
Generalized parton distributions in a light-front nonperturbative approach

D. Chakrabarti,1 X. Zhao,2 H. Honkanen,3 R. Manohar,4 P. Maris,2 and J. P. Vary2
1Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

3Department of Physics, Penn State University, University Park, Pennsylvania 16802, USA
4Department of Physics, BITS-Pilani (Goa Campus), Goa 403726, India

(Received 5 March 2014; published 4 June 2014)

Basis light-front quantization (BLFQ) has recently been developed as a promising nonperturbative
technique. Using BLFQ, we investigate the generalized parton distributions (GPDs) in a nonperturbative
framework for a dressed electron in QED. We evaluate light-front wave functions and carry out overlap
calculations to obtain GPDs. We also perform perturbative calculations in the corresponding basis spaces to
demonstrate that they compare reasonably with the BLFQ results.
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I. INTRODUCTION

More than 40 years after the advent of QCD, the
understanding of hadronic structures is incomplete. Since
the subject involves strong interactions, we are handi-
capped by the lack of nonperturbative techniques to
investigate these structures in a practical manner. Lattice
gauge theory provides us the most practiced nonperturba-
tive method to address the issues in QCD, but it has
limitations. Recently basis light-front quantization (BLFQ)
[1,2] has been developed as another nonperturbative tool
and has been extended and applied to investigate scattering
[3,4] and bound state problems [5].
In this paper, we calculate the generalized parton dis-

tributions (GPDs) which encode nonperturbative informa-
tion about the spatial structure of the hadron as well as the
spin and angular momentum contributions of the partons to
the hadron. GPDs appear in the amplitudes for exclusive
processes like deeply virtual Compton scattering (DVCS)
or deeply virtual vector meson production (DVMP). There
are several extensive reviews and discussions about GPDs
in the literature [6–9]. The GPDs are functions of the
longitudinal momentum fraction of the probed parton (x),
the longitudinal momentum fraction transferred, or skew-
ness, (ζ) and the square of the momentum transferred (t). In
the forward limit (t → 0) they reduce to the ordinary parton
distribution functions (PDFs). As they are off-forward
matrix elements, the GPDs are not positive definite and
therefore cannot be interpreted as “distribution functions.”
However, in the zero skewness limit, the Fourier transform
of the GPDs with respect to the transverse momentum
transfer (Δ⊥) gives the GPDs in impact parameter space
which are positive definite and provides the distribution of
the partons in transverse position space [10]. Ji’s sum rule
[11] relates the second moment of the sum of GPDs
Hðx; ζ; tÞ and Eðx; ζ; tÞ in the t → 0 limit with the total
angular momentum of the parton. For a transversely
polarized proton, one can interpret the term Hðx; 0; 0Þ in

Ji’s sum rule as the effect of an overall transverse shift when
going from instant form to front form whereas the term
Eðx; 0; 0Þ arises from the transverse deformation of the
GPDs in the center of momentum frame [12]. There are
many existing experimental results [13] and also many
future experiments that will study DVCS/DVMP. These
experiments require a model to extract the GPDs for the
proton which has prompted many theoretical and phenom-
enological models for GPDs [14,15]. The nonperturbative
lattice approach can calculate a limited set of moments of
GPDs [16] and therefore requires additional assumptions
for higher moments to generate the complete GPDs.
In this paper, we report an initial effort to investigate

the GPDs in a completely nonperturbative framework.
In particular, we calculate the GPDs of an electron
dressed with a photon at zero skewness. Since we work
initially in QED, we exploit the opportunity to compare
our nonperturbative results with perturbative results. The
light-front framework allows us to expand the physical
state into a multiparticle Fock space. The GPDs in this
QED problem satisfy the nontrivial properties like poly-
nomiality (for nonzero ζ) and positivity conditions which
are reasons why the dressed electron in QED has been
extensively used to study DVCS and GPDs [17–21].
This paper is organized as follows. In Sec. II, we briefly

outline the light-front overlap representation of the GPDs
and in Sec. III we introduce the basics of BLFQ and the
procedure of evaluating electron GPDs in BLFQ. Then in
Sec. IV, we present our model light-front wave functions
and the resulting GPDs in perturbation theory. In Sec. V, we
compare our numerical results from BLFQ to those from
perturbative calculations. Finally we finish the paper with a
summary and conclusions.

II. OVERLAP REPRESENTATION

In this paper, as a test problem for BLFQ, instead of
considering the GPDs of a hadron in QCD we focus on the
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GPDs of a physical (dressed) electron in QED and
the corresponding “partons” are the bare electrons and
photons. We expand the physical electron into the Fock
space basis:

jephysi ¼ ψ1∣e−i þ ψ2∣e−γi þ ψ3a∣e−eþe−i
þ ψ3b∣e−γγi þ � � � : ð1Þ

We choose the frame where the initial and final momenta of
the electron with mass M are

P ¼
�
Pþ; 0⊥;

M2

Pþ

�
; ð2Þ

P0 ¼
�
ð1 − ζÞPþ;−Δ⊥;

M2 þ Δ2⊥
ð1 − ζÞPþ

�
: ð3Þ

So, the momentum transferred from the target is

Δ ¼ P − P0 ¼
�
ζPþ;Δ⊥;

tþ Δ2⊥
ζPþ

�
; ð4Þ

where t ¼ Δ2.
The GPDs are expressed as the off-forward matrix

element of the bilocal operator on the light cone. We
use the parametrization for the GPDs [17]:Z

dz−

8π
eixP

þz−=2hP0∣Ψ̄ð0ÞγþΨðz−Þ∣Pi∣zþ¼0;z⊥¼0

¼ 1

2P̄þ

�
Hqðx; ζ; tÞūðP0ÞγþuðPÞ

þ Eqðx; ζ; tÞūðP0Þ iσ
þjð−ΔjÞ
2M

uðPÞ
�
; ð5Þ

where P̄þ ¼ ðPþ þ P0þÞ=2 ¼ ð1 − ζ=2ÞPþ. The physical
electron state of momentum P is then expanded in terms of
multiparticle light-front wave functions [17]:

∣Pi¼X
n

Z Yn
i¼1

dxid2k⊥iffiffiffiffi
xi

p
16π3

16π3δ

�
1−

Xn
i¼1

xi

�

×δ2
�Xn

i¼1

k⊥i

�
ψnðxi;k⊥i;λiÞ∣n;xiPþ;xiP⊥þk⊥i;λii;

ð6Þ

here xi ¼ kþi =P
þ and k⊥i represent the relative transverse

momentum of the ith constituent and n is the number of
particles in a Fock state. The physical transverse momenta
are p⊥i ¼ xiP⊥ þ k⊥i and λi are the light-cone helicities.
The boost invariant light-front wave functions ψn depend
only on xi and k⊥i and are independent of the total
momentum of the state Pþ and P⊥.
In this paper, we concentrate only on the zero skewness

limit, i.e., ζ ¼ 0. In this limit, for 0 ≤ x ≤ 1, only the

diagonal (i.e., n → n) process contributes to the GPDs and
the overlap representations of the GPDs are given by

Hqðx; 0; tÞ ¼
X
n;λi

Z Yn
i¼1

dxid2k⊥i

16π3
16π3δ

�
1 −

X
j

xj

�

× δ2
�Xn

j¼1

k⊥j

�
δðx − x1Þ

× ψ↑�
n ðxi0; k0⊥i; λiÞψ↑

nðxi; k⊥i; λiÞ; ð7Þ

Δ1− iΔ2

2M
Eqðx;0;tÞ¼

X
n;λi

Z Yn
i¼1

dxid2k⊥i

16π3
16π3

×δ

�
1−

X
j

xj

�
δ2
�Xn

j¼1

k⊥j

�
δðx−x1Þ

×ψ↑�
n ðxi0;k0⊥i;λiÞψ↓

nðxi;k⊥i;λiÞ; ð8Þ
where for the struck parton x01 ¼ x1; k0⊥1 ¼ k⊥1 − ð1 −

x1ÞΔ⊥ and x0i ¼ xi; k0⊥i ¼ k⊥i þ xiΔ⊥ for the specta-
tors ði ¼ 2;…; nÞ.

III. BASIS LIGHT-FRONT QUANTIZATION

In this section we present a brief outline of the basis
light-front quantization (BLFQ) (see Refs. [1,3] for
more details). BLFQ is a first-principles nonperturbative
approach to bound state problems in quantum field theory
(QFT). BLFQ adopts the light-front quantization [22], and
the bound state problem in QFT is treated as the eigenvalue
problem of the light-front Hamiltonian of the system.
Explicitly, through solving the following eigenequation
of the light-front Hamiltonian, P−,

P−jβi ¼ P−
β jβi; ð9Þ

one obtains the (light-front) energy spectrum, P−
β , and the

associated (light-front) amplitudes of the bound states. The
(squared) invariant mass of bound states, M2, is related to
the light-front energy according to

M2 ¼ PþP− − P2⊥; ð10Þ

where P⊥ ðPþÞ is the total transverse (longitudinal)
momentum of the system.
In order to mitigate the computational burden, BLFQ

employs an optimized basis for the eigenvalue problem.
The BLFQ basis is constructed in terms of the Fock-sector
expansion. For each Fock particle (constituent), the basis
state is factorized into the longitudinal, transverse and
spin (helicity) degrees of freedom. The longitudinal direc-
tion (x−) is compactified into a circle of length 2L,
−L ≤ x− ≤ L, with periodic (antiperiodic) boundary
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condition imposed for bosons (fermions) in our application
here. Thus, in coordinate space, the longitudinal modes
ψkðx−Þ are given by

ψkðx−Þ ¼
1

2L
ei

π
Lkx

−
; ð11Þ

where the wave number k ¼ f1; 2; 3;…g for periodic and
k ¼ f1=2; 3=2; 5=2;…g for antiperiodic boundary condi-
tion acts as the quantum number for the longitudinal
degrees of freedom. For periodic boundary condition, we
exclude the zero modes (k ¼ 0). In the transverse direc-
tions, 2D harmonic oscillator (HO) states are adopted as the
basis states. In momentum space, we introduce the dimen-
sionless variable ρ ¼ ∣p⊥∣=b where b has the dimension of
mass. Then the orthonormalized HO wave functions are
given by

Φn;mðρ;φÞ ¼
ffiffiffiffiffiffi
2π

b

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!

ð∣m∣þ nÞ!

s
eimφ

× ρ∣m∣e−ρ2=2L∣m∣
n ðρ2Þ; ð12Þ

with n and m the radial and (2D) angular quantum
numbers and L∣m∣

n ðρ2Þ are the generalized Laguerre
polynomials. For the spin degree of freedom, a single
quantum number λ is used to label the helicity of the
particle. In total, each Fock particle is labeled by four
quantum numbers, fk; n; m; λg. The discretized BLFQ
basis is orthonormal.
In order to make numerical calculations feasible, basis

truncation is necessary. In BLFQ, basis truncation is
performed both at the Fock-sector level and inside each
Fock sector. In this paper, as an initial application of BLFQ,
we make the lowest nontrivial Fock-space truncation for
the electron system, namely, we retain only the jei and jeγi
Fock sectors. In each Fock sector, the truncation on
transverse degrees of freedom is implemented through
the following scheme: we retain only those basis states
whose sum of the HO quanta is smaller than a chosen
cutoff, Nmax, namely,X

i

ð2ni þ ∣mi∣þ 1Þ ≤ Nmax; ð13Þ

where the sum is over all constituents in that basis state.
The finiteness of the total HO quanta introduces both

transverse ultraviolet (UV) and infrared (IR) cutoffs into the
theory [23–25]. The momentum space HO wave functions
fall off sharply beyond p⊥ ∝ b

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
and thus Λ ¼

b
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
acts as a natural UV cutoff. Taking the Fourier

transform of the HO wave functions, one can easily see that
the coordinate space wave functions are similar to the
momentum space wave functions with the parameter b
switching from denominator to the numerator. Thus, the
basis states in coordinate space have maximum support

xmax⊥ ∝
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
=b. Translated into momentum space,

it provides the IR cutoff ϵ ¼ 1=xmax⊥ ¼ b=
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
.

Therefore, as Nmax increases, for fixed b, the UV
cutoff increases while the IR cutoff decreases at the
same time.
Basis truncation for the longitudinal degrees of free-

dom is implicit: the imposed (anti)periodic boundary
condition results in discretized longitudinal momenta
for the constituents, which leads to a finite number of
partitions for a chosen total longitudinal momentum (Pþ)
of the system.
With the BLFQ basis states constructed, we are now in

the position to write down the light-front QED Hamiltonian
in this basis. Following Ref. [26], we defer the inclusion of
the instantaneous interactions and adopt the following
Hamiltonian for this work:

P− ¼
Z

d2x⊥dx−
�
1

2
Ψ̄γþ

m2 þ ði∂⊥Þ2
i∂þ Ψ

þ 1

2
Ajði∂⊥Þ2Aj þ ejμAμ

�
; ð14Þ

where Ψ and Aμ are the fermion and gauge boson field,
respectively. m is the bare electron mass and e is the
electron charge, which is related to the electromagnetic
coupling constant α ¼ e2

4π. In order to isolate the eigen-
states of the Hamiltonian with lowest transverse center-
of-mass motion, we add an appropriate Lagrange multiplier
term to the input light-front QED Hamiltonian. This
has the effect of shifting the states with excited trans-
verse center-of-mass motion to high mass and the
low-lying spectrum comprises states with lowest trans-
verse center-of-mass motion, following the techniques
of nuclear many-body theory [27,28]. The resulting
low-lying states can be written as a simple product of
internal and center-of-mass motion in the transverse
directions.
Upon diagonalizing the QED Hamiltonian in a basis

with a chosen total longitudinal momentum (Pþ) and
longitudinal projection of the total angular momentum, the
lowest eigenstate is identified as the physical electron,
denoted as je↑physi, where the arrow indicates the helicity
of the physical (dressed) electron. The corresponding
amplitude can be employed to calculate observables, such
as the GPDs. Since in the BLFQ basis we exclude the zero
modes for the constituents, we concentrate on the electron
GPDs with the (bare) electron longitudinal momentum
fraction x only in the region 0 < x < 1. In this region
and in our truncated basis, the electron GPDs receive
contributions from the amplitude in the jeγi sector
only. In terms of the BLFQ amplitude of the physical
electron state, he↑physjke; ne; me; λe; kγ; nγ; mγ; λγi, we
introduce the electron GPDs in the zero-skewness
(ζ ¼ 0) limit,
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H

�
x ¼ ke

ke þ kγ
; 0; t

�

¼
X

ne;me;λe;nγ ;mγ ;λγ

he0↑physjke; ne; me; λe; kγ; nγ; mγ; λγi

× hke; ne;me; λe; kγ; nγ; mγ; λγje↑physi; ð15Þ

Δ1 − iΔ2

2M
E

�
x ¼ ke

ke þ kγ
; 0; t

�

¼
X

ne;me;λe;nγ ;mγ ;λγ

he0↑physjke; ne; me; λe; kγ; nγ; mγ; λγi

× hke; ne;me; λe; kγ; nγ; mγ; λγje↓physi; ð16Þ

where the summation is over the transverse and
helicity quantum numbers of all the constituents. Here
t ¼ Δ2 ¼ −ðΔ⊥Þ2 is the squared momentum transfer.
Due to the fact that the BLFQ basis adopts discretized
longitudinal momenta, we have direct access of the GPDs
only at discretized x ¼ ke=ðke þ kγÞ. By exploiting the
parity symmetry in the transverse plane [29], the ampli-
tude for the helicity-down state, je↓physi, can be inferred
from that of the helicity-up state, je↑physi, as follows:

he↓physjke; ne; me; λe; kγ; nγ; mγ; λγi
¼ ð−1Þmeþmγþ1he↑physjke; ne;−me;−λe; kγ; nγ;−mγ;−λγi:

ð17Þ

The amplitude of the final state, je0↑physi, can also be
inferred from that of the initial state, je↑physi, according to

he0↑physjke; ne; me; λe; kγ; nγ; mγ; λγi
¼

X
n0e;m0

e;n0γ ;m0
γ

he↑physjke; n0e; m0
e; λe; kγ; n0γ; m0

γ; λγi

×
Z

d2k⊥e Φ�
n0e;m0

e
ðk0⊥e ÞΦne;me

ðk⊥e Þ

×
Z

d2k⊥γ Φ�
n0γ ;m0

γ
ðk0⊥γ ÞΦnγ ;mγ

ðk⊥γ Þ; ð18Þ

where for the struck electron k0⊥e ¼ k⊥e − ð1 − xÞΔ⊥ and
for the spectator photon k0⊥γ ¼ k⊥γ þ ð1 − xÞΔ⊥. Φn;mðk⊥Þ
is the 2D-HO wave function in momentum space given
by Eq. (12).
In order for the calculated GPDs to be compared with

experimental data, it is necessary to renormalize the BLFQ
results. Following Ref. [26], we only perform electron mass
renormalization in this work. We adopt a sector-dependent
renormalization scheme [30] and adjust the bare electron
mass (m) in P−

QED for the matrix elements only in the jei

sector so that the resulting invariant mass of the physical
electron state jephysi matches its physical value
M ¼ 0.511 MeV. The entire process is performed itera-
tively during the diagonalization of the light-front QED
Hamiltonian (14).
In addition to electron mass renormalization, we need to

solve one more issue: the current Fock space truncation
violates the condition Z1 ¼ Z2 [31], which is a conse-
quence of the Ward identity. Here Z1 is the renormalization
factor for the vertex coupling the jei and jeγi sectors which
remains unity in the infinite basis limit with our Fock space
truncation. Now, Z2 is the electron wave-function renorm-
alization which, in light-front dynamics, can be interpreted
as the probability of finding a bare electron out of a physical
electron:

Z2 ¼
X
jei

jhejephysij2; ð19Þ

where the summation runs over all the basis states in the jei
sector. In our Fock space truncation, Z2 receives a con-
tribution from the quantum fluctuation between the jei and
jeγi sectors and consequently goes to zero in the infinite
basis limit.
In order to remedy the resulting artifacts on the observ-

ables, we follow the procedure in Ref. [26] and rescale the
naive GPDs [(15) and (16)] in the region of1 0 < x < 1 by a
factor of Z−1

2 . We obtain the following rescaled GPDs as
our final results:

Hreðx; 0; tÞjx∈ð0;1Þ ¼ Z−1
2 Hðx; 0; tÞjx∈ð0;1Þ; ð20Þ

Ereðx; 0; tÞjx∈ð0;1Þ ¼ Z−1
2 Eðx; 0; tÞjx∈ð0;1Þ: ð21Þ

IV. PERTURBATIVE CALCULATION
OF THE GPDS

To check the BLFQ results for the GPDs of a
dressed electron, we present a perturbative calculation
of the electron GPDs using the overlap formalism of
light-front wave functions. For this purpose, we use the
same Fock space expansion as described in Sec. II, see
Eq. (1). For zero skewness, the leading contribution
(at one loop) comes from the particle number conserv-
ing 2 → 2 process (the single particle sector contributes
only for x ¼ 1 and is a delta function). So, we truncate
the Fock space at the two particle sector. The single
particle wave function gives the wave-function renorm-
alization constant and ensures overall probability con-
servation. The two particle state can again be expanded
as [17]

1Note that the rescaling for GPDs at x ¼ 1 needs to be treated
separately, since there they receive contributions from the jei
Fock sector.
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����Ψ↑
two particleðPþ; P⊥ ¼ 0⊥Þ

�
¼

Z
dxd2k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
16π3

×

�
ψ↑
þ1

2
þ1
ðx; k⊥Þ

����þ 1

2
;þ1; xPþ; k⊥

�
þ ψ↑

þ1
2
−1ðx; k⊥Þ

����þ 1

2
;−1; xPþ; k⊥

�

þ ψ↑
−1
2
þ1
ðx; k⊥Þ

���� − 1

2
;þ1; xPþ; k⊥

�
þ ψ↑

−1
2
−1ðx; k⊥Þ

���� − 1

2
;−1; xPþ; k⊥

��
; ð22Þ

where the two numbers in the subscript of the wave
functions denote the helicities of the bare electron and
the photon (λe and λγ), respectively. x is the longitudinal
momentum fraction for the bare electron and k⊥ refers to its
relative momentum. The two-particle states ∣λe; λγ;pþ; k⊥i
are normalized as

hλ0e; λ0γ;p0þ; k0⊥∣λe; λγ;pþ; k⊥i
¼ 16π3pþδðp0þ − pþÞδ2ðk0⊥ − k⊥Þδλ0e;λeδλ0γ ;λγ : ð23Þ

Similarly, one can write down the expansion for the
helicity-down physical electron state.
In BLFQ, the two particle wave functions are evaluated

nonperturbatively and numerically and then are used to
calculate the GPDs. To verify consistency, we have used the
same Fock space truncation in both perturbative and BLFQ
calculations.
For the perturbative calculation, we use the wave

functions [17]:

ψ↑
þ1

2
þ1
ðx; k⊥Þ ¼ −

ffiffiffi
2

p −k1 þ ik2

xð1 − xÞ φðx; k⊥Þ;

ψ↑
þ1

2
−1ðx; k⊥Þ ¼ −

ffiffiffi
2

p k1 þ ik2

1 − x
φðx; k⊥Þ;

ψ↑
−1
2
þ1
ðx; k⊥Þ ¼ −

ffiffiffi
2

p
ðM −

m
x
Þφðx; k⊥Þ;

ψ↑
−1
2
−1ðx; k⊥Þ ¼ 0; ð24Þ

φðx; k⊥Þ ¼
effiffiffiffiffiffiffiffiffiffiffi
1 − x

p 1

M2 − k2⊥þm2

x − k2⊥þm2
γ

1−x

: ð25Þ

where M is the physical electron mass, m is the bare
electron mass, and mγ is the photon mass. In perturbative
QED, M ¼ m and we keep a small nonzero photon mass
which acts as an IR cutoff. Though we do not have any IR
divergence in the GPDs, the purpose of the nonzero photon
mass is to compare with the intrinsic IR regulator in the HO
basis used in BLFQ, see Sec. III.

The GPDs of the electron in perturbation theory are

Hðx; 0; tÞ ¼ α

2π

�
1þ x2

1 − x
ln

����Λ2

A

����
þ 1þ x2

1 − x
AI1 þM2ð1 − xÞ3I1

−
1

2
ð1 − xÞð1þ x2ÞΔ2⊥I1

�
; ð26Þ

Eðx; 0; tÞ ¼ α

π
M2xð1 − xÞ2I1; ð27Þ

where A¼M2xð1−xÞ−m2ð1−xÞ−m2
γx¼−M2ð1−xÞ2−

m2
γx ðasM¼mÞ, Λ is the UV cutoff, and for ζ ¼ 0, the

square of momentum transferred t ¼ Δ2 ¼ −Δ2⊥. The
integration I1 is defined as

I1 ¼
Z

1

0

dy
Λ2

βðx; yÞðβðx; yÞ þ Λ2Þ ; ð28Þ

where βðx; yÞ ¼ yð1− yÞð1− xÞ2Δ2⊥ þM2ð1− xÞ2 þm2
γx.

Note that the integration I1 is finite in the limit Λ → ∞, but
we show the explicit UV cutoff dependence to compare
with the BLFQ results.

V. RESULTS

Here we present the numerical results from both non-
perturbative (BLFQ) and perturbative methods calculated
with α ¼ 1=137.036 and M ¼ 0.511 MeV. In BLFQ we
adopt sector-dependent 2D-HO parameters bn ¼ b=

ffiffiffi
n

p
for

Fock sectors with n particles [3], where b ¼ M is the 2D-
HO parameter in the one-particle sector. In the jeγi sector
we use b2 ¼ M=

ffiffiffi
2

p
. For the perturbative model, the photon

mass mγ and the UV cutoff Λ are tuned to match with the
IR cutoff ϵ ¼ b2=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
and the UV cutoff b2

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
in BLFQ, i.e., we set mγ ¼ ϵ ¼ b2=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
and

Λ ¼ b2
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
.

In Fig. 1, we have presented the comparison of GPD
Hðx; tÞ ¼ Hðx; 0; tÞ (since we are considering here only
ζ ¼ 0, we suppress it in the arguments of all GPDs) for
different values of total momentum transferred t. Note that
for ζ ¼ 0, t ¼ Δ2 ¼ −Δ2⊥ is a negative quantity. The GPD
Hðx; tÞ reduces to the ordinary parton distribution function
(PDF) in the forward limit t → 0. The dependence on the
photon mass or IR cutoff in the PDF or GPD Hðx; tÞ is not
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very significant. In Fig. 1,Hðx; t → 0Þ presents the PDF for
the physical (dressed) electron. The BLFQ result agrees
well with the perturbative calculation which is expected,
since in the Fock-sector truncation allowing only for
the quantum fluctuation into the jeγi sector, the resulting
nonperturbative light-front wave function encodes the
identical information on the structure of the physical
electron, compared to that from leading-order perturbation
theory. The higher-order contributions only contribute
to the electron wave-function renormalization factor,
Z2. However, due to the fact that we use a truncated 2D
HO basis for the BLFQ calculations, and a plane wave

basis for the perturbative calculations, we do anticipate
(small) differences between the BLFQ and perturbative
results.
Although it appears that Hðx; tÞ diverges at x ¼ 1, we

should remember that there is a single particle (jei)
contribution to the GPD at exactly x ¼ 1 which, with
proper normalization, cancels the divergence and produces
the desired normalization of the GPD

R
1
0 Hðx; 0Þdx ¼

F1ð0Þ ¼ 1 for the electron [19].
In Fig. 2 we compare the BLFQ results for GPD Eðx; tÞ

with the perturbative results for different values of t. Note
that there is no divergence at x ¼ 1 in Eðx; tÞ. In the
perturbative calculation the photon mass mγ can safely

FIG. 1 (color online). GPD Hðx; tÞ for different values of t:
t → 0 (a), t ¼ −1 MeV2 (b), t ¼ −3 MeV2 (c), t ¼ −5 MeV2

(d). For t → 0, Hðx; t → 0Þ is the PDF for the dressed electron.
Solid lines represent the perturbative results; data points are the
BLFQ results.

FIG. 2 (color online). GPD Eðx; tÞ for different values of t:
t → 0 (a), t ¼ −1 MeV2 (b), t ¼ −3 MeV2 (c), t ¼ −5 MeV2

(d). Solid lines represent the perturbative results; data points are
the BLFQ results.
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be set to zero and the UV cutoff Λ can be taken to the
infinite limit. However, in the BLFQ, the IR and UV cutoffs
are intrinsic to the formalism as b ≠ 0 and Nmax is finite.
We therefore retain the nonzero photon mass mγ ¼
b2=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
and also set Λ ¼ b2

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
in the perturbative

calculation for consistency with BLFQ. Overall, the agree-
ment between the BLFQ and perturbative results seems
reasonable and it improves as the BLFQ basis size (Nmax
and K) increases. Minor mismatches are visible in the
region of x approaching one. This is because unlike GPD
Hðx; tÞ, GPD Eðx; tÞ is very sensitive to the IR cutoff,
especially at around x ∼ 1. Although in this calculation the
IR cutoffs in BLFQ and in perturbation theory are
“matched,” they are, however, not sharp cutoffs in either
method and have their distinct cutoff profiles.
In Fig. 3 we have shown a comparison of the BLFQ and

perturbative results for electron anomalous magnetic
moment, ae ¼ ðg − 2Þ=2, which is the integral of the
GPD Eðx; t → 0Þ over 0 < x < 1. Here g is the gyromag-
netic ratio for the electron. Again, the IR and UV cutoffs are
matched between the BLFQ and perturbative results. As
Nmax ¼ K − 1=2 increases, the agreement between the
perturbative and BLFQ results improves. In the limit of

Nmax ¼ K − 1=2 → ∞, the BLFQ result nicely extrapo-
lates to the Schwinger value, see Ref. [26] for a more
detailed description on the electron anomalous magnetic
moment calculation in BLFQ.

VI. SUMMARY AND CONCLUSIONS

Basis light-front quantization has recently been devel-
oped as a promising nonperturbative light-front technique.
In this paper, we have investigated the GPDs in the BLFQ
method. For this purpose, we have considered a physical
(dressed) electron in QED so that our nonperturbative
results can be compared with perturbative calculations. The
physical electron state has been expanded into its Fock
space basis to evaluate the GPDs Hðx; tÞ and Eðx; tÞ for
zero skewness which, in leading twist, are given by the
particle number conserving processes. Our initial study in
the lowest nontrivial Fock sectors shows that with a proper
renormalization procedure and a rescaling of the naive
GPDs correcting the artifacts introduced by the Fock space
truncation, the BLFQ results are consistent with the
perturbative results. The main goal of this study in the
BLFQ approach is to establish the foundation for inves-
tigating the GPDs for nucleons which are highly non-
perturbative. To investigate the strong coupling physics, we
need to include higher Fock sectors as well as to increase
the total quanta (Nmax and K) for the BLFQ basis states.
The HO basis employed in BLFQ works well for systems
with localized wave functions (bound states). Since QCD
has confinement, we expect that the convergence in the HO
basis will be better compared to QED.
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