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Motivated by the gamma-ray excess observed from the region surrounding the Galactic Center, we
explore particle dark matter models that could potentially account for the spectrum and normalization of
this signal. Taking a model-independent approach, we consider an exhaustive list of tree-level diagrams for
dark matter annihilation, and determine which could account for the observed gamma-ray emission while
simultaneously predicting a thermal relic abundance equal to the measured cosmological dark matter
density. We identify a wide variety of models that can meet these criteria without conflicting with existing
constraints from direct detection experiments or the Large Hadron Collider (LHC). The prospects for
detection in near future dark matter experiments and/or the upcoming 14 TeV LHC appear quite promising.
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I. INTRODUCTION

Over the past several years, a gamma-ray excess from the
region surrounding the Galactic Center has been identified
in the data of the Fermi Gamma-Ray Space Telescope,
with features similar to those expected from annihilating
dark matter (DM) particles [1–9]. Unlike many of the other
potential DM signals that have been reported [10–21],
however, DM interpretations of this gamma-ray excess
have become increasingly compelling as the signal has
become better measured and characterized. Recent analysis
has shown this excess to be robust and highly statistically
significant, exhibiting a spectrum and angular distribution
that is in good agreement with that expected from the
annihilations of ∼30 GeV DM particles [9]. Assuming
a DM profile with a local density of 0.3 GeV=cm3,
the overall normalization of the signal requires that the
DM annihilates with a cross section of σv≃ ð1.7 − 2.3Þ×
10−26 cm3=s [9], remarkably similar to the value antici-
pated for a thermal relic [22]. And unlike other astrophysi-
cal observations which have received attention as possible
detections of DM (the cosmic-ray positron excess, for
example [23]), no plausible astrophysical interpretation for
the gamma-ray excess has been proposed.1

In this paper, we attempt to identify the varieties of DM
models that could be responsible for the observed gamma-
ray excess. Taking a model-independent and bottom-up
approach, we construct an exhaustive list of tree-level
diagrams for DM annihilation into Standard Model (SM)
fermions (see also Ref. [26]). By considering tree-level

diagrams, instead of effective operators [27–33], we avoid
a number of potentially important pitfalls [34–37]. For
instance, while resonances can be important in determining
the annihilation cross section and relic density of the DM,
these effects are “integrated out” in the effective operator
approach. By studying the set of tree-level diagrams with
all possible combinations of charge- and flavor-conserving
renormalizable dimension-four, and super-renormalizable
dimension-three, operators compatible with Lorentz invari-
ance, we are able to take a holistic and general view of the
types of DM models that could potentially produce the
gamma-ray excess observed from the region of the Galactic
Center.2

For any given model, we impose the following
requirements:
(1) In order to generate the observed spectral shape

of the gamma-ray excess, we require that the DM
consists of either a ∼35 GeV particle that annihilates
mostly to bb̄ or a ∼25 GeV particle that annihilates
approximately democratically to SM fermions [9].

(2) To accommodate the observed intensity of the
gamma-ray excess, we require that the DM annihi-
lates in the low-velocity limit with a cross section
of hσvi ¼ ð0.77 − 3.23Þ × 10−26 cm3=s or hσvi ¼
ð0.63 − 2.40Þ × 10−26 cm3=s for the two cases de-
scribed in criterion 1, respectively [9]. These ranges
take into account the uncertainty in the local
DM density [40]. The necessary cross sections
are doubled in the case that the DM is not self-
conjugate.

1Although a population of several thousand millisecond
pulsars has been discussed as a possible origin of the observed
gamma-ray excess [2–6,24], the more recent determination that
this signal extends to beyond at least 10° from the Galactic Center
[5,9] strongly disfavors this interpretation [25].

2For previous studies which have considered DM models for
the Galactic Center excess from an effective field theory
perspective, see Refs. [38,39].
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(3) We require that the thermal relic density of the DM
satisfies ΩDM ¼ 0.268þ0.013

−0.010 , in accordance with
measurements from WMAP and Planck [41].

(4) We require that the elastic scattering cross sections
of the DM with nuclei are consistent with the
constraints from LUX (Large Underground Xenon
dark matter experiment) [42] and other direct de-
tection experiments.

(5) We require that no constraints from the LHC or other
accelerator experiments are violated.

Criteria 2 and 3 roughly correspond to the requirement that
the DM is a thermal relic whose annihilations proceed
largely through s-wave processes. Criterion 4 roughly
requires that any coherent (spin-independent) DM scatter-
ing with nuclei must be suppressed, such as by powers of
momentum or relative velocity. In evaluating criterion 5, we
consider monojet and mono-W=Z constraints from the
LHC, mono-b projections, as well as accelerator constraints
on various classes of particles that might mediate the
interactions of the DM.
For the DM and its mediator, we consider any combina-

tion of spin-0, spin-1=2, and spin-1 particles with inter-
actions of the following general forms:

Ls ⊃ ð ¯DMDM mediatorÞ þ ð ¯SMSM mediatorÞ;
Lt ⊃ ð ¯DMSM mediatorÞ þ ð ¯SMDM mediatorÞ: ð1Þ

These refer to s-channel or t- and u-channel annihilation
diagrams, respectively. We will continue to use this termi-
nology even when talking about elastic scattering processes
for which the Feynman diagrams are oriented differently. For
the purpose of avoiding ambiguities regarding the labels for
the DM and mediating particles, we adopt the conventions
shown in Table I.
We constrain the interactions of the mediator with DM

and SM fermions only by the requirement that Lorentz
invariance is respected at every vertex. We then consider all
allowed combinations of scalar (1), pseudoscalar (γ5),
vector (γμ), and axial (γμγ5) interactions. We do not attempt
to construct an ultraviolet completion for any model,
leaving such exploration for future work.
The remainder of this article is structured as follows. In

Secs. II and III, we consider fermionic (spin-1=2) and
bosonic (spin-0 or spin-1) DM, respectively, annihilating
through s-channel Feynman diagrams. In each case, we
determine which combination of spins and interaction types
can satisfy the five criteria described in this section. In
Sec. IV, we consider cases in which the DM annihilates
through the t-channel exchange of a colored and charged
mediator. In Sec. V, we discuss constraints from collider
experiments on the mass and couplings of the particles that
mediate the DM’s interactions. In Sec. VI, we discuss
the prospects for operating and upcoming direct detection
experiments. In Sec. VII we summarize our results and
conclusions. This paper contains an extensive set of

appendices which include, among other information, the
full expressions for the DM annihilation and elastic scatter-
ing cross sections used in this study.

II. FERMIONIC DARK MATTER

In this section, we consider DM in the form of a (Dirac or
Majorana) fermion, χ, annihilating through the s-channel
exchange of a spin-0 mediator, A:

L ⊃ ½aχ̄ðλχs þ λχpiγ5Þχ þ f̄ðλfs þ λfpiγ5Þf�A; ð2Þ

or through the s-channel exchange of a spin-1 mediator, Vμ:

L ⊃ ½aχ̄γμðgχv þ gχaγ5Þχ þ f̄γμðgfv þ gfaγ5Þf�Vμ: ð3Þ

In each case, the couplings are defined such that a ¼ 1
ð1=2Þ for DM in the form of a Dirac (Majorana) fermion.
For Majorana fermions, gχv is required to be zero. We will
return to the case of t-channel annihilations in Sec. IV.
The basic results of this section are summarized in

Table II. Of the 14 linearly independent combinations that
link the DM with SM fermions (counting Dirac and
Majorana DM separately), there are eight in which the
low-velocity annihilation cross section is not suppressed.
We denote these models in the table with the shorthand
σv ∼ 1. These models are capable of accounting for the
observed gamma-ray excess.
In Figs. 1 and 2, we show additional information for each

of these eight interaction combinations. In the lower portion
of each frame, we show as a function of the mediator mass
the product of the couplings that is required in order to
produce a thermal relic density in agreement with the
measured cosmological DM abundance (for the relevant
cross sections, see Appendices B 1 through B 4). In the
upper portion of each frame, we show the low-velocity
annihilation cross section that is predicted for that choice of
couplings. If the solid curve falls between the two hori-
zontal dashed lines, the model in question can account for
the overall normalization of the Galactic Center’s gamma-
ray excess. In generating these plots we have assumed that
spin-1 mediators couple equally to all SM fermions, and
that spin-0 mediators couple to SM fermions proportionally
to their mass (as motivated by minimal flavor violation
[43]). Unless otherwise stated, we will maintain these
assumptions throughout this paper.
We also assume that all DM annihilations proceed to

pairs of SM fermions. If the mass of the mediator is less

TABLE I. The particle notation used throughout this study.

Scalar Fermion Vector

DM ϕ χ Xμ

Mediator A ψ Vμ

SM (fermions) � � � f � � �
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than that of the DM particles, however, annihilations could
potentially be dominated instead by the production of
mediator pairs. The fraction of DM annihilations that yield
non-SM particles depends on the ratio of the mediator’s
couplings to the DM and to SM fermions. While we consider
the exploration of such scenarios to be beyond the scope of
the present study, we acknowledge that such models provide
an additional degree of freedom that could allow them to
account for the Galactic Center’s gamma-ray excess.
Also shown in Figs. 1 and 2 are the current constraints

from direct detection experiments (shown as dotted lines).
For the details of the calculation of the DM’s elastic
scattering cross section with nuclei, see Appendix A 2.
For the instances in which the spin-independent cross section
provides the dominant constraint, we apply the results of the
LUX Colloraboration [42]. For those in which spin-depen-
dent scattering with neutrons is more restrictive, we compare
our results to the constraints of XENON100 [44].3 At
present, the most stringent of these constraints only rules
out one of the eight scenarios shown, in which the DM is a
Dirac fermion annihilating through a spin-1 mediator with
vector interactions with both the DM and with SM fermions.
We also show in these figures the projected constraints

(95% C.L.) from mono-b [46] and actual constraints from
monojet [47] plus missing energy searches at the LHC
(dashed lines).4 Although these constraints do not rule out
any of the models under consideration, it is possible that
data taken after the upcoming energy upgrade could be
sensitive to such scenarios. We caution, however, that these

constraints are derived under the assumptions of effective
field theory, whose applicability to the problem at hand is
far from clear [34–37]. In particular, these constraints are
calculated under the assumption that the mass of the
mediator is well above that of the parton-level center-of-
mass energy of collisions at the LHC. We expect such
constraints to be conservative for mediator masses in the
range of roughly 350 GeV to 2 TeV, in some cases
underestimating their sensitivity by an order one factor.
For lighter mediator masses, in contrast, the effective field
theory approach can very significantly overestimate the
sensitivity of such searches [37]. With this in mind, we plot
these constraints down to mediator masses of 100 GeV, and
ask the reader to remain aware of their limitations. In
Sec. V, we will discuss other collider constraints, such as
those resulting from dijet and heavy Higgs searches.
In generating Fig. 2, we assumed that the mediator

couples democratically to all SM fermions. If we instead
consider DM annihilations that are mediated by a spin-1
particle with vector couplings to only third generation
fermions, then the elastic scattering cross section will be
additionally loop suppressed. As loops with two gluons do
not contribute in the case of vector interactions [49,50], the
dominant contribution comes from diagrams in which the
bottom loop is coupled to the nucleus through a photon
[51]. The suppression associated with this diagram allows
this variation of the vector-mediated case to evade current
constraints from direct detection (see Fig. 3). Even with this
suppression, however, this elastic scattering cross section is
still fairly large and will likely fall within the reach of future
observations by LUX [52] and XENON1T [53].
Summarizing the results of this section, of the 14

interaction combinations shown in Table II (counting
Majorana and Dirac DM separately), we found eight to
be capable of producing the Galactic Center’s gamma-ray
excess. Of these 8 cases, only one (Dirac fermions
interacting through a spin-1 mediator with a pair of vector
interactions) is currently ruled out by direct detection

TABLE II. A summary of the annihilation and elastic scattering behavior for all tree-level, s-channel annihilation
diagrams, for cases in which the DM is a fermion [see Eqs. (2) and (3)]. Because Majorana DM cannot couple to a
vector current, this table encodes 14 (rather than 16) possible simplified models. Only those scenarios in which the
low-velocity annihilation cross section is not suppressed (σv ∼ 1) can the DM potentially account for the observed
gamma-ray excess. For elastic scattering, we indicate whether the constraint on the spin-independent (SI) or spin-
dependent (SD) cross section is currently more restrictive, and whether that cross section is unsuppressed (∼1), or is
suppressed by powers of momentum or velocity. Any entry with a “� � �” symbol indicates that there is no particle
representation that at tree-level can mediate the interaction indicated. We use bold to indicate a model that satisfies
all of our criteria, and italics to indicate a model that allows for unsuppressed annihilation, but is ruled out by direct
detection constraints. Models presented in black cannot account for the observed gamma-ray excess.

DM bilinear SM fermion bilinear

Fermion DM f̄f f̄γ5f f̄γμf f̄γμγ5f
χ̄χ σv ∼ v2, σSI ∼ 1 σv ∼ v2, σSD ∼ q2 � � � � � �
χ̄γ5χ σv ∼ 1, σSI ∼ q2 σv ∼ 1, σSD ∼ q4 � � � � � �
χ̄γμχ (Dirac only) � � � � � � σv ∼ 1, σSI ∼ 1 σv ∼ 1, σSD ∼ v2⊥
χ̄γμγ5χ � � � � � � σv ∼ v2, σSI ∼ v2⊥ σv ∼ 1, σSD ∼ 1

3In cases in which the DM’s spin-dependent cross section with
protons is much greater than that with neutrons, COUPP
(Chicagoland Observatory for Underground Particle Physics)
could potentially provide the most stringent limit [45].

4The ATLAS Collaboration’s search for hadronically decaying
mono-W and mono-Z plus missing energy events has a sensitivity
that is comparable to that of their monojet search [48]. We do not
additionally plot these limits here.
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constraints. Even this case, however, is consistent with the
results of such experiments if the mediator only couples to
third generation fermions (in addition to the DM). The
other viable scenarios each include mediators with either

pseudoscalar5 or axial couplings. In these models, the DM
is able to efficiently annihilate at low velocities while also

FIG. 1. The results for fermionic DM annihilating through the s-channel exchange of a spin-0 mediator. The upper frames correspond
to the case of a Dirac fermion with either pseudoscalar-pseudoscalar (left) or pseudoscalar-scalar interactions (right). The lower frames
denote the same interactions, but for the DM as a Majorana fermion. In the lower portion of each frame, the solid line represents the
coupling strength required (as a function of the mediator mass, mA) to produce a thermal relic abundance in agreement with the
measured cosmological DM density (see Appendix D). In the upper portion of each frame, we show the low-velocity annihilation cross
section predicted, which must fall between the two horizontal dashed lines if the normalization of the gamma-ray excess is to be
accommodated. Throughout this study, we have taken a value of 1 GeV for the width of the mediator, although the precise value of this
quantity has little impact on our conclusions. In the lower portion of each frame, the dotted line denotes the current constraint from direct
detection experiments (if not shown, the direct detection constraint is too weak to appear within the boundaries of the plot). The dashed
line represents the projected constraint from LHC mono-b searches [46], under the (possibly tenuous) assumption that effective field
theory is valid in this application. For mediating particles heavier than ∼10 GeV, neither direct detection experiments nor the LHC
constrains any of the models shown.

5The pseudoscalar case was recently considered in Ref. [54].
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evading otherwise stringent constraints from direct detec-
tion experiments. The LHC’s (actual) monojet and (pro-
jected) mono-b constraints do not yet conflict with any of
the models considered in this section.

III. BOSONIC DARK MATTER

We begin this section by considering DM in the form of a
real or complex scalar, ϕ, annihilating through the
s-channel exchange of a spin-0 mediator, A:

L ⊃ ½aμϕjϕj2 þ f̄ðλfs þ λfpiγ5Þf�A; ð4Þ

or through the s-channel exchange of a spin-1 mediator, Vμ:

L ⊃ ½igϕϕ†∂μ

↔
ϕþ f̄γμðgfv þ gfaγ5Þf�Vμ: ð5Þ

Here, a ¼ 1 ð1=2Þ for DM in the form of a complex (real)
scalar.

FIG. 2. Similar to that shown in Fig. 1 but for fermionic DM annihilating through the s-channel exchange of a spin-1 mediator. The
upper frames correspond to the case of a Dirac fermion with either vector-vector (left) or vector-axial interactions (right). The lower
frames denote the cases of a Dirac (left) or Majorana (right) fermion interacting through axial-axial interactions. In the lower portion of each
frame, the dashed lines denote the constraint from LHC monojet searches [47], under the (possibly tenuous) assumption that effective field
theory is valid in this application. Only in the case of a Dirac fermion with vector-vector interactions (upper left) do direct detection
constraints rule out any of the models shown (although XENON100 does restrict ≳20 GeV in the case of axial-axial interactions).
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We see from Table III and Fig. 4 that in the case of scalar
DM, there are only four s-channel models that are capable
of generating the gamma-ray excess: a complex or real
scalar, annihilating through a spin-0 mediator with
either scalar or pseudoscalar couplings to SM fermions.
Models which are mediated by spin-1 particles, in contrast,
predict velocity-suppressed annihilation cross sections (see
Appendices B 5 through B 8). Furthermore, constraints
from direct detection experiments rule out the scenarios
in which the DM annihilates through a spin-0 mediator with
scalar interactions with SM fermions. Again, the plots
shown in this section assume that spin-1 mediators couple
equally to all SM fermions, and that spin-0 mediators
couple to SM fermions proportionally to their mass.

Next, we consider DM in the form of a complex or real
vector, Xμ, interacting either through the exchange of a
spin-0 mediator:

L ⊃ ½aμXXμX†
μ þ f̄ðλfs þ λfpiγ5Þf�A; ð6Þ

or a spin-1 mediator:

L ⊃ ½agXðX†ν∂νXμ þ H:c:Þ þ f̄γμðgfv þ gfaγ5Þf�Vμ; ð7Þ
where a ¼ 1 ð1=2Þ for DM as a complex (real) vector.
The conclusions regarding vector DM are very similar to

those found for scalar DM. This can be seen by comparing
the upper and lower portions of Table III. Again, we find
four cases with an annihilation cross section that is not
velocity suppressed: those in which the DM annihilates
through the s-channel exchange of a spin-0 mediator (see
Appendices B 9 through B 12). Again, two of these four
cases are compatible with direct detection constraints: those
with pseudoscalar, rather than scalar, interactions. We show
the results for these models in Fig. 5.
To date, mono-b projected constraints have only been

presented for the case of fermionic DM. For this reason, the
figures in this and the following section do not include such
constraints. Such constraints should be qualitatively similar
for the cases of scalar or vector DM as they are for the
fermion case. In particular, we do not expect current mono-
b projections to restrict any of the models under consid-
eration. For scalar DM, however, we do plot the constraints
(90% C.L.) from hadronic mono-W=Z plus missing energy
searches by the ATLAS Collaboration [48]. We remind the
reader that the same caveats associated with the validity of
effective field theory hold for this channel as in the cases of
monojet and mono-b searches.
It is possible that some of these statements could be

modified somewhat in a case in which DM annihilations
proceed through a finely tuned resonance. For instance, if
there existed a scalar with a mass of ∼70 GeV and a narrow
width (Γ ≪ 1 GeV), it might also be possible for scalar
DM to efficiently annihilate through that mediator while

FIG. 3. As in the upper left frame of Fig. 2, but for a spin-1
mediator that only couples to third generation SM fermions. In
contrast to the case of democratic couplings, this choice makes it
possible to evade current constraints from LUX and other direct
detection experiments.

TABLE III. A summary of the annihilation and elastic scattering behavior for all tree-level, s-channel annihilation diagrams, for cases
in which the DM is a real or complex scalar or a real or complex vector [see Eqs. (4)–(7)]. Only in those scenarios in which the low-
velocity annihilation cross section is not suppressed (σv ∼ 1) can the DM potentially account for the observed gamma-ray excess. For
elastic scattering, we indicate whether constraints on the spin-independent or spin-dependent cross section is currently more restrictive,
and whether that cross section is unsuppressed (∼1), or is suppressed by powers of momentum or velocity. Any entry with a “� � �”
symbol indicates that there is no particle representation that at tree-level can mediate the interaction indicated. We use bold to indicate a
model that satisfies all of our criteria and italics to indicate a model that allows for unsuppressed annihilation but is ruled out by direct
detection constraints. Models presented in black cannot provide the observed gamma-ray excess.

DM bilinear SM fermion bilinear

Scalar DM f̄f f̄γ5f f̄γμf f̄γμγ5f
ϕ†ϕ σv ∼ 1, σSI ∼ 1 σv ∼ 1, σSD ∼ q2 � � � � � �
ϕ†∂μ

↔
ϕ (complex only) � � � � � � σv ∼ v2, σSI ∼ 1 σv ∼ v2, σSD ∼ v2⊥

Vector DM f̄f f̄γ5f f̄γμf f̄γμγ5f
XμX†

μ σv ∼ 1, σSI ∼ 1 σv ∼ 1, σSD ∼ q2 � � � � � �
Xν∂νX

†
μ � � � � � � σv ∼ v2, σSI ∼ q2 · v2⊥ σv ∼ v2, σSD ∼ q2
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also evading direct detection constraints [55]. From the top
portions of the upper left frames of Figs. 4 and 5, however,
we see that in this case the low-velocity annihilation cross
section is pulled away from the required range of values,
making it unlikely that resonance annihilation is respon-
sible for the observed gamma-ray excess.
To summarize this section, we find that DM in the form

of a scalar or a vector could account for the gamma-ray
excess only if it annihilates through a spin-0 mediator with
pseudoscalar interactions. All other s-channel annihilation

diagrams lead to either a velocity-suppressed annihilation
cross section, or predict an elastic scattering cross section
with nuclei that is in conflict with direct detection constraints.

IV. DARK MATTER ANNIHILATING
THROUGH t-CHANNEL DIAGRAMS

In this section, we shift our focus to DM that is described
by the t-channel Lagrangian of Eq. (1). More specifically,
we consider fermionic DM, χ, that annihilates into SM

FIG. 4. Similar to that shown in the previous figures, but for scalar DM annihilating through the s-channel exchange of a spin-0
mediator. The upper frames correspond to the case of a complex scalar with either scalar (left) or pseudoscalar interactions (right). The
lower frames denote the cases of a real scalar interacting through scalar (left) or pseudoscalar (right) interactions. In the lower portion of
each frame, the dashed lines denote the constraint from LHC mono-W=Z searches, under the (possibly tenuous) assumption that
effective field theory is valid in this application. Direct detection constraints exclude the case of either a complex or real scalar with
scalar interactions (left frames).
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fermions via the t-channel exchange of either a spin-0
mediator, A:

L ⊃ χ̄ðλs þ λpγ
5ÞfAþ f̄ðλs − λpγ

5ÞχA†; ð8Þ

or a spin-1 mediator, Vμ:

L ⊃ χ̄γμðgχv þ gχaγ5ÞfVμ þ f̄γμðgχv þ gχaγ5ÞχV†
μ: ð9Þ

We also consider the case of a spin-1=2mediator, ψ , with
either a scalar DM particle, ϕ:

L ⊃ ψ̄ðλs þ λpγ
5Þfϕ† þ f̄ðλs − λpγ

5Þψϕ; ð10Þ

or vector DM, Xμ:

L ⊃ ψ̄γμðgv þ gaγ5ÞfX†
μ þ f̄γμðgv þ gaγ5ÞψXμ: ð11Þ

These models are different from s-channel scenarios in
three important ways. First, the t-channel mediator is
required to carry the same quantum numbers as the final
state quarks, and thus is both colored and charged. As a
result, the mediator can be pair produced via QCD, making

FIG. 5. Similar to as shown in the previous figures, but for vector DM annihilating through the s-channel exchange of a spin-0
mediator. The upper frames correspond to the case of a complex vector with either scalar (left) or pseudoscalar interactions (right). The
lower frames denote the cases of a real vector interacting through scalar (left) or pseudoscalar (right) interactions. Direct detection
constraints exclude the case of either a complex or real vector with scalar interactions (left frames).
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constraints from the LHC significantly more restrictive
[56–59]. Second, direct detection constraints are in most
cases much more difficult to evade, particularly in the case
in which the DM or the mediator couples to first gen-
eration quarks [56–58]. Finally, there are two diagrams
that contribute to the scattering [56], as opposed to a single
diagram in the s-channel case, although the magnitude of the
scattering cross section is roughly the same. There are
important caveats that apply to the first two of these these
statements.
Just as in the case of s-channel annihilation models, we

evaluate the elastic scattering cross section of the DM with
nuclei by integrating out the mediator. In the t-channel case,
we then perform a Fierz transformation to convert the
resulting contact operator into a sum of the s-channel
interactions described in the preceding sections. If we start
with any single interaction form in isolation (scalar, pseu-
doscalar, axial, or vector), this procedure invariably gen-
erates a non-negligible amount of all possible interaction
forms [60]. In particular, in each of these cases, we find an
unsuppressed scalar contact interaction. As demonstrated in
Figs. 4 and 5, scalar contact interactions with couplings
proportional to quark mass already significantly exceed the
constraints from LUX. This excludes the majority of
t-channel models that we can consider.
The exception to this conclusion arises when one con-

siders interactions which include both scalar and pseudo-
scalar couplings, or vector and axial couplings. In particular,
a t-channel annihilation diagram with interactions of the
form 1þ γ5 (as obtained for λs ¼ λp) leads to an effective
operator that is a sum of vector and axial interactions, such as
ð1=2Þχ̄γμð1 − γ5Þχf̄γμð1þ γ5Þf. Similarly, a t-channel
annihilation diagram with an interaction of the form
γμð1þ γ5Þ (corresponding to gv ¼ ga) transforms to yield
an effective operator of the form γμð1 − γ5Þ. In both of these
cases, no scalar term appears, and the leading direct
detection constraint comes from the vector interaction.
If this coupling applies to all quarks, the vector inter-

action would still induce a very large scattering cross
section, incompatible with direct detection constraints. If
the t-channel mediator couples only to b-quarks, however,
the elastic scattering cross section will be loop suppressed,
allowing it to evade the current limits. In particular, the
elastic scattering cross section in this case is dominated by
the exchange of a photon between the bottom-mediator
loop and the nucleus. This behavior is found, for example,
in the flavored DM models of Refs. [56,61].
In Table IV, we summarize the characteristics of the eight

t-channel models with interaction forms capable of sup-
pressing the DM’s scalar elastic scattering cross section
with nuclei. Of these eight models, four provide a viable
explanation for the gamma-ray excess. In Fig. 6, we show
the results for the four of these models that cannot account
for this signal. In three of these cases [Majorana fermion
DM with interactions of the forms ð1þ γ5Þ or γμð1þ γ5Þ,

and complex scalar DM with a ð1þ γ5Þ interaction], the
low-velocity annihilation cross section is too small to
provide the observed gamma-rays. In the fourth case [real
scalar DM with a ð1þ γ5Þ interaction], the LHC constraint
on heavy bottom partners (as derived in Ref. [57] from the
results of the CMS sbottom search [62]) can only be
satisfied if the couplings are very large and nonperturbative.
In each frame, the horizontal dot-dashed line represents the
approximate point at which the couplings become non-
perturbative [where the coefficients of an operator of the
form ð1þ γ5Þ=2 or γμð1þ γ5Þ=2 exceeds three].
The four viable t-channel models are shown in Fig. 7

(with cross sections given in Appendix C). For each of these
scenarios, the predicted elastic scattering cross section is
very close to the current constraints from LUX. These
models should be definitively tested in the near future both
by direct detection experiments and at the LHC.

V. ADDITIONAL CONSTRAINTS FROM
THE LHC AND OTHER COLLIDERS

Thus far in this paper, we have included discussion of
the LHC constraints based on searches for monojet events
(with and without b-tags), mono-W=Z events, and sbot-
toms. In addition to such searches, collider experiments can
directly search for and constrain the particles that mediate
the DM’s s-channel interactions. In this section, we
consider the impact of searches for vector and scalar
particles at the LHC and at earlier collider experiments.
The CMS [63,64] and ATLAS [65,66] Collaborations

have performed searches for the heavy, neutral, CP-even
and CP-odd Higgs bosons predicted within the context of
the minimal supersymmetric standard model (MSSM). The

TABLE IV. A summary of the annihilation and elastic scatter-
ing behavior for all tree-level, t-channel annihilation diagrams
which do not lead to a scalar elastic scattering cross section with
nuclei. Only those scenarios in which the low-velocity annihi-
lation cross section is not suppressed (σv ∼ 1) can the DM
account for the observed gamma-ray excess. We use bold to
indicate a model that satisfies all of our criteria and italics to
indicate a model that allows for unsuppressed annihilation but
that is ruled out by LHC constraints. All of the models shown
evade current constraints from direct detection. Models presented
in black are not capable of generating the observed gamma-ray
excess.

DM Mediator Interaction Assessment

Dirac fermion spin-0 1� γ5 σv ∼ 1, LHC OK
Dirac fermion spin-1 γμð1� γ5Þ σv ∼ 1, LHC OK
Majorana fermion spin-0 1� γ5 σv ∼ v2

Majorana fermion spin-1 γμð1� γ5Þ σv ∼ v2

Real scalar spin-1=2 1� γ5 σv ∼ 1, LHC xxcluded
Complex scalar spin-1=2 1� γ5 σv ∼ v2

Real vector spin-1=2 γμð1� γ5Þ σv ∼ 1, LHC OK
Complex vector spin-1=2 γμð1� γ5Þ σv ∼ 1, LHC OK
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limits resulting from these searches can be directly trans-
lated into constraints on the mass and couplings of any
spin-0 particle that might mediate the interactions of DM.
These constraints are shown in the left frame of Fig. 8. For
DM couplings of λχ ≳ 1, these searches do not yet rule out
any values of mA. For smaller values of λχ (corresponding
to larger values of λf), however, we can place an upper limit
on mA. For example, for couplings of λχ ∼ 0.3, this bound
constrains the mediator mass to be below ∼Oð250 GeVÞ.
We also point out that these constraints are dominated by

the mediator’s couplings to τ leptons. If we were to
consider a model in which our spin-0 mediator coupled
only to quarks, these constraints would be further
weakened.
The LHC and other hadron colliders also provide con-

straints on spin-1 mediators through dijet searches. These
constraints are summarized in the right frame of Fig. 8,
including limits from UA2 [67], CDF [68], and CMS at both
7 TeV [69] and 8 TeV [70]. Again, these constraints do
not rule out any of the scenarios considered in this paper.

FIG. 6. Similar to previous figures, but for DM annihilating through t-channel Feynman diagrams. The four cases shown in this figure
cannot account for the observed gamma-ray signal. The upper frames show the results for Majorana DM interacting through
combinations of scalar and pseudoscalar (left) or vector and axial (right) interactions, while in the lower frames, we show the results for
complex (left) or real (right) scalar DM interacting through a combination of scalar and pseudoscalar couplings. In the first three of these
cases, the low-velocity annihilation cross section is too low to produce the gamma-ray excess. In the real scalar case, the constraint from
sbottom searches at the LHC (dashed line) cannot be evaded without nonperturbative couplings (dot-dashed line).
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However, maintaining perturbativity in the dark sector does
restrict the mass of any spin-1 mediator to be less than
∼1 TeV, with increasingly strong bounds for smaller DM
couplings. We note that if this spin-1 mediator also couples
to electrons, then dilepton constraints could be somewhat
more restrictive [71]. As couplings to electrons do not play a
significant role in the other aspects of this model, we do not
directly consider these constraints here.

VI. PROSPECTS FOR DIRECT DETECTION

In this paper, we have identified 16 simplified models for
DM annihilation that are capable of accounting for the
observed gamma-ray excess without violating the constraints
of colliders or direct detection experiments (these models
are summarized in Table V). In this section, we discuss the
prospects for future direct detection experiments to constrain
or detect the DM particles associated with these models.

FIG. 7. Similar to previous figures but for DM annihilating through t-channel Feynman diagrams. The four cases shown in this figure
can account for the observed gamma-ray signal, without violating any constraints from the LHC or direct detection experiments. The
upper frames show the results for Dirac DM interacting through combinations of scalar and pseudoscalar (left) or vector and axial (right)
interactions, while in the lower frames, we show the results for complex (left) or real (right) vector DM interacting through a
combination of vector and axial couplings. In the lower portion of each frame, the vertical line denotes the limit on the mass of the
colored mediator, based on the results of sbottom searches at the LHC. The dot-dashed lines denote the approximate point at which the
couplings become nonperturbative. Although direct detection and LHC constraints are each near the sensitivity required to test these
scenarios, they do not rule out any of the models shown.
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Roughly speaking, direct detection experiments are most
sensitive to DM particles with a mass similar to that of the
target nuclei. Such experiments are thus well suited to
studying DM particles with masses in the range being
considered here. In Fig. 9, we plot how the most stringent
constraints on the DM elastic scattering cross section (þ’s
and ×’s) have evolved over the past 14 years, consistently
improving at an exponential rate. Assuming that a similar
rate of progress continues (as represented by the dashed
line), we expect several of the models described in this

study to be tested by direct detection experiments in the
near future. In particular, all of the models in which the DM
annihilates through a t-channel Feynman diagram should
be well within the reach of LUX and XENON1T. Fermionic
DM that annihilates through a mediator with purely
axial interactions, or through a mediator with purely vector
interactions with third generation quarks, is also expected to
be probed by these ongoing and upcoming experiments.
In the more distant future, direct detection experiments

could become sensitive to many more of the models listed

FIG. 8 (color online). Constraints from the LHC and other colliders on the couplings of spin-0 or spin-1 particles that mediate the
interactions of the DM. In the left frame, we plot the LHC’s constraints on a spin-0 mediator [63–66], whereas in the right frame, we
show the constraints on a spin-1 mediator from UA2 [67] (dashed line), CDF [68] (dotted line), and CMS at 7 TeV [69] (solid blue line)
and 8 TeV [70] (solid red line). In each frame, the black solid line represents the couplings required to generate a thermal relic abundance
in agreement with the measured cosmological DM density.

TABLE V. A summary of the simplified models identified in our study as capable of generating the observed gamma-ray excess
without violating the constraints from colliders or direct detection experiments. In the last two columns, we indicate whether the model
in question will be within the reach of near future direct detection experiments (LUX, XENON1T) or of the LHC. Models with an entry
of “never” predict an elastic scattering cross section with nuclei that is below the irreducible background known as the “neutrino floor.”
The model number given in the first column provides the key for the model points shown in Fig. 9.

Model number DM Mediator Interactions Elastic Scattering

Near future reach?

Direct LHC

1 Dirac fermion spin-0 χ̄γ5χ, f̄f σSI ∼ ðq=2mχÞ2 (scalar) no maybe
1 Majorana fermion spin-0 χ̄γ5χ, f̄f σSI ∼ ðq=2mχÞ2 (scalar) no maybe
2 Dirac fermion spin-0 χ̄γ5χ, f̄γ5f σSD ∼ ðq2=4mnmχÞ2 never maybe
2 Majorana fermion spin-0 χ̄γ5χ, f̄γ5f σSD ∼ ðq2=4mnmχÞ2 never maybe
3 Dirac fermion spin-1 χ̄γμχ, b̄γμb σSI ∼ loop (vector) yes maybe
4 Dirac fermion spin-1 χ̄γμχ, f̄γμγ5f σSD ∼ ðq=2mnÞ2 or never maybe

σSD ∼ ðq=2mχÞ2
5 Dirac fermion spin-1 χ̄γμγ5χ, f̄γμγ5f σSD ∼ 1 yes maybe
5 Majorana fermion spin-1 χ̄γμγ5χ, f̄γμγ5f σSD ∼ 1 yes maybe
6 Complex scalar spin-0 ϕ†ϕ, f̄γ5f σSD ∼ ðq=2mnÞ2 no maybe
6 Real scalar spin-0 ϕ2, f̄γ5f σSD ∼ ðq=2mnÞ2 no maybe
6 Complex vector spin-0 B†

μBμ, f̄γ5f σSD ∼ ðq=2mnÞ2 no maybe
6 Real vector spin-0 BμBμ, f̄γ5f σSD ∼ ðq=2mnÞ2 no maybe
7 Dirac fermion spin-0 (t ch.) χ̄ð1� γ5Þb σSI ∼ loop (vector) yes yes
7 Dirac fermion spin-1 (t ch.) χ̄γμð1� γ5Þb σSI ∼ loop (vector) yes yes
8 Complex vector spin-1=2 (t ch.) X†

μγμð1� γ5Þb σSI ∼ loop (vector) yes yes
8 Real vector spin-1=2 (t ch.) Xμγ

μð1� γ5Þb σSI ∼ loop (vector) yes yes
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in Tables Vand VI. In particular, scalar or vector DMwhich
annihilates through a spin-0 mediator with pseudoscalar
couplings to SM fermions could eventually be detected, but
would require extremely large detectors, beyond the next
generation currently being planned (LZ, PICO250, etc.).
Fermionic DM annihilating through a combination of
pseudoscalar and scalar couplings could also be detected
on this time scale. Extending direct detection sensitivity
beyond that level, however, will be limited by the irreduc-
ible background induced by coherent neutrino scattering

(known as the “neutrino floor”). Due to this background,
direct detection experiments would be unlikely to be able to
detect fermionic DM annihilating through the exchange of
a mediator with only pseudoscalar interactions, or through
a spin-1 mediator with vector and axial couplings to the
DM and SM fermions, respectively.

VII. CONCLUSIONS

In this study, we have taken a “simplified model”
approach to determine which classes of dark matter models
are capable of producing the gamma-ray excess observed
from the region surrounding the Galactic Center. In doing
so, we have identified 16 different models that can generate
the observed excess without exceeding any of the con-
straints from direct detection experiments or from colliders
(see Table V). These 16 models can be divided into the
following three groups:

(i) Models in which the dark matter (which could be
spin-0, 1=2, or 1) annihilates through the exchange
of a spin-0 particle with pseudoscalar interactions.
Such a mediator could potentially be observed in
future searches for heavy neutral Higgs bosons at
the LHC.

(ii) Models in which the dark matter is a fermion that
annihilates through the exchange of a spin-1 particle
with axial couplings to standard model fermions, or
with vector couplings to third generation standard
model fermions. Assuming perturbative couplings,
LHC constraints from dijet searches require that the
mass of the mediator be less than ∼1 TeV.

(iii) Models in which the dark matter annihilates into
b-quark pairs through the t-channel exchange of a
colored and charged particle. Constraints from
sbottom searches at the LHC restrict the mediator
mass be greater than ∼600 GeV. Both LUX and the
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FIG. 9. The most stringent constraints on the DM elastic
scattering cross section [44,45,72–87] from the past 14 years.
We also shown an extrapolation of their future sensitivity. All of
the models in which the DM annihilates through a t-channel
Feynman diagram should be well within the reach of LUX [52]
and XENON1T [53]. Fermionic DM that annihilates through a
mediator with purely axial interactions is also expected to be
within the reach of these experiments. In the more distant future,
direct detection experiments also could become sensitive to
several models in which the DM interacts via pseudoscalar
couplings. See text for further details.

TABLE VI. Direct detection suppression of various operators that can produce s-wave DM annihilation.

hSiDM Type Interaction Elastic scattering Kinematic suppression

1=2 Dirac χ̄γ5χq̄q SI (scalar) ðq=2mχÞ2
1=2 Majorana χ̄γ5χq̄q SI (scalar) ðq=2mχÞ2
1=2 Dirac χ̄γ5χq̄γ5q SD ðq2=4mnmχÞ2
1=2 Majorana χ̄γ5χq̄γ5q SD ðq2=4mnmχÞ2
1=2 Dirac χ̄γμχq̄γμq SI (vector) 1
1=2 Dirac χ̄γμχq̄γμγ5q SD ðq=2mnÞ2 or ðq=2mχÞ2
1=2 Dirac χ̄γμγ5χq̄γμγ5q SD 1
1=2 Majorana χ̄γμγ5χq̄γμγ5q SD 1
0 complex ϕ†ϕq̄q SI (scalar) 1
0 real ϕ2q̄q SI (scalar) 1
0 complex ϕ†ϕq̄γ5q SD (scalar) ðq=2mnÞ2
0 real ϕ2q̄γ5q SD (scalar) ðq=2mnÞ2
1 complex B†

μBμq̄q SI (scalar) 1
1 real BμBμq̄q SI (scalar) 1
1 complex B†

μBμq̄γ5q SD ðq=2mnÞ2
1 real BμBμq̄γ5q SD ðq=2mnÞ2
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LHC should be able to conclusively test this class of
models in the near future.

Upon reviewing this list of possibilities, it is clear that
a wide range of simple dark matter models could be
responsible for the Galactic Center’s gamma-ray excess
without running afoul of existing constraints. Moreover, the
prospects for detecting the dark matter in these scenarios at
either direct detection experiments or at the LHC appear to
be quite promising. Of the 16 viable models identified in
our study, LUX and XENON1Tare expected to be sensitive
to 7. Only 3 of these 16 models predict an elastic scattering
cross section that will remain beyond the reach of future
direct detection experiments due to the irreducible neutrino
floor. Monojet searches, sbottom searches, and searches for
heavy Higgs bosons at the LHC will further restrict the
range of model parameters that remains viable. With
13–14 TeV data from the LHC, it will be possible to
conclusively test several of the scenarios presented here.
Many of the results presented in this study nicely

illustrate the complementarity between indirect, direct,
and collider searches for dark matter. Although future
astrophysical observations (such as gamma-ray searches
for dark matter annihilating in dwarf galaxies [88] or future
cosmic-ray anti-proton measurements [89,90]) may pro-
vide additional support for a dark matter interpretation of
the Galactic Center gamma-ray excess, indirect detection
signals alone are expected to determine little more than the
mass and annihilation cross section of the particles that
make up the dark matter, leaving many questions unan-
swered. Information from a combination of direct detection
experiments and colliders will be needed if one is to
identify the underlying interactions and particle content
of the dark sector.
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APPENDIX A: CROSS SECTION
CALCULATIONS

1. Annihilation

The annihilation cross section for two DM particles
resulting in final state fermions of identical mass, mf, is
given by

dðσannvÞ
dΩ

¼ jM̄j2
32π2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s
q

; ðA1Þ

where Ω is the angle of the outgoing particles in the center-
of-mass frame relative to the angle of the incoming
particles, v is understood to be the relative velocity between
the dark matter particles in the center-of-mass frame,

ffiffiffi
s

p
is

the center-of-mass energy, and jM̄j2 is the spin-averaged
annihilation matrix element squared.
The thermally averaged annihilation cross section, which

is of interest for relic density and indirect detection
expectations, is given by [91]

hσannvi≃ 2x3=2ffiffiffi
π

p
Z

∞

0

ðσvÞlabϵ1=2 exp ð−xϵÞdϵ; ðA2Þ

where x≡m=T and ϵ≡ p2
rel=4m

2 ¼ ðv=2Þ2=½1 − ðv=2Þ2�.
Far from resonances and particle production thresholds,
and taking the limit v → 0, the annihilation cross section is
well approximated by the first two terms of its Taylor series
expansion. In this case, we write ðσvÞlab ≃ ðσvÞc:m: ≃ aþ
bv2 ≃ aþ 4bϵ, so the velocity-averaged cross section can
be approximated by evaluating the integrals

2x3=2ffiffiffi
π

p
Z

∞

0

ϵ1=2 expð−xϵÞdϵ ¼ 1

2x3=2ffiffiffi
π

p
Z

∞

0

ϵ3=2 expð−xϵÞdϵ ¼ 3

2x
≃ 1

8
v2; ðA3Þ

where the final equality assumes equipartition of energy in
the nonrelativistic limit. These assumptions give the stan-
dard relation

hσannvi≃ aþ 1

2
bv2; ðA4Þ

which is acceptable for understanding annihilations far
from any resonances or thresholds. We emphasize that the
physics of annihilation through an s-channel mediator that
can be produced on shell is not captured by this expansion,
and the full annihilation cross section may be needed to
produce accurate results.

2. Elastic scattering and direct detection

In this appendix, we describe our calculations of the dark
matter’s elastic scattering cross section with nuclei, and
its implications for direct detection. We focus on those
scenarios with unsupressed low-velocity annihilation cross
sections (those potentially able to account for the observed
gamma-ray excess). We will provide the analytic expression
for each scattering cross section in the following appendix;
here, we simply describe our method of calculation.
To begin, we make the simplifying assumption of low

momentum transfer. As long as the mass of the mediating
particle is well above the momentum transfer of a typical
elastic scattering event (mmed ≳ 100 MeV), we can safely
approach direct detection within the context of effective
field theory and integrate out this mediator.
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Given this assumption, the s-channel direct detection
interaction will be simply described by a single dimension-
five or -six operator,

LDD ⊃ ODM · Propmed ·Oq →

�
1

m2
med

ODM

�
On

→

�
1

m2
med

ODM

�
ON; ðA5Þ

where Oq is the quark-level SM operator and On is the
nucleon-level operator. These nucleon-level operators are
summed over to get nucleus-level operators, ON . Spin-
independent interactions sum coherently over the target
nucleus, N, such that

OSI
N ¼ ZOp þ ðA − ZÞOn: ðA6Þ

Spin-dependent interactions, on the other hand, go like

OSD
N ¼

�hSpi
JN

Op þ
hSni
JN

On

�
hJNi; ðA7Þ

where J is the spin of the nucleus. After summing over
the quarks and nucleons, we square the matrix element,
average over incoming spins, and sum over outgoing spins.
Ultimately, to derive cross sections, we must take the
nonrelativistic limits for spinors. For spin-independent
interactions, we have both ξ̄outξin → 2mξ and ξ̄outγ

μξin →
2mξδ

μ
0, while for spin-dependent interactions, we have

ξ̄outγ
5ξin → 2qiξhSiξi and ξ̄outγ

μγ5ξin → 4mξhSiξiδμi . See
Ref. [27] for further details.
The t-channel interactions can be constructed from the

s-channel cases by Fierz transformations [60].6 Note that
the DM and SM physics factorize into distinct pieces. Here
we discuss the summation of the SM operator into pieces
relevant for the nucleon, n. We will use tildes to denote that,
in contrast with much of the literature, our couplings in the
following discussion are all dimensionless.
Consider the interaction of the DM through a scalar-

mediated force with quarks:

OSI;s ¼ ~fqf̄f → ~fnn̄n: ðA8Þ

As scalar couplings generally scale with the mass of the
interacting fermion, such interactions are typically domi-
nated by the dark matter’s couplings to the nucleon’s
strange quark content, or by the coupling to gluons through
loops of heavy quarks (c, b, t). DM scattering off the
nucleons is given by summing over their quark content, so
we are interested instead in the coefficients ~fn:

~fn
mn

¼
X

q¼u;d;s

fnTq

~fq
mq

þ 2

27
fTG

X
q¼c;b;t

~fq
mq

→
λs

GeV

�
7

9

X
q¼u;d;s

fnTq
þ 2

9

�
; ðA9Þ

where in the second line we take ~fq ¼ λsmq=GeV and
fTG ¼ 1 − fnTu

− fnTd
− fnTs

. We adopt the standard values
to describe the nuclear quark content: fpTu

¼ 0.020
and fpTd

¼ 0.026 (and the reverse for neutrons) and
fTs

¼ 0.043, as favored by recent lattice QCD calculations
[92]. This gives fTG ≃ 0.91, which implies that heavy
quark loops mediate much of this scattering.
Consider now the interaction of the DM through a

pseudoscalar-mediated force with quarks:

OSD;p ¼ ~tqf̄γ5f → ~tnn̄γ5n: ðA10Þ

This interaction is spin dependent and momentum sup-
pressed [27]. We will include the momentum suppression at
the target level because the momentum transfer defined by
q2 ¼ 2μ2χNv

2ð1 − cos θÞ is set at the reduced DM-nucleus
mass scale. The heavy quarks and gluons contribute
negligibly to the spin content of the nucleons, so DM
scattering off nucleons is given by summing over the light
quarks. The coefficients ~tn can be written as

~tn
mn

¼
X

q¼u;d;s

~tq
mq

ΔðnÞ
q →

λp
GeV

X
q¼u;d;s

ΔðnÞ
q ; ðA11Þ

where in the second line we take ~tq ¼ λpmq=GeV. For our
exclusion curves, we take the standard values to describe

the nuclear quark content, with ΔðpÞ
u ¼ ΔðnÞ

d ¼ 0.84,

ΔðnÞ
u ¼ ΔðpÞ

d ¼ −0.43, and ΔðpÞ
s ¼ ΔðnÞ

s ¼ −0.09 [93].
We are also interested in the interaction of the DM

through a vector-mediated force:

OSI;v ¼ ~bqf̄γμf → ~bnn̄γμn: ðA12Þ

This is spin independent, and since the vector current is
conserved only valence quarks contribute to the interaction.
Thus, DM scattering off nucleons is trivial to write down.
The coefficients ~bn can be written as:

~bp ¼ 2~bu þ ~bd; ~bn ¼ ~bu þ 2~bd: ðA13Þ

We will take ~bq ¼ λv to be uniform for all quarks.
Finally, we discuss the interaction of the DM through an

axial force with quarks:

OSD;a ¼ ~dqf̄γμγ5f → ~ann̄γμγ5n: ðA14Þ

This is spin-dependent but is not suppressed by any powers
of momentum. The heavy quarks and gluons contribute

6We remind the reader that by t or s channel, we refer to the
diagram responsible for annihilation, as opposed to the diagram
for elastic scattering.

SIMPLIFIED DARK MATTER MODELS FOR THE … PHYSICAL REVIEW D 89, 115022 (2014)

115022-15



negligibly to the spin content of the nucleon, so DM
scattering off nucleons is given by summing over the light
quarks. The coefficients that describe this scattering off
nucleons are traditionally written as an

~an ¼
X

q¼u;d;s

~dqΔ
ðnÞ
q → λa

X
q¼u;d;s

ΔðnÞ
q ; ðA15Þ

where the Δ’s are defined as above and ~dq ¼ λa is assumed
to be uniform for all quarks. This differs from the
pseudoscalar case in the dependence of the couplings on
mass and on momentum.

APPENDIX B: S-CHANNEL INTERACTIONS

1. Dirac dark matter, spin-0 mediator

Consider the following interactions for a Dirac dark
matter particle, χ, and a spin-0 mediator, A,

L ⊃ ½χ̄ðλχs þ λχpiγ5Þχ þ f̄ðλfs þ λfpiγ5Þf�A:

The cross section for χχ̄ annihilation is given by

σ ¼ nc
16πs½ðs −m2

AÞ2 þm2
AΓ2

A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s

1 − 4m2
χ=s

s
½λ2fsðs − 4m2

fÞ

þ λ2fps�½λ2χsðs − 4m2
χÞ þ λ2χps�: ðB1Þ

Where nc ¼ 3 for quarks and 1 for leptons. Expanding in
powers of v2 gives

σv≈
ncλ2χp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2

f=m
2
χ

q
½m2

χðλ2fpþ λ2fsÞ−m2
fλ

2
fs�

2πðm2
A − 4m2

χÞ2

þ ncv2

16πm2
χð4m2

χ −m2
AÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2

f=m
2
χ

q
× ½λ2χpfλ2fpm2

χðm2
Aðm2

f − 2m2
χÞþ 12m2

fm
2
χ − 8m4

χÞ
þ λ2fsðm2

f −m2
χÞðm2

Aðm2
f þ 2m2

χÞ− 20m2
fm

2
χ þ 8m4

χÞg
− 2λ2χsðm2

A− 4m2
χÞðm2

χ −m2
fÞðm2

χðλ2fpþ λ2fsÞ−m2
fλ

2
fsÞ�:
ðB2Þ

The mediator’s width to SM fermions is given by

ΓA ≡X
f

ΓðA → ff̄Þ

¼
X
f

ncmA

8πS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

m2
A

s �
λ2fs

�
1 −

4m2
f

m2
A

�
þ λ2fp

�
; ðB3Þ

where S≡ 1 (2) for (in)distinguishable final state particles.
In the limit that nc → 3, mf → 0, and taking

all couplings equal to λ (so that, e.g., we have

interaction vertices proportional to projection operators),
we have

hσvi≃ 3λ4

π

m2
χ

m4
Að1 − 4m2

χ=m2
AÞ2

�
1þ v2

4

1

1 − 4m2
χ=m2

A

�
:

ðB4Þ

This differs by a factor of 16 from some standard
references due to the factor of 1=2 in the defini-
tion: PL;R ¼ ð1 ∓ γ5Þ=2.
Considering the very low momentum exchange involved

in DM scattering with nuclei, we can safely integrate out
the mediator. If we take λχp ¼ λfp ¼ 0, we reproduce the
standard scalar-mediated spin-independent scattering cross
section. Summing over the quark content of the nucleus as
described above in Eq. (A9) gives

σSIðs;sÞ ≃
μ2χNλ

2
χ;s

πm4
A

½Z ~fp þ ðA − ZÞ ~fn�2; ðB5Þ

where ~fn are dimensionless quantities defined in Eq. (A9).
They are related to the traditional dimensionful couplings
by fn ≡ λχ;s ~fn=m2

A. If instead we take λχs ¼ λfs ¼ 0, we
find a spin-dependent scattering cross section that is sup-
pressed by four powers of the momentum:

σSIðp;pÞ ≃
4

3

�
2μ2χNv

2

4mχmN

�2 4μ2χNλ
2
χ;p

πm4
A

JNðJN þ 1Þ

×

�hSpi
JN

~tp þ
hSni
JN

~tn

�
2

; ðB6Þ

where ~tn are dimensionless quantities defined in Eq. (A11).
They are related to the traditional dimensionful couplings
by tn ≡ λχp~tn=m2

A.
We need not restrict ourselves to these interactions, of

course. In addition to the scalar-scalar and pseudoscalar-
pseudoscalar cross sections, we may write the mixed scalar-
pseudoscalar and pseudoscalar-scalar cross sections. These
are given by

σSIðp;sÞ ≃
μ2χNv

2

2m2
χ

μ2χNλ
2
χ;p

πm4
A

½Z ~fp þ ðA − ZÞ ~fn�2;

σSDðs;pÞ ≃
2μ2χNv

2

4m2
N

4μ2χNλ
2
χ;s

πm4
A

JNðJN þ 1Þ
�hSpi

JN
~tp þ

hSni
JN

~tn

�
2

;

ðB7Þ

with coefficients as defined above.

2. Majorana dark matter, spin-0 mediator

For Majorana fermion DM and a spin-0 mediator with
the following interactions:
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L ⊃
�
1

2
χ̄ðλχs þ λχpiγ5Þχ þ f̄ðλfs þ λfpiγ5Þf

�
A;

ðB8Þ

the expressions for the annihilation and direct detection
cross sections are identical as shown in Eqs. (B1) and (B7).

3. Dirac dark matter, spin-1 mediator

Consider the following interactions for a Dirac dark
matter particle, χ, and a spin-1 mediator, Vμ:

L ⊃ ½χ̄γμðgχv þ gχaγ5Þχ þ f̄γμðgfv þ gfaγ5Þf�Vμ: ðB9Þ

The annihilation cross section is given by

σ ¼ nc
12πs½ðs −m2

vÞ2 þm2
vΓ2

v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s

1 − 4m2
χ=s

s �
g2fa

�
g2χa

�
4m2

χ

�
m2

f

�
7 −

6s
m2

v
þ 3s2

m4
v

�
− s

�
þ sðs − 4m2

fÞ
�

þ g2χvðs − 4m2
fÞð2m2

χ þ sÞ
�
þ g2fvð2m2

f þ sÞðg2χaðs − 4m2
χÞ þ g2χvð2m2

χ þ sÞÞ
�
: ðB10Þ

Expanding in powers of v2 gives

σv ≈
nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

f=m
2
χ

q
2πm4

vðm2
v − 4m2

χÞ2
½g2faðm2

fg
2
χaðm2

v − 4m2
χÞ2 þ 2g2χvm4

vðm2
χ −m2

fÞÞ þ g2fvg
2
χvm4

vðm2
f þ 2m2

χÞ�

−
ncv2

48πm4
vm2

χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

f=m
2
χ

q
ð4m2

χ −m2
vÞ3

½g2fafg2χaðm2
v − 4m2

χÞðm4
fð−72m2

vm2
χ þ 17m4

v þ 144m4
χÞ

þm2
fð48m2

vm4
χ − 22m4

vm2
χ − 96m6

χÞ þ 8m4
vm4

χÞ
− 2g2χvm4

vðm2
f −m2

χÞð4m2
χðm2

v − 17m2
fÞ þ 5m2

fm
2
v þ 32m4

χÞg þ g2fvm
4
vfg2χvð8m4

χðm2
v − 4m2

fÞ
− 4m2

fm
2
χð17m2

f þm2
vÞ þ 5m4

fm
2
v þ 64m6

χÞ − 4g2χaðm2
fm

2
χ þm4

f − 2m4
χÞðm2

v − 4m2
χÞg�: ðB11Þ

The mediator’s width to SM fermions is

Γv ≡
X
f

ΓðV → ff̄Þ ¼
X
f

ncmv

12πS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

m2
v

s �
g2fa

�
1 −

4m2
f

m2
v

�
þ g2fv

�
1þ 2

m2
f

m2
v

��
; ðB12Þ

where S≡ 1 (2) for (in)distinguishable final state particles.
In the limit that nc → 3, mf → 0, and taking all

couplings equal to λ, we have

hσvi≃ 6λ4

π

m2
χ

m4
vð1 − 4m2

χ=m2
vÞ2

�
1þ v2

6

1þ 2m2
χ=m2

v

1 − 4m2
χ=m2

v

�
:

ðB13Þ
Now consider very low momentum exchange for DM

elastic scattering with nuclei, so that we we can integrate
out the mediator. If we take gχa ¼ gfa ¼ 0, we can integrate
out the mediator. Summing over the quark content of the
nucleus as suitable for a scalar-mediated interaction, we can
find the direct detection spin-independent cross section, as
described above. This gives

σSIðv;vÞ ≃
μ2χNg

2
χv

πm4
v

½Zð2~bu þ ~bdÞ þ ðA − ZÞð ~bu þ 2~bdÞ�2;

ðB14Þ

where ~bq are dimensionless quantities related to the tradi-
tional dimensionful couplings by bq ¼ gχv ~bq=m2

v. If we
instead take gχv ¼ gfv ¼ 0, we can find the spin-dependent
direct detection cross section, as described above. This gives

σSDða;aÞ≃
4μ2χNg

2
χa

πm4
v

JNðJNþ1Þ
�hSpi

JN
~apþ

hSni
JN

~an

�
2

; ðB15Þ

where ~an are dimensionless quantities related to the tradi-
tional dimensionful couplings by an ¼ gχa ~an=m2

v.
Once more, we may write the cross sections with mixed

spin-1 vertices. We have

σSIða;vÞ≃
2μ2χNv

2

m2
χ

μ2χN
μ2χn

μ2χNg
2
χa

πm4
v
½Zð2~buþ ~bdÞþðA−ZÞð~buþ2~bdÞ�2;

σSDðv;aÞ≃
μ4χN
μ2χn

2g2χvv2

πm4
v
JNðJNþ1Þ

�hSpi
JN

~apþ
hSni
JN

~an

�
2

;

ðB16Þ
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where the kinematic suppression carried by the product
g2χvv2 is due to the fact that the momentum transfer does not
sum coherently for this operator. This is often written as a
dependence on v2⊥ ∼ μ2χNv

2=μ2χn.

4. Majorana dark matter, spin-1 mediator

Similar to the case above, we may write down the
Lagrangian for a Majorana DM particle, χ, that interacts
with the SM via a spin-1 mediator, Vμ:

L ⊃
�
1

2
gχaχ̄γμγ5χ þ f̄γμðgfv þ gfaγ5Þf

�
Vμ: ðB17Þ

Note that gχv → 0 since the vector coupling to a self-
conjugate particle vanishes. With the factor of 1=2 written
here and the caveat noted, the Majorana case gives the
identical annihilation and direct-detection cross sections as
in the Dirac case. These are given in Eqs. (B10) and (B16).

5. Complex scalar dark matter, spin-0 mediator

Consider the following interactions for a complex scalar
dark matter particle, ϕ, and a spin-0 mediator, A:

L ⊃ ½μϕjϕj2 þ f̄ðλfs þ λfpiγ5Þf�A: ðB18Þ

The cross section is given by

σ ¼ ncμ2ϕ
8πs½ðs −m2

AÞ2 þm2
AΓ2

A�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s

1 − 4m2
ϕ=s

s
½λ2fsðs − 4m2

fÞ þ sλ2fp�; ðB19Þ

which can be expanded in powers of v2 as

σv ≈
ncμ2ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

f=m
2
ϕ

q
½λ2fp þ λ2fsð1 −m2

f=m
2
ϕÞ�

4πðm2
A − 4m2

ϕÞ2
−

ncμ2ϕv
2

32πm4
ϕð4m2

ϕ −m2
AÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

f=m
2
ϕ

q ½λ2fpm2
ϕðm2

Am
2
f − 20m2

fm
2
ϕ þ 16m4

ϕÞ

þ λ2fsðm2
ϕ −m2

fÞð3m2
Am

2
f − 28m2

fm
2
ϕ þ 16m4

ϕÞ�: ðB20Þ

In the limit that nc → 3, mf → 0, and taking all
couplings equal to λ (with μϕ → mϕλ=2), we have

hσvi≃ 3λ4

2π

m2
ϕ

m4
Að1 − 4m2

ϕ=m
2
AÞ2

�
1þ v2

m2
A=m

2
ϕ − 4

�
:

ðB21Þ

Now consider very low momentum exchange for DM
elastic scattering with nuclei, so that we we can integrate
out the mediator. If we take μϕ ¼ λϕmϕ, we can read off the
scattering cross section by rescaling Eqs. (B5) and (B6). In
the case with λfp ¼ 0, we have

σSIðsÞ ≃
μ2ϕNλ

2
ϕ

4πm4
A
½Z ~fp þ ðA − ZÞ ~fn�2; ðB22Þ

whereas for λfs ¼ 0, we find a q2 momentum-suppressed
spin-dependent scattering cross section:

σSDðpÞ ≃
2μ2ϕNv

2

4m2
N

μ2ϕNλ
2
ϕ

πm4
A
JNðJN þ 1Þ

�hSpi
JN

~tp þ
hSni
JN

~tn

�
2

;

ðB23Þ

where ~tn are dimensionless quantities defined in Eq. (A11).
They are related to the traditional dimensionful couplings
by tn ≡ λχp~tn=m2

A.

6. Real scalar dark matter, spin-0 mediator

Similar to the case above, we may write down the
Lagrangian for a real scalar DM particle, ϕ, that interacts
with the SM via a spin-0 mediator, A:

L ⊃
�
1

2
μϕϕ

2 þ f̄ðλfs þ λfpiγ5Þf
�
A: ðB24Þ

With the factor of 1=2 written here, this gives the identical
annihilation and scattering cross sections as in the complex
case, given in Eqs. (B19) and (B23).

7. Complex scalar dark matter, spin-1 mediator

Consider the following interactions for a complex scalar
dark matter particle, ϕ, and a spin-1 mediator, Vμ:

L ⊃ ½igϕϕ†∂μ

↔
ϕþ f̄γμðgfv þ gfaγ5Þf�Vμ: ðB25Þ

This has an annihilation cross section given by

σ ¼ ncg2ϕs

12π½ðm2
v − sÞ2 þ Γ2

vm2
v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
ϕ

s

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

s

s

×

�
g2a

�
1 −

4m2
f

s

�
þ g2v

�
1þ 2m2

f

s

��
; ðB26Þ

which can be expanded in powers of v2 as
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σv ≈
ncg2ϕm

2
ϕv

2

6π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

f=m
2
ϕ

q
ðm2

v − 4m2
ϕÞ2

×

�
g2a

�
1 −

m2
f

m2
ϕ

�
þ g2v

�
1þ m2

f

2m2
ϕ

��
: ðB27Þ

In the limit that nc → 3, mf → 0, and taking all
couplings equal to λ, we have

hσvi≃ λ4v2

π

m2
ϕ�

m2
v − 4m2

ϕ

	
2
: ðB28Þ

Now consider very low momentum exchange for DM
elastic scattering with nuclei, so that we we can integrate

out the mediator. Since ϕ†∂μ

↔
ϕ is dominated by the timelike

component, we have gϕϕ†∂μ

↔
ϕ → 2gϕmϕδ

0
μ. Thus, we can

read off the scattering cross section by rescaling Eqs. (B14)
and (B15). If we take gfa ¼ 0, we have

σSIðvÞ ≃
μ2ϕNg

2
ϕ

4πm4
v
½Zð2~bu þ ~bdÞ þ ðA − ZÞð ~bu þ 2~bdÞ�2:

ðB29Þ
If we instead take gfv ¼ 0, we can find the rescaled spin-
dependent scattering cross section, in analogy with the
above. This gives

σSDðaÞ ≃
μ4ϕNg

2
ϕv

2

2πμ2ϕnm
4
v
JNðJN þ 1Þ

�hSpi
JN

~ap þ
hSni
JN

~an

�
2

; ðB30Þ

where the kinematic suppression goes like v2⊥.

8. Real scalar dark matter, spin-1 mediator

The real scalar equivalent of Eq. (B25) vanishes iden-
tically, so that real scalar dark matter cannot couple to a
vector at tree level.

9. Complex vector dark matter, spin-0 mediator

Consider the following interactions for a complex vector
dark matter particle, Xμ, and a spin-0 mediator, A:

L ⊃ ½μXXμX†
μ þ f̄ðλfs þ λfpiγ5Þf�A: ðB31Þ

This has an annihilation cross section given by

σ ¼ ncμ2X
72π½ðs −m2

AÞ2 þm2
AΓ2

A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s

1 − 4m2
χ=s

s

×

�
s
m2

X

�
s

4m2
X
− 1

�
þ 3

��
λ2fs

�
1 −

4m2
f

s

�
þ λ2fp

�
;

ðB32Þ

which can be expanded in powers of v2 as

σv ≈
ncμ2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

f=m
2
X

q
½λ2fp þ λ2fsð1 −m2

f=m
2
XÞ�

12πðm2
A − 4m2

XÞ2

þ ncμ2Xv
2

288πm4
Xð4m2

X −m2
AÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

f=m
2
X

q ½λ2fpm2
Xf4m2

Xð7m2
f − 2m2

AÞ þ 5m2
Am

2
f − 16m4

Xg

þ λ2fsðm2
f −m2

XÞfm2
Aðm2

f þ 8m2
XÞ − 52m2

fm
2
X þ 16m4

Xg�: ðB33Þ

In the limit that nc → 3, mf → 0, and taking all
couplings equal to λ (with μX → mXλ=2), we have

hσvi≃ λ4

2π

m2
X

ðm2
A − 4m2

XÞ2
�
1þ v2

6

1þ 2m2
X=m

2
A

1 − 4m2
X=m

2
A

�
: ðB34Þ

Now consider very low momentum exchange for DM
elastic scattering with nuclei, so that we we can integrate
out the mediator. If we take μX ¼ λXmX, we can read off the
scattering cross section from Eqs. (B22) and (B23). In the
case with λfp ¼ 0, we have

σSIðsÞ ≃
μ2XNλ

2
X

4πm4
A
½Z ~fp þ ðA − ZÞ ~fn�2; ðB35Þ

whereas for λfs ¼ 0, we find a q2 momentum-suppressed
spin-dependent scattering cross section:

σSDðpÞ ≃
2μ2XNv

2

4m2
N

μ2XNλ
2
X

πm4
A

JNðJN þ 1Þ
�hSpi

JN
~tp þ

hSni
JN

~tn

�
2

;

ðB36Þ

where ~tn are dimensionless quantities defined in Eq. (A11).
They are related to the traditional dimensionful couplings
by tn ≡ λX~tn=m2

A.

10. Real vector dark matter, spin-0 mediator

Similar to the case above, we may write down the
Lagrangian for a real vector DM particle, Xμ, that interacts
with the SM via a spin-0 mediator, A:

L ⊃
�
1

2
μXXμXμ þ f̄ðλfs þ λfpiγ5Þf

�
A: ðB37Þ
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With the factor of 1=2 written here, this gives the identical
annihilation and scattering cross cross as in the complex
case. These are given in Eqs. (B32) and (B36).

11. Complex vector dark matter, spin-1 mediator

Consider the Lagrangian for complex vector dark matter,
Xμ, interacting with the SM via a spin-1 mediator, Vμ:

L ⊃ ½gXðX†ν∂νXμ þ h:c:Þ þ f̄γμðgfv þ gfaγ5Þf�Vμ:

ðB38Þ
This has an annihilation cross section

σ ¼ g2Xðs − 4m2
XÞ

72πm4
Xm

4
v½Γ2

vm2
v þ ðm2

v − sÞ2�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s

1 − 4m2
X=s

s
f2g2vm2

Xm
4
vð2m2

f þ sÞ

þ g2a½2m2
Xðsm4

v − 2m2
fð5m4

v − 6m2
vsþ 3s2ÞÞ

þ 3m2
fsðm2

v − sÞ2�g; ðB39Þ
which can be expanded in powers of velocity as

σv ≈
ncv2g2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

f=m
2
X

q
27πðm2

v − 4m2
XÞ2

½m2
fðg2fv − 2g2faÞ

þ 2m2
Xðg2fa þ g2fvÞ�: ðB40Þ

Although this is strictly an s-wave annihilation, there is no
velocity-independent term. This is because the annihilation
cross section carries an overall proportionality of the
timelike polarizations of the incoming particles [94]. In
the limit that nc → 3, mf → 0, and taking all couplings
equal to λ, we have

hσvi≃ 2λ4v2

9π

m2
X

m4
vð1 − 4m2

X=m
2
vÞ2

: ðB41Þ

Now consider very low momentum exchange for DM
elastic scattering with nuclei, so that we we can integrate

out the mediator. If we take the low-momentum limit, we
have gXðX†ν∂νXμ þ h:c:Þ≃ 2gXmX. Thus, we can read off
scattering cross section by rescaling Eqs. (B29) and (B30).
If we take gfa ¼ 0, we have

σSIðvÞ ≃
μ2XNg

2
X

4πm4
v
½Zð2~bu þ ~bdÞ þ ðA − ZÞð ~bu þ 2~bdÞ�2:

ðB42Þ
If we instead take gfv ¼ 0, we can find the rescaled spin-
dependent scattering cross section, in analogy with the
above. This gives

σSDðaÞ ≃
μ4XNg

2
Xv

2

2πμ2Xnm
4
v
JNðJN þ 1Þ

�hSpi
JN

~ap þ
hSni
JN

~an

�
2

:

ðB43Þ

12. Real vector dark matter, spin-1 mediator

Consider the Lagrangian for real vector dark matter, Xμ,
interacting with the SM via a spin-1 mediator, Vμ:

L ⊃
�
1

2
gXðXν∂νXμ þ h:c:Þ þ f̄γμðgfv þ gfaγ5Þf

�
Vμ:

ðB44Þ
With the factor of 1=2 written here, this gives the identical
annihilation and direct-detection cross sections as in the
complex case. These are given in Eqs. (B39) and (B43).

APPENDIX C: T=U-CHANNEL INTERACTIONS

1. Dirac dark matter, spin-0 mediator

Consider the following interactions for a Dirac dark
matter particle, χ, and a spin-0 mediator, A:

L ⊃ χ̄ðλs þ λpγ
5ÞfAþ f̄ðλs − λpγ

5ÞχA† ðC1Þ

Since there are no resonances in t-channel annihilation, the
annihilation cross section is always well approximated by
the first two terms of its Taylor series expansion. This cross
section expanded in powers of v2 is given by

σv ≈
nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

f=m
2
χ

q
½λ2pðmχ −mfÞ þ λ2sðmf þmχÞ�2

8πðm2
A −m2

f þm2
χÞ2

−
ncv2

192πm2
χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

f=m
2
χ

q
ðm2

A −m2
f þm2

χÞ4
½m4

Af6m3
fmχðλ4p − λ4sÞ þm2

fm
2
χð13λ4p þ 2λ2pλ

2
s þ 13λ4sÞ

þm4
fð−11λ4p þ 14λ2pλ

2
s − 11λ4sÞ − 8m4

χðλ2p þ λ2sÞ2g þ 2m2
Aðm2

f −m2
χÞfλ4pðmf −mχÞ2ð8mfmχ þ 11m2
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2
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χÞ�: ðC2Þ
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In the limit that nc → 3, mf → 0, and taking all
couplings equal to λ, we have

hσvi≃ 3λ4

2π

m2
χ

ðm2
A þm2

χÞ2
�
1þ v2

6

1 − 3m2
χ=m2

A −m4
χ

1þm2
χ=m2

A

�
:

If instead we take the low-velocity limit, we can integrate
out the mediator as above, and we can find scattering rates.
To evaluate the cross section we must first put the matrix
element in canonical s-channel form using Fierz trans-
formations. As described in Ref. [60], for generic values of
the couplings, we generate all possible effective s-channel
scattering processes. Taking λs ¼ �λp allows us to cancel
the spin-0 mediated pieces, leaving

χ̄ð1þ γ5ÞfAþ f̄ð1 − γ5ÞχA†

→ −
1

2m2
A
χ̄γμð1þ γ5Þχf̄γμð1 − γ5Þf; ðC3Þ

where the cross sections for these interactions may be read
off from Eqs. (B42) and (B43). This is dominated by the
spin-independent piece.

2. Majorana dark matter, spin-0 mediator

Consider the following interactions for a Majorana dark
matter particle, χ, and a spin-0 mediator, A:

L ⊃ χ̄ðλs þ λpγ
5ÞfAþ f̄ðλs − λpγ

5ÞχA†: ðC4Þ
The annihilation cross section at low relative velocity is
given by

σv ≈
nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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192πm2
χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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f=m
2
χ

q
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2
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2
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f þ 20m2
χÞg

− 2m2
Aðm2

f −m2
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2
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2
χ þ 3m4
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χÞðm2

f −m2
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χÞ�: ðC5Þ

In the limit that nc → 3, mf → 0, and taking all couplings equal to λ, we have

hσvi≃ λ4v2

2π

m2
χð1þm4

χ=m4
AÞ

m4
Að1þm2

χ=m2
AÞ4

:

Taking instead the low-velocity limit, we can integrate out the mediator and rearrange via the Fierz identities
described above to get the interaction in canonical form. Since the vector current for a Majorana fermion vanishes,
we find

χ̄ð1þ γ5ÞfAþ f̄ð1 − γ5ÞχA† → −
1

2m2
A
χ̄γμγ5χf̄γμð1 − γ5Þf; ðC6Þ

and evaluating the direct-detection scattering cross section shows this gives spin-dependent scattering.

3. Dirac dark matter, spin-1 mediator

Consider the following interactions for a Dirac dark matter particle, χ, and a spin-1 mediator, Vμ:

L ⊃ χ̄γμðgχv þ gχaγ5ÞfVμ þ f̄γμðgχv þ gχaγ5ÞχV†
μ: ðC7Þ

The annihilation cross section at low relative velocity is given by
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χÞ�g: ðC8Þ

In the limit that nc → 3, mf → 0, and taking all couplings equal to λ, we have

hσvi≃ 3λ4

2π

m2
χ

m4
v

��
m2

χ þ 2m2
v

m2
χ þm2

v

�
2

þ v2

6

4m6
vm2

χ þm4
vm4

χ − 3m2
vm6

χ þ 4m8
v −m8

χ

ðm2
v þm2

χÞ4
�
: ðC9Þ

Taking instead the low-velocity limit, we can integrate out the mediator and rearrange via the Fierz identities described
above to get the interaction in canonical form, whereupon we find

χ̄γμð1þ γ5ÞfVμ þ f̄γμð1þ γ5ÞχV†
μ →

1

m2
v
χ̄γμð1þ γ5Þχf̄γμð1þ γ5Þf; ðC10Þ

which is dominated by spin-independent scattering.

4. Majorana dark matter, spin-1 mediator

Consider the following interactions for a Dirac dark matter particle, χ, and a spin-1 mediator, Vμ:

L ⊃ χ̄γμðgχv þ gχaγ5ÞfVμ þ f̄γμðgχv þ gχaγ5ÞχV†
μ: ðC11Þ

The annihilation cross section at low relative velocity is given by
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χÞ�g: ðC12Þ

In the limit that nc → 3, mf → 0, and taking all couplings equal to λ, we have

hσvi≃ 2λ4v2

π

m2
χm4

v

ðm2
v þm2

χÞ4
�
1þ 3m2

χ

m2
v
þ 13m4

χ

4m4
v
þm6

χ

m6
v
þ m8

χ

4m8
v

�
: ðC13Þ

Taking instead the low-velocity limit, we can integrate out the mediator and rearrange via the Fierz identities described
above to get the interaction in canonical form. We find that this rearranges to

χ̄γμð1þ γ5ÞfVμ þ f̄γμð1þ γ5ÞχV†
μ →

1

m2
v
χ̄γμγ5χf̄γμð1þ γ5Þf; ðC14Þ

which is dominated by spin-independent scattering.

5. Complex scalar dark matter, spin-1=2 mediator

Consider a complex scalar dark matter particle, ϕ, that interacts with the SM via t-channel exchange of the fermion, ψ :

L ⊃ ψ̄ðλs þ λpγ
5Þfϕ† þ f̄ðλs − λpγ

5Þψϕ: ðC15Þ

The annihilation cross section at low relative velocity is given by
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2
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In the limit that nc → 3, mf → 0, and taking all couplings equal to λ, we have

hσvi≃ λ4v2

2π

m2
ϕ

ðm2
ϕ þm2

ψ Þ2
:

Taking instead the low-velocity limit, we can integrate out the mediator. We find

ψ̄ð1� γ5Þfϕ† þ f̄ð1 ∓ γ5Þψϕ → −
2

mψ
f̄fϕ†ϕ; ðC17Þ

which mediates spin-independent scattering.

6. Real Scalar dark matter, spin-1=2 mediator

Consider the following interactions for a real scalar dark matter particle, ϕ, and a spin-1=2 mediator, ψ :

L ⊃ ½ψ̄ðλs þ λpγ
5Þf þ f̄ðλs − λpγ

5Þψ �ϕ: ðC18Þ
The annihilation cross section at low relative velocity is given by
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In the limit thatmf → 0 and with all couplings being equal, we find that this velocity-averaged annihilation cross section is
completely suppressed to second order in v.
Taking instead the low-velocity limit, we can integrate out the mediator as in Eq. (C17) to find the direct detection cross

section. We find the same result as above:

ψ̄ð1� γ5Þfϕ† þ f̄ð1 ∓ γ5Þψϕ → −
2

mψ
f̄fϕ†ϕ: ðC20Þ

7. Complex vector dark matter, spin-1=2 mediator

Consider the following interactions for a complex vector dark matter particle, Xμ, and a spin-1=2 mediator, ψ :

L ⊃ ψ̄γμðgv þ gaγ5ÞfX†
μ þ f̄γμðgv þ gaγ5ÞψXμ: ðC21Þ

The annihilation cross section at low relative velocity is given by
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fð−6g2ag2v þ 53g4a þ 53g4vÞ þ 20m4

Xð6g2ag2v þ g4a þ g4vÞg�: ðC22Þ

In the limit that nc → 3, mf → 0, and taking all couplings equal to λ, we have

hσvi≃ 8λ4

3π

m2
X

ðm2
X þm2

ψÞ2
�
1þ v2

48

5þ 18m2
X=m

2
ψ þ 37m4

X=m
4
ψ

ð1þm2
X=m

2
ψ Þ2

�
:

Taking instead the low-velocity limit, we can integrate out the mediator. We find

ψ̄γμð1� γ5ÞfX†
μ þ f̄γμð1� γ5ÞψXμ →

2

mψ
f̄fX†

μXμ; ðC23Þ

which mediates spin-independent scattering.

8. Real vector dark matter, spin-1=2 mediator

Consider the following interactions for a real vector dark matter particle, Xμ, and a spin-1=2 mediator, ψ :

L ⊃ ½ψ̄γμðgv þ gaγ5Þf þ f̄γμðgv þ gaγ5Þψ �Xμ: ðC24Þ

The annihilation cross section at low relative velocity is given by

σv≈
ncð1−m2

f=m
2
XÞ3=2

9πð−m2
f þm2

X þm2
ψ Þ2

½−2g2ag2vf5m2
f þ 3ðm2

ψ − 4m2
XÞgþ g4að2mfmψ þ 3m2

f þ 4m2
X þ 3m2

ψÞ

þ g4vð−2mfmψ þ 3m2
f þ 4m2

X þ 3m2
ψÞ�þ

ncv2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2

f=m
2
X

q
216πm2

Xð−m2
f þm2

X þm2
ψÞ4

½3m6
ψ ðg2a − g2vÞ2ðm2

f þ 8m2
XÞ

− 6mfm5
ψ ðg4a − g4vÞðm2

f − 4m2
XÞþm4

ψf−2g2ag2vð46m2
fm

2
X þ 39m4

f − 160m4
XÞþ 5g4að14m2

fm
2
X þm4

fÞ
þ 5m2

fg
4
vðm2

f þ 14m2
XÞgþ12mfm3

ψðg4a − g4vÞð−3m2
fm

2
X þm4

f þ 2m4
XÞ−m2

ψðm2
f −m2

XÞfm2
fm

2
Xð474g2ag2v− 29g4a − 29g4vÞ

þm4
fð−174g2ag2vþ 19g4aþ 19g4vÞ−80m4

Xð6g2ag2vþ g4aþ g4vÞg−2mfmψðg4a − g4vÞð3m2
f − 32m2

XÞðm2
f −m2

XÞ2
þðm2

f −m2
XÞ2f8m2

fm
2
Xð44g2ag2vþ g4aþ g4vÞþm4

fð−90g2ag2vþ 11g4aþ 11g4vÞ− 56m4
Xð6g2ag2vþ g4aþ g4vÞg�: ðC25Þ

In the limit that nc → 3, mf → 0, and taking all couplings equal to λ, we have
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hσvi≃32λ4

3π

m2
X

ðm2
X þm2

ψ Þ2
�
1þ v2

24

5−10m2
X=m

2
ψ −7m4

X=m
4
ψ

ð1þm2
X=m

2
ψ Þ2

�

Taking instead the low-velocity limit, we can integrate out
the mediator as in Eq. (C23). We find

ψ̄γμð1� γ5ÞfX†
μ þ f̄γμð1 ∓ γ5ÞψXμ →

2

mψ
f̄fXμXμ;

ðC26Þ

which, as above, mediates spin-independent scattering.

APPENDIX D: RELIC ABUNDANCE

The abundance of dark matter particles which survive the
big bang as a thermal relic is found by solving the
Boltzmann equation:

dn
dt

¼ −3Hn − hσvi½n2 − n2eq�; ðD1Þ

where H ¼ _a=a is the Hubble parameter, n is the number
density of dark matter particles, and neq is the equlibrium
number density. In the nonrelativistic limit, neq ¼
gðmT=2πÞ3=2 expð−m=TÞ, where g is the number of inter-
nal degrees of freedom of the DM particle,m is the mass of
the DM particle, and T is the temperature.
The solution to Eq. (D1) yields a present-day dark matter

abundance given by

Ωh2 ≅
1.07 × 109 GeV−1

Jg1=2⋆ mPl

; ðD2Þ

where h is present-day Hubble parameter (in units of
100 km=s=Mpc), mPl ¼ 1.22 × 1019 GeV, and g⋆ is the
number of effective relativistic degrees of freedom at the
time of freeze out (for g⋆, we adopt the values given in
Refs. [22,95]). The quantity J is given by

J ¼
Z

∞

xf

hσvi
x2

dx; ðD3Þ

where x≡m=T and xf is the value at the freeze-out
temperature, which is found by iterating the following:

xf ¼ ln
0.038gmPlmhσvi

g1=2⋆ x1=2f

: ðD4Þ

When not near a resonance, we can expand the annihi-
lation cross section in a Taylor series, σv≃ aþ
bv2 þOðv4Þ, yielding the following relic abundance:

Ωh2 ≅
xf1.07 × 109 GeV−1

g1=2⋆ mPlðaþ 3b=xfÞ
: ðD5Þ

Near a resonance, however, the Taylor series expansion
breaks down, and we instead determine JðxfÞ by solving
the following integrals numerically [96]:

J ¼
Z

∞

0

dv
v2ðσvÞffiffiffiffiffiffi

4π
p

Z
∞

xf

dxx−1=2 expð−xv2=4Þ; ðD6Þ

where v is the relative velocity of the annihilating particles,
which is related to the Mandelstam variable by s ¼
4m2=ð1 − v2=4Þ.
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