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The gross structure of compact stars composed of pion superfluid quark matter is investigated in the
frame of the Nambu–Jona-Lasinio model. Under the Pauli-Villars regularization scheme, the uncertainty of
the thermodynamic functions for inhomogeneous states is cured, and the Larkin-Ovchinnikov-Fulde-Ferrel
state that appeared in the hard cutoff scheme is removed from the phase diagram of the pion superfluid.
Different from the unpaired quark matter and color superconductor, the strongly coupled pion superfluid is
a possible candidate of compact stars with mass M ≃ 3M⊙ and radius R≃ 14 km.
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It is widely accepted that the quantum chromodynamics
(QCD) phases at high density might be realized in the core
of compact stars [1–3]. For normal quark matter without
quark pairings, the equation of state is too soft and thus
unable to explain the existence of massive compact stars
[4,5]. When diquark pairing is taken into account, the
obtained mass-radius relation for compact stars composed
of a color superconductor [6,7] is almost the same as of
unpaired quark matter, since the diquark condensate is
much less than the corresponding Fermi energy [8–10].
However, as estimated from the tree level QCD perturba-
tion theory, the attractive interaction between a quark and
an antiquark is stronger than the quark-quark interaction,
and thus the equation of state for a pion superfluid [11,12]
with a large pion condensate will be stiffer in comparison
with the color superconductor and may be used to describe
the massive compact stars.
Since any QCD phase transition is a nonperturbative

phenomenon and its treatment by directly using the QCD
itself is still an open question, effective models with QCD
symmetries are often used to determine the equation of state
of the stellar matter under extreme conditions. One such
model to study the QCD phase structure at finite temper-
ature and density is the Nambu–Jona-Lasinio model (NJL)
[13,14] at the quark level [15–19], which is inspired by the
Bardeen-Cooper-Shrieffer (BCS) theory and describes well
the quark pairing mechanisms. At zero baryon chemical
potential, the quark and antiquark form coherent pairs and
condense on a uniform Fermi surface, when the isospin
chemical potential is larger than the pion mass μI > mπ .
Inside the pion superfluid phase, there appears a smooth
crossover between the BCS condensation of fermions with
large and overlapped pairs and the Bose-Einstein conden-
sation (BEC) of molecules with small and distinguished
pairs [20–24]. When the baryon chemical potential is
switched on, there appears a Fermi surface mismatch
between the quark and antiquark, and the inhomogeneous
states, like the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF)
state [25,26] and the gapless Sarma state [27,28], may enter
the phase diagram.

The NJL model with contact interaction between quarks
is nonrenormalizable, and one requires a regularization
scheme to avoid the divergent momentum integrations. A
straightforward and widely used scheme is to directly
introduce a hard cutoff Λ for the quark momentum, which
together with the other model parameters can be deter-
mined by fitting the quark and meson properties in vacuum.
Under such a regularization scheme, one assumes that the
temperature and chemical potential of the quark system
should be less than the cutoff: T; μ < Λ. The NJL model
with the cutoff can describe well the phase of chiral
symmetry breaking at low temperature and density and
the homogeneous color superconductor and pion superfluid
at moderate density. However, when the hard cutoff is
applied to deal with the inhomogeneous LOFF state of
relativistic quark systems, unphysical terms occur due to
the lack of the invariance of space translation. It is a
nontrival problem to properly renormalize the spurious
contribution [29–32]. To avoid the shortcomings arising
from the hard cutoff in the study of dense quark matter, we
take the Pauli-Villars regularization scheme in our calcu-
lation in the frame of the NJL model [15–19,33,34] where
the quark momentum runs formally from zero to infinity.
The two-flavor NJL model at quark level is defined

through the Lagrangian density

L ¼ ψ̄ðiγμ∂μ −m0 þ γ0μ̂Þψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�
ð1Þ

with scalar and pseudoscalar interactions corresponding
to σ and π excitations, where μ̂ ¼ diagðμu; μdÞ ¼
diagðμB=3þ μI=2; μB=3 − μI=2Þ is the quark chemical
potential matrix with μu and μd being the u- and d-quark
chemical potentials, respectively, and μB and μI the baryon
and isospin chemical potentials, respectively. At μI ¼ 0,
the Lagrangian density has the symmetry of UBð1Þ ⊗
SUIð2Þ ⊗ SUAð2Þ corresponding to baryon number sym-
metry, isospin symmetry, and chiral symmetry, respec-
tively. At μI ≠ 0, the symmetry SUIð2Þ first breaks down to
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globalUIð1Þ symmetry explicitly at jμIj < mπ , and then the
UIð1Þ is spontaneously broken at jμIj > mπ and the system
enters the pion superfluid phase, wheremπ is the pion mass
in vacuum. At μB ¼ 0, the Fermi surfaces of uðdÞ and anti-
dðuÞ quarks coincide, and hence the πþ ðπ−Þ condensation
is favored at sufficiently high μI > 0 ðμI < 0Þ. Finite μB
provides a mismatch between the two Fermi surfaces and
may lead to gapless or inhomogeneous LOFF pion con-
densation. In this case, we should consider the competition
among homogeneous gapped, homogeneous gapless, and
inhomogeneous LOFF states.
Since μI is large in the pion superfluid phase, we neglect

the possibility of diquark condensation which is favored at
large μB and small μI and consider only the chiral condensate

σ ¼ hψ̄ψi ð2Þ
and pion condensate

πe−2iq·x ¼
ffiffiffi
2

p
hψ̄iγ5τ−ψi ¼ 2hd̄iγ5ui ð3Þ

at μI > 0. The phase factor θ ¼ 2q · x related to the
condensates π indicates the direction of the UIð1Þ symmetry
breaking. We recover the homogeneous superfluid state
with q ¼ 0 and obtain the inhomogeneous LOFF state with
q≠0. Note that we consider here only the single-plane-wave
LOFF state for simplicity.
At mean field level, the inverse quark propagator matrix

in the flavor space as a function of quark momentum p, pair
momentum q, effective pion condensate Δ ¼ −2Gπ, and
dynamical quark mass m ¼ m0 − 2Gσ is derived directly:

S−1ðp;q;Δ;mÞ

¼
�
γμpμ − γ ·qþ μuγ0 −m −iγ5Δ

−iγ5Δ γμpμ þ γ ·qþ μdγ0 −m

�
;

ð4Þ
and the thermodynamic potential of the system can be
expressed as

Ωðq;Δ; mÞ ¼ 1

4G
½ðm −m0Þ2 þ Δ2� − T

V
ln detS−1: ð5Þ

Note that the thermodynamic potential is a function of
q ¼ jqj, which means that the direction of q is sponta-
neously generated and it does not change any physical
quantity. The gap equations to determine physical quan-
tities mðT; μÞ, ΔðT; μÞ, and qðT; μÞ at finite temperature
and chemical potential can be derived by minimizing the
thermodynamic potential:

∂Ω
∂m ¼ ∂Ω

∂Δ ¼ ∂Ω
∂q ¼ 0: ð6Þ

Once the thermodynamic potential Ω is known, the
thermodynamic functions such as the pressure P, entropy

density s, charge number densities nB and nI , and energy
density ϵ can be obtained by the thermodynamical
relations:

P ¼ −Ω; s ¼ −
∂Ω
∂T ; nB ¼ −

∂Ω
∂μB ; nI ¼ −

∂Ω
∂μI ;

ϵ ¼ −Pþ Tsþ μInI þ μBnB: ð7Þ

To solve the gap equations and calculate the thermody-
namic functions numerically, we should first fix the
model parameters. In any regularization scheme, the NJL
model requires three parameters: the coupling strength G,
a regulator Λ, and the current quark mass m0. They are
fixed by fitting the vacuum properties of the system, such as
the quark condensate density huūi¼hdd̄i¼ð−250MeVÞ3,
pion decay constant fπ ¼ 93 MeV, and pion mass mπ ¼
134 MeV [15–19].
One of the widely used regularization schemes is

the hard three-momentum cutoff. The procedure is
straightforward—a cutoff p < Λ is imposed on all momen-
tum integrals after carrying out the Matsubara summation
for p0. This hard cutoff scheme presents reasonable results
for the study of homogeneous chiral, diquark, and pion
condensations [15–19]. However, when the inhomo-
geneous LOFF state is introduced, such regularization
causes unphysical effects, because it removes the spatial
symmetry of the related quasiparticle spectra [21,29–32].
For instance, the thermodynamic potential Ωðq;Δ; mÞ
outside the pion superfluid should automatically recover
the case of free quark gas: Ωðq; 0; mÞ ¼ Ωð0; 0; mÞ.
However, under the hard cutoff scheme, one can prove

Ωðq; 0;mÞ −Ωð0; 0;mÞ ¼ q
∂Ω
∂q

����
q¼0

þ q2

2

∂2Ω
∂q2

����
q¼0

þ � � �

¼ −
3q2

π2

Z
Λ

0

p2dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p þ � � � ≠ 0:

ð8Þ

In this case, the thermodynamical potential does not have a
well-defined minimum to determine the inhomogeneous
equilibrium state. In order to calculate the phase structure
of the QCD system, various substraction procedures to
avoid the unphysical terms are proposed, which correspond
physically to a vanishing superfluid density [31,35,36].
To have a uniform regularization for the study of

homogeneous and inhomogeneous pion superfluid phases,
we take a Pauli-Villars scheme, where one introduces an
arbitrary number of regulating masses mj and constants
cj and chooses them in such a way that the divergence
can be removed by the cancellation among the subtrac-
tion terms.
After we diagonalize the quark propagator S, the

thermodynamic potential can be expressed as a summation
of quasiparticle contributions:
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Ω ¼ 1

4G
½ðm −m0Þ2 þ Δ2� − 2Nc

Z
d3p
ð2πÞ3

X4
i¼1

g½ωiðpÞ�;

ð9Þ

where g is the thermodynamic distribution function for
fermions gðxÞ ¼ x=2þ T ln ð1þ e−x=TÞ and ωi are the
quasiparticle dispersions:

ω1ðpÞ ¼ Eþ þ ϵ− þ μB=3;

ω2ðpÞ ¼ Eþ − ϵ− − μB=3;

ω3ðpÞ ¼ E− − ϵ− þ μB=3;

ω4ðpÞ ¼ E− þ ϵ− − μB=3 ð10Þ

with the definition

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵþ � μI=2Þ2 þ Δ2

q
;

ϵ� ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ2 þm2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qÞ2 þm2

q �
: ð11Þ

Under the Pauli-Villars scheme, the summation over the
quasiparticles in the potential is regularized as

X4
i¼1

g½ωi� →
X4
i¼1

XN
j¼0

cjg½ωij�; ð12Þ

and the quasiparticle dispersions ωi, E�, and ϵ� are,
respectively, replaced by the regularized ones ωij, E�j,
and ϵ�j by regulating the quark mass m → mj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ajΛ2

q
. The coefficients aj and cj are determined

by the constraints

a0 ¼ 0; c0 ¼ 1;

XN
j¼0

cjm2L
j ¼ 0; L ¼ 0; 1;…N − 1: ð13Þ

While taking N ¼ 2 in the Pauli-Villars scheme is
sufficient to regularize the quadratic divergencies in the
momentum integrations and obtain finite results for the
gap equations, the thermodynamic potential is still loga-
rithmically divergent, which can then be subtracted by
redefining the ground state in vacuum. To regularize the
potential itself, N ¼ 3 is required. We have numerically
checked the regularization schemes with N ¼ 2 and N ¼ 3
and found that they give almost the same results for the
order parameters and the thermodynamical functions.
Therefore, we present in the following only the results
with N ¼ 3.
Compared with the hard three-momentum cutoff, the

Pauli-Villars scheme solves the problem of unphysical
terms. The thermodynamic potential outside the

inhomogeneous pion superfluid recovers the case of
free quark gas, Ωðq; 0; mÞ ¼ Ωð0; 0; mÞ, since the quark
momentum runs up to infinity and one can make a variable
shift in momentum integrals, and the zero superfluid
density in normal phase is automatically satisfied. In this
case, the gap equations are well defined to determine the
ground state of the system, and one no longer needs any
substraction.
We now show the numerical results in the Pauli-Villars

(PV) scheme and make a comparison with the hard three-
momentum cutoff scheme (Λ). Figure 1 shows the pion
condensate ΔðμIÞ and quark mass (chiral condensate)
mðμIÞ scaled by the quark mass in vacuum mð0Þ at
T ¼ μB ¼ 0. Starting from μI ¼ mπ , the system enters
the superfluid phase with a nonzero pion condensate. As
one expected, the chiral condensate which controls the
system at low μI is almost independent of the regularization
schemes, but the pion condensate which becomes dominant
at high μI is sensitive to the scheme we used.
The pion superfluid phase diagram on the scaled μI − μB

plane is shown in Fig. 2. At μB ¼ 0, the phase transition
from normal state to pion superfluid happens at μI ¼ mπ .
With increasing μB, the mismatch between the Fermi
surfaces of u and anti-d quarks reduces the pion conden-
sate. At high enough μB, the system comes back to the
normal phase. In the low μI region of the pion superfluid
phase, a gapless Sarma state appears near the critical
baryon chemical potential under the condition of μB >
3E−jmin where the condensateΔ is lower than in the gapped
superfluid state. Since the chemical potentials μI and μB
affect the pion superfluid in an opposite way, the critical
baryon chemical potential is expected to increase with
increasing μI , and its decrease should be artificial and
unphysical. At large μI , an inhomogeneous LOFF state
between the homogeneous pion superfluid and normal state
is predicted in the hard cutoff scheme [32]; see the region

0 2 4 6 8
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I m

PV

I mm 0

I m 0

FIG. 1 (color online). The scaled pion condensates ΔðμIÞ=mð0Þ
and quark mass mðμIÞ=mð0Þ as functions of scaled isospin
chemical potential μI=mπ at T ¼ μB ¼ 0 in the PV (solid lines)
and hard three-momentum cutoff (Λ, dashed lines) schemes.
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surrounded by dashed lines in Fig. 2. This small LOFF
region is, however, removed from the phase diagram in the
Pauli-Villars scheme. The LOFF state is generally expected
to appear in the weak coupling limit, and the LOFF window
becomes more and more narrow when the coupling
strength of the matter increases [11,25,26,37–39]. Since
the pion superfluid at finite isospin chemical potential is
always in a strongly coupled state, indicated by the large
condensate [11] and strong quark potential [40], the
disappearance of the LOFF state in the pion superfluid
phase looks reasonable. In fact, the LOFF region under the
hard three-momentum cutoff is located at large μI and μB
where the quark chemical potential μq ¼ μB=3þ μI=2
exceeds already the cutoff Λ, and the calculation in this
case becomes quantitatively not reliable. Moreover, the
process to subtract the unphysical terms in Ω in the hard
cutoff scheme is not unique and persuasive, which
may result in the artificial LOFF state. However, it should
be noticed that the NJL model in any regularization scheme
is reliable only at a low energy scale (≲1 GeV); the
possible LOFF state at extremely high isospin chemical
potential should be further investigated with other effective
methods.
The coupling strength in matter can be described by

the sound velocity c2s ¼ ∂P=∂ϵ, where P and ϵ are both
monotonic functions of isospin chemical potential μI . As
shown in Fig. 3, in the pion superfluid it goes up rapidly
near the critical point μI ¼ mπ and becomes saturated fast
with values c2s ¼ 0.63 in the Pauli-Villars scheme and 0.73
in the hard cutoff scheme, and both are much larger than the
value ∼1=3 for the normal quark matter. This indicates
clearly that, although the pion superfluid is a pairing
phenomenon near the Fermi surface, the corresponding
equation of state is obviously deviated from the normal
quark matter due to the strong coupling property at finite
isospin chemical potential.

There are many studies on the structure of compact stars
in the phase of color superconductivity [8–10]. It is found
that the color superconductivity does not change the mass-
radius relation clearly, since the sound velocity c2s ∼ 1=3 is
almost the same as the normal quark matter. Considering
the strong coupling shown above at finite isospin chemical
potential, we expect a substantial change in the mass and
radius of a compact star of pion superfluid.
For a nonrotating and spherically symmetric star, its

mass and radius are determined by the Tolman-
Oppenheimer-Volkoff (TOV) equations [41,42]

dP
dr

¼ −
GNðϵþ PÞðM þ 4πr3PÞ

r2ð1 − 2GNM=rÞ ;

dM
dr

¼ 4πr2ϵ; ð14Þ

where PðrÞ and ϵðrÞ are the pressure and energy density,
respectively, at radius r inside the star andMðrÞ is the total
mass contained within a sphere of radius r.
Substituting an equation of state PðϵÞ and giving a fixed

central pressure Pc ¼ Pðr ¼ 0Þ, one can numerically solve
the star mass and radius by integrating the TOV equations
from the center of the star up to its surface r ¼ Rwhere the
pressure reaches its perturbative value PðRÞ ¼ B with the
MIT bag constant B ¼ 75 MeV fm−3 [43]. The mass-
radius relation for compact stars in the pion superfluid
state is shown in Fig. 4 at fixed T ¼ 0 and μB ¼ 600 MeV.
In comparison with the normal quark matter (NQ, dashed-
dotted line), the star in the pion superfluid state supports a
larger mass and radius, since the equation of state of the
pion superfluid with c2s ≫ 1=3 is much harder. Since the
sound velocities in the Pauli-Villars and hard cutoff
regularization schemes are similar, the mass-radius relation
is not sensitive to the scheme we used. In both cases, the
maximum star mass and radius can reach ∼3M⊙ and
∼14 km, respectively, while they are only ∼1.8M⊙ and
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FIG. 2 (color online). The pion superfluid phase diagram on the
scaled μI − μB plane at T ¼ 0 in the PV and hard cutoff (Λ)
schemes. The shaded regions mean the gapless Sarma state, and
the LOFF state in the hard cutoff scheme is removed in the Pauli-
Villars scheme.
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FIG. 3 (color online). The sound velocity c2sðμIÞ at T ¼ μB ¼ 0
in the pion superfluid in the PV and hard cutoff (Λ) schemes.
The dotted line is for the normal quark matter (NQ) at
T ¼ 0; μB ¼ 900 MeV in the Pauli-Villars scheme.

SHIJUN MAO PHYSICAL REVIEW D 89, 116006 (2014)

116006-4



∼10 km, respectively, in ideal quark matter. Referring to
the measured data [3–5], the pion superfluid is a candidate
to explain the massive compact stars like PSR
J1311–3430 [4].
With increasing isospin chemical potential in the pion

superfluid, there exists a crossover from the BEC to BCS
states [20–24], characterized by the effective chemical
potential ~μ ¼ μI=2 −mðμIÞ. In the BEC state at low
μI → mπ, the system can be considered as a weakly
coupled pion gas, and the maximum pressure Pð0Þ at
the center may not reach the condition Pð0Þ > B to form a
stable star. In the BCS state at high μI , however, the
maximum pressure is much larger than the bag constant,
Pð0Þ ≫ B, the quark matter is strongly compressed, and it
is possible to build up a massive star. Figure 5 shows the
star mass and radius as functions of μI . A massive star of
pion superfluid can exist at high isospin chemical potential.
However, both the radius R and the mass M slowly

decrease at high enough μI in Fig. 5, corresponding to the
backbends in Fig. 4. This behavior of R and M arises from
the TOVequations (14), namely, the gravity effect [44]. At
small μI , the pressure at the center is small, and it takes only
a short distance to reach P ¼ B on the surface. With
increasing μI , the central pressure increases, and then the
distance to reach P ¼ B becomes long. However, when the

central pressure is high enough, the gravitational attraction
in compact stars becomes strong and leads to a decrease of
the radius and mass. Note that the quark stars with
∂M=∂P < 0 would collapse to black holes because of
the gravitational instability. In the physical region, both the
mass and radius increase with increasing pressure or
isospin chemical potential.
In summary, we investigated the pion condensation at

finite isospin and baryon chemical potentials in the frame of
the Pauli-Villars regularized NJL model and the structure of
compact stars in the state of pion superfluid. By taking
advantage of keeping spatial symmetry in the Pauli-Villars
scheme, there is no need to introduce subtraction terms in
the model for the study of inhomogeneous pion superfluid,
and the LOFF state which appears in the hard cutoff scheme
is removed from the model. By solving the TOV equations
with the equation of state from the NJL model, the massive
stars with mass M ≃ 3M⊙ and radius R≃ 14 km can be
explained by the strongly interacting pion superfluid with a
large pion condensate.
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