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We present an analytic nonperturbative solution of the Yakubovsky equation for tetraquark states in the
case of equal separations and energies, and demonstrate a direct connection between the tetraquark
confinement potential and the temporal gluon propagator. To this end we employ a leading-order heavy
quark mass expansion of the Coulomb gauge QCD action, and use the dressed two-point functions of the
Yang-Mills sector only. As a result, we find a bound state energy that rises linearly with distance and a
string tension twice as large as in a qq̄-system.
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I. INTRODUCTION

Exotic states in the heavy quark sector are an increas-
ingly fascinating subject to study. With the discovery and
confirmation of many new XYZ-states at BaBar, Belle, the
LHC and Beijing spectrometer, interpretations of some of
these clearly favor states go beyond the time-honored
classification of hadrons into mesons and baryons [1,2],
opening up the exciting possibility of the identification of
tetraquark, meson molecule or hybrid states. The idea of
tetraquarks has been around for quite some time. For the
light quark sector, Jaffe proposed that the light scalar nonet
including f0ð980Þ and a0ð980Þ can be interpreted as a
qqq̄ q̄ state instead of qq̄ [3,4]. Indeed, the mass ordering
and decay patterns of these states nicely fit this picture. In
the heavy quark sector, charged states like the Zþ

c ð3900Þ or
the Zþ

b ð10610Þ and their cousins cannot be identified with
ordinary quarkonia and therefore strongly suggest an
interpretation in terms of tetraquarks.
Theoretically, tetraquarks can be described by a general-

ized Bethe-Salpeter equation for four particle states, origi-
nally proposed by Yakubovsky [5] (see also Refs. [6,7] for
pedagogical introductions). In a covariant setting, this
equation, rounded off to account for quantum-field theo-
retical effects [8], has been solved under the approximation
that the4q state isdescribedbyacoupledsystemof two-body
equationswithmeson anddiquark constituents [9]. Based on
previous investigations,which showed that a rainbow-ladder
kernel is most robust in meson Bethe-Salpeter calculations
[10–12], results of tetraquark masses have been obtained by
employing a phenomenologically validated one gluon-
exchange interaction.Acomplete classificationof tetraquark
states in terms of spin flavor, color and spatial degrees of
freedomhasbeen constructed in [13].Other investigations of
tetraquark states include large N-limit calculations [14],
effective theory studies [15–17] and relativistic quark
models [18].
From a fundamental perspective, tetraquarks offer inter-

esting insights into the underlying structure of the strong

interaction. The relationship between the nonperturbative
scale associated with confinement (the string tension) and
the gluon sector is of crucial importance in understanding
the low-energy properties of QCD. On the lattice, Wilson
loops exhibit an area law at intermediate distances that
corresponds to a linearly rising potential, whereas the
corresponding coefficient, the so-called Wilsonian string
tension, can be explicitly related to a hadronic scale [19].
Within continuous functional approaches, investigations
carried out in the Coulomb gauge have shown that in the
heavy quark sector (and at least under truncation) one can
identify a direct connection between the temporal Yang-
Mills Green’s function and the potential that confines
quarks, both in the two- and three-body case [20,21]. In
the Hamiltonian formalism, the temporal Wilson loop gives
the physical string tension [22,23], whereas the Coulomb
string tension is an upper bound to the Wilson loop string
tension [24,25].
While the potential that confines two and three quarks

has been relatively extensively studied with continuous
methods as well as on the lattice (see for example Ref. [26]
for a review), the interaction between quarks in a 4q system
has received little attention. On the lattice, the problem of
van der Waals forces has been investigated, and it has been
shown that a flux tube recombination takes place, i.e.,
around a level-crossing point, the confining potential flips
between the disconnected “two-meson” Ansatz and the
state where the quarks and antiquarks are connected by a
double-Y shaped flux tube, and this implies that the van der
Waals forces are absent at long distances [27]. Continuum
studies that have investigated the absence of long range
forces in tetraquarks include Refs. [28,29].
In this work we will study the nature of the confining

force in tetraquarks using a framework gauge fixed to the
Coulomb gauge. The realization of confinement in the
Coulomb gauge centers around the Gribov-Zwanziger
scenario, which conjectures that the confining potential
is provided by the temporal gluon propagator, whereas the
spatial propagator is suppressed at long distances [30]. In
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addition, this gauge possesses a number of features that
recommend it as an appropriate tool to study the low-
energy sector of QCD: within the first order formalism, the
total charge of the system is conserved and vanishing, the
system reduces naturally to the physical degrees of freedom
[31] and the problem of divergent energy integrals dis-
appears [32]. In the Coulomb gauge, the Dyson-Schwinger
equations for both Yang-Mills and quark sectors have been
derived, and perturbative results have been obtained
[33–36]. On the lattice, one important result (which shall
be extensively used in this work) is that the temporal gluon
propagator is energy independent, and it behaves like 1=~q4

for vanishing ~q [37–39].1 The lattice results agree with the
analytical findings obtained from the Hamiltonian
approach to the Yang-Mills theory [25,41,42].
This paper is a natural continuation of previous works

including one of the authors [20,21], where meson and
baryon bound states have been investigated via Bethe-
Salpeter and Faddeev equations, respectively. Based on a
leading-order expansion in the heavy quark mass originally
developed within heavy quark effective theory (HQET)
[43], a direct connection between the temporal gluon
propagator and the string tension has been derived.2

Here, we follow the same approach and consider the
Yakubovsky equation for four-quark states [5] in the
Coulomb gauge at the leading order in the mass expansion,
in the symmetric case (i.e., the separation between quarks
are equal), at equal energies, and by including only two
particle irreducible contributions. We will employ lattice
results for the temporal gluon propagator, and, in addition,
we will use previous findings, namely that the kernel of the
Bethe-Salpeter equation reduces nonperturbatively to the
ladder truncation. In this setting, we will provide an exact
analytical solution to the Yakubovsky equation, which then
naturally leads to the confining potential of a 4q system.
The organization of this paper is as follows. In Sec. II we

briefly survey the results obtained for heavy quark systems.
We review the main steps of the expansion of QCD action
in powers of the inverse quark mass, and discuss the results
obtained for the heavy quark propagator and the corre-
sponding (temporal) quark-gluon vertex. In Sec. III we
present the Yakubovsky equation for tetraquark states.
Similar to the case of meson and baryon states, we establish
(at least under truncation) a direct relation between the
physical string tension and the temporal component of the
gluon propagator. A short summary and conclusions are
presented in Sec. IV.

II. EXPANSION IN THE HEAVY QUARK MASS

In this section we outline the results obtained within the
heavy quark limit that are relevant for this work, and direct
the reader to Ref. [20] for a full account. We employ the
standard notations and conventions: spatial indices are
labeled with the roman letters i; j;…, and the superscripts
a; b;… denote color indices in the adjoint representation;
flavor, Dirac spinor and (fundamental) color indices are
commonly denoted with an index, α; β…. We work in
Minkowsky space, with the metric gμν ¼ diagð1;−~1Þ. The
Dirac γ-matrices satisfy fγμ; γνg ¼ 2gμν, where the notation
γi refers to the spatial component and the minus sign arising
from the metric has been explicitly taken into account.
fabc are the structure constants of the SUðNÞ group,
with the Hermitian generators ½Ta; Tb� ¼ ifabcTc normal-
ized via TrðTaTbÞ ¼ δab=2, and the Casimir factor CF ¼
ðN2 − 1Þ=2N.
The idea that underlies the heavy quark mass expansion

is the so-called heavy quark decomposition, i.e., the (full)
quark field qα is separated into two components via the
spinors h and H as follows:

qαðxÞ ¼ e−imx0 ½hðxÞ þHðxÞ�α;

hαðxÞ ¼ eimx0
1þ γ0

2
qαðxÞ;

HαðxÞ ¼ eimx0
1 − γ0

2
qαðxÞ ð2:1Þ

(similarly for the antiquark field). In our Coulomb gauge
functional approach, this particular type of heavy quark
transform adapted from HQET [43] can be simply regarded
as an arbitrary decomposition. This is then inserted into the
QCD generating functional, and, after integrating out the
H-fields, an expansion in the heavy quark mass is per-
formed (throughout this work we shall use the established
terminology “mass expansion” instead of “expansion in the
inverse quark mass”). We mention here that the quark and
antiquark sources are kept in all steps of the calculation,
such that the full gap and Yakubovsky equations can be
employed, whereas the kernels, propagators and vertices
are replaced with their expressions at the leading order in the
mass expansion. The decomposition Eq. (2.1), along with the
Yang-Mills truncation, leads to the suppression of the spatial
gluon propagator at the leading order in the mass expansion,
which in turn means that at leading order the attached gluons
couple to the constituent quarks of the four-body state via a
temporal quark-gluon vertex. We refer the reader to Ref. [20]
for a detailed discussion regarding source terms and the
expansion of the QCD action in the parameter 1=m.
Before we provide our solution for the heavy quark

propagator, it is appropriate to briefly discuss our truncation
scheme, which has also been employed in [20,21]. In the
context of the heavy mass expansion, we restrict ourselves
to dressed two-point functions of the Yang-Mills sector

1Another possibility considered in Ref. [40], which avoids the
ambiguities related to the definition of the A0A0 propagator, is to
extract the Coulomb string tension from the exponential falloff of
the time-like link-link correlator.

2The heavy quark limit has also been recovered under a
(perturbative) leading order truncation of Dyson-Schwinger
equations [44,45].
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(i.e., the nonperturbative gluon propagators) and set all the
pure Yang-Mills vertices and higher n-point functions
occurring in the quark equations to zero. This truncation
is justified by the fact that the total number of loops
containing Yang-Mills vertices is drastically reduced: on
the one hand, these vertices only contribute at the second
order perturbatively, since the leading-order perturbative
corrections containing purely temporal vertices vanish
(temporal Yang-Mills vertices are zero at the tree level
[34]), and, on the other hand, loops containing spatial
Yang-Mills vertices are suppressed by the mass expansion.
Physically, the main consequence of setting the Yang-Mills
vertices to zero is the exclusion of the non-Abelian part of
the color charge screening mechanism, and the potential
glueball contributions of the gluon field. On the other hand,
the fact the confining potential stems from the ladder Bethe-
Salpeter kernel [20] implies that the gluon does contain the
nonperturbative effects attached to the dynamical dressingof
color charge (such as glueball states), whereas the quark-
gluon vertices correspond to naked charges. Hence, we
expect that the inclusion of the non-Abelian corrections
would not alter the linear behavior of the bound state energy
but would lead to a smaller value of the string tension σ via
shifting the position of the pole.
From the full Coulomb gauge gap equation (i.e., the first

order formalism without mass expansion [36]), supple-
mented by the Slavnov-Taylor identity, we find the follow-
ing solution for the heavy quark propagator:

Wq̄qαβðk0Þ ¼
−iδαβ

½k0 −m − Ir þ iε� þOð1=mÞ; ð2:2Þ

with

I r ¼
1

2
g2CF

Z
r

đ~ωDσσð~ωÞ
~ω2

þOð1=mÞ: ð2:3Þ

The constant I r is implicitly regularized, under the
assumption that the order of the integration is set such
that the temporal integral is performed first, and the spatial
integral is regularized and finite. The nonperturbative
temporal gluon propagator entering I r is given by

Wab
σσð~kÞ ¼ δab

i
~k2

Dσσð~k2Þ: ð2:4Þ

Following lattice results [38], and also continuum inves-
tigations [37], we assume that the dressing function Dσσ is
energy independent and diverges like 1=~k2 in the infrared.
From the Slavnov-Taylor identity, combined with the
solution Eq. (2.2), one easily finds that the temporal
quark-gluon vertex remains nonperturbatively bare,

Γa
q̄qσαβðk1; k2; k3Þ ¼ ½gTa�αβ þOð1=mÞ; ð2:5Þ

whereas the spatial vertex is subleading in the heavy mass
expansion [20]. The heavy quark propagator Eq. (2.2) has
a few remarkable properties which we shall discuss here
briefly. First, as a result of the mass expansion, this
propagator has a single pole in the complex k0-plane, as
opposed to the conventional Feynman quark propagator.
Therefore, it is necessary to explicitly define the Feynman
prescription. It then follows that the closed quark loops
vanish due to energy integration,

Z
dk0

½k0−m−I rþ iε�½k0þp0−m−I rþ iε� ¼ 0; ð2:6Þ

meaning that the theory is quenched at the lowest order in
the heavy quark mass expansion. A further observation is
that the propagator Eq. (2.2) is diagonal in the outer product
of the fundamental color, flavor and spinor spaces, due to
the decoupling of the spin degree of freedom in the heavy
quark limit [43]. Finally, the position of the pole in the
heavy quark propagator does not have a physical meaning
since the quark cannot be on shell. As soon as the
regularization is removed, the poles are shifted to infinity,
and this implies that only the relative energy plays a role in
a hadronic system (or, if a single quark is considered, one
needs infinite energy to create it from the vacuum). Indeed,
it has long been known that the absolute energy does not
have a physical meaning, and that only the relative energy,
which in the case of tetraquarks is derived from the
Yakubovsky equation, must be considered [46].
Since the heavy quark mass expansion breaks the charge

conjugation symmetry, the antiquark and quark propagators
are not equivalent. The Feynman prescription for the
antiquark propagator is derived from the observation that
the Bethe-Salpeter equation must have a physical inter-
pretation of bound states—in this case, the quark and the
antiquark are not connected by a primitive vertex, and
hence they do not create a virtual quark-antiquark pair
(closed loop) but a system composed of two separate
unphysical particles. For the antiquark propagator, we
obtain (the derivation is similar to the quark propagator)

Wqq̄αβðk0Þ ¼
−iδαβ

½k0 þm − I r þ iε� þOð1=mÞ; ð2:7Þ

and the corresponding vertex is given by

Γa
qq̄σαβðk1; k2; k3Þ ¼ −½gTa�βα þOð1=mÞ: ð2:8Þ

A last important consequence of the heavy quark mass
expansion is the reduction of the interaction kernels from
both Bethe-Salpeter and Yakubovsky equations to the
ladder exchange, since the crossed box contributions cancel
due to energy integration over multiple quark propagators
with the same Feynman prescription (see Ref. [20] for a
detailed discussion and calculation).
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III. YAKUBOVSKY EQUATION FOR
TETRAQUARK STATES

The Yakubovsky equation is a four-body bound state
equation which has been successfully used to describe
tetraquark states. It embodies two-, three- and four-quark
irreducible diagrams. Since the irreducible three- and four-
body forces all involve pure Yang-Mills vertices which, as
discussed in the previous section, are neglected in our
approach, it follows that thereareno3PIand4PIcontributions

at this level of approximation. Consequently, it is appropriate
to employ only the (anti)diquark andmeson kernels that also
appear in the corresponding Bethe-Salpeter equations. In a
covariant setting, a similar approximation has been success-
fully applied to study tetraquark bound states [9].
In this approximation, and by using the formulation [8],

where the correct multiplicity is taken into account via
the inclusion of two-pair kernels, the Yakubovsky equa-
tion reads

Γαβγδðp1; p2; p3; p4Þ

¼
Z

đkfSðqqÞβα;α0β0 ðp1; p2; kÞΓα0β0γδðp1 þ k; p2 − k; p3; p4Þ þ SðaaÞδγ;γ0δ0 ðp3; p4; kÞΓαβγ0δ0 ðp1; p2; p3 þ k; p4 − kÞ

þ SðqaÞγβ;β0γ0 ðp2; p3; kÞΓαβ0γ0δðp1; p2 þ k; p3 − k; p4Þ þ SðqaÞδα;α0δ0 ðp1; p4; kÞΓα0βγδ0 ðp1 − k; p2; p3; p4 þ kÞ
þ SðqaÞγα;α0γ0 ðp1; p3; kÞΓα0βγ0δðp1 þ k; p2; p3 − k; p4Þ þ SðqaÞδβ;β0δ0 ðp2; p4; kÞΓαβ0γδ0 ðp1; p2 þ k; p3; p4 − kÞg

−
Z

đkđqfSðqqÞβα;α0β0 ðp1; p2; kÞSðaaÞγδ;δ0γ0 ðp3; p4; qÞΓα0β0γ0δ0 ðp1 þ k; p2 − k; p3 þ q; p4 − qÞ

þ SðqaÞγα;α0γ0 ðp1; p3; kÞSðqaÞδβ;β0δ0 ðp2; p4; qÞΓα0β0γ0δ0 ðp1 þ k; p2 − q; p3 − k; p4 þ qÞ
þ SðqaÞδα;α0δ0 ðp1; p4; kÞSðqaÞγβ;β0γ0 ðp2; p3; qÞΓα0β0γ0δ0 ðp1 þ k; p2 þ q; p3 − q; p4 − kÞg: ð3:1Þ

The amplitudes S contain three types of kernels, corresponding to quark-quark, antiquark-antiquark and quark-antiquark
pairs. As discussed in the previous section, in the limit of the heavy quark mass these kernels reduce to ladder gluon
exchange:

SðqqÞαβ;β0α0 ðpi; pj; kÞ ¼ g2Ta
αα0T

a
ββ0Wσσð~kÞWq̄qðp0

i þ k0ÞWq̄qðp0
j − k0Þ

SðaaÞαβ;β0α0 ðpi; pj; kÞ ¼ g2Ta
α0αT

a
β0βWσσð~kÞWT

qq̄ðp0
i þ k0ÞWT

qq̄ðp0
j − k0Þ

SðqaÞαβ;β0α0 ðpi; pj; kÞ ¼ −g2Ta
αα0T

a
β0βWσσð~kÞWT

qq̄ðp0
i þ k0ÞWq̄qðp0

j − k0Þ: ð3:2Þ

In the above, we have already replaced the temporal
quark-gluon vertices by their expressions, Eqs. (2.5) and
(2.8). In our convention, p1, p2 denote the quark
momenta, p3, p4 the antiquark momenta, and P0 ¼P

4
i¼1 p

0
i is the pole four-momentum (total energy) of

the bound tetraquark state. Γαβγδ represents the quark-
tetraquark vertex for a particular bound state and its
indices denote explicitly only its quark content. Just like
the heavy quark propagator, Γαβγδ becomes a Dirac scalar
due to the decoupling of the spin in the heavy mass limit.

Similar to the homogeneous Bethe-Salpeter equation for
mesons and Faddeev equation for baryons, the integral
equation (3.1) depends only parametrically on the total
energy P0 (for notational convenience we have dropped
the P0 dependence from Γαβγδ). We also note that, as in
the case of meson and baryon bound states, the energy
independence of the temporal gluon propagator will play
a key role in the derivation of the confining potential. The
Yakubovsky equation is diagrammatically shown in
Fig. 1.

FIG. 1. Yakubovsky equation for four-quark bound states. Solid lines represent the quark propagator, and boxes represent the meson,
diquark and antidiquark kernels, respectively. The ellipse depicts the Yakubovsky vertex function corresponding to the bound state
represented by a quadruple-line.

CARINA POPOVICI AND CHRISTIAN S. FISCHER PHYSICAL REVIEW D 89, 116012 (2014)

116012-4



Let us now investigate the energy dependence of
Eq. (5.75). As shown in the previous section, the Bethe-
Salpeter kernel was energy independent, and thus it was
straightforward to show that the Bethe-Salpeter vertex itself
did not contain an energy dependent part. This observation
was then used to calculate the confining potential from the
Bethe-Salpeter equation, via a simple analytical integration
over the relative energy variable. Unfortunately, this
approach cannot be extended to baryon states: despite
the instantaneous kernel, a relative energy dependence still
remains and thus one cannot assume an energy independent
Faddeev vertex.
Before we specify our ansatz for the Yakubovsky vertex,

let us shortly recall the energy behavior of the meson and
baryon vertices. In the case of mesons it was straightfor-
ward to show that the Bethe-Salpeter vertex was energy
independent, and consequently the confining potential
could be calculated via integrating over the relative energy.
On the other hand, the quark-baryon vertex did contain an
energy component, similar in structure to the quark
propagator [21]. In the case of tetraquarks, we again have
a nontrivial relative energy dependence and hence we
cannot employ an energy independent vertex. Instead,
inspired by the structure of the Faddeev vertex, we assume
that the Yakubovsky vertex also obeys a separable ansatz
(recall that the dependence on the total energy is implicit):

Γαβγδðp1; p2; p3; p4Þ
¼ ΨαβγδΓtðp0

1; p
0
2; p

0
3; p

0
4ÞΓsð~p1; ~p2; ~p3; ~p4Þ: ð3:3Þ

Γt and Γs represent the temporal and spatial component,
respectively, and Ψαβγδ denotes the color component,
with α, β being quark, and γ, δ antiquark, indices. As
we shall see shortly below, the energy component of the
Yakubovsky vertex is essential in deriving the tetraquark
confining potential.
The color structure of tetraquarks is nontrivial since a

singlet can be obtained via two different representations
[13]. Interestingly, diquark and antidiquark pairs also
contribute to the color singlet tetraquark state, although
themselves cannot exist as color singlets (at least for N ¼ 3
colors). By writing the color function Ψ as

Ψαβγδ ¼ δαδδβγ þ δαγδβδ; ð3:4Þ

and with the Fierz identity for the generators,

2½Ta�αβ½Ta�δγ ¼ δαγδδβ − 1

N
δαβδδγ; ð3:5Þ

we calculate the color factors corresponding to various
channels:

Ta
αα0T

a
ββ0Ψα0β0γδ ¼

1

2

�
1 − 1

N

�
Ψαβγδ ðdiquark and antidiquark channelÞ

Ta
αα0T

a
γ0γΨα0βγ0δ ¼

1

2

�
1þ N − 2

N

�
Ψαβγδ ðmeson channelÞ

Ta
αα0T

a
ββ0T

b
δ0δT

b
γ0γΨα0β0γ0δ0 ¼

1

4

�
1 − 2

N
þ 1

N2

�
Ψαβγδ ðdiquark- antidiquark channelÞ

Ta
αα0T

a
δ0δT

b
ββ0T

b
γ0γΨα0β0γ0δ0 ¼

1

4

�
N2 þ N − 2 − 2

N
þ 2

N2

�
Ψαβγδ ðmeson-meson channelÞ: ð3:6Þ

Inspecting Eq. (3.1), we notice that the energy and
three-momentum integrations separate since the temporal
gluon propagator is energy independent, whereas the
heavy quark propagator is independent of the spatial
momentum. Fourier transforming the spatial part of the
vertex

Γsð~p1; ~p2; ~p3; ~p4Þ ¼
Z

đ~x1đ~x2đ~x3đ~x4 exp
�
−iX4

i¼1

~pi · ~xi

�

× Γsð~x1; ~x2; ~x3; ~x4Þ; ð3:7Þ

we find that the convolution product with the temporal
gluon propagator is given by

Z
đ~kWσσð~kÞΓsð~p1 þ ~k; ~p2 − ~k; ~p3; ~p4Þ

¼
Z

đ~x1đ~x2đ~x3đ~x4 exp
�
−iX4

i¼1

~pi · ~xi

�

×Wσσð~x2 − ~x1ÞΓsð~x1; ~x2; ~x3; ~x4Þ: ð3:8Þ

It is straightforward to show that the above structure is
preserved also in the convolution product with two gluon
propagators, and hence the spatial component of the vertex
completely drops from the calculation. Motivated by the
symmetry of the system, we further restrict to the case of
equal quark separations: j~rj ¼ j~xi − ~xjj ði; j ¼ 1; 4; i > jÞ.
The original equation can be recast into an equation for the
temporal component Γt:
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Γtðp0
1;p

0
2;p

0
3;p

0
4Þ

¼ g2Wσσð~rÞ
Z

đk
�
1

3
½Wq̄qðp0

1þk0ÞWq̄qðp0
2−k0ÞΓtðp0

1þk0;p0
2−k0;p0

3;p
0
4Þþð3;4Þ�

−
5

6
½WT

q̄qðp0
3−k0ÞWq̄qðp0

2þk0ÞΓtðp0
1;p

0
2þk0;p0

3−k0;p0
4Þþð1;4Þþð2;4Þþð1;3Þ�

�

−
�
g2Wσσð~rÞ

�
2
Z

đkđq
�
1

9
Wq̄qðp0

1þk0ÞWq̄qðp0
2−k0ÞWT

q̄qðp0
3þq0ÞWT

q̄qðp0
4−q0ÞΓtðp0

1þk0;p0
2−k0;p0

3þq0;p0
4−q0Þ

þ43

18
½Wq̄qðp0

1þk0ÞWT
q̄qðp0

3−k0ÞWq̄qðp0
2þq0ÞWT

q̄qðp0
4−q0ÞΓtðp0

1þk0;p0
2−q0;p0

3−k0;p0
4þq0Þþð1;4;2;3Þ�

�
;

ð3:9Þ

where ði; jÞ represent the terms attached to the corresponding pairs of (anti)quarks, and can be explicitly read off from
Eqs. (3.1) and (3.2).
Now, in order to identify the structure of the solution, it is useful to rewrite the energy integral as follows:

Z
đk0Wq̄qð ~p0

2 − k0 −mÞWq̄qð ~p0
1 þ k0 −mÞ ~Γtð ~p0

1 þ k0; ~p0
2 − k0; ~p0

3; ~p
0
4Þ

¼ −
2

~p0
1 þ ~p0

2 − 2Ir þ iε

Z
đk0

Γtð ~p0
1 þ ~p0

2 þ k0;−k0; ~p0
3; ~p

0
4Þ

~p0
1 þ ~p0

2 þ k0 − I r þ iε
; ð3:10Þ

where we have introduced the shifted momenta ~p0
1;2 ¼

p0
1;2 þm for notational convenience. The integration over

antiquark propagators leads to an identical formula, except
that the mass term has the opposite sign (in this case,
~p0
3;4 ¼ p0

3;4 −m), whereas in the integral over a quark and
an antiquark, the mass term completely vanishes. The
double integrals can straightforwardly be rewritten in a
similar form. Without loss of generality, we can further
restrict to equal energies, i.e., ~p0

i ¼ P0=4. Inspired by the
energy integral, Eq. (3.10), and noticing the similarities
with our previous three-body calculation [21], we make the
following ansatz for the tetraquark vertex:

Γtð ~p0
1; ~p

0
2; ~p

0
3; ~p

0
4Þ ¼

X
i;j¼1;4
i<j

1

~p0
i þ ~p0

j − 2Ir − AðP0; IrÞ þ iε
;

ð3:11Þ

where AðP0; IrÞ is a function that needs to be determined.
For equal energies, the ansatz takes the simpler form:

Γtð ~p0
1; ~p

0
2; ~p

0
3; ~p

0
4Þj ~p0

i¼
P0
4

¼ 12

P0 − 4Ir − 2AðP0; I rÞ þ iε
:

ð3:12Þ

Plugging this back into Eq. (3.9) and using the result,
Eq. (2.6), we are left with an algebraic equation for the
function AðP0; I rÞ. As has been emphasized in [20], there
are only two possibilities for the bound state energy once all
regulators are removed: either it is finite and linear rising
with distance (i.e., a confined state), or it is infinite and

therefore unphysical. Since we are searching for a confin-
ing solution for our tetraquark, the following condition has
to be satisfied:

P0 − 4I r ¼ 2CFig2Wσσð~rÞ: ð3:13Þ

This condition essentially requires that the Fourier trans-
form integral is convergent, such that the divergences
contained within Ir cancel exactly and the bound state
energy remains finite:

Z
đω

1

~ω4
ð1 − e−i ~ω ~rÞ ¼ j~rj

8π
: ð3:14Þ

Replacing Ir and Wσσ by their expressions, Eq. (2.3) and
Eq. (2.4), respectively, and the gluon dressing function with
Dσσ ¼ X=~ω2, we can rewrite Eq. (3.13) as

P0 ≡ σ4qj~rj ¼
g2CFX
4π

j~rj: ð3:15Þ

Inserting the ansatz (3.12) into Eq. (3.9) we find, after a
laborious but fairly straightforward calculation,

AðP0; IrÞ ¼
5

4CF
ðP0 − 4I rÞ; ð3:16Þ

which gives for the temporal component of the tetraquark
vertex function
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Γtð ~p0
1; ~p

0
2; ~p

0
3; ~p

0
4Þ¼

X
i;j¼ 1;4
i < j

1

~p0
i þ ~p0

j − 15
16
P0þ 7

4
I rþ iε

:

ð3:17Þ
These results are inline with our previous findings for q̄q

and 3q systems. From Eq. (3.15) we find that the string
tension σ4q corresponding to a tetraquark state, i.e., the
coefficient of the four-body linear confining term, is two
times bigger than the one of the q̄q system calculated in
Ref. [20]:

σ4q ¼
g2CFX
4π

¼ 2σq̄q: ð3:18Þ

For comparison, the string tension for three quark states has
the value σ3q ¼ 3

2
σq̄q. Just like in the case of meson and

baryon states, our results show that in the Coulomb gauge
and at the leading order in the mass expansion there is a
direct connection between the string tension and the non-
perturbative Yang-Mills sector of the theory, at least under
the truncation considered here. Notice also that the total
mass has disappeared (similar to mesons), since the two
quarks and two antiquarks move with opposite (and equal)
velocities such that the center of mass is stationary. In fact
this is related to our original specification for the Feynman
prescription—recall that we have assigned the reversed sign
for antiquarks, which corresponds to a particle that moves
with opposite velocity. For comparison, in the case of
baryons, where the three quarks move in the same direction
with equal velocities, the total bound state energy contains
three times the quark mass.

IV. SUMMARY AND CONCLUSIONS

In this paper we have derived the four-quark confinement
potential in the heavy quark limit of the Coulomb gauge

QCD. To this end, we have solved the Yakubovsky
equation for tetraquark states in a symmetric configuration
and for equal quark energies. We have expanded the QCD
action by using a method adapted from HQET, and
restricted to the leading order. Further, we have truncated
the system such that only nonperturbative propagators of
the Yang-Mills sector are included, and all pure Yang-Mills
vertices and higher order functions are neglected.
As in the meson and baryon cases, a direct connection

between the physical string tension and the Yang-Mills
sector of the Coulomb gauge QCD (the temporal gluon
propagator) has been established. A bound state energy
that raises linearly with the distance has been derived, and
the coefficient of the linearly rising term is found to be two
times that of a meson system. Since only symmetric
configurations have been considered, no statement can
be made regarding the shape of the string that confines the
quarks. However, the restriction to equal energies does not
alter the validity of our statements—clearly the confining
potential should hold for any configuration, including that
of equal energies.
A possible extension of this work is to include the next

order in the mass expansion, and analyze the contribution
of the spatial gluon propagator which so far has been
neglected. A different line of research is the inclusion of
vertex corrections—this should trigger the phenomenon of
charge screening which is expected to alter the value of the
string tension. Finally, our result serves as a basis for
phenomenological descriptions of heavy tetraquarks in
terms of potentials.
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