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We consider the nonrelativistic limit of the QCD Hamiltonian in the Coulomb gauge, to describe
radiative transitions between conventional charmonium states and from the lowest multiplet of c¢ hybrids
to charmonium mesons. The results are compared to potential-quark models and lattice calculations.
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I. INTRODUCTION

It has long been stipulated that excitation of the gluon
field would appear in the spectrum of hadrons. Hybrid
resonances, i.e. states that contain both quark and gluon
excitations, were considered in various models [1-6], and
recent lattice simulations [7-9] have provided solid theo-
retical evidence for such states. Moreover, in recent years
several new states, in particular in the charmonium spec-
trum, have been discovered possibly including a hybrid
resonance, the Y(4260). Conventional heavy quarkonia
are well described by nonrelativistic QCD [10]. Thus it
is reasonable to expect that hybrids containing heavy
quarks could be treated in a similar way, i.e. by considering
gluon excitations in the presence of slowly moving quarks.
In physical gauges, e.g. the Coulomb gauge, dynamical
gluons can be separated from the instantaneous Coulomb-
type forces that act between color charges [11-17]. The
non-Abelian Coulomb potential is expected to be respon-
sible for binding and confinement [18,19] while the
remaining, transverse gluon excitations could contribute
to the spectrum.

To a good approximation heavy quarks interact with
photons as bare Dirac particles. Thus radiative transitions
can be used to explore quarkonium dynamics. We assume
that this phenomenology can be extended to quarkonium
hybrids. Over the years several radiative transitions involv-
ing charmonia have been measured [20-22] and extensive
theoretical studies were performed [23-26]. More recently
lattice gauge simulations have become available [27,28]
and these also include predictions for transitions involving
hybrid mesons [29,30].

In this work we focus on radiative transitions involving
lowest mass conventional charmonia and the lowest mass
multiplet of charmonium hybrids. The ordinary c¢ states
we consider have quark orbital angular momentum and
spin restricted to the lowest values, of L, § =0, 1, that
result in states with angular momentum, parity and charge
conjugation, JP€=0"", 17—, 17, (0,1,2)**. In the
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nonrelativistic, Coulomb gauge QCD the lowest mass
charmonium hybrid multiplet is predicted to contain a
color-octet c¢ pair with J, Z"C" = 0" or 17~ corresponding
to the total quark-antiquark spin S = 0 and § = 1, respec-
tively, coupled to a single quasigluon. This physical,
transverse gluon is predicted to have quantum numbers,
Jﬁ”c‘"’ = 177, The unusual, positive parity of the gluon
originates from the non-Abelian nature of the Coulomb
interactions [14,15]. Coupling of the c¢¢ and the gluon
produces a multiplet containing four hybrid states, with
overall quantum numbers of J°¢ = 177, (0,1,2)~*. This
four state multiplet has been recently identified in lattice
simulations, both in the heavy and light quark sectors. It
includes the exotic state with JP€ = 1=F and three states
with nonexotic quantum numbers, 1=, 0=*, 2=+, The
gluon content of the former was identified trough deter-
mination of matrix elements of operators containing gluon
fields [27,29,30].

The paper is organized as follows. In Sec. II we detail
the Coulomb gauge approach to conventional charmonium
radiative transitions and to transitions involving hybrid
mesons. We discuss the basis states for ordinary c¢ mesons
and ccg hybrids and the corresponding transition matrix
elements. In Sec. III a multipole analysis of the radiative
transitions is presented. We also discuss current matrix
elements involving states of identical charge conjugation.
These vanish when a photon couples to both the quark and
the antiquark but are in general finite when the current
operator acts on a single quark. They are well defined
within the model and have also been computed on the
lattice. Summary and outlook are given in Sec. IV and all
details of derivations are given in the appendixes.

II. QUARKONIUM STATES IN THE
COULOMB GAUGE

The QCD Hamiltonian Hgcp, which describes non-
relativistic quarks interacting with (relativistic) gluons,
can be constructed from the full QCD Hamiltonian in
the Coulomb gauge by applying Foldy-Wouthuysen trans-
formation [31]. This Hamiltonian was used to study the
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gluelump spectrum [14] and the low mass charmonia and
bottomonia including hybrids [15]. In addition to the strong
interaction part, here we also consider the minimal coupling
of the photon to the quarks, which in the nonrelativistic
limit is given by

Hogp = 2‘3—; / dx U (x)p[2IA,(x) - V — = B, (x)]¥(x),

(1)

where A, and B, are the photon vector potential and
magnetic field, respectively. The quark fields are related to
particle operators by

Vix)= > / (j;3eik"‘[u,1b(k,/1,i)

I=£1/2
+ vyd (k. 4. 0)] (2)

with u, v being the Dirac spinors in the nonrelativistic
limit. Given an (approximate) solution of the Schrodinger
equation

Hqcp|N[cc]) = Ey|Nlce]) (3)

within the Fock sector containing only the heavy quark-
antiquark pair the QED interaction of Eq. (1) determines
the radiative transition matrix element,

My, o (N'[ce], y|Hgep|Ncc]) (4)

between ordinary charmonia. In the case of transitions
involving hybrids, which are given by solutions of

Hqcp|Nctg]) = Ey|Nctg]) (5)

in the sector containing in addition to the cc¢ pair a
transverse quasigluon, the radiative transition to an
ordinary meson state has to be accompanied by gluon
absorption. To lowest order in the heavy quark mass
expansion the latter is determined by the instantaneous
Coulomb interaction that changes the gluon number,
(c¢|Hc|ceg). Here H is given by

2
He == [ dxdyp' (0K (x5, 4079, (6)

p?(x) = UT(x)T*¥(x) is the quark color charge density
and the gluon field A is related to the quasigluon particle
operators by

dk ek
A(x) _/W«/Zw(k)

+€'(—k,)a’(—k, 4, a)], (7)

le(k,)a(k, 4, a)
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with A, a being the helicity and color indices, respectively,
and e(k, 4) the helicity vectors. The quasigluon orbitals and
the quasigluons’ dispersion function w;, = w(k) have been
studied elsewhere using a variational model for the QCD
vacuum [15]. In the variational model the Coulomb kernel
is replaced by its vacuum expectation value and the
operator which changes the gluon number by one becomes

dk d I
(8)

with the scalar function K'(k, ¢) obtained from a solution of
a series of Dyson-Schwinger equations [32—38]. The model
has been used successfully [39,40] in the study of excited
adiabatic potentials between static quarks [41], which can
be used to determine the single gluon orbitals in Eq. (7).
Combining Egs. (1) and (6) leads to effective operators for
radiative transitions between hybrid and ordinary quarkonia

My, & (N'[ce], y|HEgp [N [ceg)), )
where
1H-H
ff CHQED
H%ED =3 AR (10)

with 1/AF representing the Green’s function of the ¢¢ pair.
In the following we calculate the matrix elements M and
the decay widths for several hybrid states. As discussed
previously, we focus on the hybrid states containing quark
and antiquark angular momentum L =0, 1 and spin
S =0, 1. In particular we investigate transitions involving
the hybrid with exotic quantum numbers 7.;(1~"). This
state has been described by lattice calculations [27,29] and
is expected to have a mass around 4.3 GeV.

A. Meson basis and matrix elements
We represent the Nth quarkonium state of spin J and its
projection M, with parity P, charge conjugation C and total
momentum P, as

P; JMPCN)
dq _y
- % [ v
3 *cc
a,ml,mz/(Zﬂ:)
PN . N Ciiy .
X nIBC(P.q, a)bT (pe,my, iy) ‘N2‘d1<pa,mz,lz)|0>-
(11)

Here a= (L,S), and ¢ is the magnitude of relative
momentum between quark and antiquark. p, :g—i— q
and p; :g—q are the quark and antiquark momenta
respectively. The meson spin-orbital wave function is

written using the L-S coupling scheme with L, and S
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the orbital angular momentum and spin of the quark-
antiquark, respectively,

/1 1
= YLML(q)<§ml;§mZSMS>

Mg.M;

1 C(—1 L+S1 P(—1 L+1
X (SMg; LM, |JM) (2 s <2 Ly
(12)

e
q
MN—>N’;/ = -

dad /\IJN_,(I \I/N o

k k

The spin-orbital wave function y;7¢(q. a) for charmo-
nium mesons JP¢ = 0=, 17, 117, (0, 1,2)** are tabu-

lated in Appendix A.

B. Hybrid basis and transition matrix elements

It is reasonable to assume that wave function of hybrids
with nonrelativistic quarks are similar to those of glue-
lumps which contain static quarks. In the construction of
|

dk dq_,

|JMPCN) =

=(J,S.L.j

k ) k
x bt <§+ q.my, 11> ll lzd”f <§— q,m,, 12> a’(—k,c,a)|0).

2 : *JMPC JMPC -
)(ml my ))(m' m (q ’

my g, m’

)} (2x)3 Ve
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The states are normalized according to

(P;J'M'P'C'N'|P; JMPCN)
= 2Ecz-(2”)353(P —P")3;8umOppdccdnn.  (13)
As mentioned before the meson-to-meson radiative
transitions are calculated with the minimal coupling of

the photon to the quarks; cf. Eq. (1). Explicitly, the matrix
elements are given by

o )e(ky,0,)

D) ) (2(]/ + i(62502) S ky)m’z,mzémlm’] . (14)

[
hybrid wave functions we thus follow the coupling scheme
optimized for gluelump studies [14]. The QQg state is
obtained by initially coupling the QQ relative angular
momentum L to the total gluon spin J,. The resulting
angular momentum j is then coupled to the total quark-
antiquark spin S to give the total spin of the hybrid state J.
The hybrid state with total spin J, spin projection M, parity
P, charge conjugation C is then given by

JMPC (A ~ )

Z /—)(m My ,0 »q,a
my,my,c CFN ]

(15)

Here q is the relative momentum between the quark-antiquark and k is the momentum of the gluon in the overall center of
mass frame. The spin-orbital wave function y;/7¢ (k. §, a) describes the (L +J,) + S coupling and ¢ = +1 represents

the gluon helicity

JMPC (T &
Xmy.ms, 0( q

- 2,4+ 11+ C(—1)EHS+!
IRCA Vi 2

N 1
x (J My, LM |jm)(jm, SMg|JM) —~— (=)

The parity and charge conjugation are given by
P = 5(_1)JQ+L+1’ C = (_1)L+S+l, (17)

respectively. Here & = +1 corresponds to the transverse
magnetic (TM) (natural parity) and £ = —1 for the trans-
verse electric (TE) (unnatural parity) gluon states that are
given to be |0 = +1) + £Jo = —1) combinations of gluon

Mg M M,m

1 1
YLML<q) §m1’§m2|SMS

\/E DM’/ (ﬁ){&xl +P(_1>JQ+L+150$—1]' (16)

helicity states. As expected, both P and C are a product of the
QQ and gluon parity and charge conjugation are given by

P,= (=D Py =g(=1)
C,=(-D)ES, ¢ =—1. (18)

The state is normalized in the same way as the normalization
of the conventional meson state in Eq. (13). For the
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FIG. 1 (color online). Diagrammatic representation of one
possible configuration for hybrid-to-meson radiative transitions
contributing to the matrix element in Eq. (19).

gN\/—cF dk dq dq’ v
4 (2 ) ccyg

MN—»N’y =

1plet o N % k
x z sz;a Qi) [dag e ok (|5,

mymyo m' 'y

(k. q) U (4)
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lowest four hybrids we are considering [15], (L, J;)gc”) =
(0, 177), which correspond to the gluon in the TE mode.
Coupling the TE gluon with the color octet QQ statein L = 0
produces a hybrid state with the intermediate angular mom-
entum j = L. + J, = 1. Adding the quark spin § = 0, 1, and
ignoring hyperfine splitting we obtain four low lying hybrids
with quantum numbers, JP¢ = 17 for § = 0 and JF¢ =
0~*, 17,27 for § = 1. It is worth noting that the hybrid
with exotic quantum numbers 1~" appears in this lowest
multiplet and is predicted to have the QQ pair in spin 1.

The matrix elements for the hybrid-to-meson radiative
transition are given by

1
a)kya)kAE

3

)

K
2

k k q )
e(k,.0,) - {5<q +q,—q — 27) [2 (q/ +Z —2g> + io x ky] /5m2m’2
my,m

k k q
S —g +2L)[2lg =22

The explicit forms of the spin-wave functions are sum-
marized in Appendix A. In Fig. 1, we illustrate one of the
four possible ways of coupling the photon to a quark line.

III. RADIATIVE TRANSITIONS: NUMERICAL
RESULTS AND DISCUSSION

A. Conventional mesons

We have considered a total of fifteen transitions between
conventional charmonia. Even though some of the tran-
sitions considered here vanish due to charge conjugation,
we investigate the underlying matrix elements with a
photon attached to only one of the quarks. Some of these
C-violating results can be compared with lattice results
reported in [29], and others constitute our predictions.
Using the model described in Sec. I, we present below the
final expressions for the matrix elements and decay widths
computed from

1 k1

T(N = Ny) = | dQ, —— -
(N = N7) / Y3272 3 20y + 1

XY My (20)

6, My,M

A summary of numerical results is given in Table I, including
ratios of decay widths relative to I'(y., —yJ/w), e.g.

) + i(0,00,) X ky} 5m1m’1 } (19)
iy

I
Ry_n=T(N-N'y)/T(x.,—yJ/w), which are compared
to model calculations from [26]. We also discuss the
transition amplitudes |V| and |F,| introduced in [27,29] in
the context of analysis of lattice data. Here F, represents
either an electric, £, or magnetic, M, multipole and V is the
dipole magnetic multipole for the transition involving a
vector and a pseudoscalar meson,

N A 1
FP=1FiP =gz > IMywl
4 6, MyM,y,
) (my + my)?
VP =0 o Moyl (21)
REGME %:MM

For the radial wave functions we use a harmonic oscillator
approximation with a width parameter f = 0.5 GeV. This
leads to some differences with respect to the other potential-
quark results of [26], where Coulomb plus linear plus
hyperfine interactions were used to compute the wave
functions. Sensitivity of the radiative transitions to the
short-range correlations have motivated precision calcula-
tions, which can, for example, be carried out in perturbation
theory and are summarized in the recent reviews [42,43].
Finally, we calculate the transition amplitudes for charge
conjugation—violating transitions,
introduced to account for the fact that a photon couples to a
single quark. Our findings are summarized below.
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TABLE 1. Conventional c¢¢ meson transitions compared to NR-potential model, lattice calculations and the PDG values, when
available. The charge-violating transitions described in the text are denoted by CV. The input charmonium meson masses have been
taken from the nonrelativistic model of [26]. The width parameter in the present model is fixed at f = 0.5 GeV and the ratio R is defined
in the text.

Transition k, (MeV) R R [26] TA (GeV) (TA.p) (GeV) [27,29] T (keV) T (keV) [44]
e, = hel), 40 32x 1074 |F|=0.12 . 0.1
(e, = Xe1¥)ev 45 0 |Fley = 0.10 e 0
()(cz—U(coV)cv 138 0 0 0
(e, = J/w7)E, 429 1 1 || =2.02 (|F| = 1.97, 0.55) 363 380
()(cz_’ﬂci’)cv 530 0 R 0 0
(he = X7, 5 ~1077 . |F| = 0.01 . ~1073
(he = Xeg? i, 100 1.7 %1073 e |F| =0.13 e 0.6
(he = J/wy) ey 394 0 e 0 e 0 e
(he = 1), 504 1.14 1.17 Ei| = 1.54 (|E,| = 1.85, 0.69) 416 372
(e, = Xeo¥)ev 95 0 |F;|CV =0.17 . 0
(e, = J/w7)E, 390 0.92 0.74 |E,| = 1.56 (|E,| = 1.88, 0.56) 333 302
()(cl—”hl’)cv 492 0 0 0
(e = /W7, 303 0.73 0.36 |E,| =133 (|E(| = 0.83, 0.54) 265 123
(){C” - ’7c7)cv 408 0 . 0 . 0 ..
(J/w =17 )u, 116 79%x107%  68x1073  |V]|=1.98/GeV  (|V| = 1.85/GeV, 0.54) 2.9 1.5

L x2(277) > h(1)y M _ & V3 ‘el el(K,6,)D (23)

A summary of recent experimental results on the decays N=Ny = m, 2m M Ew €0

of charmonium can be found in [45]. To the best of our
knowledge, however, this transition has not been measured.
It corresponds to a magnetic dipole, which in general is
expected to be weaker than the electric dipole transition.
The matrix element corresponding to the dominant, M
transition is given by

ey 3i

My = — el [k, x e(k,,0,))iel A, (22)

my 4

where m, and e, = (2/3)\/4za,,, are the charm quark
mass and charge, respectively. Here ¢, and ¢}, are the
spin-2 and spin-1 polarization vectors, respectively, and
the scalar function A4 is given in Appendix B. Using the
harmonic oscillator wave function we obtain I = 0.1 keV.
The difference with respect to the expressions given in [26]
can be traced to an intrinsic ambiguity in normalization of
the wave functions, i.e. the difference is of the order of
E/M¢¢ — 1. A more extended theoretical and experimen-
tal report on heavy quarkonium physics is given in [46],
where the effects of higher order relativistic corrections are
discussed.

2. xa2(277) = J/w(1)y

This tensor-to-vector transition has been studied in
potential-quark models [25,26] and also on the lattice
[29]. There is experimental evidence for transitions involv-
ing radial excitations of the tensor states y., — J/yy and
X", — J/yy, butin this paper we focus on the ground state
tensor, y.,. The corresponding matrix element is given by

with D given in Appendix A. The multipole decomposi-
tion, Eq. (D1), yields an electric dipole E;, magnetic
quadrupole M, and electric octopole E3, with E; being
the leading one. The calculated value for the decay width of
I' =363 keV in our model agrees with experimental data
[44] and lattice calculations [29]. The FermilLab-E760 [47],
BES Collaboration [48] and CLEO Collaboration [49] have
all reported this transition. The PDG [44] reports a decay
width I" = 380 keV. The potential-quark models give a
width within the range of I' & 289-424 keV. The electric
dipole transition amplitude value from lattice calculations is
|F| = |E,| = 1.97 GeV and it is obtained by extrapolating
the electric dipole form factor to the physical photon point
E\(Q = 0) = E,. All results are summarized in Table L.

3. hc(1+_) - Xcl<1++)7

To the best of our knowledge there is no experimental
information about this transition. The only observed
transition between the /.(177) and another ¢¢ meson is
h (177) = 5. (0~ 1)y [44], which we discuss later. The
matrix element for this transition is given by

¢ 3 *J m
k sk klem(k,. 0,) A (24)

Moy = ————E;ikEilm€
y ijk€ilm©pm

To leading order in photon momentum the M, transition
dominates. We find T" = 239 x 10~° keV, which is small
due to a limited phase space available for the decay.
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4. he(177) = x0(077)y

Unlike the other transitions considered so far, the
magnitude of photon momentum in this mode is large
i.e. of the same order of magnitude as in the other measured
magnetic dipole transition J/w(177) — n.(0"")y. The
matrix element is given by

e \/gi
MN—»N']/ = _Zﬁe}'k/[ . [k}, X E(k},,(fy)]A. (25)

The multipole decomposition Eq. (D1) implies dominance
of a magnetic dipole M. Because of the large photon
momentum, |k,| = 100 MeV, for this decay we find
I' = 0.6 keV, which is comparable with the decay width
expected for the magnetic dipole transition I'(J /yy — 75.7).

5. he(177) = 5 (07 )y

This transition corresponds to the only observed tran-
sition involving the /.(1%~) meson. It has been observed
by the CLEO Collaboration [50,51] and confirmed by the
BESIII Collaboration [52].

The multipole decomposition Eq. (D1) implies an
electric dipole E; transition. The matrix element can be
expressed as

e 2\/§
miqﬂez/l . G(ky, GY)D' (26)
q

MN—»N’}/ ==
The experiment reports [44] I" = 372 keV. The potential-
quark models [25,26] report a decay width in the
range I'~352-498 keV and lattice [27] reports
'~ 601-663 keV. Our model yields I' = 416 keV, which
is consistent with these results.

6. Xer(177) = J/w(17)y
This transition has been reported experimentally and it
was studied on the lattice [27] with the latter giving a
central value somewhat above the experimental data albeit
with a sizable error. The results of our model seem to be in
good agreement with experiment. The matrix element for
this transition is given by

eq \/61 "
My, = Pyl
q

-leyr x €(k,,0,)]D. (27)

The multipole decomposition Eq. (D1) implies that the
electric dipole E; and the magnetic quadrupole M, are
the two leading matrix elements. The experiment reports
[44] T" =302 keV. The potential-quark models give the
width within the range '~ 215-314 keV. This model
yields I' = 333 keV.

PHYSICAL REVIEW D 89, 116005 (2014)

7. Xe0(077) = J/y(17)y
The multipole decomposition Eq. (D1) for this transition
implies the leading transition is the dipole electric E;. The
matrix element for this transition is given by

e, 1
MN—>N’y = m—qZS(k},,G},) . €M/D. (28)
q

The experiment reports [44] ' = 123 keV. The potential-
quark models report the decay width within the range
I' ~ 105-152 keV. We find the value I' = 265 keV.

Our results indicate approximately the same decay width
265-363 GeV for all transitions that involve the charmo-
nium multiplet (0, 1,2)"" decaying to the J/w(177).
Experimental data [44], however, indicate that the decay
width T'(y.o(0"") — J/wy) is approximately one third of
['(y.(2™1) = J/wy). The discrepancy is related to our
simple approximation for the wave function, which ignores
hyperfine and spin-orbit interactions [25,26]. This example
demonstrates that charmonium transitions can indeed be
used to pin down the quark wave function.

8 J/w(17) = n.(0")y
This is a magnetic dipole vector-pseudoscalar transition
between two 1 S states. The photon momentum for this
transition is about 116 MeV and the transition amplitude 1%
is calculated as is shown in Eq. (21).
The matrix element for this transition is given by

e, i
MN—»N’}/ = _miz;ﬂez/l : {k}/ X €(kyv 5}/)]t77 (29)
where J is defined in Appendix B.

The experiment [44] reports I'(J/w — n.y) = 1.5 keV
for this transition. The potential-quark model result is in the
range I'~ 1.9-2.9 keV and we find I' = 2.9 keV.

There are a few magnetic dipole transitions experimen-
tally reported for charmonium below the DD threshold
(3.73 GeV) [44]. These are given by J/w(1S) = 1.(15)y,
w(2S) - n.(2S)y and w(2S) - n.(1S)y. The last two
correspond to radial excitations of S states. In this work,
we only consider ground states for charmonium.

C-violating meson-to-meson transitions.—In addition to
the allowed transitions, we investigated possible charge
conjugation violation matrix elements which include
Xet 2 0eYs Xet = X0V hc - J/l//}/, X2 2 HelVs Xe2 =
Xcor and y. — y.17. The finite matrix element for these
transitions is obtained when a photon is coupled to a single
quark line. The dominant O(k,) matrix elements are found

for y.1 = xeor and yo = yev-

9. Xet (1) = xeo(0F )y

The one-quark-line matrix element for this transition is
given by

116005-6
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ey V3i
mq47t\/_ €

which according to Eq. (D1) corresponds to a magnetic
dipole M,. The value obtained in this model is
|F|cy = 0.17 GeV, which corresponds to the magnetic
dipole transition amplitude defined by

R [k, x e(k,.0,)]A  (30)

A 1
|F|ZCV =52 Z ‘MN—>N’7|2' (31)

o, .MN,MN/

10. 102(2++) - Xcl(l++)y

The one-quark-line matrix element for this transition is
given by

e, 3i

Myny = qum

Siszjmzﬂ*\y%’}/ [ky X €(ky’ Uy)]k'A’
(32)

which according to Eq. (D1) corresponds to M, E, and M5
transitions. For |F|., defined in Eq. (31) we obtain
|F|cy = 0.10 GeV.

In Table I we summarize our findings and compare with
the nonrelativistic potential-quark model of [26] and, when
available, with the transition amplitudes TA = |F|, |V
from lattice computations [27,29]. We use a single scale
parameter for all wave functions, while in the analysis
of lattice data the scale is fitted independently for each
transition. The specific values are shown in Table I
The photon momentum for each transition is given
by k, = (M3 — M3,)/2M .

B. Hybrid-to-meson radiative decays

We have studied 24 possible hybrid-to-meson radiative
transitions, including matrix elements for C-violating modes.
The results are discussed below. In Table II, we quote the
expected decay ratios for these transitions when using
myy, = 4.35 GeV for the spin-averaged mass of the lowest
hybrid multiplet 17—, (0, 1,2)~". To minimize sensitivity to
the wave functions we also quote the ratio of hybrid decay
amplitudes computed in the model, cf. Eq. (21), to those
computed using lattice simulations [29]. Specifically,

TABLE II. Expected decay widths for the nonzero hybrid-to-
meson radiative transitions. The input charmonium meson
masses have been taken from the nonrelativistic model in [26]
and the mass of the hybrid multiplet was set to my,y, = 4.35 GeV.

Transition I' for x; (keV) I’ for x, (keV)
(Y = 1Y )m, 39 126
0=+ - J/y/y)M] 32 116
(m. = J/wy)u, 32 116
2=t - J/y/;/)MI 32 116

PHYSICAL REVIEW D 89, 116005 (2014)

from lattice simulations two widths are quoted. The
Y(177) - 5.y transition from a hybrid vector, Y, is a
magnetic dipole with the decay width given by

564 |f/|2

, (33)
where the magnetic dipole matrix element V = 0.28 yields
I'(Y - 5.y) = 42 keV. The second transition reported in
[29]is n.,(17F) = J/w (17" )y from the exotic hybrid 7, ,
which is also of a magnetic dipole type, with the decay width
given by

16 |F|2

F(”c] - J/l//}/) = aky Tt (34)

and the matrix element, ' = 0.69 GeV, gives (e —
J/wy) = 115 keV. Asitis shown below, all hybrid transition
amplitudes in our model depend on a single factor | Z,| that
is determined by the hybrid meson wave function. We will
use the two magnetic dipole matrix elements, M, and F,
to normalize this factor to make predictions for transitions
not yet reported but calculable in our model.

For the C-violating matrix elements we will use the
transition 1=+ — 07y from [29] to normalize the relevant
wave function overlap factor in our model.

L Y1) = n.(0")y

This transition involves a hybrid vector meson state
denoted as Y. Lattice simulations of charmonium (as well
as light quark mesons) predict a vector state located
between first and second resonance region i.e. above the
first radial and orbital excitation of the ground state spin-1
qq. Experimentally the Y (4260) is a possible candidate for
this hybrid in the charmonium spectrum and the Y (2175) is
the hybrid candidate in the s5 sector [53]. The transition
between a hybrid vector and ordinary pseudoscalar cc
meson is of magnetic dipole type. In magnetic transitions
between conventional, vector charmonium and the 7, there
is no change in angular momentum, but instead, the
transition involves a quark spin flip. In contrast, because
of presence of gluon spin, the magnetic transition from a
hybrid vector does not require a quark spin flip. This
picture is supported by the lattice results [29].

The matrix elements are given by

e, 3i
MN—»N’}/ = m_2647'[2 [k X E(k},, 67)}207 (35)

where Z, involves an integral over meson wave functions,
the scalar function K'(k, g), the gluon absorption kernel
and the Green’s function 1/AE.
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The quantity «7 defined by

LY = n.y)y, = akjx (36)

can be compared with the lattice result given in Eq. (33),

L 2 _ 8 V]

o — I A
L 32\/_7rzm my 3\/_(my—|—m,7)

(37)

This gives a relation between Z and the magnetic dipole
form factor V; using the lattice value of V = 0.28 we obtain
k2 =3.47 x 1073 GeV~2 and it corresponds to a decay
width of T'(Y — n.7),,, = 40 keV. The difference between
the reported value by lattice and this model is due to the
values of the masses for the hybrid and meson states used to
calculate the photon momentum. The reason we take the
lattice measurement to normalize Z is because of uncer-
tainties in its computation within the model. It requires
knowledge of the hybrid wave function, which in turn
requires solving the three-body problem; cf. Eq. (5). We
leave this for future investigations and here focus instead on
symmetry relations implied by the existence of the light
hybrid multiplet.

Using the value for |Z,|* or equivalently x} estimated
above, we can now make a prediction for the other three
nonzero hybrid radiative transitions that in our model are
determined by the same wave function overlap. These
are 07" = J/y(177)y, na(177) > J/w(17")y and
27t - J/yw(177)y. The results are summarized in Table II.

2.0 > J/w(1 )y
This is also a dipole magnetic transition. As it is shown
below, the model predicts that any difference with respect
to Y(177) - 5.(0~")y is only due to the available phase
space as determined by the magnitude of the photon
momentum, ky. The matrix element for this transition is
given by

K iv/3

My, =
N=Ny 5164-77.'2

——ey -k, xe(k,,0,)]Z,.  (38)

The normalized results for transition with respect to lattice
magnetic dipole form factors are summarized in Table II.

3.1 (177) = J/w (17 )y
The multipole decomposition for this transition includes
a magnetic dipole and an electric quadrupole transition but
to lowest order in photon momentum the magnetic dipole
transition dominates. The corresponding matrix element is
given by

PHYSICAL REVIEW D 89, 116005 (2014)

g 3V2

Mpyny = —
N=Nr = my 12872

(€M X eM’) ’ [e(kyvgy) X ky]ZO»
(39)

and the decay width is given by

(e = J/wy)y, =
ak,k3, where we have defined «, as

bzl 4 |F

Ky = = 40
’ 32\/§ﬂ%mq mﬂz'l 3\/§m’7<‘1 ( )

Using the lattice value £ = 0.69 GeV we find
K3 =149 x 1072 (41)

We can now estimate the difference in | Z,|* obtained using
the two lattice results as normalizers. We find

(42)

where the subscript indicates which lattice matrix element
is used in the determination. This result implies significant
dependence of Z, on the process and can be interpreted
as a measure of the difference in the wave functions of the
17~ and 1~ hybrids. This discrepancy is also seen in the
ratio R =T'(Y — n.7)/T'(n,, = J/wy) which is approx-
imately 0.37 on the lattice while our model predicts R = 1
for the whole hybrid super multiplet. In Table II, we show
the predictions for the decay widths normalized using both
k1 and K,.

4.2 > J/w(1 )y

The hybrid 27F is the last remaining member of
the lightest hybrid multiplet considered here. Since no
pseudotensor charmonium transition has been observed
(not even one fitting any of the ordinary c¢¢ meson
multiplets), the results of this model may be relevant to
future experimental searches. The matrix element corre-
sponding to this transition is given by

e, 3i
q
MN—>N’y =

m, 47'[2

eielk, xe(k,,0,)' 2. (43)

eM’

The predictions are summarized in Table II.

C-violating hybrid transitions.—Two charge conjugation—
violating matrix elements have been reported in [29]. Both
involve the exotic hybrid and they are 1" — 0~y and
1=+ = 0" "y. In our model the matrix element for the 1=+ —
0~y transition vanishes identically. The reason is that in the
matrix element for the photon coupling to the quarki.e. the two
terms in the curly brackets in Eq. (19) only the spin-flip term
contributes but does not bring any gluon momentum (k)
contribution. Therefore, all the gluon momentum dependence
comes from the Coulomb interaction Eq. (6) and the hybrid
wave function Eq. (A2). Thus, after performing the gluon
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TABLE IIl. C-violating expected amplitudes.

Transition |E,| for k5 [GeV]
Y - hy 0.60

0" = xo ¥ 0.34

Ne, = Xeo¥ 0.34

Ney = Xe ¥ 0.30

Ne, = Xe,¥ 0.38

27 sy 0.38

27" = xny 0.66

angular integration Eq. (C1), the transition matrix element

gives exactly zero to the term proportional to ~e,»jk(j;(]"{j = 0.
The matrix elements for the other, nonvanishing

C-violating transitions are summarized below:

3i
M - - 3 3 X r)c k~ k) )
Y—hy — K3€4 16(471)% (ey X emr) - €( v Uy)
V6
MO’*—»)((.];/ = K3€q 1 (47[)% €<kya 6}/) CEpy
Ve o,
na=xor — K3€q 16(471)% ey €k, 0,).
3i .
na—xar — K3€q 32(47[_)% (e < enr) - e(ky, 0,),
3\/j *j ] ki
Mncl—))(l.zy = K3é, m&;k&lmﬂée (kw Gy>€A,']7,
\/— *il . *m
Mo+, .y = Kaey mgijkglkmeM ej(kyvay)eMly
3i o
_ il Ik
My, , = —Kze, 16(471')% eiinere (k},, O'y)E‘M,, (44)

where k3 is defined as

N./Cr 16(47n) .
= EARS E}
m, V6
It is observed that, as before, all matrix elements depend on
a single wave function overlap factor Z,, given in the
Appendix. To determine the common factor k5 for all the
nonzero hybrid C-violating transitions found in our model
we use the transition amplitude (|E, |-y = 0.34 GeV) from
lattice simulations reported for 17" — 0" *y. Therefore,

using Eq. (31), x3 = 98.93 GeV. The numerical results
shown in Table III constitute predictions of the model.

K3 |cv- (45)

IV. SUMMARY AND OUTLOOK

We studied radiative decays of conventional charmonia
and charmonium hybrids. Ordinary c¢ mesons with
quantum numbers JFC, 5.(07F), J/y(177), y.o(0F),
X (170), h.(177), yo(2™1) were used as benchmarks

PHYSICAL REVIEW D 89, 116005 (2014)

where we considered the minimal coupling of the photon to
the nonrelativistic quarks. Simple harmonic oscillator wave
functions with fixed size parameters were used to calculate
the decay widths. We have compared our results with other
models [25,26] and found a reasonable agreement. A few
new predictions for transition amplitudes were presented
including charge-violating transition amplitudes.

To describe hybrid decays we considered a model based
on an effective QCD Hamiltonian that describes non-
relativistic quarks interacting with (relativistic) gluons
and is constructed from the QCD in the Coulomb gauge
by applying Foldy-Wouthuysen transformation. We have
derived all relevant matrix elements, which can be com-
puted given a model for a hybrid meson wave function. We
considered decays of states from the hybrid multiplet 177,
(0,1,2)~" with 17" being the exotic state. There are 24
possible radiative transitions between this multiplet and
ground state charmonia. The decay widths obtained in this
model were normalized with respect to the two reported
lattice transition amplitudes for T'(Y(17~) - n.y) and
[(n.(177) > J/wy). The other two T'(0~" — J/yy)
and I'(2~" — J/yy) constitute predictions of the model.

In general the model predicts R = %

while lattice

~ 1 for

the whole hybrid multiplet
R =L )>ner)

C(ne (177)—J /wr)
matrix elements involving hybrids. The model predicts
several of such matrix elements to be nonzero and we used
the lattice transition amplitude for 7.,(17+) — 0Ty as
normalizer to constrain our predictions.

In the absence of spin-dependent interactions, the model
leads to a degenerate hybrid multiplet. While this prediction
is not too far from lattice findings, the differences in
transition matrix elements obtained from lattice simulations
can be used to probe the wave functions predicted by the
model. This requires solving the hybrid meson Schrédinger
equation. A simplified variational attempt has been made in
[15] and in the future we hope to obtain a more realistic
description of hybrid mesons’ wave functions.

reports
=0.37. We also investigated C-violating

ACKNOWLEDGMENTS

This work was supported in part by CONACyT under
Postdoctoral supports Grants No. 166115 and No. 203672,
the U.S. Department of Energy under Grant No. DE-
FGO0287ER40365, and Indiana University Collaborative
Research Grant. P. G. and A.P.S. acknowledge support
from U.S. Department of Energy Contract No. DE-ACO05-
060R23177, under which Jefferson Science Associates,
LLC, manages and operates Jefferson Laboratory.

APPENDIX A: MESON AND HYBRID
SPIN-ORBITAL WAVE FUNCTIONS

The conventional c¢ meson spin-orbital wave functions
are given by
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AL O) = =il
A1) = 5= latios i, e
ABEE07) = == lolion)l, 4
LB 0) = =2 ol - e
A0 = 2 i

IMPC(OHE) = ——=N [6'(i62)],0.m, A €l Al
Hmyany 277 zmlzj[(z)]lqu (A1)

The hybrid spin-orbital wave functions are given by

Ziitma(177)

V3.
- _g [102]mzm| 6(_kv 0) €y [5571 - 6"~*1]’

A (07)
1

= g [(i62)6]m2m1 ' €<_k’ 0) [50,1
Ko (17F)

V3

= m [6,0]

HIMPC (=)

Xmy.myo
\/§ . i i *1 ]
= _g [(lUZ)GJ]mzm]el(_k’ U)EMJ [60',1 - 50‘,*1]‘
ij

- 50.—1]’

. €(-k, G) X 6';[[60.‘] — 50",—1]’

mpnty

(A2)

APPENDIX B: MESON-TO-MESON
RELEVANT EXPRESSIONS

The radiative transitions between two conventional
mesons produce the following set integrations:

dq N,a N .o o
| i@t a) = 7.

dq N,a N k}’
LU LU - —
/(2 )3 cC (q) cC ('q D)

dq N.,a N .o kV NAT — i/
/ (2”)3 \I/cZ‘ (q)q/cé q-—- 7 q9qQ'qQ’ = Dal} =+ gk},k},,

and

(B1)

PHYSICAL REVIEW D 89, 116005 (2014)

dq N.,a N« kr 1 - 5]2
= U (q) Ve -
A / (2”)3 cc (Q) ce < q D) )
dq N.a N .o k 35)2 -1
B = / (271_)3 \I,LZ (q)\IICE‘ ( q—- 7}/ 2 ’
dq N,a N, k 1 - 572
D= / (271')3 \I/CE‘ (q)\IlcE ( q-— ?7 q D) ’
q N.,a N« kr 35)2 —1
= 1 I
o= [ amsve@vi (la-3))a(F5).

APPENDIX C: HYBRID-TO-MESON
RELEVANT EXPRESSIONS

In the hybrid-to-meson radiative transition, the integrals
over the direction of gluon momentum produce the
following set of relations:

Jiic

. Kk
/dkK(” (’ 5 T4

3 2 _qg
= A(k7 qg)5ij +B(k’ qq)‘i;}qjg? (Cl)
. Kk A D
with q, = (¢’ —q+ %) and x = 4, - k
s k 1—x2
A(k,q,) = | dkK §+qg, E—qg 5
. k k 3x2 -1
B(k’%):/dkK(l)qz'i'qg’ §_q9> 5
(€2)

To leading order in photon momentum (g, — |q' — q|) we
use the following notation:

kK*dk dq dq " :
o= / WY (k) T (o)

(27)* (2z)% (27)° <%
k

X WA(/@ lq" —q|).

(C3)

The dependence on the QCD coupling ¢? is a consequence
of the presence of the gluon in the hybrid meson wave
function as discussed in Sec. II.

1. Hybrid-to-meson C-violating relations

The C-violating transitions are given by terms propor-
tional to A(k, |q" — q|)(¢’ — q)'q@"; thus, the expressions in
the C-violating hybrid-to-meson transitions can be sim-
plified to
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2 2
g k*dk dq dq »
1= ?/ k, )‘I’Icvc (q')

@y s s
K
Var(BE)

APPENDIX D: MULTIPOLE DECOMPOSITION
AND WIDTH DECAY

We need to determine the type of transition through the
multipole decomposition. The simplest way is to consider
that the photon moves in the —2 direction as in [27], so that
the multipole decomposition is given by

A(k,

—q|)(¢' — q2). (C4)

PHYSICAL REVIEW D 89, 116005 (2014)

2041
=0 =35 + SEIWCESIVY
1

1
X |:El§ 15P):FM[§(1—(—1)15P) s
(D1)
where the transition can be represented as (J4) — (J'A))+

(y4,), and 8P is the product of the initial and final meson
parities.
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