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We consider a mixed system of unstable Majorana fermions in a general parity-nonconserving theory
and renormalize its propagator matrix to all orders in the pole scheme, in which the squares of the
renormalized masses are identified with the complex pole positions and the wave-function renormalization
matrices are adjusted in compliance with the Lehmann–Symanzik–Zimmermann reduction formalism.
In contrast to the case of unstable Dirac fermions, the wave-function renormalization matrices of the in and
out states are uniquely fixed, while they again bifurcate in the sense that they are no longer related by
pseudo-Hermitian conjugation. We present closed analytic expressions for the renormalization constants in
terms of the scalar, pseudoscalar, vector, and pseudovector parts of the unrenormalized self-energy matrix,
which is computable from the one-particle-irreducible Feynman diagrams of the flavor transitions, as well
as their expansions through two loops. In the case of stable Majorana fermions, the well-known one-loop
results are recovered.
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I. INTRODUCTION

The Standard Model (SM) of elementary particle physics
has been enormously consolidated by the discovery [1] at
the CERN Large Hadron Collider of a new weak neutral
resonance that, within the present experimental precision,
shares the spin, parity, and charge-conjugation quantum
numbers JPC ¼ 0þþ and the coupling strengths with the
SM Higgs boson H, in the complete absence of any signals
of new physics beyond the SM. Moreover, its mass of
ð125.6� 0.3Þ GeV lies well inside theMH range predicted
within the SM through global analyses of electroweak
(EW) precision data, and it almost perfectly coincides with
state-of-the-art determinations, based on three-loop evolu-
tion and two-loop matching, of the MH lower bound,
ð129.6� 1.5Þ GeV [2,3], from the requirement that the SM
vacuum be stable way up to the scale of the Planck mass
[4]. If the pole mass mt of the top quark, which, in want of
a rigorous determination at the quantum level, is presently
identified with a Monte-Carlo parameter [5], were just
lower by an amount of the order of its total decay width
Γt ¼ ð2.0� 0.5Þ GeV [5], then the agreement would be
perfect, implying that EW symmetry breaking is likely to
be determined by Planck-scale physics [2]. In a way, this
would solve the longstanding hierarchy problem of the SM.
The Nobel Prize in Physics 2013 was recently awarded
jointly to Englert and Higgs for the theoretical discovery of
the Higgs mechanism.
Despite the recent triumph of the SM, we must keep in

mind that its neutrino sector is still holding great long-
standing mysteries. Among the most prominent ones of
them is the question whether the neutrinos are Dirac or
Majorana fermions [6]. In the latter case, physics beyond
the SM is indispensable. On the other hand, numerous
beyond-SM scenarios, in particular those in which the new

physics is accessed via a Higgs portal, involve heavy
Majorana neutrinos as ingredients to explain the smallness
of the masses of the observed neutrinos via the seesaw
mechanism [7]. In the ongoing endeavor to complete the
all-order renormalization of the SM and its most favorable
extensions among those not yet excluded experimentally, it
is, therefore, necessary to also accommodate Majorana
fermions allowing for flavor mixing and instability.
The renormalizability of the spontaneously broken

quantum gauge theory underlying the SM was proven in
1971 [8], and the Nobel Prize in Physics 1999 was awarded
to ’t Hooft and Veltman for elucidating the quantum
structure of EW interactions in physics. The on-shell
renormalization scheme, which includes the physical par-
ticle masses and Sommerfeld’s fine-structure constant
among the basic parameters, provides a natural framework
for that. It was systematically elaborated at one loop for
stable particles in Refs. [9–12], and a particularly useful
variant of it was proposed in Ref. [13]. The on-shell
renormalization of the SM was established to all orders
of perturbation theory using the algebraic method [14].
However, all particles were assumed to be stable, neutrinos
were taken to be massless, and quark flavor mixing was
neglected. To eliminate these unrealistic assumptions, one
needs to develop a pole scheme of mixing renormalization
for unstable particles valid to all orders. Apart from being
conceptually desirable, this is becoming of major phenom-
enological importance, both in the SM and beyond, even
more so because mixing and instability of elementary
particles prevail and concur in nature. This requires
generalized concepts for flavor-changing propagators and
vertices. In the SM with massless neutrinos, these are the
propagator matrices of the up- and down-type quarks and
their charged-current vertices, which involve the Cabibbo–
Kobayashi–Maskawa (CKM) [15] quark mixing matrix.
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This pattern carries over to the lepton sector if the neutrinos
are massive Dirac fermions, and the analog of the CKM
matrix is the Pontecorvo–Maki–Nakagawa–Sakata [16]
neutrino mixing matrix. Things are more complicated in
the presence of Majorana degrees of freedom in the
neutrino sector, which typically give rise to flavor-changing
vertices involving the Z0 and Higgs bosons, too.
As for the renormalization of propagator matrices of

mixed systems of fermions, the situation is as follows. In
Ref. [17], an early treatment of finite renormalization
effects both for quarks in hadronic bound states and leptons
may be found. In Ref. [18], the UV renormalization of the
fermion masses was considered, and the pole masses were
shown to be gauge independent to all orders in the SM
using Nielsen identities [19], both for stable and unstable
Dirac fermions. In Ref. [20], the UV renormalization of the
Dirac fermion fields was discussed for the case of stability,
and the dressed propagator matrices were written in closed
form, both for the unrenormalized and renormalized
versions. Furthermore, it was explicitly proven that the
wave-function renormalization (WFR) conditions proposed
by Aoki, Hioki, Kawabe, Konuma, and Muta (AHKKM)
[10] guarantee the unit-residue properties of the diagonal
elements of the renormalized propagator matrix to all
orders, in compliance with the Lehmann–Symnanzik–
Zimmermann (LSZ) reduction formalism [21]. In
Refs. [22,23], the discussion of Ref. [20] was extended
to the case of unstable Dirac fermions, and closed all-order
expressions for their mass conterterms and WFR matrices
were constructed. The purpose of the present paper is to
generalize the approach of Refs. [22,23] to Majorana
fermions. Specifically, we work out the renormalization
of the propagator matrix of a mixed system of unstable
Majorana fermions to all orders.
As for the flavor mixing matrices of Majorana fer-

mions, various renormalization prescriptions have been
proposed at one loop for the case of stability [24–26].
Specifically, the approach of Ref. [26] is based on
Ref. [27]. As pointed out in Ref. [25], necessary con-
ditions for the renormalized fermion mixing matrices
include UV finiteness, gauge independence, and (pseudo)
unitarity. Furthermore, it is desirable for their counter-
terms to be on shell, flavor democratic, finite in the case
of fermion mass degeneracy, and expressible in terms of
self-energies only [28].
This paper is organized as follows. In Sec. II, we start

from the inverse of the unrenormalized propagator matrix
and obtain the dressed propagator matrix by performing the
Dyson resummation [29]. At this point, we define the
renormalization conditions for the complex pole masses in
terms of secular equations and solve them to all orders of
perturbation theory. In Sec. III, we introduce the WFR
matrices, explain how they enter the dressed propagator
matrix, and define renormalized self-energies in such
a way that the renormalized propagator matrix emerges

from its unrenormalized counterpart by replacing the
unrenormalized self-energies in the latter by their renor-
malized counterparts. In Sec. IV, we generalize the
AHKKM WFR conditions [10] to the case of instability,
impose them on the inverse of the renormalized propagator
matrix obtained in Sec. III, and solve them exactly for the
WFR matrices, so as to establish them in closed analytic
form valid to all orders of perturbation theory. In contrast to
the Dirac case [22,23], the WFR matrices are uniquely
determined. A similar observation was made for the case of
stability at one loop [24]. The generalized AHKKM
renormalization conditions also allow us to find an alter-
native all-order expression for the pole mass counterterms.
In Sec. V, we demonstrate that WFR bifurcation is an
inevitable consequence of the LSZ condition [21] for
unstable Majorana fermions. Similar observations were
made for unstable Dirac fermions at the one-loop order
[30] and to all orders [22,23]. In Sec. VI, we expand the
all-order expressions for the renormalization constants
derived in Secs. II–IV through two loops and cast them
into a form ready to use in phenomenological calculations.
As a by-product, we recover the one-loop results for the
case of stability [24]. Section VII contains a summary and
an outlook.

II. UNRENORMALIZED DRESSED
PROPAGATOR MATRIX

We consider a system of N unstable Majorana fermions
in the context of some general parity-nonconserving theory
with intergeneration mixing. We denote the bare quantum
fields of their flavor eigenstates by ψ 00

i ðxÞ, where the
subscript i ¼ 1;…; N is the flavor index and the superscript
0 labels bare quantities. For the sake of a compact notation,
we group them into a column vector in flavor space,

Ψ00ðxÞ ¼

0
BB@

ψ 00
1 ðxÞ
..
.

ψ 00
NðxÞ

1
CCA: ð1Þ

The Majorana nature of a fermion to be at the same time its
own antiparticle manifests itself in the condition1

Ψ00ðxÞ ¼ C½Ψ̄00ðxÞ�T; ð2Þ

where C is a unitary matrix in four-dimensional spinor
space, with C−1 ¼ C†, which transforms Dirac’s γμ matri-
ces as CγμTC† ¼ −γμ. From the definition of the γ5 matrix,
γ5 ¼ iγ0γ1γ2γ3, it follows that CγT5C

† ¼ γ5. Because
Ψ̄00ðxÞ ¼ ½Ψ00ðxÞ�†γ0 may also be evaluated from Eq. (2)
as Ψ̄00ðxÞ ¼ ½Ψ00ðxÞ�TC�, C must satisfy the additional

1Here and in the following, the superscript T implies simulta-
neous transposition in the spinor and generation spaces.
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condition C† ¼ −C�, by being antisymmetric, CT ¼ −C.
The kinetic term of the bare Lagrangian is

L0ðxÞ ¼ 1

2
½Ψ00ðxÞ�TC�ði∂ −M00ÞΨ00ðxÞ; ð3Þ

where M00 is the bare mass matrix and the overall factor
1=2 corrects for the seeming paradox that each Majorana
fermion contributes to the total energy twice, as a
particle and an antiparticle. For L0ðxÞ to be Hermitian,
½L0ðxÞ�� ¼ L0ðxÞ, M00 must satisfy the pseudo-
Hermiticity relation γ0M00†γ0 ¼ M00, which constrains
it to the form M00 ¼ M00aþ þM00†a−, where M00 is an
arbitrary complex N × N matrix and a� ¼ ðI4 � γ5Þ=2 are
the chiral projection operators. Here and in the following,
In denotes the n × n unit matrix. Exploiting the identity
½L0ðxÞ�T ¼ L0ðxÞ in connection with the Grassmannian
property of fermionic quantum fields, we obtain the addi-
tional relation CM00TC† ¼ M00, which implies that M00 is
symmetric, M00T ¼ M00. By Autonne–Takagi matrix fac-
torization,2 the complex, symmetric N × N matrixM00 may
be transformed into a real, diagonal matrix M0 with
nonnegative entries,3

M0
ij ¼ m0

i δij; ð4Þ

via a single unitary matrix U−, as M0 ¼ U−M00UT
−. The

bare field multiplet of the mass eigenstates ψ0
i ðxÞ, with

bare masses m0
i , is then given by Ψ0ðxÞ ¼ UΨ00ðxÞ, where

U ¼ U�
−aþ þ U−a−. Upon this field transformation,

Eq. (3) indeed assumes the standard form

L0ðxÞ ¼ 1

2
½Ψ0ðxÞ�TC�ði∂ −M0ÞΨ0ðxÞ

¼ 1

2
fi½Ψ0

−ðxÞ�TC�∂Ψ0þðxÞ þ i½Ψ0þðxÞ�TC�∂Ψ0
−ðxÞ

− ½Ψ0þðxÞ�TC�M0Ψ0þðxÞ − ½Ψ0
−ðxÞ�TC�M0Ψ0

−ðxÞg;
ð5Þ

where Ψ0
�ðxÞ ¼ a�Ψ0ðxÞ are the right- and left-handed

field components, respectively. Owing to the identity
γ0CU�C†γ0 ¼ U, the Majorana property of the weak
eigenstates in Eq. (2) carries over to the mass eigenstates,

Ψ0ðxÞ ¼ C½Ψ̄0ðxÞ�T: ð6Þ

However, it does not hold separately forΨ0
�ðxÞ. Instead, we

have Ψ0
�ðxÞ ¼ C½Ψ̄0∓ðxÞ�T [24].

In momentum space, the unrenormalized propagator
matrix is defined as

iPðpÞ ¼
Z

d4xeip·xh0jTfΨ0ðxÞ ⊗ ½Ψ0ð0Þ�TC�gj0i; ð7Þ

where T is the time-ordered product and ⊗ is to indicate a
tensorial product both in the spinor and generation spaces.
Its inverse is built up by the one-particle-irreducible
Feynman diagrams contributing to the transitions j → i
and has the form

½PðpÞ�−1 ¼ p −M0 − ΣðpÞ; ð8Þ

where ΣðpÞ is the unrenormalized self-energy matrix.
By Lorentz covariance, the latter exhibits the structure

ΣðpÞ ¼ ½Aþðp2Þ þ pBþðp2Þ�aþ þ ðþ ↔ −Þ; ð9Þ
where the entries in the matrices A�ðp2Þ and B�ðp2Þ are
Lorentz-invariant functions of p2. The latter may be
calculated from the bare Lagrangian order by order in
perturbation theory. However, we refrain from explicitly
performing perturbative expansions in the following,
rendering our results valid to all orders. Defining

S�ðp2Þ ¼ IN − B�ðp2Þ; T�ðp2Þ ¼ M0 þ A�ðp2Þ;
ð10Þ

Eq. (8) may be cast into a compact form,

½PðpÞ�−1 ¼ ½pSþðp2Þ − Tþðp2Þ�aþ þ ðþ ↔ −Þ: ð11Þ
The one-particle-reducible Feynman diagrams may be
collected systematically by performing the Dyson
resummation [29], which is equivalent to inverting
Eq. (11) and yields [20]

PðpÞ ¼ ½pþD−ðp2Þ�S−1− ðp2Þ½p2 − E−ðp2Þ�−1aþ
þ ðþ ↔ −Þ

¼ aþ½p2 − Fþðp2Þ�−1S−1þ ðp2Þ½pþ Cþðp2Þ�
þ ðþ ↔ −Þ; ð12Þ

with the short-hand notations

C�ðp2Þ ¼ T∓ðp2ÞS−1∓ ðp2Þ;
D�ðp2Þ ¼ S−1∓ ðp2ÞT�ðp2Þ;
E�ðp2Þ ¼ C�ðp2ÞC∓ðp2Þ;
F�ðp2Þ ¼D∓ðp2ÞD�ðp2Þ: ð13Þ

In fact, Eqs. (11) and (12) are easily seen to satisfy
PðpÞ½PðpÞ�−1 ¼ ½PðpÞ�−1PðpÞ ¼ IN ⊗ I4. From the first
equality in Eq. (10), it follows that det½S�ðp2Þ� ¼ 1þ
OðαÞ ≠ 0 with α being a generic coupling constant, so

2An explicit proof of this theorem may be found, e.g.,
in Appendix B of Ref. [26].

3In this paper, summation over repeated indices is not implied
in the absence of summation symbols.
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that we may evaluate S−1� ðp2Þ as S−1� ðp2Þ ¼ adj½S�ðp2Þ�=
det½S�ðp2Þ�.4 Alternatively, we may compute S−1� ðp2Þ
perturbatively as a geometric series, S−1� ðp2Þ ¼ INþP∞

n¼1 B
n
�ðp2Þ.

Since the four matrices ½p2 − E�ðp2Þ� and ½p2−
F�ðp2Þ�, the inverses of which appear in the individual
propagator parts in Eq. (12), are related by similarity
transformations,

p2 − Eþðp2Þ ¼ C−ðp2Þ½p2 − E−ðp2Þ�C−1
− ðp2Þ

¼ Sþðp2Þ½p2 − Fþðp2Þ�S−1þ ðp2Þ
¼ T−ðp2Þ½p2 − F−ðp2Þ�T−1

− ðp2Þ; ð14Þ

we have

det½p2 − Eþðp2Þ� ¼ det½p2 − E−ðp2Þ� ¼ det½p2 − Fþðp2Þ�
¼ det½p2 − F−ðp2Þ�; ð15Þ

which, by virtue of footnote 4, guarantees that the
individual propagator parts all have poles at the same
(complex) positions p2 ¼ M2

i defined as the zeros of
Eq. (15) by any of the secular equations [17,18,20],

det½M2
i − E�ðM2

i Þ� ¼ det½M2
i − F�ðM2

i Þ� ¼ 0: ð16Þ

Here, Mi is the complex pole mass of Majorana fermion i.
It is related to the real pole massmi and total decay width Γi
as [31,32]

Mi ¼ mi − i
Γi

2
: ð17Þ

In the Appendix of Ref. [20], Eq. (16) is solved
perturbatively through two loops for the case of stable
Dirac fermions. Here, we derive closed all-order expres-
sions for Mi in terms of the Lorentz-invariant functions
½A�ðp2Þ�ij and ½B�ðp2Þ�ij. Owing to footnote 4, we have
the identities

f½p2 − F�ðp2Þ�adj½p2 − F�ðp2Þ�gii ¼ det½p2 − F�ðp2Þ�;
fadj½p2 − E�ðp2Þ�½p2 − E�ðp2Þ�gii ¼ det½p2 − E�ðp2Þ�:

ð18Þ

At this point, we introduce the two matrices,

M�
ij ¼ fadj½M2

j − F�ðM2
jÞ�gij;

M̄�
ij ¼ fadj½M2

i − E�ðM2
i Þ�gij; ð19Þ

which we shall need again later, and observe that
M�

ii ; M̄
�
ii ¼

Q
j≠iðM2

i −M2
jÞ þOðαÞ ≠ 0. For the solution

p2 ¼ M2
i of Eq. (16), we then obtain from Eq. (18) the

exact expression

M2
i ¼

½F�ðM2
i ÞM��ii

M�
ii

¼ ½M̄�E�ðM2
i Þ�ii

M̄�
ii

: ð20Þ

We shall see later that the WFR procedure generates yet
another closed all-order expression forMi, namely, the one
specified in Eq. (51), in which both matrices of Eq. (19)
enter in a symmetric way.
Equations (8)–(20) also apply to unstable Dirac fermions

as they stand and were partly presented in Refs. [22,23].
However, there are additional constraints for Majorana
fermions. In fact, making use of the Grassmannian nature
of fermionic quantum fields in Eq. (7), we find

C½Pð−pÞ�TC† ¼ PðpÞ: ð21Þ

Applying Eq. (21) to Eq. (8), we obtain C½Σð−pÞ�TC† ¼
ΣðpÞ, which implies via Eqs. (9), (10), (13), and (19) that

AT
�ðp2Þ ¼ A�ðp2Þ; BT

�ðp2Þ ¼ B∓ðp2Þ;
ST�ðp2Þ ¼ S∓ðp2Þ; TT

�ðp2Þ ¼ T�ðp2Þ;
CT
�ðp2Þ ¼ D∓ðp2Þ; ET

�ðp2Þ ¼ F∓ðp2Þ;
ðM�ÞT ¼ M̄∓; ð22Þ

where we have used adjðATÞ ¼ ðadjAÞT , which follows
from footnote 4, in the last equality. The first equality in
Eq. (22) agrees with the second equality in Eq. (4.7) of
Ref. [24]. It is interesting to observe that the last equality in
Eq. (20) may be derived from the last two equalities in
Eq. (22) alone, without recourse to Eq. (18), by noticing
that diagonal matrix elements are invariant under
transposition.

III. RENORMALIZED DRESSED
PROPAGATOR MATRIX

In the following, we adopt the pole renormalization
scheme, in which the complex pole masses Mi serve as the

4The adjugate (classical adjoint) adjA ¼ CT of a quadratic
(n × n) matrix A is the transpose of the matrix C the elements Cij
of which are the cofactors of the elements Aij of A.
The cofactor Cij of the element Aij of A is ð−1Þiþj times the
determinant of the ðn − 1Þ × ðn − 1Þ matrix obtained by deleting
the ith row and the jth column of A. The theorem AadjA ¼
ðadjAÞA ¼ ðdetAÞIn may be understood by observing that,
according to Laplace’s expansion formula,

P
n
k¼1 AikCjk is the

determinant of the matrix obtained from A by replacing the jth
row by the ith row, and

P
n
k¼1 CkiAkj is the determinant of the

matrix obtained from A by replacing the ith column by the jth
column. If i ¼ j, then, in both cases, the result is just detA. If
i ≠ j, then it is zero because these determinants have two
identical rows and columns, respectively. If detA ≠ 0, then
A−1 ¼ ðdetAÞ−1adjA.
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renormalized masses; i.e., the mass counterterms δMi are
fixed by the relations

m0
i ¼ Mi þ δMi: ð23Þ

The field renormalization is implemented by writing

Ψ0ðxÞ ¼ Z1=2ΨðxÞ; ð24Þ

where ΨðxÞ is the renormalized field multiplet and

Z1=2 ¼ Z1=2
þ aþ þ Z1=2

− a−; ð25Þ

with Z1=2
� being the WFR matrices. From Eq. (24), it

follows that

½Ψ0ðxÞ�TC� ¼ ½ΨðxÞ�TC�Z̄1=2; ð26Þ

where

Z̄1=2 ¼ CZT1=2C† ¼ aþZ
T1=2
þ þ a−ZT1=2

− : ð27Þ

Solving Eqs. (24) and (26) for the renormalized field
multiplets, we have

ΨðxÞ ¼ Z−1=2Ψ0ðxÞ;
½ΨðxÞ�TC� ¼ ½Ψ0ðxÞ�TC�Z̄−1=2; ð28Þ

where

Z−1=2 ¼ Z−1=2
þ aþ þ Z−1=2

− a−;

Z̄−1=2 ¼ aþZ
T−1=2
þ þ a−ZT−1=2

− ð29Þ

are the inverses of the matrices in Eqs. (25) and (27),
respectively. Using Eq. (28), we may express the renor-
malized propagator matrix,

iP̂ðpÞ ¼
Z

d4xeip·xh0jTfΨðxÞ ⊗ ½Ψð0Þ�TC�gj0i; ð30Þ

in terms of the unrenormalized one in Eq. (7) as

P̂ðpÞ ¼ Z−1=2PðpÞZ̄−1=2: ð31Þ

Substituting Eq. (12) in Eq. (31), we thus obtain

P̂ðpÞ ¼ ½Z−1=2
− pþ Z−1=2

þ D−ðp2Þ�S−1− ðp2Þ
× ½p2 − E−ðp2Þ�−1ZT−1=2

þ aþ þ ðþ ↔ −Þ
¼ aþZ

−1=2
þ ½p2 − Fþðp2Þ�−1S−1þ ðp2Þ

× ½pZT−1=2
− þ Cþðp2ÞZT−1=2

þ � þ ðþ ↔ −Þ:
ð32Þ

We may absorb the WFR matrices in Eq. (32) by defining
renormalized counterparts of S�ðp2Þ and T�ðp2Þ in
Eq. (10) as

Ŝ�ðp2Þ ¼ ZT1=2∓ S�ðp2ÞZ1=2
� ;

T̂�ðp2Þ ¼ ZT1=2
� T�ðp2ÞZ1=2

� : ð33Þ

In analogy to Eq. (13), we are thus led to define

Ĉ�ðp2Þ ¼ T̂∓ðp2ÞŜ−1∓ ðp2Þ ¼ ZT1=2∓ C�ðp2ÞZT−1=2
� ;

D̂�ðp2Þ ¼ Ŝ−1∓ ðp2ÞT̂�ðp2Þ ¼ Z−1=2∓ D�ðp2ÞZ1=2
� ;

Ê�ðp2Þ ¼ Ĉ�ðp2ÞĈ∓ðp2Þ ¼ ZT1=2∓ E�ðp2ÞZT−1=2∓ ;

F̂�ðp2Þ ¼ D̂∓ðp2ÞD̂�ðp2Þ ¼ Z−1=2
� F�ðp2ÞZ1=2

� : ð34Þ

Thus, Eq. (32) becomes

P̂ðpÞ ¼ ½pþ D̂−ðp2Þ�Ŝ−1− ðp2Þ½p2 − Ê−ðp2Þ�−1aþ
þ ðþ ↔ −Þ

¼ aþ½p2 − F̂þðp2Þ�−1Ŝ−1þ ðp2Þ½pþ Ĉþðp2Þ�
þ ðþ ↔ −Þ: ð35Þ

By observing from the last two lines of Eq. (34) that

det½p2 − Ê�ðp2Þ� ¼ det½p2 − E�ðp2Þ�;
det½p2 − F̂�ðp2Þ� ¼ det½p2 − F�ðp2Þ�; ð36Þ

we understand that the pole positions M2
i are not affected

by the WFR, as it should be [18]. Mutatis mutandis, the
inverse of the renormalized propagator matrix reads

½P̂ðpÞ�−1 ¼ ½pŜþðp2Þ − T̂þðp2Þ�aþ þ ðþ ↔ −Þ
¼ ½ZT1=2

− pSþðp2Þ − ZT1=2
þ Tþðp2Þ�Z1=2

þ aþ
þ ðþ ↔ −Þ: ð37Þ

The counterparts of Eqs. (26) and (27) for unstable Dirac
fermions read [22,23]

Ψ̄0ðxÞ ¼ Ψ̄ðxÞZ̄1=2 ð38Þ

and

Z̄1=2 ¼ a−Z̄
1=2
þ þ aþZ̄1=2

− ; ð39Þ

while the relationship in the first equality of Ref. (27) does
not hold then. Nevertheless, Eqs. (32)–(35) and (37) may
be recovered from Ref. [23] via the substitution

Z̄1=2
� ¼ ZT1=2∓ ; ð40Þ

which may be gleaned by comparing Eqs. (27) and (39).
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IV. GENERALIZED WFR CONDITIONS

Similarly to the case of unstable Dirac fermions [22,23],
we determine the WFR matrices Z1=2

� by requiring that,
when any Majorana fermion n approaches its mass shell,
p → Mn, the respective diagonal element ½P̂ðpÞ�nn of the
renormalized propagator resonates with unit residue, while
all the other elements stay finite, i.e.,

½P̂ðpÞ�ij ¼
δinδnj
p −Mn

þOð1Þ; ð41Þ

in accordance with the LSZ reduction formalism [21]. The
behavior of P̂ðpÞ in Eq. (41) necessitates that ½P̂ðpÞ�−1
behaves as

f½P̂ðpÞ�−1gij ¼

8>>><
>>>:

ðp −MnÞ½I4 þOðp −MnÞ� if i ¼ n ¼ j;

½Min þOðp −MnÞ�ðp −MnÞ if i ≠ n ¼ j;

ðp −MnÞ½Mnj þOðp −MnÞ� if i ¼ n ≠ j;

Mij þOðp −MnÞ; if i ≠ n ≠ j;

ð42Þ

where Mij are constant matrices in spinor space, which, in
general, do not commute with p. In fact, they are linear
combinations of the Dirac matrices I4 and γ5 with constant
coefficients. The specific structure of Eq. (42) may be
easily understood by multiplying Eqs. (41) and (42) in both
orders. The behavior in Eq. (42) may be arranged for by
imposing the generalized version [22,23] of the on-shell
WFR conditions [10],

f½P̂ðpÞ�−1gijuð~p;MjÞ ¼ 0;

ūð~p;MiÞf½P̂ðpÞ�−1gij ¼ 0;�
1

p −Mi
f½P̂ðpÞ�−1gii

�
uð~p;MiÞ ¼ uð~p;MiÞ;

ūð~p;MiÞ
�
f½P̂ðpÞ�−1gii

1

p −Mi

�
¼ ūð~p;MiÞ; ð43Þ

for i; j ¼ 1;…; N. Here, uð~p;MiÞ and ūð~p;MiÞ are four-
component spinors satisfying the Dirac equations,

ðp −MiÞuð~p;MiÞ ¼ ūð~p;MiÞðp −MiÞ ¼ 0: ð44Þ

An elementary treatment of Dirac spinors for unstable
fermions may be found in Appendix B of Ref. [23]. For
stable Dirac fermions, an explicit proof that Eq. (43) entails
Eq. (41) may be found in Sec. III of Ref. [20]. This proof
carries over to unstable Dirac fermions, as demonstrated in
Sec. VII ofRef. [23], and also to unstableMajorana fermions.
The WFR matrices Z1=2

� may be determined by inserting
Eq. (37) into Eq. (43) and proceeding along the lines of
Refs. [22,23]. The results may be inferred from
Refs. [22,23] via the substitution in Eq. (40). Using also
the last equality in Eq. (22), we may translate Eqs. (57),
(58), (71), and (72) of Ref. [23] as

ðZ1=2∓ ÞiiðZ1=2
� Þii ¼

M∓
ii M

�
ii

s�i ðM2
i Þ½1 − f0iðM2

i Þ�
; ð45Þ

ðZ1=2
� Þ2ii ¼

MiðM�
ii Þ2

t�i ðM2
i Þ½1 − f0iðM2

i Þ�
; ð46Þ

ðZ1=2
� Þij ¼

M�
ij

M�
jj
ðZ1=2

� Þjj; ð47Þ

where

s�i ðp2Þ ¼ ½M̄�S�ðp2ÞM��ii; ð48Þ

t�i ðp2Þ ¼ ½M̄∓T�ðp2ÞM��ii; ð49Þ

fiðp2Þ ¼ tþi ðp2Þt−i ðp2Þ
sþi ðp2Þs−i ðp2Þ ; ð50Þ

and M�
ij and M̄�

ij are defined in Eq. (19). Furthermore,
Eq. (65) of Ref. [23] carries over as is,

M2
i ¼ fiðM2

i Þ: ð51Þ

As anticipated in the context of Eq. (20), Eq. (51) provides
an alternative all-order expression for Mi. With the aid of
the third and last equalities in Eq. (22), we observe that the
two expressions in Eq. (48) actually coincide, so that we
may omit the superscript �,

siðp2Þ ¼ s�i ðp2Þ; ð52Þ

and rewrite Eq. (50) as

fiðp2Þ ¼ tþi ðp2Þt−i ðp2Þ
½siðp2Þ�2 : ð53Þ

Furthermore, we notice that Eqs. (45) and (46) are
redundant. In fact, Eq. (45) follows from Eq. (46) with
the help of Eqs. (50) and (51). We conclude that, owing to
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the Majorana-induced constraint in Eq. (27), Eqs. (45)–(47)
uniquely determine the WFR matrices to be

ðZ1=2
� Þij ¼ M�

ij

�
Mj

t�j ðM2
jÞ½1 − f0jðM2

jÞ�
�

1=2
: ð54Þ

In contrast, the renormalization conditions in Eq. (43) leave
some residual freedom in the determination of the WFR
matrices for unstable Dirac fermions, as explained in
Refs. [22,23].
From Eqs. (23) and (51), we obtain the all-order mass

counterterm as

δMi ¼ m0
i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðM2

i Þ
q

: ð55Þ

Alternatively, we could have used Eq. (20) instead of
Eq. (51). Using also Eq. (17) and taking real and imaginary
parts, we have

mi ¼ Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðM2

i Þ
q

¼ m0
i − ReδMi; ð56Þ

−
Γi

2
¼ Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðM2

i Þ
q

¼ −ImδMi; ð57Þ

where we have taken into account that the bare
masses m0

i are real. By the same token, the
imaginary part of δMi is UV finite, as is evident
from Eq. (57).

V. WFR BIFURCATION

Let us assume temporarily that all the Majorana fermions
are stable, with Γi ¼ 0 in Eq. (17). In the complex p2 plane,
their mass shells p2 ¼ m2

i are then all located on the real
axis below the thresholds of ½A�ðp2Þ�ij and ½B�ðp2Þ�ij,
where the absorptive parts of the latter vanish. Then, up to a
sign flip in the iϵ prescription, which is irrelevant at this
stage, the bare propagator matrix satisfies the pseudo-
Hermiticity condition γ0½PðpÞ�†γ0 ¼ PðpÞ [10],5 which
implies via Eq. (8) that γ0½ΣðpÞ�†γ0 ¼ ΣðpÞ [30]. In turn,
this implies via Eqs. (9), (10), (13), (19), (49), (52), and
(53) that

A†
�ðp2Þ ¼ A∓ðp2Þ; B†

�ðp2Þ ¼ B�ðp2Þ; S†�ðp2Þ ¼ S�ðp2Þ; T†
�ðp2Þ ¼ T∓ðp2Þ;

C†
�ðp2Þ ¼ D�ðp2Þ; E†

�ðp2Þ ¼ F�ðp2Þ; ðM�Þ† ¼ M̄�;

½siðp2Þ�� ¼ siðp2Þ; ½t�i ðp2Þ�� ¼ t∓i ðp2Þ; ½fiðp2Þ�� ¼ fiðp2Þ; ð58Þ

where we have used adjðA†Þ ¼ ðadjAÞ†, which follows from footnote 4, in the seventh equality. Combining Eq. (58) with
Eq. (22), we find

A�
�ðp2Þ ¼ A∓ðp2Þ; B�

�ðp2Þ ¼ B∓ðp2Þ; S��ðp2Þ ¼ S∓ðp2Þ; T�
�ðp2Þ ¼ T∓ðp2Þ;

C�
�ðp2Þ ¼ C∓ðp2Þ; D�

�ðp2Þ ¼ D∓ðp2Þ; E�
�ðp2Þ ¼ E∓ðp2Þ; F�

�ðp2Þ ¼ F∓ðp2Þ;
ðM�Þ� ¼ M∓; ðM̄�Þ� ¼ M̄∓: ð59Þ

The first two equalities in Eq. (59) are in agreement with
Eq. (4.6) of Ref. [24]. Using the last two equalities in
Eq. (58) and the one before the last in Eq. (59), we obtain
from Eq. (54) that Z†1=2

� ¼ ZT1=2∓ [24], which implies that
Eqs. (25) and (27) are related as

Z̄1=2 ¼ γ0Z†1=2γ0: ð60Þ

From Eqs. (27) and (60), it follows that γ0CZ�1=2C†γ0 ¼
Z1=2, so that ΨðxÞ ¼ Cf½ΨðxÞ�†γ0gT .

We now return to the general case of unstable Majorana
fermions, with Γi > 0 in Eq. (17). In general, we then
have γ0½ΣðpÞ�†γ0 ≠ ΣðpÞ, so that Eqs. (58) and (59) no
longer hold true, which enforces the departure from
Eq. (60). Similar observations were made for unstable
Dirac fermions at the one-loop order in Ref. [30] and to all
orders in Refs. [22,23], where the notion WFR bifurcation
was coined.

VI. TWO-LOOP RESULTS

To explore the anatomy of the all-order expressions for
the renormalization constants δMi and ðZ1=2

� Þij given in
closed form in Eqs. (55) and (54), respectively, it is useful
to perform a perturbative expansion in the generic coupling
constant α. In Ref. [24], δMi and ðZ1=2

� Þij were expressed
in terms of the self-energy functions ½A�ðp2Þ�ij and

5On the right-hand side of this equation, we omitted the
additional term i

R
d4xeip·xh0j½Ψ0ðxÞ; ½Ψ0ð0Þ�TC��j0i. In the non-

interacting theory, its matrix elements in generation space,
δijð 1

p−m0
i−iϵ

− 1
p−m0

iþiϵ
Þ, just flip the sign of the iϵ term in

½PðpÞ�ij ¼ δij
p−m0

iþiϵ
.
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½B�ðp2Þ�ij at the one-loop order OðαÞ in a general
renormalizable quantum field theory involving a mixed
system of stable Majorana fermions. In the following,
we assume ½A�ðp2Þ�ij and ½B�ðp2Þ�ij to be known through
the two-loop order Oðα2Þ and allow for the Majorana
fermions to be unstable. Our goal is to express δMi and

ðZ1=2
� Þij in terms of ½A�ðp2Þ�ij and ½B�ðp2Þ�ij through

Oðα2Þ. In this way, we shall recover the well-known
OðαÞ results [24] and present the Oðα2Þ ones for the first
time.
Expanding Eqs. (53) and (46) and the factorM�

ji=M
�
ii for

j ≠ i in Eq. (47) through Oðα2Þ, we find

fiðp2Þ ¼ ½Tþðp2Þ�ii½T−ðp2Þ�ii
½Sðp2Þ�2ii

þm0
i ½τþi ðp2Þ þ τ−i ðp2Þ − 2m0

i σiðp2Þ� þOðα3Þ; ð61Þ

1

ðZ1=2
� Þ2ii

¼ 1 − f0iðM2
i Þ

Mi
f½T�ðM2

i Þ�ii þ τ�i ðM2
i Þg þOðα3Þ; ð62Þ

M�
ji

M�
ii
¼ 1

M2
i −M2

j

�
½F�ðM2

i Þ�ji
�
1þ ½F�ðM2

i Þ�jj −M2
j

M2
i −M2

j

�
þ

X
i≠k≠j

½F�ðM2
i Þ�jk½F�ðM2

i Þ�ki
M2

i −M2
k

�
þOðα3Þ ðj ≠ iÞ; ð63Þ

respectively, where we have exploited the third equality in Eq. (22) to introduce ½Sðp2Þ�ii ¼ ½S�ðp2Þ�ii and

τ�i ðp2Þ ¼
X
j≠i

½F�ðM2
i Þ�ji

M2
i −M2

j

�
m0

j

½F�ðM2
i Þ�ji

M2
i −M2

j
þ 2½A�ðp2Þ�ji

�
;

σiðp2Þ ¼
X
j≠i

1

M2
i −M2

j

�½FþðM2
i Þ�ji½F−ðM2

i Þ�ji
M2

i −M2
j

− ½FþðM2
i Þ�ji½B−ðp2Þ�ji − ½F−ðM2

i Þ�ji½Bþðp2Þ�ji
�
. ð64Þ

At this point, a few comments are in order. For j ≠ i, ðZ1=2
� Þji may be evaluated by substituting Eqs. (62) and (63) into

Eq. (47). The first term on the right-hand side of Eq. (61) is the contribution that survives if the intergeneration mixing is
turned off. For the sake of a compact notation, it is written in a factorized form, which is to be expanded through Oðα2Þ to
become

½Tþðp2Þ�ii½T−ðp2Þ�ii
½Sðp2Þ�2ii

¼ m0
i fm0

i þ ½Aþðp2Þ�ii þ ½A−ðp2Þ�iigf1þ 2½Bðp2Þ�iig

þ ½Aþðp2Þ�ii½A−ðp2Þ�ii þ 3ðm0
i Þ2½Bðp2Þ�2ii þOðα3Þ; ð65Þ

where we have used the second equality in Eq. (22) to
define ½Bðp2Þ�ii ¼ ½B�ðp2Þ�ii. In Eq. (65), it is understood
that, in products of two loop functions, each factor is to be
evaluated at OðαÞ, while loop functions that do not appear
in such products are to be evaluated through Oðα2Þ. This
also applies to Eqs. (61)–(64).
To express the mass counterterms δMi in Eq. (55) and

the WFR matrix elements ðZ1=2
� Þji in Eq. (54) in terms of

renormalized parameters, we may proceed as follows. We
first evaluate the right-hand side of Eq. (55) through Oðα2Þ
using Eq. (61) in combination with Eqs. (64) and (65).
Since δMi starts at OðαÞ, it is sufficient to eliminate m0

i on
the right-hand side of Eq. (55) using Eq. (23) with δMi
evaluated toOðαÞ. The latter may be read off from Eqs. (61)
and (65) and reads

δMi ¼ −
IiðM2

i Þ
2Mi

þOðα2Þ; ð66Þ

with

Iiðp2Þ ¼ Mif½Aþðp2Þ�ii þ ½A−ðp2Þ�iig þ 2M2
i ½Bðp2Þ�ii;

ð67Þ

where we have replaced m0
i by Mi, with no effect to the

order considered. By the same token, appearances of m0
i in

the Oðα2Þ term on the right-hand side of Eq. (55) may be
replaced by Mi. Explicit and implicit appearances of m0

j

with j ≠ i at OðαÞ and Oðα2Þ may be eliminated in the
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same way as those ofm0
i . The implicit dependence onm0

j of
an OðαÞ quantity, fðm0

jÞ say, is conveniently eliminated by
Taylor expansion as fðm0

jÞ¼ fðMjÞþδMj∂fðMjÞ=∂Mjþ
Oðα3Þ, where δMj is calculated to OðαÞ from Eq. (66). In
general, the resulting Oðα2Þ expression for δMi still
implicitly depends on other bare parameters, such as boson
masses, coupling constants, and mixing-matrix elements,
which also require renormalization. After this, m0

i is

expressed via Eq. (23) through Oðα2Þ entirely in terms
of renormalized parameters and may thus be eliminated
from Eqs. (62) and (63). Appearances of m0

j with j ≠ i and

other bare parameters are eliminated from these equations
as explained above for Eq. (55).
For p2 ¼ M2

i , there are some cancellations in the
function fiðp2Þ given by Eqs. (61), (64), and (65) through
Oðα2Þ, yielding

fiðM2
i Þ ¼

½TþðM2
i Þ�ii½T−ðM2

i Þ�ii
½SðM2

i Þ�2ii
þMi

X
j≠i

�½FþðM2
i Þ�ji

M2
i −M2

j
f½AþðM2

i Þ�ji þMi½B−ðM2
i Þ�jig þ ðþ ↔ −Þ

�
þOðα3Þ: ð68Þ

The quantity f0iðM2
i Þ appearing in Eq. (62) is required through Oðα2Þ. Through this order, it may be conveniently

evaluated as

f0iðM2
i Þ ¼ M2

i

�½A0þðM2
i Þ�ii

½TþðM2
i Þ�ii

þ ½A0
−ðM2

i Þ�ii
½T−ðM2

i Þ�ii
þ 2

½B0ðM2
i Þ�ii

½SðM2
i Þ�ii

�
þ 2Mi

X
j≠i

�½FþðM2
i Þ�ji

M2
i −M2

j

× f½A0þðM2
i Þ�ji þMi½B0

−ðM2
i Þ�jig þ ðþ ↔ −Þ

�
þOðα3Þ; ð69Þ

where we have used Eq. (51) through OðαÞ to eliminate the combination on the left-hand side of Eq. (65). The functions
½F�ðp2Þ�ji with j ≠ i are required through Oðα2Þ at their first appearance in Eq. (63) and through OðαÞ elsewhere in

Eqs. (63), (64), (68), and (69). Through Oðα2Þ, we have

½F�ðp2Þ�ji ¼ Mjf½IN þ B∓ðp2Þ�A�ðp2Þgji þ ½A∓ðp2Þ þ A∓ðp2ÞB∓ðp2Þ þ B�ðp2ÞA∓ðp2Þ�jiMi

þ fB�ðp2Þ½IN þ B�ðp2Þ�gjiM2
i þMjfB∓ðp2Þ½IN þ B∓ðp2Þ�gjiMi þ ½A∓ðp2ÞA�ðp2Þ�ji

þ
X
k

½B�ðp2Þ�jkMkf½A�ðp2Þ�ki þ ½B∓ðp2Þ�kiMig þ δMjf½A�ðp2Þ�ji þ ½B∓ðp2Þ�jiMig

þ f½A∓ðp2Þ�ji þMj½B∓ðp2Þ�ji þ 2½B�ðp2Þ�jiMigδMi þOðα3Þ: ð70Þ

Finally, the combination ½F�ðM2
i Þ�jj −M2

j appearing in
Eq. (63) is required through OðαÞ, where it may be
rewritten in terms of the function Iiðp2Þ in Eq. (67) as

½F�ðM2
i Þ�jj −M2

j ¼ IjðM2
i Þ − IjðM2

jÞ þOðα2Þ: ð71Þ

In the case of stable Majorana fermions, in which
Eqs. (58) and (59) apply, the OðαÞ terms of Eqs. (46),
(47), and (55) evaluated using Eqs. (61)–(63) and (65)
agree with Eqs. (4.11), (4.10), and (4.12) of Ref. [24],
respectively.

VII. CONCLUSIONS

We renormalized the propagator matrix of a mixed
system of unstable Majorana fermions in a general par-
ity-nonconserving quantum field theory adopting the pole
scheme, in which the pole masses serve as the renormalized
masses. The squares of the pole masses are the complex

poles of the propagator matrix. The inverse propagator
matrix is built up by the one-particle-irreducible Feynman
diagrams pertaining to the transitions of fermion j to
fermion i order by order in perturbation theory. In gauge
theories, the pole masses are expected to be gauge
independent. This was proven for the SM [18] using
Nielsen identities [19]. In spontaneously broken gauge
theories, one needs to include the tadpoles to ensure the
gauge independence of the mass counterterms. This then
carries over to the pole masses because the bare masses are
gauge independent as a matter of principle.
The WFR matrices were determined by requiring that

each diagonal element of the renormalized propagator
matrix resonates with unit residue if the respective fermion
is on its mass shell. This renormalization condition is
singled out by the LSZ reduction formalism [21] because it
avoids finite renormalizations that are otherwise required.
In this sense, it may be considered scheme independent.
Furthermore, it uniquely fixes the WFR matrices. This is in
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contrast to the Dirac case, where some residual freedom
exists, which may be exhausted by imposing an additional
WFR condition [22–24]. Specifically, this residual freedom
affects the pairs of WFR matrix elements that appear as
factors in the off-diagonal entries of the renormalized
propagator matrix. As for Dirac fermions [22,23,30], we
encountered WFR bifurcation in the case of instability, i.e.,
the WFR matrices of the in and out states are no longer
related by Hermitian conjugation, so that Eq. (60) is
violated. However, they are still related by Eq. (27), which
is a consequence of the Majorana condition in Eq. (6) and is
absent in the Dirac case.
The dressed propagator matrix and the renormalization

constants are expressed in terms of the unrenormalized
self-energies of the j → i transitions, which have scalar,
pseudoscalar, vector, and pseudovector parts. Owing to the
Majorana condition in Eq. (6), the latter are subject to the
symmetry relations given by the first two equalities in
Eq. (22). We presented closed analytic results, which are
valid to all orders because we refrained from explicit
perturbative expansions. Specifically, the renormalized
dressed propagator matrix is given by Eq. (32), the pole
mass counterterms by Eq. (55), and the WFR matrices by
Eq. (54). In these formulas, the renormalized masses Mi
enter as arguments p2 ¼ M2

i of the various self-energy
functions, and it is understood that the latter are evaluated
from the bare Lagrangian of the considered quantum field
theory, so that the masses, couplings, and mixing angles on
which they depend are all bare parameters to start with.
Apart from being interesting in their own right, the

results presented here have a number of important phe-
nomenological applications. In the following, we mention
but three of them. First, in the perturbative treatment of a
specific particle scattering or decay process involving
stable or unstable Majorana fermions, our formulas for
δMi and ðZ1=2

� Þij may be used after expansion through the
considered order and truncation of terms beyond that order.
If the unstable Majorana fermion i occurs on an internal
line, then δMi enters. If it occurs on an external line, then
ðZ1=2

� Þij enters. Strictly speaking, unstable particles are not
entitled to appear in asymptotic states of scattering ampli-
tudes in quantum field theory. However, in numerous
applications of significant phenomenological interest, the
rigorous compliance with this tenet would immediately
entail a proliferation of external legs and bring the
evaluation of radiative corrections to a grinding halt, the
more so as almost all the known elementary particles are
unstable. For the reader’s convenience, we presented
explicit two-loop expressions for the renormalization con-
stants, in Eqs. (61)–(71), which may be employed in
phenomenological applications involving Majorana fer-
mions as they stand. In the one-loop case of stable
Majorana fermions, Eqs. (4.10)–(4.12) in Ref. [24] are
reproduced by Eqs. (47), (46), and (55), respectively,
evaluated at OðαÞ using Eqs. (61)–(63) and (65).

Second, the total decay widths Γi may be perturbatively
evaluated through any order from the unrenormalized
self-energy functions ½A�ðp2Þ�ij and ½B�ðp2Þ�ij by solving
Eq. (57) iteratively.
Third, our result for the mass counterterms δMi may be

used to switch from the pole scheme adopted here to any
other scheme of mass renormalization, as long as the
method of regularization is maintained. In fact, since the
bare masses m0

i are independent of the choice of renorm-
alization scheme, the equivalent of Eq. (23) in some other
scheme is

m0
i ¼ ~Mi þ δ ~Mi; ð72Þ

where δ ~Mi has the same UV singularities as δMi, but
differs in the finite terms. In gauge theories, preferable
renormalization schemes are those in which δ ~Mi is
arranged to be gauge independent, so that ~Mi enjoys the
same desirably property. Equating Eqs. (23) and (72), we
thus obtain a UV-finite relationship between the renormal-
ized masses of both schemes,

Mi ¼ ~Mi þ δ ~Mi − δMi: ð73Þ

A quantity evaluated to a given order of perturbation theory
in the pole scheme may then be translated to the other mass
renormalization scheme by substituting Eq. (73), expand-
ing in the coupling constant, and discarding terms beyond
the considered order.
In the context of perturbative calculations in quantum

chromodynamics, the modified minimal-subtraction (MS)
scheme [33] of dimensional regularization [34] is fre-
quently employed in the literature. A natural extension
of the MS definition of mass to the EW sector of the SM
may be obtained from Eq. (56) by writing

m0
i ¼ mi þ ReδMi

¼ m̄i þ δm̄i; ð74Þ

where

δm̄i ¼ ðReδMiÞUV ð75Þ

collects just the poles in ε ¼ 2 − d=2, with d being the
dimensionality of space-time, and the familiar terms
involving γE − lnð4πÞ, with γE being Euler’s constant, that
appear in ReδMi order by order. The latter may be absorbed
by an appropriate redefinition of the renormalization scale
μ, namely, μ ¼ μ0 expðγE=2Þ=ð2

ffiffiffi
π

p Þ [35]. From Eqs. (74)
and (75), it hence follows that

mi ¼ m̄i þ ðReδMiÞUV − ReδMi

¼ m̄i − ðReδMiÞMS; ð76Þ
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where ðReδMiÞMS is the UV-finite remainder of ReδMi

after MS subtraction of the poles in ε at renormalization
scale μ. As mentioned above, it is necessary to include the
tadpole contributions in ðReδMiÞMS in order for m̄i to be
gauge independent [36]. Otherwise, the functional depend-
encies of radiatively corrected transition matrix elements on
such renormalized masses acquire artificial gauge depend-
ence, and the choices of gauge must always be specified
along with the values of such renormalized masses
extracted from experimental data. The necessity to include
the tadpole contributions in order to render the mass
counterterms gauge independent was also noticed within
the on-shell renormalization of the SM at one loop
[9,11,37]. In that case, however, the omission of the tadpole
contributions would be inconsequential in practice,
since the functional dependencies of radiatively corrected

transition matrix elements on the renormalized masses
could be preserved at the expense of allowing for the bare
masses to become gauge dependent. Unfortunately, such an
escape is unavailable in the case of Eq. (76), which directly
relates the mass definitions in two different renormalization
schemes [36].
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