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We extend the Standard Model (SM) by adding a pair of fermionic SUð2Þ doublets with opposite
hypercharge and a fermionic SUð2Þ triplet with zero hypercharge. We impose a discrete Z2 symmetry that
distinguishes the SM fermions from the new ones. Then, gauge invariance allows for two renormalizable
Yukawa couplings between the new fermions and the SM Higgs field, as well as for direct masses for the
doublet (MD) and the triplet (MT). After electroweak symmetry breaking, this model contains, in addition
to SM particles, two charged Dirac fermions and a set of three neutral Majorana fermions, the lightest of
which contributes to dark matter (DM). We consider a case where the lightest neutral fermion is an equal
admixture of the two doublets with mass MD close to the Z-boson mass. This state remains stable under
radiative corrections thanks to a custodial SUð2Þ symmetry and is consistent with the experimental data
from oblique electroweak corrections. Moreover, the amplitudes relevant to spin-dependent or spin-
independent nucleus-DM particle scattering cross sections both vanish at tree level. They arise at one loop
at a level that may be observed in near future DM direct detection experiments. For Yukawa couplings
comparable to the top quark, the DM particle relic abundance is consistent with observation, not relying on
coannihilation or resonant effects, and has a mass at the electroweak scale. Furthermore, the heavier
fermions decay to the DM particle and to electroweak gauge bosons making this model easily testable at the
LHC. In the regime of interest, the charged fermions suppress the Higgs decays to diphotons by 45%–75%
relative to SM prediction.
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I. INTRODUCTION

Motivated by astrophysical observations that suggest the
existence of dark matter [1], we would like to propose a
model with a fermionic weakly interacting massive particle
(WIMP) (χ01) whose mass and couplings are directly
associated to electroweak scale providing the Universe
with the right thermal relic density abundance, not “tuned”
by coannihilation or resonance effects. Today, as opposed
to five years ago, attempts of this sort immediately face
difficulties due to strong experimental bounds [2,3]1 from
direct searches on nucleus recoiling energy in WIMP-
nucleus scattering processes [5]. As a result, Z- and Higgs-
boson couplings to χ01 pairs are strongly constrained and
usually come into conflict with values of couplings
required from the observed [6] dark matter (DM) relic
abundance. We therefore seek for a model in which, at least
at tree level, these couplings vanish by a symmetry and at
the same time the observed relic density is reproduced. We
then discuss further consequences of this idea at the Large
Hadron Collider (LHC).

We consider a minimal model which realizes this
situation; hence, in addition to Standard Model (SM)
particles, we add a pair of Weyl-fermion doublets D̄1 ∼
ð1c; 2Þ−1 and D̄2 ∼ ð1c; 2Þþ1 with opposite hypercharges,
and a Weyl-fermion triplet T ∼ ð1c; 3Þ0 with zero hyper-
charge. The new Yukawa interactions allowed by gauge
invariance and renormalizability are given by2

LYuk ⊃ Y1THτD̄1 þ Y2TH†τD̄2 −MDD̄1D̄2 −
1

2
MTTT;

ð1:1Þ

with τ being the Pauli matrices. A Z2-discrete parity
symmetry has been employed to guarantee that the new
fermions interact always in pairs. Clearly, LYuk is invariant
under the interchange symmetry H ↔ H† and D̄1 ↔ D̄2
when Y1 ¼ Y2 ≡ Y. Then, it is very easy to see that in this
limit, one eigenvalue with mass MD, of the neutral (3 × 3)
mixing mass matrix, decouples from the two heavier ones
and the latter is degenerate with the two eigenvalues of the
(2 × 2) charged fermion mass matrix. At tree level approxi-
mation, except for the lightest neutral fermion (χ01), all other
masses are controlled by the Yukawa coupling Y. The state
with mχ0

1
¼ MD is our DM candidate particle. This particle

*adedes@cc.uoi.gr
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1There are of course tantalizing hints from DAMA, CoGeNT,

CRESST-II and CDMS-Si experiments but these face stringent
constraints from recent null result experiments like XENON100
and LUX making puzzling any theoretical interpretation of them
all. For a recent review, see Ref. [4].

2All gauge group indices are suppressed in this equation. Its
detailed form is given below in Eq. (2.7).
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state contains an equal admixture of the two doublets but
has no triplet component,

jχ01i ¼ 0 · jTi þ 1ffiffiffi
2

p jD̄1i þ
1ffiffiffi
2

p jD̄2i: ð1:2Þ

Because the neutral component of the triplet does not
participate in jχ01i, the latter does not couple to the Higgs
boson at tree level. It does not couple to the Z-gauge boson
either because of its equal admixture of neutral particles
with opposite weak isospin. The situation here is analogous
to the custodial symmetry [7] imposed in strongly coupled
Electroweak (EW) scenarios, where the “custodian” new
particles are inserted in a similar way to protect certain
quark–gauge boson couplings to obtain large radiative
corrections [8–11].
The couplings hχ01χ

0
1 and Zχ01χ

0
1 vanish at tree level, and

as a result there are no s-channel amplitudes contributing to
the annihilation cross section. However, there are off-
diagonal interactions such as e.g., Zχ01χ

0
2, that render the

t-, u-channel amplitudes nonzero but yet suppressed
enough to obtain the right relic density Ωχ for MD ≈
100 GeV and Y ≈ 1. Roughly speaking, the spectrum of the
model where this happens is shown schematically in Fig. 1.
Typically, the lightest stable new particle (mχ0

1
≈ 110 GeV)

is in the vicinity of the EW scale while all other neutral and
charged fermions are above m≡ Yv which is taken around
the top quark mass. The splitting of the charged fermions is
also controlled by the triplet mass (MT). Therefore, the
parameters of the model are just three: MD, MT and m.
Naively, one may think that this model is similar to the

“wino-Higgsino” sector of the minimal supersymmetric

StandardModel (MSSM) [12] or it is an extended variant of
the singlet-doublet DM model of Refs. [13–16]. For
example an obvious question is, why does one want to
introduce several new fermions, since a single one (for
example the triplet, as in minimal DM [17] models)
suffices? The answers to this question arise from our wish
to construct a model with WIMP mass at the EW scale, and
hides inside the model building details, namely:
(1) The off-diagonal entries of the “chargino” or “neu-

tralino” mass matrix contain general Yukawa cou-
plings (Y1 andY2) that can be enhanced as opposed to
the fixed-value gauge couplings of the MSSM.
Furthermore, they can be equal here i.e., Y1 ¼ Y2 ≡
Y ∼ g, satisfying a custodial symmetry, a realiza-
tion which is only phenomenologically allowed
in the so called split-SUSY scenarios [18,19]. There-
fore, this fermionic doublet-triplet DM sector gen-
eralizes the corresponding DM sector of the MSSM.

(2) In the region where the common Yukawa coupling is
comparable, say, in the top Yukawa coupling there
are heavy charged leptons decaying to the lightest
new fermion χ01. This mass pattern, shown in Fig. 1,
is different from the singlet-doublet DM model (at
least from the minimal version) where the lightest
neutral particle is, up to radiative corrections, de-
generate with the charged particle, a situation which
is highly constrained from long lived charged
particle searches at the LHC [20].

(3) In the limit of equal Yukawa couplings (Y) in
Eq. (1.1), there is a custodial SUð2Þ symmetry that
guarantees vanishing couplings at tree level between
the lightest neutral particle and the Z boson (Zχ01χ

0
1)

and also to the Higgs boson (hχ01χ
0
1). This is a certain

“pass” for this model, at least to leading order, from
the current strong direct detection experimental
constraints [2,3,21]. Moreover, as we shall see
below, hχ01χ

0
1 coupling arises radiatively at one-loop

order providing us with certain model predictions.
Note that “blind spots” of this kind have been
studied in Ref. [22] for split-SUSY and in Ref. [23]
for the singlet-doublet and singlet-triplet fermionic
DM models.

(4) Similar to the case here, the dominant annihilation
channel in the Higgsino DM-phase of MSSM [24] is
into gauge bosons. But in the Higgsino case and due
to smallness of the gauge coupling, the lightest
charged and neutral fermion states are degenerate so
coannihilation effects [25] are very important. It
turns out that for Higgsino mass μ ∼ 100 GeV the

cross section hσvi ≈ g4

16πμ2
is large which results in an

ΩDM that is too low unless μ is in the TeV range. In
the doublet-triplet fermonic DM model we consider
here, the lightest neutral state decouples from the
heavy ones, and in the limit of large m ¼ Yv the
difference in mass between the lightest neutral

FIG. 1. A sketch for the mass spectrum and decays of the new
physical doublet and triplet fermions. The lightest neutral
particle, χ01, is an equal admixture of the two doublets and has
mass MD. Particles χ02 (χ

0
3) and χ�1 (χ�2 ) are mass degenerate. For

the spectrum masses written to the right we have chosen
MD ¼ 110 GeV, MT ¼ 100 GeV and m ¼ Yv ¼ 200 GeV. It
provides the correct relic density abundance for dark matter (see
Sec. IV) and is currently ∼10 times less sensitive to current direct
detection searches (see Sec. V).
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fermion and the lightest charged or the second
lightest neutral one is normally of the order of
100 GeV (see Fig. 1 for an example). The annihi-
lation cross section now goes through the t, u
channels and, relative to the Higgsino case, is
suppressed by a factor ðmχ=mχjÞ4 ∼ 10–100 where
mχj are the heavy fermion masses (χ02;3; χ

�
1;2),

allowing a WIMP mass, mχ , naturally of the order
of 10–100 GeV.3

(5) Our attempt here is to find a DM candidate particle
consistent with the astrophysical and collider data
but with mass around the electroweak scale. Vector-
like gauge multiplets that are engaged here have
also been used to construct minimal DM models
(MDM) in Ref. [17]. It has been found that the
massesMD orMT should lie in the few-TeV region.
In our scenario, it is the chiral (Dirac) mass terms in
Eq. (1.1) that play the most important role. The
latter are constrained from perturbativity to be
several hundreds of GeV while the lower vectorlike
masses,MD andMT , are protected by an accidental
symmetry. Finally, the production and decay phe-
nomenology of the new fermions is very distinct
from the ones in MDM models and it is relatively
easy to be tested with current and near future
LHC data.

Within this framework of the doublet-triplet fermionic DM
model that we describe in Sec. II, and in particular in the
region where the custodial symmetry is applied, we discuss
and check constraints that include

(i) An estimate of oblique corrections to electroweak
observables (S, T, U parameters) (Sec. III).

(ii) DM thermal relic density calculation at tree
level (Sec. IV).

(iii) Direct DM detection prospects through nucleus-DM
particle scattering at one loop (Sec. V).

(iv) Decay rate of the Higgs boson to two photons
(h → γγ) (Sec. VI).

(v) Vacuum stability and perturbativity (Sec. VII).
(vi) LHC signatures, production and decays of the new

fermions.
Our conclusions and various ways to extend this work are
discussed in Sec. IX. An appendix with the explicit one-
loop corrections to the hχ01χ

0
1 vertex is given. Beyond the

articles we have already mentioned, there is reach literature
regarding minimal DM extensions of the SM. A partial list
is given in Refs. [26–46].

II. MODEL DETAILS

As a result of what we have already mentioned in the
introduction, we scan chiral fermion matter extensions of

the SM gauge group according to the following, rather
obvious, assumptions for the new set of fermions:
(1) they must have vectorial electromagnetic interactions,
(2) they must be color singlets with integer charges,
(3) their interactions must be gauge (and gravitational)

anomaly free,
(4) their masses are obtained after SUð2ÞW ×Uð1ÞY

gauge symmetry breaking, with only the SM Higgs
doublet, and if gauge symmetry allows, directly, and

(5) there is a parity symmetry, Z2, under which the SM
fermions transform as þ1 while the new fermions
as −1.

The most minimal model, not containing pure singlet
fields,4 consists of three fields arranged in color singlets
and representations of SUð2ÞW , with quantum numbers
denoted as ð1c; 2IW þ 1ÞYL;R, where IW is the weak
SUð2ÞW isospin and Y is the hypercharge related to the
electric charge by Q ¼ I3W þ Y

2
. These new fields are

T∼ ð1c;3Þ0L; D1 ∼ ð1c;2Þþ1
R ; D2 ∼ ð1c;2Þ−1R : ð2:1Þ

One can easily check that this is a gauge and gravitational
anomaly free set of chiral fermions. They sit in adjacent
representations of SUð2ÞW with weak isospin difference
ΔIW ¼ 1

2
. This matches with the only spinless field of the

SM, the Higgs field, with gauge labels H ∼ ð1c; 2Þþ1.
It is convenient to represent all fermions, i.e., SM quarks

and leptons plus new fermions that belong to the DM
sector, with two component, left-handed, Weyl fields [47],
namely5

SM quarks∶ Q ¼
�
u

d

�
∼ ð3c; 2Þþ1=3; ū ∼ ð3c; 1Þ−4=3;

d̄ ∼ ð3c; 1Þþ2=3; ð2:2Þ

SM leptons∶ L ¼
�
ν

e

�
∼ ð1c; 2Þ−1; ν̄ ∼ ð1c; 1Þ0;

ē ∼ ð1c; 1Þþ2; ð2:3Þ

DM fermions∶ T ¼

0
B@

T1

T2

T3

1
CA ∼ ð1c; 3Þ0;

D̄1 ¼
�
D̄1

1

D̄2
1

�
∼ ð1c; 2Þ−1;

D̄2 ¼
�
D̄1

2

D̄2
2

�
∼ ð1c; 2Þþ1: ð2:4Þ

SM fermions come in three copies of (2.2) and (2.3) sets of
fields. We have added a left-handed antineutrino Weyl field

3In this article, we are only interested in DM mass of the order
of the electroweak scale.

4However, see comments below.
5The bar symbol over the Weyl fields is part of their names.
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in the SM field content in order to account for light neutrino
masses via the seesaw mechanism. Although there may be
interesting links between the neutrino and DM sector fields
we shall scarcely refer to neutrinos in this article. We
assume only one copy of the DM-sector fields in (2.4). Of
course, we could also add more singlet fermions either in
the SM or in the DM sector but our intention is to keep the
model as minimal as possible.
Physical masses are obtained from the gauge invariant

form of Yukawa interactions. Under the assumption 5
above, the whole Yukawa Lagrangian of the model is

LYuk ¼ LSM
Yuk þ LDM

Yuk; ð2:5Þ

where the SM part reads (flavor indices are suppressed)

LSM
Yuk ¼ Yuϵ

abHaQbū − YdH†aQad̄ − YeH†aLaē

þ Yνϵ
abHaLbν̄ −

1

2
MN ν̄ ν̄ þ H:c:; ð2:6Þ

and the available DM-sector interactions are

LDM
Yuk ¼ Y1ϵ

abTAHaðτAÞcbD̄1c − Y2TAH†aðτAÞcaD̄2c

−MDϵ
abD̄1aD̄2b −

1

2
MTTATA þ H:c: ð2:7Þ

By choosing appropriate field redefinitions and without
loss of generality we can make the parameters Y1, Y2, and
MT real and positive, while leaving MD to be a general
complex parameter. This is the only source ofCP violation6

arising from the DM sector in this model. If not stated
otherwise, we consider real MD values in our numerical
results. The parity symmetry assumption 5 removes the
following renormalizable operators:

H†D̄2ν̄; HD̄1ν̄; LD̄2; HTL and H†D̄1ē: ð2:8Þ

Note that apart from the first two, the rest will not be
allowed under the custodial symmetry. Finally, we assume
that possible nonrenormalizable operators that are allowed
by the discrete symmetry are Planck scale suppressed and
do not play any particular role in what follows.

A. The spectrum

Since there is no mixing between the mass terms of the
SM fermions and the DM sector ones, we solely concen-
trate on the non-SM Yukawa interactions of Eq. (2.7). After
electroweak symmetry breaking and the shift of the neutral
component of the only Higgs field, H0 ¼ vþ h=

ffiffiffi
2

p
, we

obtain the following mass terms:

LDM
Y ðmassÞ ¼ −ðτ1D̄1

2ÞTMC

�
τ3

D̄2
1

�

−
1

2
ð τ2 D̄1

1 D̄2
2 ÞTMN

0
B@

τ2

D̄1
1

D̄2
2

1
CAþ H:c:

¼ −
X2
i¼1

mχ�i
χ−i χ

þ
i −

1

2

X3
i¼1

mχ0i
χ0i χ

0
i þ H:c:; ð2:9Þ

where τ1 ≡ ðT1 − iT2Þ=
ffiffiffi
2

p
, τ3 ≡ ðT1 þ iT2Þ=

ffiffiffi
2

p
and

τ2 ≡ T3. The charged (MC) and the neutral (MN) fermion
mass matrices in Eq. (2.9) are given by

MC ¼
�

MT

ffiffiffi
2

p
m1ffiffiffi

2
p

m2 −MD

�
;

MN ¼

0
B@

MT m1 −m2

m1 0 MD

−m2 MD 0

1
CA; ð2:10Þ

where m1;2 ≡ Y1;2v. Matrices MC and MN are diagonal-
ized following the singular value decomposition and the
Takagi factorization theorems [49] into mχ� ¼ ð2 × 2Þ and
mχ0 ¼ ð3 × 3Þ diagonal matrices,

UT
LMCUR ¼ mχ� ; OTMNO ¼ mχ0 ; ð2:11Þ

respectively, after rotating the current eigenstate fields into
their mass eigenstates χ�i , χ

0
i with unitary matrices, UL, UR

and O, as

�
τ3

D̄2
1

�
¼ UR

�
χ−1
χ−2

�
;

�
τ1

D̄1
2

�
¼ UL

�
χþ1
χþ2

�
;

0
B@

τ2

D̄1
1

D̄2
2

1
CA ¼ O

0
B@

χ01
χ02
χ03

1
CA: ð2:12Þ

Therefore the spectrum of this model contains, apart from
the SM masses for quarks and leptons, two additional
charged Dirac fermions and three neutral Majorana
particles. It is the lightest Majorana particle χ01 with mass
mχ0

1
, that, perhaps, supplies the Universe with cold dark

matter.
It is crucial for what follows, and also enlightening, to

discuss the decoupling of the MD eigenvalue from the
particle spectrum. First, MN is a real symmetric matrix,
under the assumption of real MD. Then, consider the
following unitary matrix Σ, having as columns orthonormal
vectors,

6Electron and neutron Electric Dipole Moments (EDMs) will
arise first at the two-loop level, and similarly for the anomalous
magnetic moments of SM leptons. See the relevant discussion in
Ref. [48].
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Σ ¼ 1ffiffiffi
2

p

0
B@

ffiffiffi
2

p
0 0

0 1 1

0 −1 1

1
CA; ð2:13Þ

which by a similarity transformation, brings the lower right
2 × 2 sub-block of MN into a diagonal form,

M0
N¼Σ†MNΣ

¼

0
B@

MT ðm1þm2Þ=
ffiffiffi
2

p ðm1−m2Þ=
ffiffiffi
2

p

ðm1þm2Þ=
ffiffiffi
2

p
−MD 0

ðm1−m2Þ=
ffiffiffi
2

p
0 MD

1
CA:

ð2:14Þ

Note that since Σ is a unitary matrix, the eigenvalues of
MN and M0

N are equal. We therefore obtain, that for
m1 ¼ m2, the charged fermion mass matrix MC becomes
the upper left sub-block of theM0

N in Eq. (2.14). Therefore
the eigenvalue, MD, decouples from the neutral fermion
mass matrix, i.e., it is independent of any mixing and
therefore any vacuum expectation value (VEV), while the
rest of the eigenvalues of both matrices, MC and MN , are
one to one degenerate.

B. The interactions

We now turn to the interactions between the new
fermions and the SM gauge bosons or the SM Higgs
boson. The latter can be read from Eq. (2.7) after rotating
fields by exploiting the relations in (2.12). After a little bit
of algebra we obtain7

LDM
Y ðintÞ ¼ −Yhχ−i χ

þ
j hχ−i χ

þ
j −

1

2
Yhχ0i χ

0
j hχ0i χ

0
j þ H:c:; ð2:15Þ

where

Yhχ−i χ
þ
j ≡ 1

v
ðm1UR2iUL1j þm2UR1iUL2jÞ; ð2:16Þ

Yhχ0i χ
0
j ≡ O1iffiffiffi

2
p

v
ðm1O2j −m2O3jÞ þ ði ↔ jÞ: ð2:17Þ

For completeness and especially for loop calculations, we
append here the interactions between Goldstone bosons and
the new fermions:

LGχχ ¼ −
iO1iffiffiffi
2

p
v
ðm1O2j þm2O3jÞG0χ0i χ

0
j

−
i
v
ðm1UR2iUL1j −m2UR1iUL2jÞG0χ−i χ

þ
j

þm1

v

� ffiffiffi
2

p
UR1iO2j − UR2iO1jÞGþχ−i χ

0
j

−
m2

v
ð

ffiffiffi
2

p
UL1iO3j þ UL2iO1jÞG−χþi χ

0
j þ H:c:

ð2:18Þ

Interactions among the new fermions and gauge bosons
arise from the respective fermion kinetic terms. Interactions
between χ� and the photon are purely vectorial,

Lγ−χ�
KINðintÞ ¼ −ðþeÞðχþi Þ†σ̄μχþi Aμ − ð−eÞðχ−i Þ†σ̄μχ−i Aμ;

ð2:19Þ

where Aμ is the photon field and ð−eÞ the electron electric
charge. The Z-gauge boson couplings to both charged and
neutral fermions can be read from8

LZ−χ
KINðintÞ ¼

g
cW

O0L
ij ðχþi Þ†σ̄μχþj Zμ −

g
cW

O0R
ij ðχ−j Þ†σ̄μχ−i Zμ

þ g
cW

O00L
ij ðχ0i Þ†σ̄μχ0jZμ; ð2:20Þ

where

O0L
ij ¼ −U�

L1iUL1j −
1

2
U�

L2iUL2j þ s2Wδij; ð2:21Þ

O0R
ij ¼ −UR1iU�

R1j −
1

2
UR2iU�

R2j þ s2Wδij; ð2:22Þ

O00L
ij ¼ 1

2
ðO�

3iO3j −O�
2iO2jÞ; ð2:23Þ

with sW , cW the sin and cos of the weak mixing angle and g
the SUð2ÞW gauge coupling. Finally, interactions between
χ’s and W bosons are described by the terms

LW�−χ0−χ∓
KINðintÞ ¼ gOL

ijðχ0i Þ†σ̄μχþj W−
μ − gOR

ijðχ−j Þ†σ̄μχ0i W−
μ

þ gOL�
ij ðχþj Þ†σ̄μχ0i Wþ

μ − gOR�
ij ðχ0i Þ†σ̄μχ−j Wþ

μ ;

ð2:24Þ

where the mixing matrices OL and OR are given by

OL
ij ¼ O�

1iUL1j −
1ffiffiffi
2

p O�
3iUL2j; ð2:25aÞ

7We use Weyl notation for fermions [47] throughout.

8Our notation resembles closely the one in Appendix E of
Ref. [47] i.e., U → U†

L, V → U†
R and N → O†.
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OR
ij ¼ O1iU�

R1j þ
1ffiffiffi
2

p O2iU�
R2j: ð2:25bÞ

We would like here to discuss a comparison with MSSM:
mass matrices for neutral and charged fermions in
Eq. (2.10) remind us of those of neutralinos and charginos
in the MSSM. It is of course trivially understood why this
happens: the doublet and the triplet fields possess the same
gauge quantum numbers as the Higgsino and wino fields,
respectively. However, there are two crucial differences:
first there is no restriction to add a bino singlet and
therefore the minimal MN is a 3 × 3, instead of 4 × 4,
simpler matrix and second, and more important, the off-
diagonal entries in MN and MC, are not proportional to
gauge couplings but to Yukawa couplings, Y1 and Y2. The
latter entries (∼Yv) can be substantially bigger than the
corresponding ones (∼gv) in the neutralino mass matrix of
MSSM. Furthermore, since tan β ¼ 1 is not, in general, a
phenomenologically viable case in MSSM, there should
always be a factor of hierarchy between the off-diagonal
entries. This is not necessarily the case here. In fact, the
tan β ¼ 1 “blind spot” [22] is a point in parameter space
protected by a custodial symmetry.

C. A custodial symmetry

It is well known that the Higgs sector in the SM obeys, in
addition to the standard electroweak gauge symmetry, a
custodial SUð2ÞR global symmetry. This symmetry is
broken explicitly by the hypercharge gauge coupling g0,
and by the difference between the top- and bottom-quark
Yukawa couplings. Similarly, the fermionic DM sector,
described by Eq. (2.7), obeys also such a symmetry if
Y1 ¼ Y2 ≡ Y. More explicitly, Eq. (2.7) can be written in
an SUð2ÞL × SUð2ÞR ×Uð1ÞX invariant form as

LDM
Yuk ¼ −YTAHx;aðτAÞbaD̄x;b −

1

2
MDϵ

xyϵabD̄x;aD̄y;b

−
1

2
MTTATA þ H:c:; ð2:26Þ

where x, y denote SUð2ÞR group indices and

Hx;a ¼
�

Ha

H†a

�
; D̄x;a ¼

�
D̄1a

D̄2a

�
; ð2:27Þ

with Ha ¼ ϵabHb. This extra global symmetry stands for
the rotations between H ↔ H† and D̄1 ↔ D̄2. Although
this symmetry is broken by the hypercharge gauge sym-
metry, it is natural to study interactions among extra
fermions ðD̄; TÞ and SM bosons under the assumption
that SUð2ÞR is approximately preserved in the DM sector,
that is,

Y1 ¼ Y2 ⇒ m1 ¼ m2: ð2:28Þ

In addition, Eq. (2.27) is invariant under a global Uð1ÞX
fermion number symmetry, under which only D̄ and T
fields are charged with ½D̄� ¼ ½D1� ¼ ½D2� ¼ −½T� ¼ 1. In
that case MD and MT are not allowed. We therefore
conclude that the limit where Y ≡ Y1 ¼ Y2 and MD ¼
MT → 0 is radiatively stable and this fact motivates us to
study it in more detail. Note again that both SUð2ÞR and
Uð1ÞX symmetries are broken explicitly by hypercharge
symmetry.

D. Lightest neutral fermion interactions
under the symmetry

Let us introduce the mass difference, Δm≡m1 −m2,
between the chiral masses (or between Yukawa couplings,
Y1 and Y2, if you wish). If SUð2ÞR symmetry is approx-
imately preserved, i.e., Eq. (2.28) approximately holds,Δm
must be treated as a perturbation compared to m1 or m2

masses, which are collectively denoted by m ¼ m1, i.e.,
Δm ≪ m. We can then write the neutral fermion mass
matrix in a suggestive perturbative form

MN ¼ Mð0Þ
N þQ; ð2:29Þ

where

Mð0Þ
N ¼

0
B@
MT m −m
m 0 MD

−m MD 0

1
CA; Q¼

0
B@

0 0 Δm
0 0 0

Δm 0 0

1
CA:

ð2:30Þ

The zeroth order eigenvalues of Mð0Þ
N read

mχ0
1
¼ MD; ð2:31aÞ

mχ0
2
¼ 1

2

h
MT −MD −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m2 þ ðMT þMDÞ2

q i
; ð2:31bÞ

mχ0
3
¼ 1

2

h
MT −MD þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m2 þ ðMT þMDÞ2

q i
; ð2:31cÞ

while the corresponding eigenvectors are

j1ið0Þ ¼ 1ffiffiffi
2

p

0
B@

0

1

1

1
CA; j2ið0Þ ¼ −1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ a2
p

0
B@

a

1

−1

1
CA;

j3ið0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ a2

p

0
BB@

ffiffiffi
2

p

− affiffi
2

p
affiffi
2

p

1
CCA; ð2:32Þ

where the parameter a is given by
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a ¼
mχ0

1
þmχ0

2

m
: ð2:33Þ

The parameter a varies in the interval ½− ffiffiffi
2

p
; 0� for positive

MD. A little examination of the eigenvalues shows that
unless MD ≫ MT > 0 where the lightest particle (LP)
becomes the triplet, in the rest of the parameter space
the LP is a “very well-tempered” mixed doublet fermion,
jχ01i ¼ 1ffiffi

2
p ðjD̄1

1i þ jD̄2
2iÞ, with mass mχ0

1
¼ MD.

9 The DM

particle ðχ01Þ has then vanishing coupling to the Higgs
boson because in Eq. (2.17) it is O11 ¼ 0. Note that every
neutral fermion has always vanishing diagonal couplings to
the Z-gauge boson, jO2ij ¼ jO3ij, since the two doublets,
D̄1 and D̄2, couple to Z with opposite weak isospin. It is
therefore worth examining how eigenvalues and eigenvec-
tors are corrected after switching to Δm ≠ 0.
Obviously, in order to find how χ01 couples to Z or h

nontrivially, i.e., to find the couplings Yhχ0
1
χ0
1 and gZχ

0
1
χ0
1 ¼

gO00L
11 =cW in Eqs. (2.17) and (2.23), respectively, we need to

know the OðΔmÞ corrections of eigenvector Oi1. The
corrected eigenvector, j1i ¼ j1ið0Þ þ j1ið1Þ þO½ðΔmÞ2�,
which is nothing else but the first column of the matrix
O in Eq. (2.11), is found to be

Oi1 ¼ j1i ¼ 1ffiffiffi
2

p

0
B@

xΔm
1þ yΔm
1 − yΔm

1
CAþO½ðΔmÞ2�; ð2:34Þ

where

x≡ 1

ð2þ a2Þ
�

a2

mχ0
1
−mχ0

2

þ 2

mχ0
1
−mχ0

3

�
; ð2:35Þ

y≡ a
ð2þ a2Þ

�
1

mχ0
1
−mχ0

2

−
1

mχ0
1
−mχ0

3

�
: ð2:36Þ

Simple substitution of Eq. (2.34) into Eqs. (2.17) and (2.23)
gives

Yhχ0
1
χ0
1 ¼ ðΔmÞ2ffiffiffi

2
p

v
xð1þ 2myÞ þ O½ðΔmÞ2=m2�; ð2:37Þ

gZχ
0
1
χ0
1 ≡ g

cW
O00L

11 ¼ −
g
cW

yΔmþ O½ðΔmÞ2=m2�: ð2:38Þ

Obviously, for sufficiently small mass difference Δm, the
spin-independent (SI) coupling ðYhχ0

1
χ0
1Þ is suppressed by

ðΔmÞ2=m2 while the spin-dependent (SD) one ðgZχ01χ01Þ is
suppressed by Δm=m relative to their values away from the
SUð2ÞR-symmetric limit. This may be the reason why we
have not detected DM-nucleon interactions so far. A

question arises immediately about the stability ofΔm under
radiative corrections. A quick Renormalization Group
Equation analysis [50,51] shows that the β function for
Δm at one loop is

dΔm
d lnðQÞ ¼

Δm
16π2

�
29

4
Y2 þ 3Y2

t −
9

20
g21 −

33

4
g22

�
; ð2:39Þ

whereYt is the top-Yukawa coupling,Y ≡ Y1 ≃ Y2, and g1;2
the hypercharge and weak gauge couplings, respectively.
Equation (2.39) means that Δm is only multiplicatively
renormalized. Therefore, setting Δm to zero at tree level
stays zero at one loop andpossibly at higher orders10 because
this is a parameter point protected by the global symmetry.
From Eqs. (2.37) and (2.38) we conclude that for Δm ¼ 0,
only finite (threshold) and calculable quantum corrections
will affect the couplings Yhχ0

1
χ0
1 and gZχ

0
1
χ0
1 which are relevant

to direct DM searches. We confirm this consequence with a
direct calculation of δYhχ0

1
χ0
1 in Sec. V and in the Appendix.

Note that x vanishes in the limit MD → 0 while ð1þ
2myÞ vanishes at both the MD → 0 and MD → MT limits.
However, Eq. (2.37) is not accurate since ðΔmÞ2=m2 terms
are missing in our perturbative expansion. It turns out that
the MD → MT limit is violated by those and higher terms,
but the limit MD → 0 is protected because of the Uð1ÞX
symmetry that we discussed in Sec. II C. In contrast,
Eq. (2.38) is within 1% of its exact numerical outcome.
It is also worth noticing that in the case where the Majorana
masses are dominant, MD;MT ≫ m, then y → 0 and
therefore gZχ

0
1
χ0
1 → 0, up to higher order terms.

It will be useful for the discussion, especially on the relic
density, to show the mass difference between the next-to-
lightest (jmχ0

2
j) and the lightest (jmχ0

1
j) neutral fermion states.

This is depicted as contour lines in Figs. 2(a)–(b) on the
MD −MT plane (left plot) and on the MD −m plane with
MT ¼ MD (right plot). Note thatMD coincides with the LP
mass i.e., MD ¼ mχ0

1
, everywhere in these graphs. For

m ¼ 200 GeV, the mass difference is nowhere smaller than
approximately 80 GeV, and typically, it is as large as the
parameter m with the maximum value at MD ¼ MT .
Subsequently, in Fig. 2(b), we plot the maximum values
of the mass difference on theMD −m plane. Alternatively, it
is easy to read from Fig. 2 the parameter a defined in
Eq. (2.33), because for the MD values taken throughout,
it is a ¼ −ðjmχ0

2
j − jmχ0

1
jÞ=m. For instance, in the plots

shown, this parameter varies, approximately, in the
region a ∈ ½−1;−0.3�.

E. Analytical expressions for the new interactions
under the symmetry

As we have already discussed in Sec. II A, in the
symmetric SUð2ÞR limit of (2.28), two of the eigenvalues
from the charged fermion mass matrix are degenerate

9It is easy to show that since ð0Þh1jQj1ið0Þ ¼ 0, there is no
correction, up to ðΔmÞ2, on the mχ0

1
¼ MD LP mass. 10We confirm that this result remains unchanged at two loops.
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respectively with those of the neutral fermion masses given
in Eqs. (2.31b) and (2.31c),

mχ�
1
¼ mχ0

2
; mχ�

2
¼ mχ0

3
: ð2:40Þ

In addition, it is useful for further reference to present
analytical expressions for all new interactions that appear in
the model. All these new interactions can be simply written
in matrix forms containing (at most) one parameter, the real
parameter a of Eq. (2.33). For example, rotation matrices
defined in Eq. (2.11) read

U ¼ UL ¼ UR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ a2

p
�

a −
ffiffiffi
2

p
ffiffiffi
2

p
a

�
;

O ¼

0
BBBB@

0 − affiffiffiffiffiffiffiffi
2þa2

p
ffiffi
2

pffiffiffiffiffiffiffiffi
2þa2

p
1ffiffi
2

p − 1ffiffiffiffiffiffiffiffi
2þa2

p − affiffi
2

p ffiffiffiffiffiffiffiffi
2þa2

p
1ffiffi
2

p 1ffiffiffiffiffiffiffiffi
2þa2

p affiffi
2

p ffiffiffiffiffiffiffiffi
2þa2

p

1
CCCCA: ð2:41Þ

The couplings between χ01, W and χ� given in Eqs. (2.25a)
and (2.25b) become explicitly

OL
1j ¼ −OR�

1j ; OL ¼

0
BBBB@

− 1ffiffi
2

p ffiffiffiffiffiffiffiffi
2þa2

p − a

2
ffiffiffiffiffiffiffiffi
2þa2

p

− 1þa2

2þa2
affiffi

2
p ð2þa2Þ

affiffi
2

p ð2þa2Þ − 4þa2

4þ2a2

1
CCCCA;

OR ¼

0
BBBB@

1ffiffi
2

p ffiffiffiffiffiffiffiffi
2þa2

p a

2
ffiffiffiffiffiffiffiffi
2þa2

p

− 1þa2

2þa2
affiffi

2
p ð2þa2Þ

affiffi
2

p ð2þa2Þ − 4þa2

4þ2a2

1
CCCCA; ð2:42Þ

while those in Eqs. (2.21), (2.22) and (2.23),

O0LðRÞ ¼

0
B@

−1−a2þð2þa2Þs2W
2þa2

affiffi
2

p ð2þa2Þ
affiffi

2
p ð2þa2Þ − 4þa2−2ð2þa2Þs2W

2ð2þa2Þ

1
CA;

O00L ¼

0
BBB@

0 1ffiffi
2

p ffiffiffiffiffiffiffiffi
2þa2

p a

2
ffiffiffiffiffiffiffiffi
2þa2

p
1ffiffi

2
p ffiffiffiffiffiffiffiffi

2þa2
p 0 0

a

2
ffiffiffiffiffiffiffiffi
2þa2

p 0 0

1
CCCA: ð2:43Þ

Finally, the Higgs couplings to neutral and charged
fermions in Eqs. (2.17) and (2.16) are respectively

Yhχ0χ0 ¼ m
v

0
BBB@

0 0 0

0 2
ffiffi
2

p
a

ð2þa2Þ
ð−2þa2Þ
ð2þa2Þ

0
ð−2þa2Þ
ð2þa2Þ − 2

ffiffi
2

p
a

ð2þa2Þ

1
CCCA;

Yhχ−χþ ¼ m
v

0
B@

2
ffiffi
2

p
a

ð2þa2Þ
ð−2þa2Þ
ð2þa2Þ

ð−2þa2Þ
ð2þa2Þ − 2

ffiffi
2

p
a

ð2þa2Þ

1
CA; ð2:44Þ

while those to Goldstone bosons given in Eq. (2.18) can
now be simply written as
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FIG. 2 (color online). The mass difference, jmχ0
2
j − jmχ0

1
j, between the next-to-lightest and the lightest neutral particle state in the

doublet-triplet fermionic DM model on (a) theMD vsMT plane withm ¼ 200 GeV, and (b) on theMD vsm plane withMT ¼ MD. For
both plots and for the rest to come, it is always mχ0

1
¼ MD.
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YG0χ0χ0 ¼ im
v

0
BBBBB@

0 − affiffiffiffiffiffiffiffi
2þa2

p
ffiffi
2

pffiffiffiffiffiffiffiffi
2þa2

p
− affiffiffiffiffiffiffiffi

2þa2
p 0 0

ffiffi
2

pffiffiffiffiffiffiffiffi
2þa2

p 0 0

1
CCCCCA
;

YG0χ−χþ ¼ im
v

�
0 −1
1 0

�
∀a; ð2:45Þ

and

YGþχ−χ0 ¼ m
v

0
B@

affiffiffiffiffiffiffiffi
2þa2

p 0 −1

−
ffiffi
2

pffiffiffiffiffiffiffiffi
2þa2

p 1 0

1
CA;

YG−χþχ0 ¼ m
v

0
B@

− affiffiffiffiffiffiffiffi
2þa2

p 0 −1
ffiffi
2

pffiffiffiffiffiffiffiffi
2þa2

p 1 0

1
CA: ð2:46Þ

Depending on whether the chiral mass m or the vectorial
masses MD and MT are dominant, and for MD > 0, there
are two extreme limits for the model at hand

“Majorana dominance”∶ MT ≈MD ≫ m ⇒ a ≈ 0; m2
χ0
1

≈m2
χ0
2

≈M2
D; m2

χ0
3

≈M2
T; ð2:47Þ

“Dirac dominance”∶ MT ≈MD ≪ m ⇒ a ≈ −
ffiffiffi
2

p
; m2

χ0
2

≈m2
χ0
3

≈M2
D þ 2m2: ð2:48Þ

The “Majorana dominance” limit corresponds more or less
to the “wino-Higgsino” scenario of the MSSM where the
first two neutral particle masses are degenerate, while the
“Dirac dominance” limit is the imprint of a large Yuakawa
coupling in Eq. (2.7). It is the latter case that in addition to
SUð2ÞR symmetry, it is protected by the global Uð1ÞX
symmetry. For example, plugging in a ¼ −

ffiffiffi
2

p
into

Eq. (2.44), we immediately see that the Higgs couplings
to new fermions become diagonal resulting in vanishing, as
long as MD → 0, one-loop corrections to the h − χ01 − χ01
vertex, as we qualitatively confirmed in Sec. II D below
Eq. (2.37), and as we shall see below in Sec. V.

F. Composition of the lightest neutral fermion

As we showed in Eqs. (2.31a)–(2.31c) and (2.32), in the
symmetric limit m1 ¼ m2, the neutral fermion mass matrix
MN can be diagonalized analytically into three mass
eigenstates

jχ0i i ¼ Oi1j1i þOi2j2i þOi3j3i: ð2:49Þ

Following conventional MSSM nomenclature [52], let us
define the “doublet” composition of the χ0i as

Fi
D ¼ jOi2j2 þ jOi3j2: ð2:50Þ

Then we say that a state of χ0i is Doublet-like (D) if
Fi
D > 0.99, it is Triplet-like (T) if Fi

D < 0.01 and it is a (M)
ixed state if 0.01 < Fi

D < 0.99.
In Fig. 3 we present the composition of the DM

candidate particle χ01 on an MD vs MT plane for fixed
mass, m ¼ 200 GeV. Both Z- and Higgs-boson couplings
to pairs of χ01 ’s vanish at tree level only in the region
denoted by (D) (for doublet) where MD is (most of the
time) positive and equal to or less thanMT . It is mostly this

region we are focusing on in this article, because in this
region the model evades, without further tweaks, direct DM
detection experimental bounds. Note also that for light
MD ¼ χ01 ≲ 150 GeV << m, the WIMP composition sat-
isfies the (D) condition for every value ofMT . For negative
values of MD, χ01 is a pure doublet only in the region
jMDj ≤ m but shrinks down to unacceptably small MD for
large values ofMT ; otherwise it is a mixed state everywhere
in Fig. 3. For largeMD ≫ MT , the χ01 composition consists
of mainly a triplet.
Note that when the lightest state is pure (D)oublet the

heavier states are exactly an equal admixture of doublets
and the triplet i.e., F2;3

D ¼ 0.5.
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1000
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Composition of 1
0 FD

1

m 200 GeV
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M
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FIG. 3 (color online). The composition of the WIMP in terms of
(D)oublet, (T)riplet and (M)ixed states following the definition
given in the paragraph below Eq. (2.50), on anMD vsMT plane and
for fixed (common) Yukawa coupling, Y¼m=v≃200=174≃1.15.
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III. ESTIMATE OF ELECTROWEAK
CORRECTIONS

In the limit of large Yukawa couplings, Y¼Y1¼Y2≃1,
we generally expect large contributions from the new
fermions, χ0, χ�, to ðZ;WÞ-gauge boson self-energy one-
loop diagrams. In this section we investigate constraints on
the doublet-triplet fermion model parameter space,
fMD;MT;mg, from the oblique electroweak parameters
S, T and U [53].
Due to Z2-parity symmetry, at one-loop level, there is no

mixing between the extra fermions, χ0, χ�, and the SM
leptons. Therefore corrections to electroweak precision
observables involving light fermions arise only from gauge
bosons’ vacuum polarization Feynman diagrams; i.e., there
are only oblique electroweak corrections. In order to
estimate these corrections it is convenient to calculate
the S, T and U parameters, in the limit where mχ0 ,
mχ� ≳mZ. This is true when the doublet mass MD is
greater thanmZ andm is much greater thanmZ (see Fig. 2).
We shall not consider the case of a light dark matter
particle, mχ0

1
≲mZ.

Following closely the notation by Peskin and Takeuchi
in Ref. [53], we write

αS≡ 4e2
d

dp2
½Π33ðp2Þ − Π3Qðp2Þ�jp2¼0; ð3:1aÞ

αT ≡ e2

s2Wc
2
Wm

2
Z
½Π11ð0Þ − Π33ð0Þ�; ð3:1bÞ

αU≡ 4e2
d

dp2
½Π11ðp2Þ − Π33ðp2Þ�jp2¼0; ð3:1cÞ

where α ¼ e2=4π. In numerics we use input parameters
from Ref. [54], the bare value at lowest order s2W ¼
g02=ðg02 þ g2Þ≃ 0.2312 and the Z-pole mass mZ ¼
91.1874 GeV. We calculate corrections arising only from
the extra fermions, χ0i¼1…3, χ

�
i¼1…2, to the gμν part of the

gauge boson self-energy amplitudes,ΠIJ ≡ ΠIJðp2Þ, where
I and J may be a photon (γ), W or Z,

Πγγ ¼ e2ΠQQ; ð3:2aÞ

ΠZγ ¼
e2

cWsW
ðΠ3Q − s2ΠQQÞ; ð3:2bÞ

ΠZZ ¼ e2

c2Ws
2
W
ðΠ33 − 2s2Π3Q þ s4ΠQQÞ; ð3:2cÞ

ΠWW ¼ e2

s2W
Π11; ð3:2dÞ

where sW ¼ sin θW , cW ¼ cos θW . We find

ΠQQ ¼ −
p2

8π2
X2
i¼1

�
2

3
E − 4b2ðp2; m2

χ�i
; m2

χ�i
Þ
�
; ð3:3aÞ

Π3Q ¼ p2

16π2
X2
i¼1

ðZL
ii þ ZR

iiÞ
�
2

3
E − 4b2ðp2; m2

χ�i
; m2

χ�i
Þ
�
;

ð3:3bÞ

Π33 ¼
1

16π2
X2
i;j¼1

½ðZL
ijZ

L
ji þ ZR

ijZ
R
jiÞGðp2; m2

χ�i
; m2

χ�j
Þ − 2ZL

ijZ
R
jimχ�i

mχ�j
Iðp2; m2

χ�i
; m2

χ�j
Þ�

þ 1

16π2
X3
i;j¼1

½O00L
ij O

00L
ji Gðp2; m2

χ0i
; m2

χ0j
Þ þ ðO00L

ij Þ2mχ0i
mχ0j

Iðp2; m2
χ0i
; m2

χ0j
Þ�; ð3:3cÞ

Π11 ¼
1

16π2
X3
i¼1

X2
j¼1

½ðjOL
ijj2 þ jOR

ijj2ÞGðp2; m2
χ0i
; m2

χ�j
Þ − 2ℜeðOL�

ij O
R
ijÞmχ0i

mχ�j
Iðp2; m2

χ0i
; m2

χ�j
Þ�; ð3:3dÞ

where ZLðRÞ
ij ≡O0LðRÞ

ij − s2Wδij. In addition, E≡ 2
ϵ − γ þ log 4π − logQ2 is the infinite part of loop diagrams. The various

one-loop functions in Eqs. (3.3a) and (3.3b) are given by

Gðp2; x; yÞ ¼ −
2

3
p2Eþ ðxþ yÞEþ 4p2b2ðp2; x; yÞ − 2½yb1ðp2; x; yÞ þ xb1ðp2; y; xÞ�; ð3:4Þ

Iðp2; x; yÞ ¼ 2E − 2b0ðp2; x; yÞ; ð3:5Þ

b0ðp2; x; yÞ ¼
Z

1

0

dt log
Δ
Q2

; b1ðp2; x; yÞ ¼
Z

1

0

dtt log
Δ
Q2

; ð3:6Þ
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b2ðp2; x; yÞ ¼
Z

1

0

dttð1 − tÞ log Δ
Q2

;

Δ ¼ tyþ ð1 − tÞx − tð1 − tÞp2 − iϵ: ð3:7Þ

There are numerous useful identities,

b0ðp2; x; yÞ ¼ b0ðp2; y; xÞ; b2ðp2; x; yÞ ¼ b2ðp2; y; xÞ;
ð3:8Þ

Gðp2; x; yÞ ¼ Gðp2; y; xÞ; Iðp2; x; yÞ ¼ Iðp2; y; xÞ;
ð3:9Þ

b1ðp2; x; yÞ ¼ b0ðp2; y; xÞ − b1ðp2; y; xÞ;

b1ðp2; x; xÞ ¼ b0ðp2; x; xÞ
2

; ð3:10Þ

that will help us to simplify our expressions below.
Furthermore, in the exact SUð2ÞR limit where m1 ¼ m2,
there is no isospin breaking in D̄ components and therefore
T ¼ 0, while the S parameter receives nonzero, nonde-
coupled contributions due to the enlarged particle number
of the SUð2Þ sector. Specifically, in the limit where
MD ¼ MT ≪ m ¼ m1 ¼ m2, there is a light neutral fer-
mion ðmχ0

1
Þ and heavy degenerate other four (two neutral

and two charged) fermions, with squared mass x, resulting
in

Π0
3Qð0Þ ≈

1

16π2

�
−2Eþ 2 ln

�
x
Q2

��
; ð3:11aÞ

Π0
33ð0Þ ¼ Π0

11ð0Þ ≈
1

16π2

�
−2Eþ 2 ln

�
x
Q2

�
þ 1

18

�
;

ð3:11bÞ

Π33ð0Þ ¼ Π11ð0Þ ≈
1

16π2

�
3x
2
E −

3x
2
ln

�
x
Q2

�
þ x
4

�
:

ð3:11cÞ

Plugging in Eqs. (3.11a)–(3.11c) into Eqs. (3.1a)–(3.1c) we
arrive at the approximate value expressions

S ≈
1

18π
; T ≈U ≈ 0: ð3:12Þ

This result is also confirmed numerically in Fig. 4 where we
draw contours of the S parameter on the MD vs MT plane
(left plot) and on the MD vs m plane (right plot). As it is
shown, for large m we obtain S → 1=18π ≃ 0.0177 while
for m → 0 we obtain S → 0, as expected because in this
case only vectorlike masses will exist in LDM

Yuk of Eq. (2.7),
that make no contribution to parameter S. Experimentally,
we know [54] that when the U parameter is zero, the
parameters S and T which fit the electroweak data are
constrained to be

S ¼ 0.04� 0.09; ð3:13aÞ

T ¼ 0.07� 0.08: ð3:13bÞ

Predictions for the S parameter shown in Figs. 4(a)–(b)
comfortably fall within the bound of (3.13a). In addition,
even though it is not shown, the T,U parameters are always
negligibly small.

IV. THE THERMAL RELIC DARK
MATTER ABUNDANCE

As we have seen, Vχ01χ
0
1 with V ¼ W, Z and hχ01χ

0
1 are

forbidden at tree level if χ01 is a pure doublet i.e.,
mχ0

1
¼ MD, in the exact SUð2ÞR limit. Therefore, the

annihilation cross section for the lightest neutral fermion
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FIG. 4 (color online). Contour plots of the S parameter on the MD vs MT plane (left) for m ¼ 200 GeV and on the MD vs m plane
(right) for MT ¼ MD.
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results solely from the following t- and u-channel tree level
Feynman diagrams, shown in Fig. 5, with neutral or
charged fermion exchange, collectively shown as χi, with
axial-vector interactions

χ01 þ χ01 → Wþ þW−; ð4:1aÞ

χ01 þ χ01 → Z þ Z: ð4:1bÞ

All other processes vanish at tree level. This can easily be
understood by looking at the matrix forms of O00L and
Yhχ0χ0 in Eqs. (2.43) and (2.44). Before presenting our
results for the annihilation cross section it is helpful to
(order of magnitude) estimate the thermal dark matter relic
density for χ01’s. Consequently, by expanding the total cross
section as σAnnv ¼ aV þ bVv2 þ… [52,55] and keeping
only the zero-relative-velocity a terms we find (for
MD ¼ MT)

aW ¼ g4β3W
32π

m2
χ

ðm2
χ þm2

χj −m2
WÞ2

⟶
mχj

≫mχ

m≫MD

g4β3W
32π

�
mχ

mχj

�
4 1

m2
χ
;

ð4:2aÞ

aZ ¼ g4β3Z
64πc4W

m2
χ

ðm2
χ þm2

χj −m2
WÞ2

⟶
mχj

≫mχ

m≫MD

g4β3Z
64πc4W

�
mχ

mχj

�
4 1

m2
χ
;

ð4:2bÞ

where g ≈ 0.65 is the electroweak coupling; βV ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

V=m
2
χ

q
for V ¼ W, Z; and in order to simplify

notation, we takemχ ≡mχ0
1
to denote the DM particle mass

and mχj ≡mχ0j
¼ mχ�j−1

≥ mχ for j ¼ 2; 3 [see Eq. (2.40)]

as the heavier neutral and charged fermions of the DM
sector. In the case where MD ¼ MT , the heavier fermions
are degenerate with mass, m2

χj ¼ 2m2 þM2
D, and the mass

spectrum pattern is similar to the one shown in Fig. 1.

Following this pattern in Eqs. (4.2a) and (4.2b) we have
taken the limit of m ≫ MD or alternatively, mχj ≫ mχ .
Obviously, Eqs. (4.2a) and (4.2b), viewed as functions of

MD, exhibit a maximum extremum since both a’s vanish in
the limits of MD → 0 and MD → ∞ and, in addition, they
are positive definite. The maximum cross section is
obtained approximately at MD ≈

ffiffiffi
2

p
m. The situation is

clearly sketched in Fig. 6. Once again, we assume that
particle χ is a cold thermal relic, and that its mass is about a
few tens bigger than its freeze-out temperature. Then, the
Universe’s critical density times the Hubble constant
squared (in units of 100 km=s=Mpc, h2 ≃ 0.5) for χ’s is

Ωχh2 ∼ 0.1
10−8 GeV−2

σv
: ð4:3Þ

Therefore, if the correct cross section, σv ≈ 10−8 GeV−2,
that produces the right relic density,Ωχh2 ∼ 0.1, happens to
be below the maximum of σv in Fig. 6 then there are two of
its points crossing the observed relic density: one for low
MD and one for high MD with the single crossing point
being at MD ≈

ffiffiffi
2

p
m. The mass spectrum of new fermions

with high MD exhibits nearly degeneracy in the first two
states i.e., mχ ¼ mχ2 ≃MD. This shares similarities with
the MSSM (or more precisely with the split SUSY with
tan β ¼ 1 wino-Higgsino scenario) for Higgsino dark
matter which is well studied and we are not going to
pursue further. The other case, on the other hand, with low
MD ≲m, exhibits a mass hierarchy between the DM
candidate particle (χ) and all the remaining (χj) particles.
It is the suppression factor ðmχ=mχjÞ to the fourth power in
Eqs. (4.2a) and (4.2b) that prohibits the cross section from
taking on very large values. It is therefore evident that this
lowMD scenario can provide the SM with a DM candidate
particle with mass MD that lies “naturally” at the EW scale
as suggested by the observation σ ≈ 10−8 GeV−2, and is
accompanied by heavy fermions few to several times
heavier (depending on the value of m) than MD.
Before proceeding further, it is worth looking back at

Fig. 2, the mass difference between the first two neutral
states. For m≳ 100 GeV the mass difference is always
more than 50% than the lightest mass mχ . This in turn

FIG. 5. Lower level Feynman diagrams contributing to the
annihilation cross section for the process χ þ χ → V þ V for
V ¼ W, Z.

MD

1. 10 8

v

h2 0.1

FIG. 6 (color online). Sketch of the resulting annihilation cross
section.
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suggests that no significant contributions to Ωχh2 are
anticipated from coannihilation effects [25].
In the end, we have calculated today’s relic density of the

neutral, stable, and therefore, DM-candidate particle χ. Our
calculation is a tree level one; see however comments
below. Within the context of the (spatially flat) six-
parameter standard cosmological model, the Planck experi-
ment [6] reports a density for cold, nonbaryonic, dark
matter, that is

Ωh2 ¼ 0.1199� 0.0027: ð4:4Þ

The 2σ value is satisfied only in the area between the two
lines in both plots in Fig. 7. This happens for rather low
mχ ¼ MD in the region 92≲mχ0

1
≲ 110 GeV and for

MT ≲ 420 GeV on the MD −MT plane with fixed
m ¼ 200 GeV, in Fig. 7(a).11 We also observe that the
result for Ωχh2 is not very sensitive to the triplet mass,MT .
Even vanishing MT values are in accordance with the
observed Ωχh2, with mass values mχ laying nearby the EW
scale. [If MD is in the region mW < MD < mZ, and if we
neglect three body decays, then the cross section becomes
about half the one for MD > mZ. This means that Ωh2 is
doubled and therefore larger MT (about twice as large)
masses may be consistent with the observed Ωh2 values
in Eq. (4.4).]
We also consider the effect on Ωχh2 from varying m and

MD, withMD ¼ MT , in Fig. 7(b). Obviously, the lower the
m is, the lower the MD should be. For mχ ≃ 91 GeV the
correct density is obtained for m≃ 140 GeV. As we move
to heavier values i.e., m ≈ 300 GeV,MD (which is equal to

mχ), is required to be heavier, but not much heavier, than
MZ. However, as we shall discuss in Sec. VII, those heavy
values of m are not accepted by the vacuum stability
constraint without modifying the model.
Consistent Ωχh2 with observation is also achieved for

negative values of MD in the same region as for positive
MD as it is shown in Fig. 8. (This is the small area for
negativeMD shown in Fig. 3 where χ01 is doublet.) TheMT
values where this happens are limited in the mass region
smaller than about 120 GeV. The EW S parameter in this
region is slightly moved upwards but is still consistent with
Eq. (3.13a). However, as we shall see below, the MD < 0
region suffers from huge suppression relative to SM in the
h → γγ decay rate.
One-loop corrections to the annihilation cross section

contribute only to the bV parameter; i.e., they are p-wave
suppressed, if mχ ≲ ðmZ þmhÞ=2. Our estimate, using the
crude formula of Eq. (5.7) below, shows that one-loop
induced bV terms are, numerically, about ten times
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FIG. 7 (color online). Left: Contour plots on the plane MD vs MT for the observed relic density Ωχh2 [see Eq. (4.4)] of the lightest
neutral fermion with m ¼ 200 GeV. Right: The same on the MD vs m plane for MD ¼ MT. Recall that for both plots it is mχ ¼ MD.
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FIG. 8 (color online). Same as Fig. 7(a) but for negative values
of MD.

11We have not considered the case MD < MZ as this would
require further three body decay analysis which is beyond the
scope of this paper.
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smaller than the tree level ones. However, if the above
limit does not hold, then (s-wave) a terms are coming
into the final σAnnv. These terms could be of the same
order as for the tree level b terms and, in principle, for a
precise Ωχh2 prediction, they have to be included in the
calculation.
We therefore conclude that DM particle mass around

the EW scale is possible and this requires large
couplings of the heavy fermions to the Higgs boson
i.e., large m ¼ Yv with Y ≈ 1, and secondarily, relatively
low values of triplet mass i.e., MT ≃MD. This scenario
can be hinted or completely excluded at the LHC
because the couplings of the heavy new fermions (both
neutral and charged) to the Higgs and gauge bosons are,
in general, not suppressed in the symmetry limit (see
discussion in Sec. VIII).

V. DIRECT DM DETECTION

Following the notation of Drees and Nojiri in Ref. [56],
the Higgs boson mediated part of the effective Lagrangian
for WIMP–light quark (u, d, s) (i.e., the neutral fermion χ01)
interaction is given by

Lscalar ¼ fðhÞq χ̄01χ
0
1q̄q: ð5:1Þ

Note that in this model there are no tensor contributions (at
one-loop level) since χ01 does not interact directly with
colored particles (as opposed to the supersymmetric neu-
tralino for example). The next step is to form the nucleonic
matrix elements for the q̄q operator in Eq. (5.1) andwewrite

hnjmqq̄qjni ¼ mnf
ðnÞ
Tq ; ð5:2Þ

wheremn ¼ 0.94 GeVis thenucleonmass.The form factors

fðnÞTq are obtained within chiral perturbation theory and the
experimental measurements of the pion-nucleon interaction

term, and they are subject to significant uncertainties.fðnÞTq for
q ¼ u, d [57] are generically small by, say, a factor ofOð10Þ
compared to fTs ¼ 0.14 obtained from the Ref. [58] value
which we adopt into our numerical findings here. However,
bear in mind that fTs is subject to large theoretical errors
[52,57]. For instance, the average value quoted from

lattice calculations [59] is 0.043� 0.011, which is smaller
bya factorof3 fromtheoneobtainedfromchiralperturbation
theory.Thiswill result in, at least, a factor ofOð10Þ reduction
in the WIMP-nucleon cross section results, presented in
Fig. 9, below.
The Higgs boson couples to quarks and then to gluons

through the one-loop triangle diagram. Subsequently, the
gluons (G) couple to the heavy quark current through the
heavy quarks (Q ¼ c, b, t) in loop. The analogous (q → Q)
matrix element in Eq. (5.1) for mQQ̄Q can be replaced by
the trace anomaly operator −ðαs=12πÞG ·G to obtain

hnjmQQ̄Qjni¼ 2

27
mn

�
1−

X
q¼u;d;s

fnTq

�
≡ 2

27
mnfTG: ð5:3Þ

We are ready now to write down the effective couplings of
χ01 to nucleons (n ¼ p; n):

fn
mn

¼
X
q

fðhÞq

mq
fðnÞTq þ 2

27

X
Q

fðhÞQ

mQ
fTG: ð5:4Þ

Note that the bigger the fTs is, the bigger the fn becomes.

Also note that fðhÞq ∝ mq. Furthermore, for fTs ≃ 0.14 the
second term in Eq. (5.4), which is formally a two-loop
contribution to fn, is about a factor of 2 smaller than the
first one. Under the above assumption for the fTs domi-
nance we obtain fp ¼ fn. In this case, the SI elastic
scattering cross section at zero momentum transfer of
the WIMP χ01 scattering off a given target nucleus with
mass mN in terms of the coupling fp is

σ0ðscalarÞ ¼
4

π

m2
χ0
1

m4
N

ðmχ0
1
þmNÞ2

�
fp
mn

�
2

: ð5:5Þ

The perturbative dynamics of the model is contained in the

factor fp and therefore, from Eq. (5.4), in fðhÞq and fðhÞQ . In

this particular model the form factor fðhÞq reads

fðhÞq

mq
¼ g½ℜeðYhχ0

1
χ0
1Þ − δYhχ0

1
χ0
1 �

4mWm2
h

: ð5:6Þ

FIG. 9. Feynman diagrams (in unitary gauge) related to SI elastic cross section χ01 þ q → χ01 þ q where q ¼ u, d, s (light quarks).
Particle V represents W or Z and χ represents χ�i¼1…2 or χ0i¼1…3, respectively. One-loop self-energy corrections are absent in the
particular scenario we have chosen.
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The Higgs coupling to lightest neutral fermions is given in
Eq. (2.17). In particular, under the custodial symmetry
consideration we adopt here, it is obvious from Eq. (2.44)
that Yhχ0

1
χ0
1 ¼ 0, at tree level. Generic one-loop corrections

will be proportional to g2Y=4π ≈ 0.03, which can easily fall
in the experimental exclusion region from current direct
experimental DM searches for large Y ∼ 1 coupling [see for
instance Eq. (3) in Ref. [22]]. We therefore need to calculate
the one-loop corrections, δYhχ0

1
χ0
1 ≡ δY to the hχ01χ

0
1 vertex.

There is a fairly quick way to get an order of magni-
tude reliable calculation of δY through the low energy
Higgs theorem (LEHT) [60–63]. Applying LEHT in the
region of our interest i.e., mχ0

1
≈mW ≈mh ≪ mχ�i

or
MD ≈MT ≈mW ≪ m, and considering only Goldstone
boson contributions to χ01 one-loop self-energy diagrams
results in

δY ¼ ∂
∂v δMDðvÞ ≈

Y3

4π2
MDm

M2
D þ 2m2

;

MD ≈MT ≈mW ≈mh ≪ m: ð5:7Þ

Let us inspect Eq. (5.7). First, the middle term explains
trivially why the Higgs coupling is zero at tree level: the
lightest eigenvalue of the neutral mass matrix is MD which
is independent on any VEV. Then because at one loop, the
χ01 self-energies involve only the heavy fermion masses
(both charged and neutral) which depend on the VEV
through m ¼ Yv or through mW , mZ in the propagators of
χ�i , χ

0
i¼2;3 andW, Z respectively, the one-loop correction δY

does not in general vanish. Second, the third term of the
equality Eq. (5.7) shows that the effect increases by the
third power of the Yukawa coupling Y [recall Eq. (2.26)]
and vanishes when MD → 0 [the Uð1ÞX symmetry limit].
As for the numerical approximation, Eq. (5.7) is always less
than 20% of the exact calculation (see below) even though
we have completely neglected the non-Goldstone diagrams
that are proportional to gauge couplings. It is however a
crude approximation which is only relevant when the new
heavy fermions are far heavier than the Z,W, h bosons and
the lightest neutral fermion.
In the Appendix, we calculate the exact one-loop

amplitude for the vertex h − χ01 − χ01 with physical external
χ01 particles at a zero Higgs-boson momentum transfer. A
similar calculation has been carried out in Ref. [64] for the
MSSM and in Ref. [65] for minimal DMmodels. However,
due to peculiarities of this model that have been stressed out
in the introduction with respect to the aforementioned
models, a general calculation is needed. The one-loop
corrected vertex amplitude arises from (a) and (b) dia-
grams12 depicted in Fig. 9 involving vector bosons (W or Z)
and new charged ( χ�i¼1;2) or neutral ( χ

0
i¼1…3) fermions, as

iδY ¼
X

j¼ðaÞ;ðbÞ
ðiδYχ�

j þ iδYχ0

j Þ: ð5:8Þ

Detailed forms, not resorting to CP conservation, for δY’s
are given in the Appendix. We have proven both analyti-
cally and numerically that when the external particles χ01 are
on shell, infinities cancel in the sum of the two vertex
diagrams in Figs. 9(a)–(b) without the need for any
renormalization prescription, and the resulting amplitude,
iδY, is finite and renormalization scale invariant.
We have also carried out the one-loop calculation of the

box diagrams in Fig. 9(c). The effective operators for box

diagrams consist of scalar, fðboxÞq [like the fq in Eq. (5.1)]

and twist operators, gð1Þq and gð2Þq , written explicitly for
example in Ref. [56]. In the parameter space of our interest

whereMD ≪ m, the fðboxÞq contributions to fðhÞq in Eq. (5.4)
are in general 2 orders of magnitude smaller than the vertex
ones arising from Figs. 9(a)–(b), and they are only
important in the case where the latter cancel out among
each other. Moreover, it has recently been shown in
Refs. [66–68] that the full two-loop gluonic contributions
are relevant for a correct order of magnitude estimate of the
cross section in the heavy WIMP mass limit, especially
when adopting the “lattice” value for fTs

. We are not aware,
however, of any study dealing with those corrections and
WIMP mass around the electroweak scale which is the case
of our interest. Such a calculation is quite involved and is
beyond the scope of the present article.
In Fig. 10 we present our numerical results for the SI

nucleon-WIMP cross section. The current LUX [3]
(XENON100 [2]) experimental bounds for a 100 GeV
WIMP mass are σðSIÞ0 ≲ 1ð2Þ × 10−45 cm2 at 90% C.L.
From the left panel of Fig. 10 we observe that in the

region whereMT ≪ MD ≪ m the cross section is by 1 to 2
orders of magnitude smaller than the current experimental
bound. More specifically, in the region where we obtain
the right relic density [see Fig. 7(a)] the prediction for

the σðSIÞ0 is about to be observed only for large values of
MT (MT ≈ 500 GeV), while it is by an order of magnitude
smaller for low values of MT (MT ≲ 100 GeV). There is a
region, around MT ≈ 25 GeV, where box corrections, that
arise from the diagram in Fig. 9(c), on scalar and twist-2
operators become important because the vertex correc-
tions mutually cancel out. However, in this region the
cross section becomes 2 to 4 orders of magnitude smaller
than the current experimental sensitivity. We also remark

that σðSIÞ0 reaches a maximum value, indicated by the
closed contour line in the upper left corner of Fig. 10(a),
and then starts decreasing for larger MT and MD values, a
situation that looks like it is following the Appelquist-
Carazzone decoupling theorem [69]. However, even at
very large masses,MD andMT , not shown in Fig. 10, there

is a constant piece of δY, and hence of σðSIÞ0 , that does not
12Note that Eq. (2.44) implies that there are no self-energy

contributions to iδY at one loop.
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decouple. This can be traced respectively in the second
and the first terms of integrals IV4 , and IV5 of Eq. (A3), in
the limitMD ¼ MT → ∞. This nondecoupling can also be
seen in the heavy particle, the effective field theory
analysis of Ref. [66] and also in Refs. [17,65]. We have

also checked numerically that σðSIÞ0 vanishes atMD → 0 as
expected from Eq. (5.7) and from the Uð1ÞX symmetry.13

In Fig. 10(b), we also plot predictions for the doublet-

triplet fermionic model on the SI cross section σðSIÞ0 on an
MD vs m plane forMT ¼ MD. As we recall from Eq. (5.7),
the cross section increases with m (or Y) as m2 ∝ Y2. It
becomes within the current experimental sensitivity reach

for m≳ 400 GeV while for low m ≈ 100 GeV, σðSIÞ0 is
about 100 times smaller. Besides, for heavy MD and m

(upper right corner), σðSIÞ0 becomes excluded by current
searches although vacuum stability bounds hit first. If we
compare with the corresponding plot for the relic density in
Fig. 7(b), we see that the observed Ωχh2 is allowed by

current experimental searches on σðSIÞ0 but it will certainly
be under scrutiny in the forthcoming experiments [4].
Finally, for negative values of MD consistent with the

observed density depicted in Fig. 8, it turns out that σðSIÞ0 is
by a factor of about ∼10 bigger than the corresponding
parameter space forMD > 0 given in Fig. 10(a). In fact, the
region of one-loop cancellations that happened for
MT ≈ 20 GeV do not take place for MD < 0. However,
within errors discussed at the beginning of this section, this
is still consistent with current experimental bounds.

VI. HIGGS BOSON DECAYS TO TWO PHOTONS

In the doublet-triplet fermionic model there are two pairs
of electromagnetically charged fermions and antifermions,
namely, χ�1 , χ

�
2 . They have electromagnetic interactions

with chargeQ ¼ �1 and interactions with the Higgs boson,
Yhχ−χþ , given in general by Eqs. (2.15) and (2.16), or in
particular, in the symmetry limit, by Eq. (2.44). These latter
interactions are of similar size as of the top quark–antiquark
pairs with the Higgs boson i.e., Y ∼ 1. Hence, we expect a
substantial modification of the decay rate, Γðh → γγÞ
relative to the SM one14 Γðh → γγÞSM, through the famous
triangle graph [60], involving W-gauge bosons, the top
quark (t) and the new fermions χ�i . Under the assumption
of real MD, Yhχ−i χ

þ
i is also real, and we obtain

R≡ Γðh→ γγÞ
Γðh→ γγÞðSMÞ

¼
����1þ 1

ASM

X
i¼χ�

1
;χ�

2

ffiffiffi
2

p Yhχ−i χ
þ
i v

mχþi

A1=2ðτiÞ
����
2

;

ð6:1Þ
where ASM ≃ −6.5 for mh ¼ 125 GeV is the SM result
dominated by theW loop [70], with τi ¼ m2

h=4m
2
i , and A1=2

is the well-known function given for example in Ref. [71].15

The χ�i -fermion contribution (Q ¼ 1, Nc ¼ 1), is also
positive because the ratio, Yhχ−i χ

þ
i =mχþi

, is always positive
when mχ0

1
¼ MD, as can be seen by inspecting Eqs. (2.44),

(2.48), and (2.31a)–(2.31c). After using the simplified (by
symmetry)Eq. (2.44)witha ≈ −

ffiffiffi
2

p
,weapproximatelyobtain
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FIG. 10 (color online). Results (in boxed labels) for the SI scattering cross section for the nucleon-WIMP (n-χ01) in units of 10
−47 cm2

on an MD vs MT plane for fixed parameter m ¼ Yv ¼ 200 GeV (left) and on an MD vs m plane for fixed MT ¼ MD GeV (right).

13This is because only D̄1;2 are charged under Uð1ÞX (not the
Higgs boson), and χ01 is a linear combination of only D̄’s.

14The Higgs boson production cross section is the same with
the SM because the new fermions are uncolored.

15The Higgs-fermion vertex is parametrized here as L ⊃ −Yff̄
and therefore for the top-quark Yukawa we obtain Yi → Yt=

ffiffiffi
2

p
from Eq. (2.6) while for the new charged fermions Yi → Yhχ−i χ

þ
i

from Eqs. (2.15) and (2.16).
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X
i

ffiffiffi
2

p
m

mχþi

A1=2ðτχþi Þ ≈þ 8

3
; ð6:2Þ

which means that Γðh → γγÞ is smaller than the SM expect-
ation. But how much smaller? In Fig. 11 we plot contours of
the ratio R≡ Γðh → γγÞ=Γðh → γγÞðSMÞ on the MD vs MT

plane form ¼ 200 GeV [Fig11(a)] and theMD vsm plane for
ðMT ¼ MDÞ [Fig 11(b)]. Our numerical results plotted in
Fig. 11 are exact at one loop.We observe that the new charged
fermions render the ratio less than unity

R≲ 1; ð6:3Þ

everywhere in the parameter space considered. Let us look at
this inmoredetail. Thecontributionof fermionsχ�i inEq. (6.1)
depends on the quantity16

∼
2m2

2m2 þMDMT
; ð6:4Þ

which is always positive forMD,MT > 0; i.e., it adds to the
top-quark contribution and subtracts from the large and
negative W-boson one resulting in a suppressed R ratio.
If instead we choose MD < 0, then for jMDMT j >

ffiffiffi
2

p jmj,
onecanobtainR≳ 1, a situationwhich isexplored inRef. [51].
As can be seen from Fig. 3 however, in this case the DM
candidateparticleð χ01Þ isnotapuredoublet.It isinsteadamixed
state. [In fact the states j1i and j2i are interchanged in
Eq. (2.32).] As a consequence, there is a nonzero (and
generically large) hχ01χ

0
1 coupling already present at tree level,

and, bearing in mind fine-tuning, it is excluded by direct DM
search bounds.

By comparing areas with the observed relic density in
Figs. 7(a)–(b) we see that the results for 0.35≲ R≲ 0.5
shown in Figs. 11(a)–(b) are within 1σ-error compatible
with current central values of CMS measurements [73]
ð0.78� 0.27Þ but are highly “disfavored” by those from
ATLAS [74] ones, 1.65� 0.24ðstatÞþ0.25

−0.18ðsystÞ. The forth-
coming second LHC run will be decidable in favor of or
against these outcomes here.
Figure 11(a) or Eq. (6.4) shows also that when MT

becomes heavy the ratio R approaches the current CMS
central value. This happens because one of the two charged
fermion eigenvalues becomes very heavy, mχþ

2
≈MT , and

therefore it is decoupled from the ratio. As we discussed in
Sec. IV, large MT ∼ 1 TeV values may be consistent with
the observed Ωχh2 for mW < MD < mZ. We have found
that even in this case, R is always smaller than 0.65.
If we assume thatMD < 0 and χ01 pure doublet as shown

in Fig. 3, then it is always R < 1. In fact, using the input
values from Fig. 8 for the correct relic density, the
suppression of R is even higher, 0.25≲ R≲ 0.35.
Alternatively, if we assume that MD is a general complex
parameter, then the coupling, Yhχ−

1
χþ
1 , is complex too. In this

case one has to add the CP-odd Higgs contribution into
Eq. (6.1) which is always positive definite. For large phases
relatively large MT the ratio R may be greater than 1;
however, again the direct detection bounds are violated by a
factor of more than 10–1000.
Of course, if we increase MD, the parameter space may

be compatible with the observed relic density seen in the
right side of the “heavy” MD branch in Fig. 6. However,
following our motivation for “only EW scale DM” we do
not discuss this region further which is anyhow very well
known from MSSM studies.
We therefore conclude that in the doublet-triplet fer-

mionic model thermal DM relic abundance for low DM
particle mass mχ0

1
≈MZ, consistent with observation [6]

R = Γ(h --> γ γ) / Γ(SM)
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FIG. 11 (color online). Contour lines for the ratio, R ¼ Γðh → γγÞ=Γðh → γγÞSM, for the decay rate of Higgs boson decays into two
photons over the SM prediction on (a) the MD vs MT plane with m ¼ 200 GeV and (b) on the MD vs m plane with MT ¼ MD.

16This quantity is obtained also by using the low energy Higgs
theorem as in Ref. [72] for the singlet-doublet DM case.

DOUBLET-TRIPLET FERMIONIC DARK MATTER PHYSICAL REVIEW D 89, 115002 (2014)

115002-17



and with direct DM searches [2,3], leads to a substantial
suppression (45%–75%) for the rate Γðh → γγÞ relative to
the SM expectation.
We have also calculated the ratio R for the Higgs

boson decay into Zγ. The results are similar to the case
of Rðh → γγÞ. In particular, in the parameter space
explored in Fig. 11(a), we observe exactly the same
shape of lines with a ratio slightly shifted upwards in the
region, 0.4≲ Rðh → ZγÞ≲ 0.7. This suppression is due
to the same reason discussed in the paragraph
below Eq. (6.4).

VII. VACUUM STABILITY

The stability of the Standard Model vacuum is an
important issue, so we need to find an energy scale
(ΛUV) where new physics is needed, in order to make
the vacuum stable or metastable (unstable with lifetime
larger than the age of the Universe). To make an estimate
about the ΛUV of the theory, one needs to calculate the
tunneling rate between the false and true vacuums and
impose that the SM vacuum has survived until today.17

Following Ref. [76], we can see that the bound for the
Higgs self-coupling, λ, becomes18

λðΛUVÞ ¼
4π2

3 ln ð H
ΛUV

Þ ; ð7:1Þ

where ΛUV is the cutoff scale and H is the Hubble constant
H ¼ 1.5 × 10−42 GeV. In order to impose the constraint
(7.1), we also need to find the running parameter λ by
solving the renormalization group equations. The one-loop
beta functions for the model at hand are given in
Refs. [50,51,77],19 and we solve this set of differential
equations using as initial input parameters

α3ðMZÞ ¼ 0.1184; α2ðMZÞ ¼ 0.0337;

α1ðMZÞ ¼ 0.0168; ð7:2Þ

λðMZÞ ¼ 0.1303; ytðMZÞ ¼ 0.9948;

MZ ¼ 91.1876 GeV: ð7:3Þ

The result for the cutoff scale as a function of m ¼ Yυ is
given in Fig. 12. As we can see, ΛUV ≈ 600 GeV for m ≈
200 GeV which is quite small while Λ ≈ 20 TeV for
m ≈ 130 GeV. The result for ΛUV in Fig. 12 is only
approximate. Threshold effects, from the physical masses
of the doublet, triplet and even the top quark, together
with comparable two-loop corrections to β functions,

which can be found for example in Refs. [50,77], are
missing in Fig. 12. These effects may change the out-
come for ΛUV by a factor of 2 or so but they will not
change the conclusion, that extra new physics is required
already nearby the TeV scale. The form of new physics
will probably be in terms of new scalar fields since extra
new fermions will make ΛUV even smaller. These scalars
may be well within reach at the second run of the LHC
[51] but it is our assumption here that they do not
intervene with the DM sector.
As far as the (one-loop) perturbativity of the Yukawa

couplings Y ∼ 1.2 (form ¼ 200) and Yt is concerned, these
exceed the value 4π at around the respective scales, 109 and
1010 GeV. Given the modifications of the model that must
be performed at the ΛUV ∼ TeV scale, the perturbativity
bound is of secondary importance here.

VIII. HEAVY FERMION PRODUCTION
AND DECAYS

The unknown new fermions that have been introduced
into this model to accompany the DM mechanism can be
searched for at the LHC in a similar fashion as for charginos
and neutralinos of the MSSM. Multilepton final states
associated with missing energy may arise in three different
ways from the decays of new fermion pairs: χþi χ

−
j , χ

�
i χ

0
j ,

and χ0i χ
0
j .

A. Production

A recent study at the LHC [78,79] has presented upper
limits in the signal production cross sections for charginos
and neutralinos, in the process

pþ p → W� → χþ1 þ χ02; ð8:1Þ
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FIG. 12. The vacuum stability plot: ΛUV against m ¼ Yυ.

17The probability of the tunneling has been calculated at tree
level in Ref. [75].

18This bound can also be found in Ref. [51].
19We need to make the substitutions ~g2d → −Y1 and

~g2u → −Y2 because of different conventions with Ref. [50].
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which is mediated by the W-gauge boson. One can use
Fig. 9(b) from Ref. [78] to set limits to the cross section and
therefore to constrain the parameter space. This figure fits
perfectly into our study since it assumes (a) a 100%
branching ratio for the χþ1 and χ02 decays as it is the case
here (see Sec. VIII B below) and (b) degenerate masses for
χþ1 and χ02 as it is exactly the case here as shown in
Eq. (2.40). The production cross section has been calcu-
lated in Ref. [80] also including next to leading order QCD
corrections. The parton level, tree level, result is

dσ̂
dt̂

ðuþ d† → W� → χþi þ χ0jÞ ¼
1

16πŝ2

�
1

3 · 4

X
spins

jMj2
�
;

ð8:2Þ

where the factors 1=3 and 1=4 arise from the color and spin
average of initial states; ŝ, t̂, û are the Mandelstam variables
at the parton level; and

X
spins

jMj2 ¼ jc1j2ðû −m2
χþi
Þðû −m2

χ0j
Þ

þ jc2j2ðt̂ −m2
χþi
Þðt̂ −m2

χ0j
Þ

þ 2ℜe½c1c�2�mχþi
mχ0j

ŝ; ð8:3Þ

with the coefficients ci being

c1 ¼ −
ffiffiffi
2

p
g2

ŝ −m2
W
OL�

ji ; c2 ¼ −
ffiffiffi
2

p
g2

ŝ −m2
W
OR�

ji :

We let the indices i ¼ 1; 2 and j ¼ 1; 2; 3 free as there is a
situation of a complete mass degeneracy between the heavy

neutral and charged fermions when MD ¼ MT . Our results
in Eqs. (8.2) and (8.3) are in agreement with Refs. [47,80].
By convoluting Eq. (8.2) with the proton’s Parton

Distribution Function and integrating over phase space
we obtain in Fig. 13 the production cross section for
σðpp → χ�1 χ

0
2Þ (in pb). In the region with correct DM relic

density, we obtain typical values varying in the interval
(0.07–0.2) pb for

ffiffiffi
s

p ¼ 8 TeV. This is about 1400–4000
events at the LHC before any experimental cuts assuming
20 fb−1 of accumulated luminosity. This is within the
current sensitivity search and analysis has been performed
by ATLAS [78] and CMS [79] for simplified supersym-
metric models. Looking for example at Fig. 9(b) in ATLAS
[78], for the same parameter space as in our Fig. 13, the
observed upper limit on the signal cross section varies in the
interval (0.14–1.2) pb. In the region where MD ¼ MT , all
heavy fermions are mass degenerate. In this case the total
cross section is the sum of all possible production modes
χ�1;2χ

0
2;3, and the total cross section is about 0.15 pb which is

within current LHC sensitivity (0.14 pb) [78].

B. Decays

Just by looking at a typical spectrum of the model in
Fig. 1, we see that the heavy fermions can decay on shell to
two final states with a gauge boson and the lightest neutral
stable particle. Therefore, the lightest charged and the next
to lightest neutral fermions decay like

χ�1 → χ01 þW�; ð8:4aÞ

χ02 → χ01 þ Z: ð8:4bÞ

In our case where χ01 is a well-tempered doublet there are no
off-diagonal couplings to the Higgs boson, like for example
hχ01χ

0
2. Therefore, particles χ

�
1 and χ02 decay purely to final

states following (8.4a) and (8.4b) with 100% branching
fractions. The signature at hadron colliders is well known
from SUSY searches, trileptons plus missing energy.
Analytically we find the decay widths [47,81]:

Γðχþi → χ0j þWþÞ ¼ g2mχþi
32π

λ1=2ð1; rW; rjÞ
× fðjOL

jij2 þ jOR
jij2Þ

× ½1þ rj − 2rW þ ð1 − rjÞ2=rW �
− 12

ffiffiffiffi
rj

p
ℜeðOL�

ji O
R
jiÞg;

Γðχ0i → χ0j þ ZÞ ¼
g2mχ0i

16πc2W
λ1=2ð1; rZ; rjÞfjO00L

ij j2

× ½1þ r0j − 2rZ þ ð1 − r0jÞ2=rZ�
þ 6

ffiffiffiffiffi
r0j

q
ℜe½ðO00L

ij Þ2�g; ð8:5Þ

where
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FIG. 13 (color online). Contours of the production cross section
for the new fermions, σðpp → χ�1 χ

0
2Þ (in pb), on the MD vs MT

plane, at the LHC with
ffiffiffi
s

p ¼ 8 TeV.
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rW ≡m2
W=m

2
χþi
; rZ ≡m2

Z=m
2
χ0i
;

rj ≡m2
χ0j
=m2

χþi
; r0j ≡m2

χ0j
=m2

χ0i
ð8:6aÞ

λðx; y; zÞ≡ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ð8:6bÞ

Numerical results for the decay widths for the processes
(8.4a) and (8.4b) in the area of interest are depicted in
Figs. 14(a) and (b), respectively. Both decay widths behave
similarly. In the area MD ≈MT ≈ 100 GeV we observe
maximum values Γ ≈ 3 GeV. As MT increases or
decreases, the widths get smaller than 1 GeV. This is easily
understood if we look back at the mass difference jmχ0

2
j −

jmχ0
1
j in Fig. 2(a) and recall that for the parameter

considered in Fig. 14, it is mχ0
1
¼ MD and mχ0

2
¼ mχ�

1
.

For heavier charged fermions, new decay channels
include

χþ2 → χþ1 þ Z; ð8:7aÞ

χþ2 → χþ1 þ h; ð8:7bÞ

that are mostly kinematically allowed in the low MD ≈
100 GeV but high MT ≳ 220 GeV regime. For the heavier
neutral particles, if kinematically allowed they would decay
to W-, Z-gauge bosons and/or the Higgs boson,

χ03 → χ�1 þW∓; ð8:8aÞ

χ03 → χ02 þ Z; ð8:8bÞ

χ03 → χ02 þ h: ð8:8cÞ

IX. CONCLUSIONS AND FUTURE DIRECTIONS

Our motivation for writing this paper is to import a
simple DM sector in the SM with particles in the vicinity of
the electroweak scale responsible for the observed DM relic
abundance, preferably not relying on coannihilations or
resonant effects, and capable of escaping current detection
from nucleon-recoil experiments. Meanwhile, we study
consequences of this model in EW observables, Higgs
boson decays (h → γγ, Zγ) and other possible signatures at
the LHC.
This SM extension consists of two fermionic SUð2ÞW

doublets with opposite hypercharges and a fermionic
SUð2ÞW triplet with zero hypercharge. The new interaction
Lagrangian is given in Eq. (2.7), and contains both Yukawa
trilinear terms and explicit mass terms for the doublet and
triplet fields. Under the assumption of a certain global
SUð2ÞR symmetry, discussed in Sec. II C, that rotates H to
H† and D̄1 to D̄2, the two Yukawa couplings become equal
with certain consequences that capture our interest through-
out this work. After electroweak symmetry breaking this
sector widens the SM with two charged Dirac fermions and
three neutral Majorana fermions, the lightest ( χ01) of which
plays the role of the DM particle. Under the symmetry
assumption and for Yukawa couplings comparable to the
top quark, the lightest neutral particle ( χ01) may have mass
equal to the vectorlike mass of the doublets, MD, and its
field composition contains only an equal amount of the two
doublets (see Fig. 3). As a result, the couplings of the Higgs
and the Z bosons to the lightest neutral fermion pair vanish
at tree level.
Within this framework we observe in Fig. 7 that Ωχh2 is

in accordance with observation [Eq. (4.4)] provided that the
parameters of the model,MD,MT andm, lie naturally at the
EW scale i.e., without the need for resonant or coannihi-
lation effects. Moreover, the χ01-nucleon SI cross section
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FIG. 14 (color online). Contour plots for the decay rates (in GeV) for the processes χþ1 → χ01 þWþ (left) and χ02 → χ01 þ Z (right). We
assume m ¼ 200 GeV.

ATHANASIOS DEDES AND DIMITRIOS KARAMITROS PHYSICAL REVIEW D 89, 115002 (2014)

115002-20



that appears at one loop turns out to be around 1–100 times
smaller than the current experimental sensitivity from LUX
and XENON1T as it is shown in Fig. 10. In addition, we
find that the oblique electroweak parameters S, T andU are
all compatible with EW data fits as it is shown in Fig. 4, a
result which is partly a consequence of the global symmetry
exploited.
We also look for direct implications at the LHC. We find

that the existence of the extra charged fermions reduces
substantially the ratios of the Higgs decay to a diphoton
(see Fig. 11) and to Zγ with respect to the SM. This is a
certain prediction of this scenario that cannot be avoided by
changing the parameter space. For a very large Yukawa
coupling, this reduction may be up to 65% relative to the
SM expectation we obtain from Fig. 11. Furthermore, the
production and decays of those new charged/neutral fer-
mion states are within current and forthcoming LHC reach.
Decay rates for some of these states are shown in Fig. 14.
We should notice here that the minimality of the Higgs

sector together with the Z2-parity symmetry preserves the
appearance of new flavor changing or CP violating effects
beyond those of the SM, for up to two-loop order (for a nice
discussion of effects on EDMs from the charged fermions,
see Ref. [48]).
On top of collider/astrophysical constraints, we made an

estimate of the consequences of the new states to the
vacuum stability of the model. The one-loop result for the
UV cutoff scale, above which the model needs some
completion, is given in Fig. 12. We see that for the
parameter space of interest, new physics, probably in the
form of new, supersymmetric scalars is needed already
nearby the TeV or multi-TeV scale to cancel fermionic
contributions in the quartic Higgs coupling. For example,
this solution may take the form of an MSSM extension with
D̄1;2 and T superfields (extensions with a triplet superfield
have been explored in Ref. [82]).
In summary, in this work we basically studied the

synergy between three observables: Ωχh2, σSI0 , and
Rðh → γγÞ, in a simple fermionic DM model. If charged
fermion states are discovered at the second run of LHC and
are compatible with Ωχh2 with mχ ∼mZ, then Rðh → γγÞ
has to be suppressed; i.e., R will turn towards the CMS
central value. If instead Rðh → γγÞ≳ 1 is enhanced, then
the DM particle is heavy, mχ ∼ 1 TeV, or otherwise
excluded by direct DM detection bounds. If R ∼ 1, then
one has to go to large MT values where, however, Ωχh2 is
only barely compatible with mχ ≃mZ. In this latter case,
the mass of the DM particle may be below the EW gauge
boson masses. However, in this case an entire new analysis
is required.
Apart from studying the regime with massmχ lower than

MZ, this work can be extended in several ways, such as, for
example, investigating the role of CP violating phases of
MD on baryogenesis. Indirect DM searches could be also
an interesting avenue together with extensions of the Higgs

sector. We postpone all these interesting phenomena for
future study.
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Appendix

The one-loop corrected vertex amplitude arises from (a)
and (b) diagrams depicted in Fig. 9 involving vector bosons
(W or Z) and new charged ( χ�i¼1;2) or neutral ( χ0i¼1…3)
fermions. It can be written as

iδY ¼
X

j¼ðaÞ;ðbÞ
ðiδYχ�

j þ iδYχ0

j Þ; ðA1Þ

where

iδYχ�
ðaÞ ¼ −

g2

2

X2
i;j¼1

fðOR
1jO

L�
1i Y

hχ−j χ
þ
i þOL

1jO
R�
1i Y

hχ−i χ
þ
j �ÞIWij

1

þmχþi
mχþj

ðOR
1jO

L�
1i Y

hχ−i χ
þ
j � þOL

1jO
R�
1i Y

hχ−j χ
þ
i ÞIWij

2

þ ½OL
1jO

L�
1i ðmχþi

Yhχ−i χ
þ
j � þmχþj

Yhχ−j χ
þ
i Þ

þOR
1jO

R�
1i ðmχþj

Yhχ−i χ
þ
j � þmχþi

Yhχ−j χ
þ
i Þ�IWij

3 g;
ðA2aÞ

iδYχ0

ðaÞ ¼
g2

2c2W

X3
i;j¼1

fðO00L
j1 O

00L
i1 Y

hχ0i χ
0
j þO00L

1j O
00L
1i Y

hχ0i χ
0
j�ÞIZij1

þmχ0i
mχ0j

ðO00L
j1 O

00L
i1 Y

hχ0i χ
0
j� þO00L

1j O
00L
1i Y

hχ0i χ
0
j ÞIZij2

− ½O00L
1j O

00L
i1 ðmχ0i

Yhχ0i χ
0
j� þmχ0j

Yhχ0i χ
0
j Þ

þO00L
j1 O

00L
1i ðmχ0j

Yhχ0i χ
0
j� þmχ0i

Yhχ0i χ
0
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ðA2bÞ
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iδYχ�
ðbÞ ¼ −

g2m2
Wffiffiffi

2
p

v

X2
i¼1

½ðjOL
1ij2 þ jOR

1ij2ÞIWi
4 þmχþi

ðOL
1iO

R�
1i þOR

1iO
L�
1i ÞIWi

5 �; ðA2cÞ

iδYχ0

ðbÞ ¼ −
g2m2

Z

c2W
ffiffiffi
2

p
v

X3
i¼1

f2jO00L
1i j2IZi4 −mχ0i

½ðO00L
1i Þ2 þ ðO00L

i1 Þ2�IZi5 g; ðA2dÞ

where the integrals, IV1…5, are defined in terms of Passarino-Veltman (PV) functions [85] as

IVij1 ¼ 3m2
i C0ð−p; p;mi; mV;mjÞ −

m2
i

m2
V
B0ð0; mi; mjÞ þ 3B0ðp;mV;mjÞ −

1

m2
V
A0ðmjÞ;

IVij2 ¼ 3C0ð−p; p;mi; mV;mjÞ −
1

m2
V
B0ð0; mi; mjÞ;

IVij3 ¼
�
−2 −

m2
i

m2
V
þ
m2

χ0
1

m2
V

�
mχ0

1
½C11ð−p; p;mi; mV;mjÞ − C12ð−p; p;mi; mV;mjÞ�

−mχ0
1
C0ð−p; p;mi; mV;mjÞ −

mχ0
1

m2
V
B1ðp;mV;mjÞ þ

mχ0
1

m2
V
B0ð0; mi; mjÞ;

IVi4 ¼
�
−2 −

m2
i

m2
V
þ
m2

χ0
1

m2
V

�
mχ0

1
½C11ðp;−p;mV;mi; mVÞ − C12ðp;−p;mV;mi; mVÞ�

−mχ0
1
C0ðp;−p;mV;mi; mVÞ þ

mχ0
1

m4
V
ðm2

i −m2
χ0
1

ÞB1ðp;mV;miÞ −
mχ0

1

m4
V
A0ðmiÞ;

IVi5 ¼ 3C0ðp;−p;mV;mi; mVÞ þ
1

m4
V
A0ðmiÞ: ðA3Þ

All external particles (i.e., χ01) are taken on shell; mi ¼ mχ0i
for V ¼ Z and mi ¼ mχ�i

for V ¼ W. Our notation for PV
functions A, B, C, follows closely the one defined in the
Appendix of Ref. [86]. Functions A0, B0, B1 contain both

infinite and finite parts while C0, C11, C12 functions are
purely finite. Our calculation has been done in unitary and
(for a cross-check) in Feynman gauge. The result for iδY is
both renormalization scale invariant and finite.
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