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Five-dimensional SUð3Þ gauge-Higgs unification models are studied at finite temperature in the warped
extra dimension S1=Z2. In order to investigate the phase structure, we develop a technique to compute the
one-loop effective potential with the nontrivial Polyakov loop phase and with the nontrivial Wilson line
phase along the extra dimension. Effective potentials as functions of two gauge-field condensations are
shown for several simple matter contents, including fundamental, sextet, and adjoint representational Dirac
fermions. Possible extensions and applications of our formalism are also briefly discussed.
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I. INTRODUCTION

Spontaneous breaking of gauge symmetry is an impor-
tant ingredient for our understanding of superconductivity
in condensed matter physics and of electroweak inter-
actions in the standard model of particle physics. In the
standard model, the complex scalar field (Higgs field)
acquires the vacuum expectation value and causes the
electroweak symmetry breaking. However, there is a big
theoretical question about the Higgs physics, the so-called
fine-tuning problem: we still do not know why nature
requires such an accurate cancellation between tree-level
and quantum contributions to the mass of the Higgs particle
so as to realize the 126 GeV light Higgs boson. If the
standard model is realized as a low-energy effective theory
of an ultraviolet complete theory, it is natural to assume
some mechanism causing the accurate cancellation bet-
ween those ultraviolet divergences.
Gauge theories in higher-dimensional spacetime are

candidates of such theories to go beyond the standard model.
In gauge-Higgs unification, gauge bosons and Higgs fields
are unified into a five-dimensional gauge field, and then the
Wilson line along the warped extra dimension S1=Z2

behaves as the Higgs field in the four-dimensional spacetime
[1–8]. In this model, the mass of the Higgs particle as a five-
dimensional local operator is prohibited due to the gauge
symmetry in extra dimension, but the Higgs mass is realized
as a nonlocal gauge-invariant quantity and generated
dynamically through quantum correction.

In this paper, we investigate the phase structure of SUð3Þ
gauge-Higgs unification models at finite temperature. In this
case, not only the warped extra dimension but also the
temporal dimension are compactified in the imaginary time
formalism. Therefore, the Wilson lines along those two
directions are candidates of gauge-invariant order parame-
ters, and it is important to study effects of those two
condensations of gauge fields. Indeed, in the case of strong
interaction, the temporalWilson loop, the so-called Polyakov
loop, plays a central role in describing the confinement or
deconfinement transition of quantum chromodynamics.
On the other hand, the nontrivial Wilson line phase along
the extra dimension causes the spontaneous gauge symmetry
breaking, as mentioned above.
In order to understand the phase structure of gauge

theories, the perturbative one-loop effective potential pro-
vides a good description in a weak-coupling region [9,10].
Such calculation is nothing but the free-gas-limit calculation
with the background gauge field, which is related to the
order parameter of the gauge symmetry breaking. For our
purpose, we must perform the computation of the one-loop
effective potential with temporal and extra-dimensional
background gauge fields. Therefore, we need to extend
the previous formulation to evaluate the effective potential
in the orbifold [11–16] so as to also include the effect of the
temporal gauge field.
This paper is organized as follows. In Sec. II, we first

describe the basic formalism about the gauge-Higgs uni-
fication. In Sec. III, we derive the formula of the one-loop
effective potential with two kinds of gauge field conden-
sation and show its analytic expression at finite temperature
in the warped extra dimension. By introducing ultraviolet
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cutoff in three momenta, we can construct the effective
potential for Wilson lines in the gauge-invariant way
and discuss the effect of ultraviolet cutoff for physical
quantities. Properties of the effective potential are shown in
Sec. IV. By adding simple matter contents to the five-
dimensional pure gauge theory, we discuss the effect of
Dirac fermions with fundamental, sextet, and adjoint
representations in a systematic way. Section V is devoted
to summary. In Appendix A, we review the background
field method briefly since it is useful in computation of
the effective potential, and the calculation for analytical
expression of the effective potential is shown in detail in
Appendix B. Some useful formulas on the Lie algebra
suð3Þ are listed in Appendix C.

II. BASIC FORMALISM OF GAUGE-HIGGS
UNIFICATION

In this section, we describe the basic formalism of gauge-
Higgs unification [1–8]. For that purpose, we consider a
SUð3Þ gauge theory on the five-dimensional spacetime
ðS1 ×R3Þ × S1=Z2 at finite temperature T, where S1 is the
temporal direction with perimeter β ¼ 1=T, R3 is the three-
dimensional space, and S1=Z2 is the underlying space of
the orbifold. For constructing the orbifold, Z2 ¼ f�1g acts
on the circle S1 with radius R as y · 1 ¼ y and y · ð−1Þ ¼
−y for y ∈ S1 ¼ R=2πRZ. Under this action, there are two
fixed points; y ¼ 0, πR, at which quantum fields obey a
given boundary condition.

A. Gauge fields on orbifolds

For the case of gauge fields, the boundary condition is
given as

Aðτ; x; yþ 2πRÞ ¼ UAðτ; x; yÞU†; ð1Þ
�
Aμðτ; x;−yÞ ¼ P0Aμðτ; x; yÞP†

0

Ayðτ; x;−yÞ ¼ −P0Ayðτ; x; yÞP†
0

ð2Þ

�
Aμðτ; x; πR − yÞ ¼ P1Aμðτ; x; πRþ yÞP†

1

Ayðτ; x; πR − yÞ ¼ −P1Ayðτ; x; πRþ yÞP†
1

; ð3Þ

with U ¼ U†, Pi ¼ P†
i ¼ P−1

i , and the consistency con-
dition implies that U ¼ P1P0. Due to this boundary con-
dition, the SUð3Þ gauge symmetry in the five-dimensional
spacetime can be explicitly broken at these boundaries.
However, there still exists the SUð3Þ gauge symmetry
inside the bulk, and thus the mass of gauge fields is
prohibited. In order to describe the electroweak theory,
SUð3Þ is explicitly broken to SUð2Þ ×Uð1Þ by choos-
ing P≡ Pi ¼ diagð−1;−1; 1Þ.
Gell-Mann matrices Ta satisfy PTaP† ¼ Ta for a ¼ 1, 2,

3, and 8, and PTaP† ¼ −Ta for a ¼ 4;…; 7. Using the
matrix notation given in Appendix C, quantum numbers of

each field under the parity P in the extra dimension are
given as

PðAμÞ ¼

0
B@

þ þ −
þ þ −
− − þ

1
CA; PðAyÞ ¼

0
B@

− − þ
− − þ
þ þ −

1
CA;

ð4Þ

for μ ¼ 0;…; 3. Since fields with negative parity cannot
take any nonzero constant values, the Kaluza-Klein zero
modes of the SUð3Þ gauge field Aðx; yÞ are decomposed
into the SUð2Þ-gauge field A1;2;3

μ ðxÞ, the Uð1Þ-gauge field
A8
μðxÞ, and the matter fields A4;5;6;7

y with SUð2Þ-(anti)
fundamental representation. The electroweak theory as a
low-energy effective theory consists of the SUð2Þ gauge
field A1;2;3

μ , the Uð1Þ gauge field A8
μ, and the Higgs field

Φ ∼ ðA
4
y − iA5

y

A6
y − iA7

y
Þ with its complex conjugate.

We consider two different kinds of condensate hA0i ¼
πT
g a0 and hAyi ¼ 1

gR ay with the five-dimensional gauge
coupling g. Then the classical potential for these
condensates is

1

g2
Trð½a0; ay�2Þ: ð5Þ

As long as the five-dimensional gauge coupling is suffi-
ciently small, this term must be minimized at the leading
order. Within this approximation, it is good to assume that

½a0; ay� ¼ 0: ð6Þ

As a result, the field strength of this background field
vanishes. In the following discussion, we always use this
approximation.
The spontaneous symmetry breaking of the electroweak

theory is parametrized by the vacuum expectation value of
the Higgs field Φ. In gauge-Higgs unification models, it is
equivalent to set

hAyi ¼
a
gR

T6; ð7Þ

with a a real number. From the previous constraint, the A0

condensate must be proportional to T3 þ T8=
ffiffiffi
3

p
so that

hA0i ¼
2πT
g

q
3ðT3 þ T8=

ffiffiffi
3

p Þ
2

¼ 2πT
g

q

0
B@

1 0 0

0 −1=2 0

0 0 −1=2

1
CA: ð8Þ
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This basis makes clear the explicit breaking of SUð3Þ into
SUð2Þ × Uð1Þ due to the A6

y condensation. Therefore, we
chose the basis of the Cartan subalgebra by H1 ¼ T6 and
H2 ¼

ffiffi
3

p
2
ðT3 þ T8=

ffiffiffi
3

p Þ. Details about the Lie algebra
suð3Þ are given in Appendix C.
These expectation values must be regarded as phases of

correspondingWilson loops. With the background field (7),
the Wilson line along the extra dimension W is given by

W ¼ P exp

�
ig
Z

2πR

0

dyhAyi
�

¼

0
B@

1 0 0

0 cosðπaÞ i sinðπaÞ
0 i sinðπaÞ cosðπaÞ

1
CA: ð9Þ

Here, P refers to the path-ordering operator. We should
notice that there is an identification a ∼ aþ 2, since a is the
Wilson line phase along the extra dimension, and any local
potential of a is forbidden due to this remnant of the gauge
symmetry. Therefore, potentials of a must be nonlocal in
the extra dimension. Depending on the vacuum expectation
values of the Wilson line W, patterns of the gauge
symmetry breaking are very different:

SUð3Þ ⟶orbifolding SUð2Þ ×Uð1Þ

⟶
SSB

8><
>:

SUð2Þ ×Uð1Þ a ¼ 0

Uð1Þ ×Uð1Þ a ¼ 1

Uð1Þ otherwise

: ð10Þ

On the other hand, condensation of A0 is related to
the Polyakov loop, the Wilson line along the temporal
direction, at the classical level:

P ¼ P exp

�
ig
Z

β

0

dτhA0i
�

¼ diagðexp i2πq; exp−iπq; exp−iπqÞ: ð11Þ

Again, we have an identification q ∼ qþ 2. Due to this
gauge symmetry, potentials of q must also be nonlocal
along the temporal direction. When q ¼ 0, 2

3
, and 4

3
, the

Polyakov loops are proportional to the unit matrix, which
are center elements of the gauge group SUð3Þ.

B. Fermions on orbifolds

We consider Dirac fermions Ψ on the five-dimensional
spacetime with a certain representation R of the gauge
group SUð3Þ. The kinetic term is given by

L ¼ Ψ̄γIð∂I þ igRðAIÞÞΨ: ð12Þ
Under the parity operation y↦ − y, the Dirac fermion must
obey the transformation,

ψðx;−yÞ ¼ ηRðPÞγ5ψðx; yÞ;
ψðx; πR − yÞ ¼ η0RðPÞγ5ψðx; πRþ yÞ; ð13Þ

with P ¼ diagð−1;−1; 1Þ ∈ SUð3Þ. Here, η and η0 are
parameters, which take þ1 or −1. For the Dirac fermion,
left and right particles obey the opposite intrinsic parity also
in the warped extra dimension:

ψLðx;−yÞ ¼ ηRðPÞψLðx; yÞ;
ψRðx;−yÞ ¼ −ηRðPÞψRðx; yÞ;

ψLðx; πR − yÞ ¼ η0RðPÞψLðx; πRþ yÞ;
ψRðx; πR − yÞ ¼ −η0RðPÞψRðx; πRþ yÞ: ð14Þ

The consistency condition again implies that

ψðx; yþ 2πRÞ ¼ ηη0ψðx; yÞ: ð15Þ

Depending on the value of the product ηη0 ¼ �1, the Dirac
fermion obeys the periodic or antiperiodic boundary con-
dition in terms of y, respectively.

III. ONE-LOOP EFFECTIVE POTENTIAL WITH
TWO CONDENSATIONS

In this section, we compute one-loop effective potential
for five-dimensional SUð3Þ gauge theories with two differ-
ent kinds of condensation (7) and (8). For that purpose, we
extend the previous formalism to calculate the one-loop
effective potential on the orbifold [11–17].

A. Formula of the effective potential for gauge fields

The one-loop effective potential of gauge fields Vgþgh
eff is

defined by

Vgþgh
eff ¼ − ln

Z
DAIDc̄Dc

× exp

�
−
Z

d4xdyTr½ðDcl
I AJÞ2 þ c̄Dcl

I D
cl
I c�
�
;

ð16Þ

where Dcl
I AJ ¼ ∂IAJ þ ig½hAIi; AJ� with I; J ¼ 0;…; 4.

Here, the background field gauge is chosen, and detailed
derivation is given in Appendix A.
In order to calculate this functional integration, we

consider the eigenvalue problem of the operator −ðDcl
I Þ2.

Let Aðx; yÞ be an adjoint representational field, which
satisfies the boundary condition Aðx;−yÞ ¼ PAðx; yÞP†

and Aðx; yþ 2πRÞ ¼ Aðx; yÞ. In the following, we intro-
duce the mass scale M ¼ 1=2πR determined by the size of
the extra dimension. For a ¼ 1, 2, 3, and 8, Aaðx; yÞ can be
decomposed into the Kaluza-Klein modes [18,19] as
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Aaðx; yÞ ¼
ffiffiffiffiffi
M

p
Aa
0ðxÞ þ

ffiffiffiffiffiffiffi
2M

p X∞
m¼1

Aa
mðxÞ cos ð2πMmyÞ;

ð17Þ
and, for b ¼ 4, 5, 6, and 7,

Abðx; yÞ ¼
ffiffiffiffiffiffiffi
2M

p X∞
m¼1

Ab
mðxÞ sin ð2πMmyÞ: ð18Þ

The important difference between (17) and (18) is the
existence of Kaluza-Klein zero modes. Each mode Aa

mðxÞ
can be written as the summation over Matsubara modes:

Aa
mðxÞ ¼

ffiffiffiffi
T

p X∞
n¼−∞

Aa
n;mðxÞe2πiTnτ: ð19Þ

Using this decomposition, it suffices to evaluate the
quadratic form

R
d4xdyTrðDcl

I AÞ2 for solving the eigen-
value problem. The integration over the warped extra
dimension gives

Z
dy
X4
I¼0

TrðDcl
I Aðx; yÞÞ2

¼
X4
I¼0

Tr

�
Dcl

I

X
a¼1;2;3;8

Aa
0ðxÞTa

�
2

þ
X∞
m¼1

�X3
μ¼0

TrðDcl
μAmðxÞÞ2 þ Trð−ð2πMmÞ

× PAmðxÞP† þ ig½hAyi; AmðxÞ�Þ2
�
; ð20Þ

where AmðxÞ ¼
P

8
a¼1 A

a
mðxÞTa. The parity operation in

the last term comes from the difference of the basis, and the
cross term of the squared does not vanish. This comes from
the fact that the y derivative ∂y and ½hAyi; ·�ð∝ ½H1; ·�Þ
transform in the same way under the parity y↦ − y.
By substituting (7), the last term can be written as ðm ≥ 1Þ

Trð−ð2πMmÞPAmðxÞP† þ ig½hAyi; AmðxÞ�Þ2

¼ ð2πMÞ2
2

2
664ðA1

mA5
mÞ
�
m2 þ ða

2
Þ2 ma

ma m2 þ ða
2
Þ2
��

A1
m

A5
m

�
þðA2

mA4
mÞ
�
m2 þ ða

2
Þ2 −ma

−ma m2 þ ða
2
Þ2
��

A2
m

A4
m

�

þm2ðA6
mðxÞÞ2 þ ðA3

mA7
mA8

mÞ

0
BB@

m2 þ ða
2
Þ2 −ma −

ffiffi
3

p
4
a2

−ma m2 þ a2
ffiffiffi
3

p
ma

−
ffiffi
3

p
4
a2

ffiffiffi
3

p
ma m2 þ ð

ffiffi
3

p
a

2
Þ2

1
CCA
0
BB@

A3
m

A7
m

A8
m

1
CCA
3
775: ð21Þ

Some useful formulas on the Lie algebra suð3Þ in this
computation are shown in Appendix C. The important
point of this expression is that the condensation of A6 mixes

the odd and even parity states. Since H2 ¼
ffiffi
3

p
2
ðT3 þ

T8=
ffiffiffi
3

p Þ only mixes A1
m and A2

m and also A4
m and A5

m,
diagonalization of H2 does not affect that of the quadratic
form (21). As a result, the one-loop effective potential of an
adjoint representational field is given as

Vadj
eff ¼

1

2

Z
d3p
ð2πÞ3TM

×
X∞

n;m¼−∞

�
lnðð2πTÞ2n2þp2þð2πMÞ2m2Þ

þ2 ln

�
ð2πTÞ2

�
nþ3q

2

�
2

þp2þð2πMÞ2
�
mþa

2

�
2
�

þ ln
�
ð2πTÞ2n2þp2þð2πMÞ2ðmþaÞ2

��
: ð22Þ

Now we can readily see that the same expression for
the effective potential is obtained even from an adjoint
representational field with the opposite parity. Therefore,

the gauge field contribution to the effective potential is
given by

Vgþgh
eff ¼ 3Vadj

eff : ð23Þ

B. Formula of the effective potential
for matter fields

Let us consider the contribution of matters to the one-
loop effective potential Veff . Fundamental, sextet, and
adjoint Dirac fermions will be considered as matter con-
tents, and weight diagrams of those representations are
given in Fig. 1. For simplicity of computation, let us specify
ηη0 ¼ þ1 for matter fields in the following computation.
Extension to the case ηη0 ¼ −1 is straightforward.
For the fundamental representational matter field, two

states with weight vectors ð�1=2; 1=2
ffiffiffi
3

p Þ are linear
combinations of opposite-parity states, and the last one
with ð0;−1= ffiffiffi

3
p Þ has a definite parity ηð¼ η0Þ. Then, the

summation over Kaluza-Klein modes for the one-loop
effective potential becomes
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1þ η

2
M ln ½ð2πTÞ2ðnþ qÞ2 þ p2�

þM
X∞
m¼1

ln ½ð2πTÞ2ðnþ qÞ2 þ p2 þ ð2πMÞ2m2�

þM
X∞

m¼−∞
ln

�
ð2πTÞ2

�
nþ q

2

�
2

þ p2

þ ð2πMÞ2
�
mþ a

2

�
2
�
: ð24Þ

Therefore, we obtain the following expression for the
effective potential of a single fundamental representational
field,

1

2

Z
d3p
ð2πÞ3T

X∞
n¼−∞

η

2
ln

�
ð2πTÞ2

�
nþqþF

2

�
2

þp2
�

þ1

2

Z
d3p
ð2πÞ3TM

X∞
n;m¼−∞

×

�
1

2
ln

�
ð2πTÞ2

�
nþqþF

2

�
2

þp2þð2πMÞ2m2

	

þ ln

�
ð2πTÞ2

�
nþq

2
þF
2

�
2

þp2þð2πMÞ2
�
mþa

2

�
2
	�

;

ð25Þ
where F ¼ þ1 for fermions and F ¼ 0 for bosons. In the
case of Dirac fermions, left and right particles have
opposite intrinsic parity η and −η according to (14), and
thus the first term cancels by summing up all of them.
Therefore, each fundamental Dirac fermion with ηη0 ¼ þ1
contributes to the effective potential as

Vfd
eff¼4×

1

2

Z
d3p
ð2πÞ3TM

X∞
n;m¼−∞

×

�
1

2
ln

�
ð2πTÞ2

�
nþqþ1

2

�
2

þp2þð2πMÞ2m2

	

þln

�
ð2πTÞ2

�
nþq

2
þ1

2

�
2

þp2þð2πMÞ2
�
mþa

2

�
2
	�

:

ð26Þ
Similarly, the contribution of the sextet-representational

Dirac fermion with ηη0 ¼ þ1 is given by

Vsxt
eff¼4×

1

2

Z
d3p
ð2πÞ3TM

X∞
n;m¼−∞

×

�
1

2
ln

�
ð2πTÞ2

�
nþqþ1

2

�
2

þp2þð2πMÞ2m2

	

þ1

2
ln

�
ð2πTÞ2

�
nþ2qþ1

2

�
2

þp2þð2πMÞ2m2

	

þ ln

�
ð2πTÞ2

�
nþq

2
þ1

2

�
2

þp2þð2πMÞ2
�
mþa

2

�
2
	

þln

�
ð2πTÞ2

�
nþqþ1

2

�
2

þp2þð2πMÞ2ðmþaÞ2
	�

:

ð27Þ

Expression for the adjoint representational field can be
obtained in the same way presented in the previous
subsection.

C. Analytic formula of the effective potential

So far in this section, we have derived the naive
expression for the one-loop effective potential. However,
the five-dimensional gauge theory is nonrenormalizable
and thus it is natural to introduce some ultraviolet (UV)
cutoff to the theory. In order to respect discrete shift
symmetries a↦aþ 2 and q↦qþ 2 of the effective poten-
tial, we introduce the UV cutoff in the three spatial
momentum integration. The UV cutoff effect to the
Higgs mass at zero temperature is investigated for the
SUð3Þ gauge-Higgs unification model with a four-dimen-
sional momentum cutoff in Ref. [20].
In order to derive the analytic expression for the pertur-

bative one-loop effective potential, we need to calculate

FTðq;aÞ

¼ 1

2

Z
Λ

0

d3p
ð2πÞ3 TM

×
X∞

n;m¼−∞
ln

�
p2 þ ð2πTÞ2ðnþ q

2
Þ2 þ ð2πMÞ2ðmþ a

2
Þ2

p2 þ ð2πTÞ2n2 þ ð2πMÞ2m2

�
;

ð28Þ
with M ¼ 1=2πR. Here, Λ is the UV cutoff in the three
spatial momentum. Since we are only interested in its field

FIG. 1. Weight diagrams of the three, six, and eight-dimensional representations with H1 ¼ T6 and H2 ¼
ffiffi
3

p
2
ðT3 þ T8=

ffiffiffi
3

p Þ.
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dependence, field independent parts of the free energy are
disregarded in the following calculation. The UV cutoff
dependence of the free energy can be extracted according to
the following decomposition:

FTðq; aÞ ¼ FTðq; aÞjΛ-indep: þ FTðq; aÞjΛ-dep:: ð29Þ

The first term is defined by the limit Λ → ∞ of the field-
dependent part of (28), and its expression is given by

FTðq; aÞjΛ-indep: ¼ −
3M5

4π2

�X
~m≥1

cos π ~ma
~m5

þ
X
~n≥1

cos π ~nqffiffiffiffiffiffiffiffiffiffi
M2

T2 ~n2
q

5

þ
X
~m; ~n≥1

2 cos π ~nq cos π ~ma

ð ~m2 þ M2

T2 ~n2Þ5=2
�
: ð30Þ

The cutoff dependence comes from the second term,

FTðq; aÞjΛ−dep: ¼ −
M5

π3
X
~m≥1

cos π ~ma
~m5

~G

�
Λ
2M

~m

�

−
M5

π3
X
~n≥1

cos π ~nqffiffiffiffiffiffiffiffiffiffi
M2

T2 ~n2
q

5
~G

�
Λ
2T

~n

�

−
2M5

π3
X
~m; ~n≥1

cos π ~nq cos π ~ma

ð ~m2 þ M2

T2 ~n2Þ5=2

× ~G

�
Λ
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þM2

T2
~n2

r �
; ð31Þ

where ~G is defined using the Meijer G function and the
modified Bessel function of the second kind as

~GðzÞ ¼ G2;1
1;3

0
BB@

1

; z2

1
2

5
2

0

1
CCA −

3π

4
− 4z3K2ð2zÞ:

ð32Þ

Detailed derivation is given in Appendix B, and we
neglected the field-independent part which is not of our
interest. We also show in Appendix B that UV cutoff
dependence disappears if Λ≳ 10maxfM;Tg, which is
consistent with the result in Ref. [20]. Therefore, for a
good predictability of this cutoff theory on the properties of
Wilson line operators, the Kaluza-Klein mass scale and
temperatures must be smaller than Λ=10. In the following,
we assume that the UV cutoff of three-momentum satisfies
this condition, and we extract the finite effective potential
for background gauge fields a and q.
According to Fig. 1, the effective potentials for funda-

mental, sextet, and adjoint representations are given as

Ffd
T ðq; a; F; δÞ ¼ FTðqþ F; aþ δÞ þ 1

2
FTð2qþ F; δÞ;

ð33Þ

Fsxt
T ðq; a; F; δÞ ¼ 1

2
FTð2qþ F; δÞ þ 1

2
FTð4qþ F; δÞ

þ FTðqþ F; aþ δÞ
þ FTð2qþ F; 2aþ δÞ; ð34Þ

Fadj
T ðq; a; F; δÞ ¼ 2FTð3qþ F; aþ δÞ þ FTðF; 2aþ δÞ;

ð35Þ

respectively. Here, F represents the fermion number of the
field to be considered, and δ takes the values 0 and 1 for
ηη0 ¼ þ1 and −1, respectively. Here, we implicitly assume
that matter fields form a multiplet so as to erase terms like
the first term in (25), and we must emphasize that Dirac
fermions satisfy this condition. Using these quantities, the
general expression of the effective potential can be written
in the following way:

Veff ¼ 3Fadj
T ðq; a; 0; 0Þ − 4NadjðþÞ

F Fadj
T ðq; a; 1; 0Þ

− 4NsxtðþÞ
F Fsxt

T ðq; a; 1; 0Þ − 4NfdðþÞ
F Ffd

T ðq; a; 1; 0Þ
− 4Nadjð−Þ

F Fadj
T ðq; a; 1; 1Þ − 4Nsxtð−Þ

F Fsxt
T ðq; a; 1; 1Þ

− 4Nfdð−Þ
F Ffd

T ðq; a; 1; 1Þ: ð36Þ

Here Nfdð�Þ
F , Nsxtð�Þ

F , and Nadjð�Þ
F represent the number of

Dirac fermions with fundamental, sextet, and adjoint
representation with ηη0 ¼ �1, respectively.

IV. PHASE STRUCTURE OF FIVE-DIMENSIONAL
SUð3Þ GAUGE THEORIES

In this section, we discuss phase structure of five-
dimensional SUð3Þ gauge theories in a systematic way
motivated by electroweak phase transition in the gauge-
Higgs unification. Since there is an identification a ∼ aþ 2
and q ∼ qþ 2, and a symmetry a↦ − a and q↦ − q, it
suffices to show behaviors of the effective potential in the
region 0 ≤ a, q ≤ 1
As a first step, let us start with the theory only with gauge

fields. In this case, the effective potential is given by

Veffða; qÞ ¼ 3Fadj
T ðq; a; 0; 0Þ: ð37Þ

Contour plots of this effective potential at T=M ¼ 0.5, 1.0,
and 1.5 are shown in Fig. 2. According to these plots, we
can observe that there always exist degenerate vacua at
ða; qÞ ¼ ð0; 0Þ, ð0; 2=3Þ, and ð0; 4=3Þ. These three minima
are connected by the center symmetry Z3 of the five-
dimensional gauge group SUð3Þ. This degeneracy can be
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explicitly seen from the expression (22): the effective
potential has a center symmetry q↦qþ 2=3.
There is a stripe along q direction when temperature T is

much smaller than the Kaluza-Klein mass scale M (see the
case T=M ¼ 0.5 of Fig. 2). This is a common feature for
the effective potentials, since they become independent of q
at sufficiently low temperatures.
Let us add other matter contents in order to realize the

symmetry breaking at low temperatures and observe its
restoration at high temperatures. In order to reveal the role
of each representational field, we study effective potentials
of gauge theories by adding fundamental, sextet, and
adjoint Dirac fermions separately.
First, we study the effect of fundamental fermions on the

effective potential. If the number of fermions is set as
NfdðþÞ

F ¼ 3, then the effective potential becomes

Veffða; qÞ ¼ 3Fadj
T ðq; a; 0; 0Þ − 12Ffd

T ðq; a; 1; 0Þ: ð38Þ

At T ¼ 0, this theory shows Uð1Þ ×Uð1Þ gauge symmetry
due to the nontrivial vacuum (see Fig. 3). Therefore,
fundamental fermions with ηη0 ¼ þ1 stabilizes the point
ða; qÞ ¼ ð1; 0Þ at sufficiently low temperatures. Since
fundamental fermions explicitly break the center symmetry,
the symmetry under q↦qþ 2

3
no longer exists. However,

some metastable minima are observed along the q direc-
tion: according to the center panel of Fig. 4, metastable
minima exist around ða; qÞ ¼ ð0; 0Þ and ð0;�2=3Þ at any
temperatures, which are possibly related by a remnant of
the broken center symmetry. We can also observe in the
right panel of Fig. 4 that there exists a metastable minimum
at ða; qÞ ¼ ð1; 1Þ at low temperatures, whose energy is
almost degenerate to that of the real vacuum ða; qÞ ¼
ð1; 0Þ. As a temperature is increased, this approximate
degeneracy is solved and the position of the metastable
minimum comes closer to ða; qÞ ¼ ð1;�2=3Þ.
At high temperatures, the stable minimum becomes

ða; qÞ ¼ ð0; 0Þ and the gauge symmetry is restored to

FIG. 3 (color online). The effective potential (38) with fundamental fermions is shown as contour plots in terms of a and q at several
temperatures T=M ¼ 0.5, 1.0, and 1.5.

FIG. 2 (color online). Contour plots of the effective potential (37) only with gauge bosons in terms of a and q at T=M ¼ 0.5; 1.0; 1.5.
As a result of the center symmetry, the figure is symmetric under q↦qþ 2

3
.
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SUð2Þ × Uð1Þ. This restoration of the gauge symmetry
is a first order phase transition, which can be observed
from contour plots in Fig. 3 and also in the left panel
of Fig. 4.
To study the effect of adjoint fermions, we putNadjðþÞ

F ¼ 2
and set zero for others. The effective potential of this gauge
theory becomes

Veffða; qÞ ¼ 3Fadj
T ðq; a; 0; 0Þ − 8Fadj

T ðq; a; 1; 0Þ: ð39Þ

In Fig. 5, plots of this effective potential (39) are shown
along q ¼ 0 for T=M ¼ 0.9, 1.0, 1.1, and 1.2, and contour
plots are also shown for the case T=M ¼ 0.8 and 1.0.
If temperature is sufficiently high, the potential minimum
exists at ða; qÞ ¼ ð0; 0Þ, ð0; 2=3Þ, and ð0; 4=3Þ, and the
system is symmetric. This degeneracy is again a conse-
quence of the center symmetry Z3, since adjoint fermions
preserve it. As the temperature is lowered so that T=M ∼ 1,
there is a first order phase transition to the Uð1Þ ×Uð1Þ

FIG. 5 (color online). Effective potential (39) with adjoint fermions along q ¼ 0, and contour plots at T=M ¼ 0.8 and 1.

FIG. 4 (color online). Details about the effective potential (38) for the gauge theory with fundamental fermions. The left panel shows it
as a function of a at q ¼ 0. The center and right panels do as a function of q at a ¼ 0 and 1, respectively.

FIG. 6 (color online). Contour plots of the effective potential (40) with sextet fermions at T=M ¼ 0.5, 0.8, and 1.0.
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gauge theory. If the temperature is further lowered, there
is another first order phase transition to the Uð1Þ gauge
theory. This phenomenon is observed also in the previous
study of this system without A0 condensation in Ref. [15].
Finally, we also consider a five-dimensional gauge

theory with sextet fermions. The effective potential is
given by

Veffða; qÞ ¼ 3Fadj
T ðq; a; 0; 0Þ − 8Fsxt

T ðq; a; 1; 0Þ: ð40Þ

Around T=M ¼ 0.96, the gauge symmetry SUð2Þ ×Uð1Þ
is spontaneously broken to Uð1Þ, and its transition is of the
first order (see Fig. 6 and also the left panel of Fig. 7).
Again, we can observe the appearance of metastable region
along q direction: At low temperatures, the metastable
minima lie at q ¼ 0.5 and q ¼ 1, according to the right
panel of Fig. 7. This metastable states still survive at
T=M ≃ 1, although the original stable state disappears
soon after the phase transition as we can see in the left panel
of Fig. 7. Furthermore, at really low temperatures
T=M ≲ 0.1, we can observe that the stable and metastable
states at q ¼ 0 and 1 become almost degenerate.

V. SUMMARY

In this paper, we investigated the phase structure of
five-dimensional SUð3Þ gauge theories at finite temper-
atures. In order to study the effect of the temporal
gauge-field condensation hA0i and the extra-dimensional
gauge-field condensation hAyi, we extended the computa-
tional technique for the one-loop effective potential at finite
temperature on the orbifold S1=Z2. Importance of the Ay
condensation has been recognized so far in order to
describe the electroweak phase transition; however, the
A0 condensation also turns out to affect the phase structure.
Indeed, we found new metastable and stable states with
nonzero A0 condensations by computing the one-loop
effective potential. The effect of the UV cutoff is studied
in this computation, so that one can check reliability and
predictability of these nonrenormalizable five-dimensional

gauge theories. We introduce the three-dimensional
momentum cutoff Λ in order to respect the residual gauge
symmetry of the effective potential, and find that its effect
on Wilson loops vanishes as long as Λ is at least about ten
times larger than the Kaluza-Klein mass and temperatures.
Effective potentials with two condensations hA0i and

hAyi are shown for simple matter contents, including
fundamental, sextet, and adjoint representational Dirac
fields. So far, fundamental and adjoint fermions has been
extensively studied, but sextet fermions can also lead a
natural phase transition pattern at finite temperatures. For
the pure five-dimensional Yang-Mills theory and also for
theories only with adjoint fermions, there are several
degenerate vacua connected by the center symmetry Z3

of the original gauge group SUð3Þ. In the case of
fundamental and sextet fermions, this center symmetry is
explicitly broken. However, there still exist metastable
minima along the A0 direction, some of which are almost
degenerate to the stable state at low temperatures.
These newly found metastable states may play a sig-

nificant role in dynamics of phase transitions. Recently, a
domain structure of the deconfined QCD matter has been
discussed as a possible scenario to explain properties of the
quark-gluon plasma such as the large opacity and the ideal
fluidity [21]. Also in Ref. [22], properties of quark-gluon
plasma are discussed when there are domain structures
induced by metastable states. From our calculation, domain
structures in gauge-Higgs unification models are expected
to exist thanks to many metastable minima of effective
potentials. If these metastable states also appear in non-
equilibrium systems, they could affect the cosmological
phase transition [23–25].
Before closing the summary, let us mention details about

the symmetry breaking pattern of each matter content.
At sufficiently low temperatures, Dirac fermions contribute
to the spontaneous breaking of the gauge symmetry
SUð2Þ × Uð1Þ. For sextet and adjoint fermions, the gauge
symmetry is broken to Uð1Þ but the way of its restoration is
very different. In the case of theories with sextet fermions,
there is a restoration to the SUð2Þ ×Uð1Þ gauge theory as a

FIG. 7 (color online). Details about the effective potential (40) for the gauge theory with sextet representational fermions.
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first order phase transition. However, for theories with
adjoint fermions, they once are restored to Uð1Þ ×Uð1Þ,
and after that the SUð2Þ ×Uð1Þ gauge theory appears. For
theories with fundamental fermions, the symmetry is
spontaneous broken to Uð1Þ ×Uð1Þ at sufficiently low
temperatures, and it is restored to SUð2Þ ×Uð1Þ under
first-order phase transition.
In this paper, we consider the case of zero fermion

number density. It must be an interesting task to investigate
the phase structure at finite fermion number density, and,
for that purpose, we need to introduce chemical potentials
for conserved charges. Since we included the effect of hA0i,
we would like to emphasize that this formalism can be
extended to the case with finite chemical potentials in a
straightforward way for studying finite density systems.
In this case, however, the perturbative effective potential
can acquire its imaginary part as is known in the case of
quantum chromodynamics (see Ref. [26] for example).
Thus, we must overcome this difficulty of the sign problem
even at perturbative calculations.
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APPENDIX A: BACKGROUND FIELD GAUGE

We start from the original five-dimensional Yang-Mills
action,

SYM ¼
Z

Tr½FA∧ � FA�; ðA1Þ

with FA ¼ dAþ igA∧A and A ¼ Aa
I T

adxI. We decompose
the gauge field into two parts, A ¼ Acl þ Aqu, where Acl is a
background field and Aqu describes the quantum fluctuation.
For our purpose, the classical field strength FAcl can be
assumed to be zero, and thus the covariant derivative Dcl

I ¼
∂I þ igAcl

I commutes to each other (for any representations).
The field strength becomes FA ¼ DclAqu þ igAqu∧Aqu.
The second order term of the Yang-Mills action in terms

of Aqu is given by

Sð2ÞYM ¼
Z

Tr½ðDclAquÞ∧ � ðDclAquÞ�

¼
Z

d4xdyTr½ðDcl
I A

qu
J ÞðDcl

I A
qu
J −Dcl

J A
qu
I Þ�; ðA2Þ

with Dcl
I A

qu
J ¼ ∂IA

qu
J þ ig½Acl

I ; A
qu
J �. We take the gauge

fixing function as

Dcl
I A

qu
I ¼ 0; ðA3Þ

and the classical background field Acl must also satisfy this
condition. Adding the Faddeev-Popov ghost fields c and c̄,
we find that the quadratic term of the action becomes

Sð2ÞYMþFP ¼
Z

d4xdyTr½ðDcl
I A

qu
J Þ2 þ c̄Dcl

I D
cl
I c�: ðA4Þ

APPENDIX B: CALCULATIONS FOR THE
EFFECTIVE POTENITAL AT FINITE

TEMPERATURES

In order to calculate the effective potential, we need to
evaluate the following quantity,

FTðq;aÞ

¼ 1

2

Z
Λ

0

d3p
ð2πÞ3TM

×
X∞

n;m¼−∞
ln

�
p2þð2πTÞ2ðnþ q

2
Þ2þð2πMÞ2ðmþ a

2
Þ2

p2þð2πTÞ2n2þð2πMÞ2m2

�
;

ðB1Þ
with T the temperature, and M the inverse radius of the
compact dimension. Λ is the UV cutoff for the spatial
momentum. In this expression, n and m represent the
Matsubara and Kaluza-Klein modes, respectively. Using
the proper time method, we can perform the spatial
momentum integration:

FTðq; aÞ ¼
TM
2

X
n;m∈Z

Z
Λ

0

d3p
ð2πÞ3

�
−
Z

∞

0

ds
s
e−sp

2

× ðe−sðð2πTÞ2ðnþq=2Þ2þð2πMÞ2ðmþa=2Þ2Þ

− e−sðð2πTÞ2n2þð2πMÞ2m2ÞÞ
�

ðB2Þ

¼ TM

2ð4πÞ3=2
Z

∞

0

ds

s5=2

�
ErfðΛ ffiffiffi

s
p Þ− 2ffiffiffi

π
p Λ

ffiffiffi
s

p
e−Λ

2s

�

×

�
−
X
n;m∈Z

ðe−sðð2πTÞ2ðnþq=2Þ2þð2πMÞ2ðmþa=2Þ2Þ

−e−sðð2πTÞ2n2þð2πMÞ2m2ÞÞ
�
: ðB3Þ

Using Poisson’s resummation formula, we find that

FTðq;aÞ¼
TM

2ð4πÞ3=2
Z

∞

0

ds

s5=2

�
ErfðΛ ffiffiffi

s
p Þ− 2ffiffiffi

π
p Λ

ffiffiffi
s

p
e−Λ

2s

�

×
X
~n; ~m∈Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πM2s

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4πT2s

r
e−

~m2

4M2se−
~n2

4T2s

× ð1−e−πið ~nqþ ~maÞÞ ðB4Þ
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¼ M5

2π5=2

X
~n; ~m∈Z

1 − e−πið ~nqþ ~maÞ

ð ~m2 þ M2

T2 ~n2Þ5=2
×
Z

∞

0

dττ5=2−1e−τ

×

0
B@Erf

0
B@ Λ
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þ M2

T2 ~n2
q

ffiffiffi
τ

p

1
CA

−
Λffiffiffi
π

p
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þ M2

T2 ~n2
q

ffiffiffi
τ

p e−
Λ2

4M2

~m2þM2

T2
~n2

τ

1
CA: ðB5Þ

When ~m ¼ 0 and ~n ¼ 0, the summands are independent
of a and q, which are not of interest. In the following,
the summation over ~m and ~n is restricted to ~m ≠ 0 or
~n ≠ 0.
The integration in (B5) can be done explicitly to get

FTðq;aÞ¼
M5

2π3
X
~n; ~m∈Z

1−e−πið ~nqþ ~maÞ

ð ~m2þM2

T2 ~n2Þ5=2

×

2
6664G2;1

1;3

0
BBB@

1

; Λ2

4M2 ð ~m2þM2

T2 ~n2Þ
1
2

5
2
0

1
CCCA

−4

 
Λ
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2þM2

T2
~n2

r !
3

K2

 
Λ
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2þM2

T2
~n2

r !37775:

ðB6Þ

Here, G is the Meijer G function defined by

Gm;n
p;q

�
a1…ap
b1…bq

; z

�

¼
Z
L

ds
2πi

zs
Q

m
j¼1 Γðbj − sÞQn

j¼1 Γð1 − aj þ sÞQq
j¼mþ1 Γð1 − bj þ sÞQp

j¼nþ1 Γðaj − sÞ ;

ðB7Þ

where L is an upward oriented loop contour which
separates the poles of

Q
m
j¼1 Γðbj − sÞ from those ofQ

n
j¼1 Γð1 − aj þ sÞ and which begins and ends at þ∞

[27]. Since this quantity is convergent in the limit Λ → ∞,
we separate it into two parts by its Λ dependence:

FTðq; aÞ ¼ FTðq; aÞjΛ−indep: þ FTðq; aÞjΛ−dep:: ðB8Þ

The Λ-independent part is defined by taking the limit
Λ → ∞ of the field-dependent part of the effective
potential:

FTðq; aÞjΛ−indep: ¼
3M5

4π2
X
~m≥1

1 − cos π ~ma
~m5

þ 3M5

4π2
X
~n≥1

1 − cos π ~nqffiffiffiffiffiffiffiffiffiffi
M2

T2 ~n2
q

5

þ 3M5

2π2
X
~m; ~n≥1

1 − cos π ~nq cos π ~ma

ð ~m2 þ M2

T2 ~n2Þ5=2
:

ðB9Þ

On the other hand, by subtracting the above UV-finite field-
dependent part, we can obtain the cutoff dependence of the
effective potential as follows:

FTðq; aÞjΛ−dep: ¼
M5

π3
X
~m≥1

1 − cos π ~ma
~m5

~G

�
Λ
2M

~m

�

þM5

π3
X
~n≥1

1 − cos π ~nqffiffiffiffiffiffiffiffiffiffi
M2

T2 ~n2
q

5
~G

�
Λ
2T

~n

�

þ 2M5

π3
X
~m; ~n≥1

1 − cos π ~nq cos π ~ma

ð ~m2 þ M2

T2 ~n2Þ5=2

× ~G

�
Λ
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þM2

T2
~n2

r �
: ðB10Þ

Here we define a special function

~GðzÞ ¼ G2;1
1;3

0
BBB@

1

; z2

1
2

5
2

0

1
CCCA −

3π

4
− 4z3K2ð2zÞ:

ðB11Þ

Behavior of ~G along the positive real axis is shown in
Fig. 8, and it vanishes exponentially fast when z≳ 5.
Therefore, the result becomes independent of the three-
dimensional UV cutoff as long as Λ≳ 10maxfM;Tg.

FIG. 8 (color online). Behavior of the special function ~G.
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APPENDIX C: LIE ALGEBRA suð3Þ
In order to make a firm connection between charges of

fields in the gauge-Higgs unification model and the suð3Þ
Lie algebra, we take the basis by half of the Gell-Mann
matrices:

T1 ¼ 1

2

0
B@

0 1 0

1 0 0

0 0 0

1
CA; T2 ¼ 1

2

0
B@

0 −i 0

i 0 0

0 0 0

1
CA;

T3 ¼ 1

2

0
B@

1 0 0

0 −1 0

0 0 0

1
CA; T4 ¼ 1

2

0
B@

0 0 1

0 0 0

1 0 0

1
CA;

T5 ¼ 1

2

0
B@

0 0 −i
0 0 0

i 0 0

1
CA; T6 ¼ 1

2

0
B@

0 0 0

0 0 1

0 1 0

1
CA;

T7 ¼ 1

2

0
B@

0 0 0

0 0 −i
0 i 0

1
CA; T8 ¼ 1

2
ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA:

ðC1Þ

Under the inner product of suð3Þ, this basis is normalized
as ðTi; TjÞ≡ TrðTiTjÞ ¼ δij=2,
Since we take the direction of the gauge field conden-

sation hA6i along T6 in (7), it is appropriate to take the

Cartan subalgebra as H ¼ spanfT6;
ffiffi
3

p
2
ðT3 þ T8=

ffiffiffi
3

p Þg.
Let us denote this basis as H1 ¼ T6 and H2 ¼ffiffi
3

p
2
ðT3 þ T8=

ffiffiffi
3

p Þ. The simple roots are given by α1 ¼
ð1
2
;
ffiffi
3

p
2
Þ and α2 ¼ ð1

2
;−

ffiffi
3

p
2
Þ. Corresponding root vectors

are

Eα1 ¼
1

2
fðT1 þ iT2Þ − ðT4 þ iT5Þg;

Eα2 ¼
1

2
fðT1 − iT2Þ þ ðT4 − iT5Þg;

ðC2Þ

respectively. The last positive root vector is obtained as

Eα1þα2 ¼
ffiffiffi
2

p
½Eα1 ; Eα2 � ¼

1

2
ffiffiffi
2

p fðT3 −
ffiffiffi
3

p
T8Þ þ 2iT7g:

ðC3Þ

Root vectors with negative roots are given by E−α ¼ ðEαÞ†.
This system of root vectors satisfies the normalization
ðEα;E−αÞ¼ 1=2 and ½Eα;E−α� ¼ 1

2
α ·H. Unless αþ β ¼ 0,

ðEα; EβÞ ¼ 0, and ðHi; EαÞ ¼ 0 in general.
The inverse of (C2) and (C3) is given by

T1 ¼ 1

2
ðEα1 þ E−α1 þ Eα2 þ E−α2Þ;

T2 ¼ 1

2i
ðEα1 − E−α1 − Eα2 þ E−α2Þ;

T3 ¼
ffiffiffi
3

p

2
H2 þ

1

2
ffiffiffi
2

p ðEα1þα2 þ E−α1−α2Þ;

T8 ¼ 1

2
H2 −

ffiffiffi
3

p

2
ffiffiffi
2

p ðEα1þα2 þ E−α1−α2Þ;

T4 ¼ 1

2
ð−Eα1 − E−α1 þ Eα2 þ E−α2Þ;

T5 ¼ 1

2i
ð−Eα1 þ E−α1 − Eα2 þ Eα2Þ;

T6 ¼ H1; T7 ¼ 1ffiffiffi
2

p
i
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