12), substituting the obtained solution,
together with (15), back into (11) and taking into account
the definition

b=1n(y./x.)* =In(xc/xa)* +1—-2Cg, (18)

one can get Moliere’s expression

ing(n) =GP (") 9)

for the exponent N(n,t) — Ny(0,¢) =Ing(n,t) of (4). In
the next section this relation between In g(#, t) and In(y/,)
will be used to obtain an exact expression for the Coulomb
correction to the screening angle.

Next, in order to obtain an expression for the angular
distribution valid for all angles, Moliere defined a new
parameter B by the transcendental equation

—InB =b. (20)

Through (18), the parameter B depends only on the y,. The
distribution function can be written then as

=L sayay@y)eexp | tn (2
_Eo ydyJo(0y)e eXpEnZ

with y = y.n and the mean square scattering angle 6.

The Moliere expansion method is to consider the term
y?In(y?/4)/4B as a small parameter. This allows expan-
sion of the angular distribution function in a power series
in 1/B:

W (0. B)

ini— W, (60,1),

n=0

-l BT
\/E:;(C\/E:ee, (21)

where the first term (a Gaussian) with the width 6, (i.e., the
angle at which the intensity falls by 1/¢) dominates in the
small-angle scattering, and the second and the third terms,
etc., become important only at large angles. This method is
valid for B=4.5 (b ~InN,>=3) and *> < 1.

6> = y’B,
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One of the most important results of the Moliere theory is
that the scattering is described by a single parameter, the
screening angle y, (v,)

= V1.167y,

as the angular distribution depends only on the logarithmic
ratio b of the characteristic angle y. describing the foil
thickness (8) to the screening angle y, (16), which
characterizes the scattering atom.

To find a result valid for large £, Moliere used the WKB
method and a rather rough approximation in describing the
screening angle

= [exp (Cg — 0.5)]y, ~ 1.080y,

oM = yB\/1 4 3.34£2, (22)

This formula is determined only up to second order in &; its
coefficient in the second term is found approximately using
an interpolation scheme (see critical remarks on its
deviation in [21,25]).

Below we will use the eikonal approximation to obtain
an exact analytical expression for the Coulomb correction
to the Born screening angle ¥ = \/1.13y,. The accuracy
of the eikonal approximation used below is the accuracy of
the small-angle approximation [26], i.e., 1 + O(yo/x.) =
1 + 0(1072), which is better than one percent.

III. COULOMB CORRECTIONS TO THE
PARAMETERS OF THE MOLIERE THEORY

Recall now the relations for the scattering amplitude in
the eikonal approximation (see, e.g., [26,27]):

A =5 [ dzpexp( a ”)s<p>, (23)

S(p) = exp (—i?) -1, (24)

e? [ r
D(p) = Z? N dz%exp (— Z) (25)
do(q) = |A(q)*d>q.  r=\/p*+2  (26)

where ¢ is the momentum transfer, (z,p) are the longi-
tudinal and transverse coordinates, respectively, and ®(p)
is the eikonal phase in the case of the screened Coulomb
potential with the Thomas-Fermi atom radius a.

It is convenient to introduce a two-dimensional screened
potential V(p) that appears in the Landau-Pomeranchuk-
Migdal effect theory when solving a transport equation (see
Appendix A in [12]):

Vi) =n [[1-exp(@pldota) (1)
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= n / PSS (x) - SG+ DS (28)

where X = yp, and y is the usual relativistic factor of the
scattered particle.

Using (24), (25), and (28) we find the following
expression for the difference AV(p) between the Born
and the eikonal approximations of this potential, i.e., for the
Coulomb correction Aq¢[V(p)]:

AV(p) = =AcclV(p)l = =[V(p) = VZ(p)]

= [ dzx{exp{i[w L3 - 2]}
1 a5+ ) - <>12}, (29)

B(x) = 22521(0 (2) (30)

where K(x/a) is the modified Bessel function.
Note that the equation for the potential V(p) (27) can be
written (after performing the angular integration) as

Vip)
2rn

~ [ 1= saplaota) G1)
Comparing this result with

In g(n)
nt

- / 1= Jopldol).  (32)

we obtain the similarity with (31) when accepting
qp =ny.q = pn.,p = y/ p. So the problem of the deviation
of the potential V(p) from the Born one (29) is similar to
problem of deviation of the quantity — In g(7) in the eikonal
approximation from its Born value.

Let us notice also that Ky(x/a) is large only for
x/a < 1, and the main contribution in (29) gives the
region x < a, in which

O(Ip+X) - (x) =¢[x*/(p+X)°].  (33)
Substituting (33) into (29), we obtain the expression for the
difference A[—1n g(n)] between the Born and the eikonal
approximations of this quantity:

Al=Ing(n)] = Acc[lng(n)] =Ing(n) —Ing®(n)

)

1+‘521 E) < Jwarso. o0
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The accuracy of transformations in going from (31) to (34)

coincides with the accuracy of the eikonal approximation.
For further integration, it is convenient to introduce new

variables. Putting X/x> = i and ¥ = i + p, one obtains

1 d*k
£(8) =ﬂ/—(%_ -

for the function f(&) defined by (34). Taking the integral
over the azimuthal angle

/2;: de ~ 27(1 + %)
o (

K> —2kcosp+1)>2 |1 =«

4:2

|:(K'2>i§ -1+ EIHZ(K‘Z)

setting k> = w, integrating by parts, and introducing the
variable w = e (see details in [12]), one can get

f(& = Re[)w%[ iEe~in 4 E2y ).

After performing another integration by parts and using the
standard representation of the digamma function vy, the
following universal function of the Born parameter £ can be
finally obtained:

7 = Rely1+i8) (D] =)t (69

It is known also as the Bethe-Maximon function.
Using (19) in (34), we arrive at the relation

Accling()] = 5 GrenPAcclin(z,)] = 5 (e (@

and, consequently, with account of Cr = —y/(1), we get

Accln(ry)] = f(&) =

Here we used the smallness of the ratios x/a < 1, p ~ x <
a and applied the relevant asymptotes of the Bessel function
Ko(z) = C —In(z/2) + O(z?). The main reason of such
derivation of relations (34) and (36) is the significantly
different regions of contributions of the screening effects
and the Coulomb corrections. Really, the last ones play the
main role in the region of small impact parameters, where
the number of atom electrons is small and the screening
effects are negligible. These results are valid in the ultra-
relativistic case considered in [12]. They can also be
obtained by using the technique developed in [6].

In order to calculate in & the exact absolute correction

Rely(1 +i8)] + Cp.  (36)

AcclIn(y,)] = f(€) and exact relative correction Sccy,] to
the Born screening angle
B
Xa—Xa
Scclral = e (O] -1, (37)
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we must first calculate the values of the function

f(&) = Rely (1 +ig)] + Cp.
The digamma series

1 - .
w49 =1-Cpmyp+ D (IRl = D,

where { is the Riemann zeta function and |£| < 1, leads to
the corresponding power series for Re[w(1 + if)] =

Rely (i€)] and |¢] < 2:

1

Re[y(i§)] =1-Cg— ﬁéz

[Se]

+ ) (=1 @n + 1) = 18

n=1

The function f(&) = &
sented in this case as [28]

©  [n(n® + &)]7! can be repre-

f&=1- 1+£2+Z D e2n +1) = 1)&
_ 1 2 4
=1 T2 +0.2021£2 — 0.0369&
+0.0083£0 — - - .. (38)

An equivalent way to estimate f(¢) (35) to four decimal
figures is to present the sum > %, [n(n? + £2)]7! in the
following form [3]:

S =0+ + > e+ 1) - 1]

= (14 &)7" +0.2021 — 0.0369&2 + 0.0083&*
—0.0020&% + - - - (39)

Equation (39) is sufficient to evaluate this sum up to
£~ 0.67, which corresponds to uranium.

The calculation results for Y (39), function f(&) (38),
which is equal to Acc[In(y})], and the relative Coulomb
correction Sccly,.) =exp[f(&)]—1 (B37)atfp=1and z =
1 are given in Table I. Some results from Table I are
illustrated in Fig. 1. It can be seen from Fig. 1 that the
magnitude of §cc[y,] is about 50% for Z ~ 95. So a large
Scclra) value is not surprising as the Coulomb corrections
can become very large even at high energies [8]. The
positive relative CCs are also obtained in [5,9].

The f(Za) values computed on the basis of (38) and (39)
coincide up to four decimal digits and show good agree-
ment with the corresponding values of this function from
paper [29]. So f(Za) = 0.3129 [29] and f(Za) = 0.3125
(Table 1) for Z = 79; f(Za) = 0.3318 [29] and f(Za) =
0.3316 (Table I) for Z = §2.
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TABLE I. The Z dependence of the Coulomb corrections and differences defined by Eqgs. (37)—(43), (46), and (47)forz =1, =1,
and B? = 8.46 [24].
M 4 > &) beclral  Acemldee]  Secmldec]  Seemld  Sccl6] Acclb] Acc[B]  0,/07
C 6 1.2001 0.0023 0.0023 —0.0009 —0.2816 —0.0009 —0.0003  —0.0023  —0.0026  0.9998
Al 13 1.1928 0.0107  0.0108 —0.0041 —-0.2764 —-0.0040  -0.0014 -0.0107 -0.0121  0.9993
Ti 22 1.1758  0.0303  0.0308 -0.0114 —-0.2701 -0.0109  -0.0041 -0.0303 —0.0344  0.9979
Ni 28 1.1602  0.0487 0.0499 —0.0179 —0.2646 —0.0168 —0.0064  —-0.0487 —0.0552  0.9968
Mo 42 1.1127 0.1046  0.1103 —0.0360 —0.2459 —0.0314 —0.0140 -0.1046  —0.1186  0.9930
Sn 50  1.0799 0.1436  0.1545 —0.0473 —0.2345 —0.0396 -0.0192  —0.1436  —0.1628  0.9904
Ta 73 09710 0.2758 0.3175 —0.0784 —0.1981 —0.0562 —-0.0370 -0.2758  —0.3128  0.9817
Pt 78 0.9467  0.3067  0.3590 —0.0840 —0.1895 -0.0582  -0.0411  -0.3067 —0.3478  0.9797
Au 79 09414 03125 0.3670 —0.0850 —0.1880 -0.0585 —0.0419 -0.3125 -0.3545 0.9793
Pb 82 09262 0.3316 0.3930 —0.0890 —0.1846 —0.0600 —0.0445 -0.3316 —-0.3760  0.9780
U 92  0.8761  0.3951 0.4845 —0.0985 —0.1689 —0.0622 —0.0530 —-0.3951 —0.4481  0.9738
During our analysis, we omit systematically the contri-
0o 10 20 40 50 60 70 80 90 bution of an order of @ compared with that of an order of 1.
%0 11 Y We emphasize that only the ultrarelativistic case is consid-
45 Scclial (%) | 45 ered during our numerical calculations, so f = v/c = 1.
e o Acclin()] We can also compare (37) with the Moliere result 5y, [y,]:
40 4 /140
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304
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20+
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5CCb(a] - 5M b(a] _ ACCM [5CC]
5M b(a] 5M b(a] 7

Xa —Xa
Smlial ){73 = /143342 1.

a

5CCM[5CC]

(40)

In order to obtain the relative difference between the
approximate y¥ and exact y, results

Scemlra) = a =) bt = xa/2¥ = 1,

we rewrite (37) and (40) as follows:

Scclra ¥ 1 =xa/x8.  Sulrd +1=xt /28

and obtain the expression

Scclra +1
5Mb(a] +1

We calculate also the Coulomb corrections to other
important parameters of the Moliere theory. Inserting
(18) into (20) and differentiating the latter, we arrive at

dcem b(a] = L. (41)

Acclb] =b—bF = =f(§) = (1= 1/B®) - Acc[B]. (42)

Together with (20), this gives the expressions for the
Coulomb correction Ac¢|[B] to the width parameter B5:

4

FIG. 1 (color online). The Z dependence of the Coulomb
corrections Acc, dcc to some parameters of the Moliere theory
and the differences Accy, Occy between exact and approximate
results.

AcclB] =B - B = f(¢)/(1/B° - 1),

Acc[B] = 6¢cc[B] = f(§) = Acc[In(B)] = f(£).

The corrections for 6 = y

116016-6
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Accl6?] = 22 Acc[B). Sccl6?] = bcc|Bl.
2Acc[In(0,)] =21n(0,/02) = Acc[in(B)]. (45)

After employing of (43) and (44), they finally become

o f(©)

2Acc[n(8,)] = 6ccl6?] = 1_gF (46)
and the ratio of the widths 8, and 6% in (45) reads
0,/0% = exp(Sccl6]/2). (47)

The Z dependence of the corrections (37)—(39), (42),
(43), (46), the relative differences (40), (41), and the ratio
(47) are presented in Table I (see also Fig. 1). .

Table I shows that while the modulus of 5¢¢[6?] value
reaches about 5% for high-Z targets, the maximal S¢¢[y,]
value is an order of magnitude higher and amounts
approximately to 50% for Z = 92.

It is also obvious that whereas the relative difference
Occy between exact and approximate results varies
between 17% and 30% over the range 6 € Z € 92 for
Scclra) (40), it only reaches about 6% for the screening
angle y,, itself (41) at Z = 92.

As can be seen from Table I, modules of the corrections
to the parameters b and B reach large values for heavy
target elements. SO —A¢[B] ~ 0.45, —Acc[b] ~ 0.40, such
as Acc[In(y,)] ~ 0.40 for Z = 92.

Let us notice also that the sizes of the corrections
—8¢c|0?] and —Ac¢[B] depending on the parameter B2
increase from 0.053 and 0.448 to 0.112 and 0.551
(Z =92), respectively, with decreasing B = 8.46
[24,30] to a minimal B® value 4.5.

It is well known [14,21,22,25,31] that the predictions of
a Gaussian shape with the corresponding value of 6 are not
in good agreement with experimental measurements. The
correction Acc[In(8,)] can explain the fact that Moliére’s
theory yields too great a width 2 compared with the
experimental value 65° [14,21,25,31].

So the obtained results give 65*/6, = 1.0036 instead of
0%/08 = 09857 for Z=79 and BB =10.30 ([25],
Table II), 0°/0, = 1.0031 instead of 6*/0% = 0.981 for
Z =282, and 6¢/6,=1.026, which coincides with
0 /68 = 1.026 for Z = 6 ([32], Table V).

Thus, in the description of experiments with nuclear
targets such corrections to the parameters of the Moliere
expansion method as Acc[In(yl)], Scclral, —Acclb],
—Acc[B], Sccl®?], and Ace[In(6,)] become signifi-
cant and should be considered, e.g., in the Monte-Carlo
calculations of the angular distributions for their adequate
description. It is necessary in many cases [14—18,24,30,33]
and plays a crucial role, particularly, in the DIRAC
experiment at CERN [14].
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IV. SUMMARY AND OUTLOOK

Within the eikonal approach, we have obtained exact
analytical results for the Coulomb corrections to the
parameters y’,, ¥, b, B, 62, and 0, of the Moliere expansion
method. We also estimated numerically these Coulomb
corrections to the parameters of the Moliere theory for
homogeneous absorbers with no energy loss and ultra-
relativistic charged projectiles in the range of nuclear
charge of target atoms from Z =6 to Z=92 at f =1
and studied their Z dependence.

We found that the corrections Acc[In(y,)], Scclrals
—Acc[b], and —Ac¢[B] have large values that increase
up to 0.4-0.5 for Z ~ 95. For instance, the magnitude of
Scclra) ranges from around 10% for Z ~ 40 up to 40%—
50% for Z ~ 80 — 90. The contribution of such corrections
is larger than experimental errors in the most high-energy
experiments whose measurement accuracy is of order of a
few percent, and these corrections should be appropriately
considered in experimental data processing.

We evaluated the difference and the relative differ-
ence between our results for the screening angle and
those of Moliere over the range 6 € Z €92, and we
found that while the values of Sccylr,] and Acceyldec]
increase with Z up only to 6% and 10%, respectively, the
relative difference 5¢¢p [0 c| varies between 28% and 17%
over this range of Z. Thus, we can conclude that these
corrections to the approximate Moliere result must also be
borne in mind for a rather accurate description of high-
energy experiments with nuclear targets (MUSCAT,
MUCOOL experiments [16], the DIRAC experiment
[14], etc).

The further development of this approach involves the
use of the Coulomb corrections found in the present work
for the calculation of the Coulomb corrections to the
quantities of the classical Migdal theory of the Landau-
Pomeranchuk-Migdal (LPM) effect [34]. The obtained CCs
to the parameters of this theory and its analogue for a thin
layer of matter allow one to eliminate the known discrep-
ancy between the predictions of the Migdal LPM effect
theory and SLAC E-146 experiment results [30] at least for
high-Z targets as well as to improve the agreement between
the predictions of the LPM effect theory analogue for thin
targets and experimental data [33].

The developed approach can be useful for the analysis
of electromagnetic processes in strong crystalline fields
at high energies (CERN-NA63 experiment) [35], in cos-
mic-ray neutrino experiments [18-20], where some data
have appeared, in which LPM suppression is important
(e.g., IceCubes neutrino-induced showers) [19,20]. The
Coulomb corrections to the parameters of the quantum
LPM effect theory to describe the shower production at the
energies exceeding 10* GeV [36], especially to the Migdal
functions G(s) and ®(s), are of special interest there [19].
The corresponding results for these corrections will be the
subject of a separate publication [37].
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APPENDIX: DERIVATION OF THE TRANSPORT
EQUATION FOR THE BESSEL-TRANSFORMED
DISTRIBUTION FUNCTION

We put here the details of inferring Eq. (3). We apply first
the integration operation [5° 8d6Jy(n6) to both sides of
Eq. (2). Using the definition of the Bessel transform of the
probability distribution (2), we obtain

dg(n. 1)
ot

= —ng(n.1) A " ol )rdy

+n A " o )edyl(n.x), (A1)

100) = [ 5% [ oaesoyw(-71.0. (a2

Applying the opposite Bessel transform to the probability
(2), we get for the last integral

27‘[d¢
1(n.x) :A E/GdQJO(nQ)
X/) mdni Jo(m |0 —x1)g(m. 1),

where the integration over @ can be performed using the
folding theorem:

2r d¢

A D 1o m 18 -71) = Jo(m6)o(mz).

= (A3)
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With the means of the orthogonality relation for the Bessel
functions

Aw xdxJy(xa)Jo(xb) — éé(a - b), (A4)

we get for 1(n, x):

1(n.x) = g(n, t)Jo(ny). (AS)

Inserting (AS) into (A1), we immediately arrive at a final
result:

dg(n, 1)
ot

— _ng(n. 1) /) " olwdr[ - Joln)).

To prove the folding theorem (A3), we use the series
expansion for the Bessel function

(2/4) | (22/4)
Jo(Z) = 1 - (1')2 —|— (2‘)2 — e,
2 = P07 + = 20y cos @], (A6)
and perform the integration over ¢:
1 [2= ; (2n—1)!
ZA (cos p)*"dep = T (A7)
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