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I. INTRODUCTION

It has long been stipulated that excitation of the gluon
field would appear in the spectrum of hadrons. Hybrid
resonances, i.e. states that contain both quark and gluon
excitations, were considered in various models [1–6], and
recent lattice simulations [7–9] have provided solid theo-
retical evidence for such states. Moreover, in recent years
several new states, in particular in the charmonium spec-
trum, have been discovered possibly including a hybrid
resonance, the Yð4260Þ. Conventional heavy quarkonia
are well described by nonrelativistic QCD [10]. Thus it
is reasonable to expect that hybrids containing heavy
quarks could be treated in a similar way, i.e. by considering
gluon excitations in the presence of slowly moving quarks.
In physical gauges, e.g. the Coulomb gauge, dynamical
gluons can be separated from the instantaneous Coulomb-
type forces that act between color charges [11–17]. The
non-Abelian Coulomb potential is expected to be respon-
sible for binding and confinement [18,19] while the
remaining, transverse gluon excitations could contribute
to the spectrum.
To a good approximation heavy quarks interact with

photons as bare Dirac particles. Thus radiative transitions
can be used to explore quarkonium dynamics. We assume
that this phenomenology can be extended to quarkonium
hybrids. Over the years several radiative transitions involv-
ing charmonia have been measured [20–22] and extensive
theoretical studies were performed [23–26]. More recently
lattice gauge simulations have become available [27,28]
and these also include predictions for transitions involving
hybrid mesons [29,30].
In this work we focus on radiative transitions involving

lowest mass conventional charmonia and the lowest mass
multiplet of charmonium hybrids. The ordinary cc̄ states
we consider have quark orbital angular momentum and
spin restricted to the lowest values, of L, S ¼ 0, 1, that
result in states with angular momentum, parity and charge
conjugation, JPC ¼ 0−þ, 1−−, 1þ−, ð0; 1; 2Þþþ. In the

nonrelativistic, Coulomb gauge QCD the lowest mass
charmonium hybrid multiplet is predicted to contain a

color-octet cc̄ pair with J
PqCq
q ¼ 0−þ or 1−− corresponding

to the total quark-antiquark spin S ¼ 0 and S ¼ 1, respec-
tively, coupled to a single quasigluon. This physical,
transverse gluon is predicted to have quantum numbers,

J
PgCg
g ¼ 1þ−. The unusual, positive parity of the gluon

originates from the non-Abelian nature of the Coulomb
interactions [14,15]. Coupling of the cc̄ and the gluon
produces a multiplet containing four hybrid states, with
overall quantum numbers of JPC ¼ 1−−, ð0; 1; 2Þ−þ. This
four state multiplet has been recently identified in lattice
simulations, both in the heavy and light quark sectors. It
includes the exotic state with JPC ¼ 1−þ and three states
with nonexotic quantum numbers, 1−−, 0−þ, 2−þ. The
gluon content of the former was identified trough deter-
mination of matrix elements of operators containing gluon
fields [27,29,30].
The paper is organized as follows. In Sec. II we detail

the Coulomb gauge approach to conventional charmonium
radiative transitions and to transitions involving hybrid
mesons. We discuss the basis states for ordinary cc̄ mesons
and cc̄g hybrids and the corresponding transition matrix
elements. In Sec. III a multipole analysis of the radiative
transitions is presented. We also discuss current matrix
elements involving states of identical charge conjugation.
These vanish when a photon couples to both the quark and
the antiquark but are in general finite when the current
operator acts on a single quark. They are well defined
within the model and have also been computed on the
lattice. Summary and outlook are given in Sec. IV and all
details of derivations are given in the appendixes.

II. QUARKONIUM STATES IN THE
COULOMB GAUGE

The QCD Hamiltonian HQCD, which describes non-
relativistic quarks interacting with (relativistic) gluons,
can be constructed from the full QCD Hamiltonian in
the Coulomb gauge by applying Foldy-Wouthuysen trans-
formation [31]. This Hamiltonian was used to study the*pguo@jlab.org
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gluelump spectrum [14] and the low mass charmonia and
bottomonia including hybrids [15]. In addition to the strong
interaction part, here we also consider the minimal coupling
of the photon to the quarks, which in the nonrelativistic
limit is given by

HQED ¼ eq
2m

Z
dxΨ†ðxÞβ½2iAγðxÞ ·∇ − Σ ·BγðxÞ�ΨðxÞ;

ð1Þ

where Aγ and Bγ are the photon vector potential and
magnetic field, respectively. The quark fields are related to
particle operators by

ΨiðxÞ ¼
X

λ¼�1=2

Z
dk

ð2πÞ3 e
ik·x½uλbðk; λ; iÞ

þ vλd†ð−k; λ; iÞ� ð2Þ

with u, v being the Dirac spinors in the nonrelativistic
limit. Given an (approximate) solution of the Schrödinger
equation

HQCDjN½cc̄�i ¼ EN jN½cc̄�i ð3Þ

within the Fock sector containing only the heavy quark-
antiquark pair the QED interaction of Eq. (1) determines
the radiative transition matrix element,

MN→N0γ ∝ hN0½cc̄�; γjHQEDjN½cc̄�i ð4Þ

between ordinary charmonia. In the case of transitions
involving hybrids, which are given by solutions of

HQCDjN½cc̄g�i ¼ EN jN½cc̄g�i ð5Þ

in the sector containing in addition to the cc̄ pair a
transverse quasigluon, the radiative transition to an
ordinary meson state has to be accompanied by gluon
absorption. To lowest order in the heavy quark mass
expansion the latter is determined by the instantaneous
Coulomb interaction that changes the gluon number,
hcc̄jHCjcc̄gi. Here HC is given by

HC ¼ − g2

2

Z
dxdyρaðxÞKa;bðx; y;AgÞρbðyÞ; ð6Þ

ρaðxÞ ¼ Ψ†ðxÞTaΨðxÞ is the quark color charge density
and the gluon field Ag is related to the quasigluon particle
operators by

Aa
gðxÞ ¼

Z
dk

ð2πÞ3
eik·xffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp ½ϵðk; λÞaðk; λ; aÞ

þ ϵ†ð−k; λÞa†ð−k; λ; aÞ�; ð7Þ

with λ, a being the helicity and color indices, respectively,
and ϵðk; λÞ the helicity vectors. The quasigluon orbitals and
the quasigluons’ dispersion function ωk ¼ ωðkÞ have been
studied elsewhere using a variational model for the QCD
vacuum [15]. In the variational model the Coulomb kernel
is replaced by its vacuum expectation value and the
operator which changes the gluon number by one becomes

Ka;b ¼ fabc
Z

dk
ð2πÞ3

dq
ð2πÞ3 e

ikx−iq·yk ·Ac
gðk − qÞK1ðk; qÞ

ð8Þ
with the scalar functionK1ðk; qÞ obtained from a solution of
a series of Dyson-Schwinger equations [32–38]. The model
has been used successfully [39,40] in the study of excited
adiabatic potentials between static quarks [41], which can
be used to determine the single gluon orbitals in Eq. (7).
Combining Eqs. (1) and (6) leads to effective operators for
radiative transitions between hybrid and ordinary quarkonia

MN→N0γ ∝ hN0½cc̄�; γjHeff
QEDjN½cc̄g�i; ð9Þ

where

Heff
QED ¼ 1

2

HCHQED

ΔE
ð10Þ

with 1=ΔE representing the Green’s function of the cc̄ pair.
In the following we calculate the matrix elements M and
the decay widths for several hybrid states. As discussed
previously, we focus on the hybrid states containing quark
and antiquark angular momentum L ¼ 0, 1 and spin
S ¼ 0, 1. In particular we investigate transitions involving
the hybrid with exotic quantum numbers ηc1ð1−þÞ. This
state has been described by lattice calculations [27,29] and
is expected to have a mass around 4.3 GeV.

A. Meson basis and matrix elements

We represent the Nth quarkonium state of spin J and its
projectionM, with parity P, charge conjugation C and total
momentum P, as

jP; JMPCNi

¼
X

α;m1;m2

Z
dq

ð2πÞ3Ψ
N;α
cc̄ ðqÞ

× χJMPC
m1;m2

ðP̂; q̂;αÞb†ðpc;m1; i1Þ
δi1;i2ffiffiffiffiffiffi
Nc

p d†ðpc̄; m2; i2Þj0i:

ð11Þ

Here α ¼ ðL; SÞ, and q is the magnitude of relative
momentum between quark and antiquark. pc ¼ P

2
þ q

and pc̄ ¼ P
2
− q are the quark and antiquark momenta

respectively. The meson spin-orbital wave function is
written using the L-S coupling scheme with L, and S
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the orbital angular momentum and spin of the quark-
antiquark, respectively,

χJMPC
m1;m2

ðP̂; q̂; αÞ

¼
X

MS;ML

YLML
ðq̂Þ

�
1

2
m1;

1

2
m2jSMS

�

× hSMS;LMLjJMi 1þ Cð−1ÞLþS

2

1þ Pð−1ÞLþ1

2
:

ð12Þ

The states are normalized according to

hP0; J0M0P0C0N0jP; JMPCNi
¼ 2Ecc̄ð2πÞ3δ3ðP − P0ÞδJJ0δMM0δPP0δCC0δNN0 : ð13Þ

As mentioned before the meson-to-meson radiative
transitions are calculated with the minimal coupling of
the photon to the quarks; cf. Eq. (1). Explicitly, the matrix
elements are given by

MN→N0γ ¼ − eq
2mqð2πÞ3

Z
dqdq0ΨN;α

cc̄ ðqÞΨN0;α0
cc̄ ðq0Þ

X
m1;m2;m0

1
;m0

2

χ�JMPC
m1;m2

ðq̂; αÞχJ0M0P0C0
m0

1
;m0

2
ðq̂0; α0Þϵðkγ; σγÞ

·

�
δ

�
q0 − qþ kγ

2

�
ð2q0 þ iσ × kγÞm1;m0

1
δm2m0

2
þ δ

�
q − q0 þ kγ

2

�
ð2q0 þ iðσ2σσ2Þ × kγÞm0

2
;m2

δm1m0
1

�
: ð14Þ

The spin-orbital wave function χJMPC
m1;m2

ðq̂; αÞ for charmo-
nium mesons JPC ¼ 0−þ, 1−−, 1þ−, ð0; 1; 2Þþþ are tabu-
lated in Appendix A.

B. Hybrid basis and transition matrix elements

It is reasonable to assume that wave function of hybrids
with nonrelativistic quarks are similar to those of glue-
lumps which contain static quarks. In the construction of

hybrid wave functions we thus follow the coupling scheme
optimized for gluelump studies [14]. The QQ̄g state is
obtained by initially coupling the QQ̄ relative angular
momentum L to the total gluon spin Jg. The resulting
angular momentum j is then coupled to the total quark-
antiquark spin S to give the total spin of the hybrid state J.
The hybrid state with total spin J, spin projectionM, parity
P, charge conjugation C is then given by

jJMPCNi ¼
X

α¼ðJgS;L;jÞ

Z
dk

ð2πÞ3
dq

ð2πÞ3Ψ
N;α
cc̄g ðk; qÞ

X
m1;m2;σ

1ffiffiffiffiffiffiffiffiffiffiffiffi
CFNc

p χJMPC
m1;m2;σðk̂; q̂; αÞ

× b†
�
k
2
þ q; m1; i1

�
Ta
i1;i2

d†
�
k
2
− q; m2; i2

�
a†ð−k; σ; aÞj0i: ð15Þ

Here q is the relative momentum between the quark-antiquark and k is the momentum of the gluon in the overall center of
mass frame. The spin-orbital wave function χJMPC

m1;m2;σðk̂; q̂; αÞ describes the ðLþ JgÞ þ S coupling and σ ¼ �1 represents
the gluon helicity

χJMPC
m1;m2;σðk̂; q̂; αÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jg þ 1

4π

r
1þ Cð−1ÞLþSþ1

2

X
MS;ML;Mg;m

YLML
ðqÞ

�
1

2
m1;

1

2
m2jSMS

�

× hJgMg; LMLjjmihjm; SMSjJMi ð−1Þ
Jgffiffiffi
2

p D
�Jg
Mg;−σðk̂Þ½δσ;1 þ Pð−1ÞJgþLþ1δσ;−1�: ð16Þ

The parity and charge conjugation are given by

P ¼ ξð−1ÞJgþLþ1; C ¼ ð−1ÞLþSþ1; ð17Þ

respectively. Here ξ ¼ þ1 corresponds to the transverse
magnetic (TM) (natural parity) and ξ ¼ −1 for the trans-
verse electric (TE) (unnatural parity) gluon states that are
given to be jσ ¼ þ1i þ ξjσ ¼ −1i combinations of gluon

helicity states. As expected, bothP andC are a product of the
QQ̄ and gluon parity and charge conjugation are given by

Pq ¼ ð−1ÞLþ1; Pg ¼ ξð−1ÞJg
Cq ¼ ð−1ÞLþS; Cg ¼ −1: ð18Þ

The state is normalized in the sameway as the normalization
of the conventional meson state in Eq. (13). For the
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lowest four hybrids we are considering [15], ðL; JPgCg
g Þ ¼

ð0; 1þ−Þ, which correspond to the gluon in the TE mode.
Coupling theTEgluonwith the color octetQQ̄ state inL ¼ 0
produces a hybrid state with the intermediate angular mom-
entum j ¼ Lþ Jg ¼ 1. Adding the quark spin S ¼ 0, 1, and
ignoring hyperfine splitting we obtain four low lying hybrids
with quantum numbers, JPC ¼ 1−− for S ¼ 0 and JPC ¼
0−þ, 1−þ, 2−þ for S ¼ 1. It is worth noting that the hybrid
with exotic quantum numbers 1−þ appears in this lowest
multiplet and is predicted to have the QQ̄ pair in spin 1.
The matrix elements for the hybrid-to-meson radiative

transition are given by

MN→N0γ ¼
eqg2

4mq

Nc
ffiffiffiffiffiffi
CF

p
ffiffiffi
2

p
Z

dk
ð2πÞ3

dq
ð2πÞ3

dq0

ð2πÞ3Ψ
N;α
cc̄g ðk; qÞΨN0;α0

cc̄ ðq0Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiωkγωk
p ΔE

×
X
m1m2σ

X
m0

1
m0

2

χ�JMPC
m1;m2;σðk̂; q̂;αÞχJ

0M0P0C0
m0

1
;m0

2
ðq̂0;α0Þ

Z
dqgqg · ϵ�ð−k; σÞKð1Þ

�����k2 þ qg

����;
����k2 − qg

����
�

× ϵðkγ; σγÞ ·
	
δ

�
qþ qg − q0 − kγ

2

��
2

�
q0 þ k

4
− qg

2

�
þ iσ × kγ

�
m1;m0

1

δm2m0
2

þ δ

�
qþ qg − q0 þ kγ

2

��
2

�
q0 − k

4
− qg

2

�
þ iðσ2σσ2Þ × kγ

�
m0

2
;m2

δm1m0
1



: ð19Þ

The explicit forms of the spin-wave functions are sum-
marized in Appendix A. In Fig. 1, we illustrate one of the
four possible ways of coupling the photon to a quark line.

III. RADIATIVE TRANSITIONS: NUMERICAL
RESULTS AND DISCUSSION

A. Conventional mesons

We have considered a total of fifteen transitions between
conventional charmonia. Even though some of the tran-
sitions considered here vanish due to charge conjugation,
we investigate the underlying matrix elements with a
photon attached to only one of the quarks. Some of these
C-violating results can be compared with lattice results
reported in [29], and others constitute our predictions.
Using the model described in Sec. II, we present below the
final expressions for the matrix elements and decay widths
computed from

ΓðN → N0γÞ ¼
Z

dΩγ
1

32π2
kγ
m2

N

1

2JN þ 1

×
X

σγ ;MN;MN0

jMN→N0γj2: ð20Þ

Asummary of numerical results is given inTable I, including
ratios of decay widths relative to Γðχc2→γJ=ψÞ, e.g.

RN→N0≡ΓðN→N0γÞ=Γðχc2→γJ=ψÞ, which are compared
to model calculations from [26]. We also discuss the
transition amplitudes jV̂j and jF̂kj introduced in [27,29] in
the context of analysis of lattice data. Here F̂k represents
either an electric, Êk, ormagnetic, M̂k, multipole and V̂ is the
dipole magnetic multipole for the transition involving a
vector and a pseudoscalar meson,

jF̂j2 ¼ jF̂1j2 ¼
1

8e2q

X
σγ ;MN;MN0

jMN→N0γj2;

jV̂j2 ¼ ðmN þmN0 Þ2
32e2qm2

Nk
2
γ

X
σγ ;MN;MN0

jMN→N0γj2: ð21Þ

For the radial wave functions we use a harmonic oscillator
approximation with a width parameter β ¼ 0.5 GeV. This
leads to some differences with respect to the other potential-
quark results of [26], where Coulomb plus linear plus
hyperfine interactions were used to compute the wave
functions. Sensitivity of the radiative transitions to the
short-range correlations have motivated precision calcula-
tions, which can, for example, be carried out in perturbation
theory and are summarized in the recent reviews [42,43].
Finally, we calculate the transition amplitudes for charge
conjugation–violating transitions, jF̂j=2. The factor of 2 is
introduced to account for the fact that a photon couples to a
single quark. Our findings are summarized below.

FIG. 1 (color online). Diagrammatic representation of one
possible configuration for hybrid-to-meson radiative transitions
contributing to the matrix element in Eq. (19).
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1. χ c2ð2þþÞ → hcð1þ−Þγ
A summary of recent experimental results on the decays

of charmonium can be found in [45]. To the best of our
knowledge, however, this transition has not been measured.
It corresponds to a magnetic dipole, which in general is
expected to be weaker than the electric dipole transition.
The matrix element corresponding to the dominant, M1

transition is given by

MN→N0γ ¼ − eq
mq

3i
4π

ϵ�ijM ½kγ × ϵðkγ; σγÞ�iϵjM0A; ð22Þ

where mq and eq ¼ ð2=3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
are the charm quark

mass and charge, respectively. Here ϵijM and ϵiM are the
spin-2 and spin-1 polarization vectors, respectively, and
the scalar function A is given in Appendix B. Using the
harmonic oscillator wave function we obtain Γ ¼ 0.1 keV.
The difference with respect to the expressions given in [26]
can be traced to an intrinsic ambiguity in normalization of
the wave functions, i.e. the difference is of the order of
Ecc̄
f =Mcc̄

i − 1. A more extended theoretical and experimen-
tal report on heavy quarkonium physics is given in [46],
where the effects of higher order relativistic corrections are
discussed.

2. χ c2ð2þþÞ → J=ψð1−−Þγ
This tensor-to-vector transition has been studied in

potential-quark models [25,26] and also on the lattice
[29]. There is experimental evidence for transitions involv-
ing radial excitations of the tensor states χ0c2 → J=ψγ and
χ00c2 → J=ψγ, but in this paper we focus on the ground state
tensor, χc2. The corresponding matrix element is given by

MN→N0γ ¼ − eq
mq

ffiffiffi
3

p

2π
ϵ�ijM ϵiM0ϵjðkγσγÞD; ð23Þ

with D given in Appendix A. The multipole decomposi-
tion, Eq. (D1), yields an electric dipole E1, magnetic
quadrupole M2 and electric octopole E3, with E1 being
the leading one. The calculated value for the decay width of
Γ ¼ 363 keV in our model agrees with experimental data
[44] and lattice calculations [29]. The FermiLab-E760 [47],
BES Collaboration [48] and CLEO Collaboration [49] have
all reported this transition. The PDG [44] reports a decay
width Γ ¼ 380 keV. The potential-quark models give a
width within the range of Γ ≈ 289–424 keV. The electric
dipole transition amplitude value from lattice calculations is
jF̂j ¼ jÊ1j ¼ 1.97 GeV and it is obtained by extrapolating
the electric dipole form factor to the physical photon point
Ê1ðQ → 0Þ ¼ Ê1. All results are summarized in Table I.

3. hcð1þ−Þ → χ c1ð1þþÞγ
To the best of our knowledge there is no experimental

information about this transition. The only observed
transition between the hcð1þ−Þ and another cc̄ meson is
hcð1þ−Þ → ηcð0−þÞγ [44], which we discuss later. The
matrix element for this transition is given by

MN→N0γ ¼
eq
mq

3

4π
ffiffiffi
2

p εijkεilmϵ
�j
Mϵ

k
M0kl

γϵ
mðkγ; σγÞA: ð24Þ

To leading order in photon momentum the M1 transition
dominates. We find Γ ¼ 239 × 10−6 keV, which is small
due to a limited phase space available for the decay.

TABLE I. Conventional cc̄ meson transitions compared to NR-potential model, lattice calculations and the PDG values, when
available. The charge-violating transitions described in the text are denoted by CV. The input charmonium meson masses have been
taken from the nonrelativistic model of [26]. The width parameter in the present model is fixed at β ¼ 0.5 GeV and the ratio R is defined
in the text.

Transition kγ (MeV) R R [26] TA (GeV) ðTA; βÞ (GeV) [27,29] Γ (keV) Γ (keV) [44]

ðχc2 → hcγÞM1
40 3.2 × 10−4 � � � jF̂j ¼ 0.12 � � � 0.1 � � �

ðχc2 → χc1γÞCV 45 0 � � � jF̂jCV ¼ 0.10 � � � 0 � � �
ðχc2 → χc0γÞCV 138 0 � � � 0 � � � 0 � � �
ðχc2 → J=ψγÞE1

429 1 1 jF̂j ¼ 2.02 (jF̂j ¼ 1.97, 0.55) 363 380
ðχc2 → ηcγÞCV 530 0 � � � 0 � � � 0 � � �
ðhc → χc1γÞM1

5 ∼10−7 � � � jF̂j ¼ 0.01 � � � ∼10−3 � � �
ðhc → χc0γÞM1

100 1.7 × 10−3 � � � jF̂j ¼ 0.13 � � � 0.6 � � �
ðhc → J=ψγÞCV 394 0 � � � 0 � � � 0 � � �
ðhc → ηcγÞE1

504 1.14 1.17 jÊ1j ¼ 1.54 (jÊ1j ¼ 1.85, 0.69) 416 372
ðχc1 → χc0γÞCV 95 0 � � � jF̂jCV ¼ 0.17 � � � 0 � � �
ðχc1 → J=ψγÞE1

390 0.92 0.74 jÊ1j ¼ 1.56 (jÊ1j ¼ 1.88, 0.56) 333 302
ðχc1 → ηcγÞCV 492 0 � � � 0 � � � 0 � � �
ðχc0 → J=ψγÞE1

303 0.73 0.36 jÊ1j ¼ 1.33 (jÊ1j ¼ 0.83, 0.54) 265 123
ðχc0 → ηcγÞCV 408 0 � � � 0 � � � 0 � � �
ðJ=ψ → ηcγÞM1

116 7.9 × 10−3 6.8 × 10−3 jV̂j ¼ 1.98=GeV (jV̂j ¼ 1.85=GeV, 0.54) 2.9 1.5

CHARMONIUM MESON AND HYBRID RADIATIVE TRANSITIONS PHYSICAL REVIEW D 89, 116005 (2014)

116005-5



4. hcð1þ−Þ → χ c0ð0þþÞγ
Unlike the other transitions considered so far, the

magnitude of photon momentum in this mode is large
i.e. of the same order of magnitude as in the other measured
magnetic dipole transition J=ψð1−−Þ → ηcð0−þÞγ. The
matrix element is given by

MN→N0γ ¼
eq
mq

ffiffiffi
3

p
i

4π
ϵ�M · ½kγ × ϵðkγ; σγÞ�A: ð25Þ

The multipole decomposition Eq. (D1) implies dominance
of a magnetic dipole M1. Because of the large photon
momentum, jkγj ¼ 100 MeV, for this decay we find
Γ ¼ 0.6 keV, which is comparable with the decay width
expected for the magnetic dipole transition ΓðJ=ψ → ηcγÞ.

5. hcð1þ−Þ → ηcð0−þÞγ
This transition corresponds to the only observed tran-

sition involving the hcð1þ−Þ meson. It has been observed
by the CLEO Collaboration [50,51] and confirmed by the
BESIII Collaboration [52].
The multipole decomposition Eq. (D1) implies an

electric dipole E1 transition. The matrix element can be
expressed as

MN→N0γ ¼ − eq
mq

2
ffiffiffi
3

p

4π
ϵ�M · ϵðkγ; σγÞD: ð26Þ

The experiment reports [44] Γ ¼ 372 keV. The potential-
quark models [25,26] report a decay width in the
range Γ ≈ 352–498 keV and lattice [27] reports
Γ ≈ 601–663 keV. Our model yields Γ ¼ 416 keV, which
is consistent with these results.

6. χ c1ð1þþÞ → J=ψð1−−Þγ
This transition has been reported experimentally and it

was studied on the lattice [27] with the latter giving a
central value somewhat above the experimental data albeit
with a sizable error. The results of our model seem to be in
good agreement with experiment. The matrix element for
this transition is given by

MN→N0γ ¼
eq
mq

ffiffiffi
6

p
i

4π
ϵ�M · ½ϵM0 × ϵðkγ; σγÞ�D: ð27Þ

The multipole decomposition Eq. (D1) implies that the
electric dipole E1 and the magnetic quadrupole M2 are
the two leading matrix elements. The experiment reports
[44] Γ ¼ 302 keV. The potential-quark models give the
width within the range Γ ≈ 215–314 keV. This model
yields Γ ¼ 333 keV.

7. χ c0ð0þþÞ → J=ψð1−−Þγ
The multipole decomposition Eq. (D1) for this transition

implies the leading transition is the dipole electric E1. The
matrix element for this transition is given by

MN→N0γ ¼
eq
mq

1

2π
ϵðkγ; σγÞ · ϵM0D: ð28Þ

The experiment reports [44] Γ ¼ 123 keV. The potential-
quark models report the decay width within the range
Γ ≈ 105–152 keV. We find the value Γ ¼ 265 keV.
Our results indicate approximately the same decay width

265–363 GeV for all transitions that involve the charmo-
nium multiplet ð0; 1; 2Þþþ decaying to the J=ψð1−−Þ.
Experimental data [44], however, indicate that the decay
width Γðχc0ð0þþÞ → J=ψγÞ is approximately one third of
Γðχc2ð2þþÞ → J=ψγÞ. The discrepancy is related to our
simple approximation for the wave function, which ignores
hyperfine and spin-orbit interactions [25,26]. This example
demonstrates that charmonium transitions can indeed be
used to pin down the quark wave function.

8. J=ψð1−−Þ → ηcð0−þÞγ
This is a magnetic dipole vector-pseudoscalar transition

between two 1 S states. The photon momentum for this
transition is about 116 MeVand the transition amplitude V̂
is calculated as is shown in Eq. (21).
The matrix element for this transition is given by

MN→N0γ ¼ − eq
mq

i
4π

ϵ�M · ½kγ × ϵðkγ; σγÞ�J ; ð29Þ

where J is defined in Appendix B.
The experiment [44] reports ΓðJ=ψ → ηcγÞ ¼ 1.5 keV

for this transition. The potential-quark model result is in the
range Γ ≈ 1.9–2.9 keV and we find Γ ¼ 2.9 keV.
There are a few magnetic dipole transitions experimen-

tally reported for charmonium below the DD̄ threshold
(3.73 GeV) [44]. These are given by J=ψð1SÞ → ηcð1SÞγ,
ψð2SÞ → ηcð2SÞγ and ψð2SÞ → ηcð1SÞγ. The last two
correspond to radial excitations of S states. In this work,
we only consider ground states for charmonium.
C-violating meson-to-meson transitions.—In addition to

the allowed transitions, we investigated possible charge
conjugation violation matrix elements which include
χc1 → ηcγ, χc1 → χc0γ, hc → J=ψγ, χc2 → ηcγ, χc2 →
χc0γ and χc2 → χc1γ. The finite matrix element for these
transitions is obtained when a photon is coupled to a single
quark line. The dominant OðkγÞ matrix elements are found
for χc1 → χc0γ and χc2 → χc1γ.

9. χ c1ð1þþÞ → χ c0ð0þþÞγ
The one-quark-line matrix element for this transition is

given by
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MN→N0γ ¼ − eq
mq

ffiffiffi
3

p
i

4π
ffiffiffi
2

p ϵ�M · ½kγ × ϵðkγ; σγÞ�A; ð30Þ

which according to Eq. (D1) corresponds to a magnetic
dipole M1. The value obtained in this model is
jF̂jCV ¼ 0.17 GeV, which corresponds to the magnetic
dipole transition amplitude defined by

jF̂j2CV ¼ 1

2e2q

X
σγ ;MN;MN0

jMN→N0γj2: ð31Þ

10. χ c2ð2þþÞ → χ c1ð1þþÞγ
The one-quark-line matrix element for this transition is

given by

MN→N0γ ¼
eq
mq

3i

8π
ffiffiffi
2

p εiklεjmlϵ
�ij
M ϵmM0 ½kγ × ϵðkγ; σγÞ�kA;

ð32Þ
which according to Eq. (D1) corresponds toM1, E2 andM3

transitions. For jF̂jCV defined in Eq. (31) we obtain
jF̂jCV ¼ 0.10 GeV.
In Table I we summarize our findings and compare with

the nonrelativistic potential-quark model of [26] and, when
available, with the transition amplitudes TA ¼ jF̂j, jV̂j
from lattice computations [27,29]. We use a single scale
parameter for all wave functions, while in the analysis
of lattice data the scale is fitted independently for each
transition. The specific values are shown in Table I.
The photon momentum for each transition is given
by kγ ¼ ðM2

N −M2
N0 Þ=2MN.

B. Hybrid-to-meson radiative decays

We have studied 24 possible hybrid-to-meson radiative
transitions, includingmatrixelements forC-violatingmodes.
The results are discussed below. In Table II, we quote the
expected decay ratios for these transitions when using
mhyb ¼ 4.35 GeV for the spin-averaged mass of the lowest
hybrid multiplet 1−−, ð0; 1; 2Þ−þ. To minimize sensitivity to
the wave functions we also quote the ratio of hybrid decay
amplitudes computed in the model, cf. Eq. (21), to those
computed using lattice simulations [29]. Specifically,

from lattice simulations two widths are quoted. The
Yð1−−Þ → ηcγ transition from a hybrid vector, Y, is a
magnetic dipole with the decay width given by

ΓðY → ηcγÞ ¼ αk3γ
64

27

jV̂j2
ðmY þmηcÞ2

; ð33Þ

where the magnetic dipole matrix element V̂ ¼ 0.28 yields
ΓðY → ηcγÞ ¼ 42 keV. The second transition reported in
[29] is ηc1ð1−þÞ → J=ψð1−−Þγ from the exotic hybrid ηc1 ,
which is also of amagnetic dipole type, with the decaywidth
given by

Γðηc1 → J=ψγÞ ¼ αkγ
16

27

jF̂j2
m2

ηc1

; ð34Þ

and the matrix element, F̂ ¼ 0.69 GeV, gives Γðηc1 →
J=ψγÞ ¼ 115 keV.As it is shownbelow,all hybrid transition
amplitudes in our model depend on a single factor jZ0j that
is determined by the hybrid meson wave function. We will
use the two magnetic dipole matrix elements, M̂1 and F̂,
to normalize this factor to make predictions for transitions
not yet reported but calculable in our model.
For the C-violating matrix elements we will use the

transition 1−þ → 0þþγ from [29] to normalize the relevant
wave function overlap factor in our model.

1. Yð1−−Þ → ηcð0−þÞγ
This transition involves a hybrid vector meson state

denoted as Y. Lattice simulations of charmonium (as well
as light quark mesons) predict a vector state located
between first and second resonance region i.e. above the
first radial and orbital excitation of the ground state spin-1
qq̄. Experimentally the Yð4260Þ is a possible candidate for
this hybrid in the charmonium spectrum and the Yð2175Þ is
the hybrid candidate in the ss̄ sector [53]. The transition
between a hybrid vector and ordinary pseudoscalar cc̄
meson is of magnetic dipole type. In magnetic transitions
between conventional, vector charmonium and the ηc there
is no change in angular momentum, but instead, the
transition involves a quark spin flip. In contrast, because
of presence of gluon spin, the magnetic transition from a
hybrid vector does not require a quark spin flip. This
picture is supported by the lattice results [29].
The matrix elements are given by

MN→N0γ ¼
eq
mq

3i

64π
3
2

ϵ�M · ½kγ × ϵðkγ; σγÞ�Z0; ð35Þ

where Z0 involves an integral over meson wave functions,
the scalar function K1ðk; qÞ, the gluon absorption kernel
and the Green’s function 1=ΔE.

TABLE II. Expected decay widths for the nonzero hybrid-to-
meson radiative transitions. The input charmonium meson
masses have been taken from the nonrelativistic model in [26]
and the mass of the hybrid multiplet was set tomhyb ¼ 4.35 GeV.

Transition Γ for κ1 (keV) Γ for κ2 (keV)

ðY → ηcγÞM1
39 126

ð0−þ → J=ψγÞM1
32 116

ðηc1 → J=ψγÞM1
32 116

ð2−þ → J=ψγÞM1
32 116
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The quantity κ21 defined by

ΓðY → ηcγÞM1
¼ αk3γ κ21 ð36Þ

can be compared with the lattice result given in Eq. (33),

κ1 ¼
1

32
ffiffiffi
3

p
π

3
2mq

jZ0j
mY

¼ 8

3
ffiffiffi
3

p jV̂j
ðmY þmηcÞ

: ð37Þ

This gives a relation between Z0 and the magnetic dipole
form factor V̂; using the lattice value of V̂ ¼ 0.28we obtain
κ21 ¼ 3.47 × 10−3 GeV−2 and it corresponds to a decay
width of ΓðY → ηcγÞM1

¼ 40 keV. The difference between
the reported value by lattice and this model is due to the
values of the masses for the hybrid and meson states used to
calculate the photon momentum. The reason we take the
lattice measurement to normalize Z0 is because of uncer-
tainties in its computation within the model. It requires
knowledge of the hybrid wave function, which in turn
requires solving the three-body problem; cf. Eq. (5). We
leave this for future investigations and here focus instead on
symmetry relations implied by the existence of the light
hybrid multiplet.
Using the value for jZ0j2 or equivalently κ21 estimated

above, we can now make a prediction for the other three
nonzero hybrid radiative transitions that in our model are
determined by the same wave function overlap. These
are 0−þ → J=ψð1−−Þγ, ηc1ð1−þÞ → J=ψð1−−Þγ and
2−þ → J=ψð1−−Þγ. The results are summarized in Table II.

2. 0−þ → J=ψð1−−Þγ
This is also a dipole magnetic transition. As it is shown

below, the model predicts that any difference with respect
to Yð1−−Þ → ηcð0−þÞγ is only due to the available phase
space as determined by the magnitude of the photon
momentum, kγ. The matrix element for this transition is
given by

MN→N0γ ¼ − eq
mq

i
ffiffiffi
3

p

64π
3
2

ϵM0 · ½kγ × ϵðkγ; σγÞ�Z0: ð38Þ

The normalized results for transition with respect to lattice
magnetic dipole form factors are summarized in Table II.

3. ηc1ð1−þÞ → J=ψð1−−Þγ
The multipole decomposition for this transition includes

a magnetic dipole and an electric quadrupole transition but
to lowest order in photon momentum the magnetic dipole
transition dominates. The corresponding matrix element is
given by

MN→N0γ ¼
eq
mq

3
ffiffiffi
2

p

128π
3
2

ðϵ�M × ϵM0 Þ · ½ϵðkγ; σγÞ × kγ�Z0;

ð39Þ

and the decay width is given by Γðηc1 → J=ψγÞM1
¼

αkγκ22, where we have defined κ2 as

κ2 ≡ kγ
32

ffiffiffi
3

p
π

3
2mq

jZ0j
mηc1

¼ 4

3
ffiffiffi
3

p jF̂j
mηc1

: ð40Þ

Using the lattice value F̂ ¼ 0.69 GeV we find

κ22 ¼ 1.49 × 10−2: ð41Þ

We can now estimate the difference in jZ0j2 obtained using
the two lattice results as normalizers. We find

jZ0jF̂ ≈ 2 × jZ0jV̂ ; ð42Þ

where the subscript indicates which lattice matrix element
is used in the determination. This result implies significant
dependence of Z0 on the process and can be interpreted
as a measure of the difference in the wave functions of the
1−− and 1−þ hybrids. This discrepancy is also seen in the
ratio R ¼ ΓðY → ηcγÞ=Γðηc1 → J=ψγÞ which is approx-
imately 0.37 on the lattice while our model predicts R ≈ 1
for the whole hybrid super multiplet. In Table II, we show
the predictions for the decay widths normalized using both
κ1 and κ2.

4. 2−þ → J=ψð1−−Þγ
The hybrid 2−þ is the last remaining member of

the lightest hybrid multiplet considered here. Since no
pseudotensor charmonium transition has been observed
(not even one fitting any of the ordinary cc̄ meson
multiplets), the results of this model may be relevant to
future experimental searches. The matrix element corre-
sponding to this transition is given by

MN→N0γ ¼
eq
mq

3i

64π
3
2

ϵ�ijM ϵjM0 ½kγ × ϵðkγ; σγÞ�iZ0: ð43Þ

The predictions are summarized in Table II.
C-violatinghybrid transitions.—Twocharge conjugation–

violating matrix elements have been reported in [29]. Both
involve the exotic hybrid and they are 1−þ → 0−þγ and
1−þ → 0þþγ. In ourmodel thematrix element for the 1−þ →
0−þγ transition vanishes identically. The reason is that in the
matrixelementfor thephotoncouplingtothequarki.e. thetwo
terms in the curly brackets in Eq. (19) only the spin-flip term
contributes but does not bring any gluon momentum (k)
contribution.Therefore, all thegluonmomentumdependence
comes from the Coulomb interaction Eq. (6) and the hybrid
wave function Eq. (A2). Thus, after performing the gluon
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angular integration Eq. (C1), the transition matrix element
gives exactly zero to the term proportional to∼εijkq̂i

gq̂k
g ¼ 0.

The matrix elements for the other, nonvanishing
C-violating transitions are summarized below:

MY→hcγ ¼ κ3eq
3i

16ð4πÞ32 ðϵ
�
M × ϵM0 Þ · ϵðkγ; σγÞ;

M0−þ→χc1γ ¼ κ3eq

ffiffiffi
6

p

16ð4πÞ32 ϵðkγ; σγÞ · ϵM0 ;

Mηc1→χc0γ ¼ −κ3eq
ffiffiffi
6

p

16ð4πÞ32 ϵ
�
M · ϵðkγ; σγÞ;

Mηc1→χc1γ ¼ −κ3eq 3i

32ð4πÞ32 ðϵ
�
M × ϵM0 Þ · ϵðkγ; σγÞ;

Mηc1→χc2γ ¼ κ3eq
3

ffiffiffi
2

p

32ð4πÞ32 εijkεilmϵ
�j
Mϵ

lðkγ; σγÞϵkmM0 ;

M2−þ→χc1γ ¼ κ3eq
3

ffiffiffi
2

p

32ð4πÞ32 εijkεlkmϵ
�il
M ϵjðkγ; σγÞϵ�mM0 ;

M2−þ→χc2γ ¼ −κ3eq 3i

16ð4πÞ32 εijkε
�il
M ϵjðkγ; σγÞεlkM0 ; ð44Þ

where κ3 is defined as

κ3 ≡ Nc
ffiffiffiffiffiffi
CF

p
mq

jZ1j ¼
16ð4πÞ32ffiffiffi

6
p jÊ1jCV: ð45Þ

It is observed that, as before, all matrix elements depend on
a single wave function overlap factor Z1, given in the
Appendix. To determine the common factor κ3 for all the
nonzero hybrid C-violating transitions found in our model
we use the transition amplitude (jÊ1jCV ¼ 0.34 GeV) from
lattice simulations reported for 1−þ → 0þþγ. Therefore,
using Eq. (31), κ3 ¼ 98.93 GeV. The numerical results
shown in Table III constitute predictions of the model.

IV. SUMMARY AND OUTLOOK

We studied radiative decays of conventional charmonia
and charmonium hybrids. Ordinary cc̄ mesons with
quantum numbers JPC, ηcð0−þÞ, J=ψð1−−Þ, χc0ð0þþÞ,
χc1ð1þþÞ, hcð1þ−Þ, χc2ð2þþÞ were used as benchmarks

where we considered the minimal coupling of the photon to
the nonrelativistic quarks. Simple harmonic oscillator wave
functions with fixed size parameters were used to calculate
the decay widths. We have compared our results with other
models [25,26] and found a reasonable agreement. A few
new predictions for transition amplitudes were presented
including charge-violating transition amplitudes.
To describe hybrid decays we considered a model based

on an effective QCD Hamiltonian that describes non-
relativistic quarks interacting with (relativistic) gluons
and is constructed from the QCD in the Coulomb gauge
by applying Foldy-Wouthuysen transformation. We have
derived all relevant matrix elements, which can be com-
puted given a model for a hybrid meson wave function. We
considered decays of states from the hybrid multiplet 1−−,
ð0; 1; 2Þ−þ with 1−þ being the exotic state. There are 24
possible radiative transitions between this multiplet and
ground state charmonia. The decay widths obtained in this
model were normalized with respect to the two reported
lattice transition amplitudes for ΓðYð1−−Þ → ηcγÞ and
Γðηc1ð1−þÞ → J=ψγÞ. The other two Γð0−þ → J=ψγÞ
and Γð2−þ → J=ψγÞ constitute predictions of the model.

In general the model predicts R ¼ ΓðN→N0γÞ
Γðηc1ð1−þÞ→J=ψγÞ ≈ 1 for

the whole hybrid multiplet while lattice reports

R¼ ΓðYð1−−Þ→ηcγÞ
Γðηc1ð1−þÞ→J=ψγÞ¼0.37. We also investigated C-violating

matrix elements involving hybrids. The model predicts
several of such matrix elements to be nonzero and we used
the lattice transition amplitude for ηc1ð1−þÞ → 0þþγ as
normalizer to constrain our predictions.
In the absence of spin-dependent interactions, the model

leads to a degenerate hybrid multiplet. While this prediction
is not too far from lattice findings, the differences in
transition matrix elements obtained from lattice simulations
can be used to probe the wave functions predicted by the
model. This requires solving the hybrid meson Schrödinger
equation. A simplified variational attempt has been made in
[15] and in the future we hope to obtain a more realistic
description of hybrid mesons’ wave functions.
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APPENDIX A: MESON AND HYBRID
SPIN-ORBITAL WAVE FUNCTIONS

The conventional cc̄ meson spin-orbital wave functions
are given by

TABLE III. C-violating expected amplitudes.

Transition jÊ1j for κ3 [GeV]

Y → hcγ 0.60
0−þ → χc1γ 0.34
ηc1 → χc0γ 0.34
ηc1 → χc1γ 0.30
ηc1 → χc2γ 0.38
2−þ → χc1γ 0.38
2−þ → χc2γ 0.66
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χJMPC
m1;m2

ð0−þÞ ¼ 1

2
ffiffiffiffiffiffi
2π

p ½iσ2�m1m2
;

χJMPC
m1;m2

ð1−−Þ ¼ 1

2
ffiffiffiffiffiffi
2π

p ½σðiσ2Þ�m1m2
· ϵM;

χJMPC
m1;m2

ð0þþÞ ¼ − 1

2
ffiffiffiffiffiffi
2π

p ½σðiσ2Þ�m1m2
· q̂;

χJMPC
m1;m2

ð1þþÞ ¼ −
ffiffiffi
3

p

4
ffiffiffi
π

p ½σσ2�m1m2
· q̂ × ϵM;

χJMPC
m1;m2

ð1þ−Þ ¼
ffiffiffi
3

p

2
ffiffiffiffiffiffi
2π

p ½iσ2�m1m2
q̂ · ϵM;

χJMPC
m1;m2

ð2þþÞ ¼
ffiffiffi
3

p

2
ffiffiffiffiffiffi
2π

p
X
ij

½σiðiσ2Þ�m1m2
q̂jϵijM: ðA1Þ

The hybrid spin-orbital wave functions are given by

χ�JMPC
m1;m2;σð1−−Þ

¼ −
ffiffiffi
3

p

8π
½iσ2�m2m1

ϵð−k; σÞ · ϵ�M½δσ;1 − δσ;−1�;
χ�JMPC
m1;m2;σð0−þÞ

¼ 1

8π
½ðiσ2Þσ�m2m1

· ϵð−k; σÞ½δσ;1 − δσ;−1�;
χ�JMPC
m1;m2;σð1−þÞ

¼
ffiffiffi
3

p

8π
ffiffiffi
2

p ½σ2σ�m2m1
· ϵð−k; σÞ × ϵ�M½δσ;1 − δσ;−1�;

χ�JMPC
m1;m2σ ð2−þÞ

¼ −
ffiffiffi
3

p

8π

X
ij

½ðiσ2Þσj�m2m1
ϵið−k; σÞϵ�ijM ½δσ;1 − δσ;−1�:

ðA2Þ

APPENDIX B: MESON-TO-MESON
RELEVANT EXPRESSIONS

The radiative transitions between two conventional
mesons produce the following set integrations:

Z
dq

ð2πÞ3Ψ
N;α
cc̄ ðqÞΨN0;α0

cc̄ ðqÞ ¼ J ;

Z
dq

ð2πÞ3 Ψ
N;α
cc̄ ðqÞΨN0;α0

cc̄

�����q − kγ

2

����
�
q̂iq̂j ¼ Aδij þ Bk̂i

γk̂
j
γ;

Z
dq

ð2πÞ3 Ψ
N;α
cc̄ ðqÞΨN0;α0

cc̄

�����q − kγ

2

����
�
qq̂iq̂j ¼ Dδij þ Gk̂i

γk̂
j
γ;

ðB1Þ

and

A ¼
Z

dq
ð2πÞ3Ψ

N;α
cc̄ ðqÞΨN0;α0

cc̄

�����q − kγ

2

����
��

1 − ŷ2

2

�

B ¼
Z

dq
ð2πÞ3Ψ

N;α
cc̄ ðqÞΨN0;α0

cc̄

�����q − kγ

2

����
��

3ŷ2 − 1

2

�
;

D ¼
Z

dq
ð2πÞ3Ψ

N;α
cc̄ ðqÞΨN0;α0

cc̄

�����q − kγ

2

����
�
q

�
1 − ŷ2

2

�
;

G ¼
Z

dq
ð2πÞ3Ψ

N;α
cc̄ ðqÞΨN0;α0

cc̄

�����q − kγ

2

����
�
q

�
3ŷ2 − 1

2

�
;

ðB2Þ

where ŷ ¼ q̂ · k̂γ.

APPENDIX C: HYBRID-TO-MESON
RELEVANT EXPRESSIONS

In the hybrid-to-meson radiative transition, the integrals
over the direction of gluon momentum produce the
following set of relations:

Z
dk̂Kð1Þ

�����k2 þ qg

����;
����k2 − qg

����
�
k̂ik̂j

¼ Aðk; qgÞδij þ Bðk; qgÞq̂i
gq̂

j
g; ðC1Þ

with qg ¼ ðq0 − qþ kγ

2
Þ and x ¼ q̂g · k̂

Aðk; qgÞ ¼
Z

dk̂Kð1Þ
�����k2 þ qg

����;
����k2 − qg

����
�
1 − x2

2
;

Bðk; qgÞ ¼
Z

dk̂Kð1Þ
�����k2 þ qg

����;
����k2 − qg

����
�
3x2 − 1

2
:

ðC2Þ

To leading order in photon momentum (qg → jq0 − qj) we
use the following notation:

Z0 ¼ g2
Z

k2dk
ð2πÞ3

dq
ð2πÞ3

dq0

ð2πÞ3Ψ
N;α
cc̄g ðk; qÞΨN0;α0

cc̄ ðq0Þ

×
kffiffiffiffiffiffi

ωk
p ðΔEÞAðk; jq0 − qjÞ: ðC3Þ

The dependence on the QCD coupling g2 is a consequence
of the presence of the gluon in the hybrid meson wave
function as discussed in Sec. II.

1. Hybrid-to-meson C-violating relations

The C-violating transitions are given by terms propor-
tional toAðk; jq0 − qjÞðq0 − qÞiq̂0j; thus, the expressions in
the C-violating hybrid-to-meson transitions can be sim-
plified to
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Z1 ¼
g2

3

Z
k2dk
ð2πÞ3

dq
ð2πÞ3

dq0

ð2πÞ3Ψ
N;α
cc̄g ðk; qÞΨN0;α0

cc̄ ðq0Þ

×
kffiffiffiffiffiffi

ωk
p ðΔEÞAðk; jq0 − qjÞðq0 − qẑÞ: ðC4Þ

APPENDIX D: MULTIPOLE DECOMPOSITION
AND WIDTH DECAY

We need to determine the type of transition through the
multipole decomposition. The simplest way is to consider
that the photon moves in the −ẑ direction as in [27], so that
the multipole decomposition is given by

Mðλγ ¼�Þ¼
X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

2Jþ1

r
hl∓ 1;J0λ�1jJλi

×

�
El

1

2
ð1þð−1ÞlδPÞ∓Ml

1

2
ð1− ð−1ÞlδPÞ

�
;

ðD1Þ

where the transition can be represented as ðJλÞ → ðJ0λ0Þþ
ðγλγÞ, and δP is the product of the initial and final meson
parities.
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