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We compute the zero-recoil form factor for the semileptonic decay B̄0 → D�þl−ν̄ (and modes related by
isospin and charge conjugation) using lattice QCD with three flavors of sea quarks. We use an improved
staggered action for the light valence and sea quarks (the MILC asqtad configurations), and the Fermilab
action for the heavy quarks. Our calculations incorporate higher statistics, finer lattice spacings, and lighter
quark masses than our 2008 work. As a byproduct of tuning the new data set, we obtain the Ds and Bs

hyperfine splittings with few-MeV accuracy. For the zero-recoil form factor, we obtain
F ð1Þ ¼ 0.906ð4Þð12Þ, where the first error is statistical and the second is the sum in quadrature of all
systematic errors. With the latest Heavy Flavor Averaging Group average of experimental results and a
cautious treatment of QED effects, we find jVcbj ¼ ð39.04� 0.49expt � 0.53QCD � 0.19QEDÞ × 10−3. The
QCD error is now commensurate with the experimental error.
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix
element jVcbj is one of the fundamental parameters of
the Standard Model (SM). Together with jVusj, jVubj, and
argV�ub, it allows for a full SM determination of flavor and
CP violation via processes that proceed at the tree level of
the electroweak interaction. In the case of jVcbj, one
requires a measurement of the differential rate of B mesons
decaying semileptonically to a charmed final state. The

hadronic part of the final state can be exclusive—e.g., a D�
or D meson—or inclusive.
The 2012 edition of the Review of Particle Physics by the

Particle Data Group (PDG) [1] notes that the exclusive and
inclusive values of jVcbj are marginally consistent with each
other. Furthermore, global fits to a comprehensive range of
flavor- and CP-violating observables tend to prefer the
inclusive value [2–4]: when direct information on jVcbj is
omitted from the fit, one of the outputs of the fit is a value of
jVcbj that agrees better with the inclusive than the exclusive
value. One should bear in mind that some tension in the
global fits to the whole CKM paradigm has been seen [5]. A
full discussion of the possible resolutions of the discrepancy
lies beyond the scope of this article. We conclude merely
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that it is important and timely to revisit the theoretical and
experimental ingredients of both determinations.
In this paper, we improve the lattice-QCD calculation

[6–8] of the zero-recoil form factor for the exclusive decay
B̄ → D�lν̄ (and isopin-partner and charge-conjugate
modes). Our analysis strategy is very similar to our
previous work [7], but the lattice-QCD data set is much
more extensive, with higher statistics on all ensembles,
smaller lattice spacings (as small as a ≈ 0.045 fm) and
light-quark masses as small as m̂0 ¼ ms=20 (at lattice
spacing a ≈ 0.09 fm). Figure 1 provides a simple overview
of the new and old data sets; further details are given in
Sec. II. Our preliminary status report [8] encompassed the
higher statistics but not yet four of the ensembles in the
lower left-hand corner of Fig. 1.

With this work, we improve the precision of jVcbj as
determined from exclusive decays to that claimed for the
determination from inclusive decays: 2%. Moreover, we
reduce the QCD uncertainty on jVcbj to the same level as
the experimental uncertainty. Because jVcbj normalizes the
unitarity triangle, it appears throughout flavor physics. For
example, the SM expressions for εK and for the branching
ratios of the golden modes Kþ → πþνν̄ and KL → π0νν̄ all
contain jVcbj4. Therefore, further improvements—beyond
what is achieved here—are warranted, particularly during
the course of the Belle II experiment [9].
The amplitude for B → D� semileptonic decay is

expressed in terms of form factors,

hD�ðpD� ; ϵðαÞÞjAμjBðpBÞiffiffiffiffiffiffiffiffiffiffiffi
2MD�
p ffiffiffiffiffiffiffiffiffiffi

2MB
p ¼ i

2
ϵðαÞν
�½gμνð1þ wÞhA1

ðwÞ − vνBðvμBhA2
ðwÞ þ vμD�hA3

ðwÞÞ�; ð1:1Þ

hD�ðpD� ; ϵðαÞÞjVμjBðpBÞiffiffiffiffiffiffiffiffiffiffiffi
2MD�
p ffiffiffiffiffiffiffiffiffiffi

2MB
p ¼ 1

2
εμνρσϵ

ðαÞ
ν
�vρBv

σ
D�hVðwÞ; ð1:2Þ

where Aμ and Vμ are the (continuum QCD) b → c electro-
weak currents, vμB ¼ pμ

B=MB, v
μ
D� ¼ pμ

D�=MD� , the velocity
transfer w ¼ vB · vD�, and ϵðαÞ is the polarization vector of
the D� meson. In the SM, the differential rate for B− →
D0�l−ν̄ (and the charge-conjugate mode) is given by

dΓ
dw
¼ G2

FM
3
D�

4π3
ðMB −MD� Þ2

× ðw2 − 1Þ1=2jηEWj2jVcbj2χðwÞjF ðwÞj2; ð1:3Þ

where ηEW provides a structure-independent electroweak
correction from next-to-leading-order box diagrams, in
which a photon or Z boson is exchanged along with the
W boson [10]. (See Sec. VIII for details.) The rate for B̄0 →
Dþ�l−ν̄ (and charge conjugate) is the same as Eq. (1.3) but
with an additional factor on the right-hand side ð1þ παÞ
[11,12], which accounts for the Coulomb attraction of the
final-state charged particles.
The notation χðwÞjF ðwÞj2 is conventional, motivated by

the heavy-quark limit. In the zero-recoil limit, w → 1, one
has χðwÞ → 1, and only one form factor survives:

F ð1Þ ¼ hA1
ð1Þ: ð1:4Þ

From Eq. (1.1), one sees that the needed matrix element is
hD�jϵðαÞ ·AjBi with initial and final states both at rest.
For nonvanishing lepton mass ml, the rate is multiplied

by ð1 −m2
l=q

2Þ2, and the expressions for χðwÞ and jF ðwÞj2
receive corrections proportional to m2

l=q
2 [13]. At zero

recoil, these corrections reduce to an additional factor
ð1þm2

l=q
2
maxÞ on the right-hand side of Eq. (1.4).

Except for l ¼ τ, lepton mass effects are not important
even at the current level of accuracy.
Because precision is so crucial, the lattice-QCD calcu-

lation must be set up in a way that ensures considerable
cancellation of all sources of uncertainty. The pioneering
work of Hashimoto et al. [6,14] introduced several double
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FIG. 1 (color online). Range of lattice spacings and light-quark
masses used here (colored or gray discs) and in Ref. [7] (black
circles). The area is proportional to the size of the ensemble. The
lattice spacings are a ≈ 0.15, 0.12, 0.09, 0.06, and 0.045 fm.
Reference [8] did not yet include the ensembles with
ða; m̂0=msÞ ¼ ð0.045 fm; 0.20Þ, (0.06 fm, 0.14), (0.06 fm,
0.10), and (0.09 fm, 0.05).
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ratios to this end. Here, we follow Ref. [7] and use a single,
direct double ratio

RA1
¼ hD

�jc̄γjγ5bjB̄ihB̄jb̄γjγ5cjD�i
hD�jc̄γ4cjD�ihB̄jb̄γ4bjB̄i ¼ jhA1

ð1Þj2 ð1:5Þ

with all states at rest and the polarization of the D� aligned
with j. In the continuum, the denominator of Eq. (1.5) is
unity, by the definition of the flavor quantum numbers. On
the lattice, however, it normalizes the flavor numbers and
cancels statistical fluctuations. The main uncertainties
stem, then, from the chiral extrapolation (the light-quark
masses in our data exceed the up and down masses) and
discretization and matching errors. In particular, we show
how the discretization errors of the analogous ratio of
lattice-QCD correlation functions are reduced by use of
the ratio.
The rest of this paper is organized as follows. Section II

describes the details of the lattice-QCD calculation. We
discuss the lattice implementation of Eq. (1.5), the details
of the numerical data, and the general structure of the
computed correlation functions. Section III describes our
fits to a ratio of correlation functions. Section IV discusses
perturbative matching. Section V summarizes the tuning of
the bottom- and charm-quark masses and presents results
for the Ds and Bs hyperfine splittings. Our extrapolation to
the continuum limit and physical light-quark mass is
described in Sec. VI. Section VII gives full details of
our systematic error analysis. Section VIII provides a
discussion of electroweak and electromagnetic effects,
which, though separate from our QCD calculation, are
needed to obtain jVcbj. Section IX concludes with final
results for hA1

ð1Þ and jVcbj. The appendices contain addi-
tional material, including the formulas used for the chiral

extrapolation (Appendix A), an estimate of heavy-quark
discretization errors (Appendix B), and a thorough dis-
cussion of our procedure for tuning the bottom- and
charm-quark masses (Appendix C), which also yields
the hyperfine splitting.

II. LATTICE SETUP

In this section we discuss the ingredients of our lattice-
QCD calculation. We outline first the generation of
ensembles of lattice gauge fields, and then the procedures
for computing the three-point correlation functions needed
to obtain the double ratio RA1

, which is the lattice
correlation-function analog of RA1

.

A. Simulation parameters

We use the MILC ensembles [15] of lattice gauge fields
listed in Table I. The ensembles were generated with a
Symanzik-improved gauge action [16–19] and 2þ 1 fla-
vors of sea quarks. The couplings in the gauge action
include the one-loop effects of gluons [20] but not of sea
quarks [21]; the latter were not yet available when the
gauge-field generation began [22]. The sea-quark action is
the order a2, tadpole-improved (asqtad) action [23–27] for
staggered quarks [28,29]. To reduce the species content
from the four that come with staggered fermions, the light
quarks (strange quark) are simulated with the square root
(fourth root) of the determinant [30]. At nonzero lattice
spacing this procedure introduces small violations of
unitarity [31–34] and locality [35]. Considerable numerical
and theoretical evidence suggests that these effects go away
in the continuum limit, so that the procedure yields QCD
[32,36–44].

TABLE I. Parameters of the lattice gauge fields. The columns from left to right are the approximate lattice spacing in fm, the sea-quark
masses am̂0=am0s, the linear spatial dimension of the lattice ensemble in fm, the dimensionless factor mπL (with mπ from the Goldstone
pion), the gauge coupling, the dimensions of the lattice in lattice units, the number of sources and configurations in each ensemble, and
the tadpole improvement factor u0 (obtained from the average plaquette).

a (fm) am̂0=am0s L (fm) mπL 10=g2 Volume Sources × Configs u0

0.15 0.0097=0.0484 2.4 3.9 6.572 163 × 48 24 × 628 0.8604
0.12 0.02=0.05 2.4 6.2 6.79 203 × 64 4 × 2052 0.8688
0.12 0.01=0.05 2.4 4.5 6.76 203 × 64 4 × 2256 0.8677
0.12 0.007=0.05 2.4 3.8 6.76 203 × 64 4 × 2108 0.8678
0.12 0.005=0.05 2.9 3.8 6.76 243 × 64 4 × 2096 0.8678
0.09 0.0124=0.031 2.4 5.8 7.11 283 × 96 4 × 1992 0.8788
0.09 0.0062=0.031 2.4 4.1 7.09 283 × 96 4 × 1928 0.8782
0.09 0.00465=0.031 2.7 4.1 7.085 323 × 96 4 × 984 0.8781
0.09 0.0031=0.031 3.4 4.2 7.08 403 × 96 4 × 1012 0.8779
0.09 0.00155=0.031 5.5 4.8 7.075 643 × 96 4 × 788 0.877805
0.06 0.0072=0.018 2.9 6.3 7.48 483 × 144 4 × 576 0.8881
0.06 0.0036=0.018 2.9 4.5 7.47 483 × 144 4 × 672 0.88788
0.06 0.0025=0.018 3.4 4.4 7.465 563 × 144 4 × 800 0.88776
0.06 0.0018=0.018 3.8 4.3 7.46 643 × 144 4 × 824 0.88764
0.045 0.0028=0.014 2.9 4.6 7.81 643 × 192 4 × 800 0.89511
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As one can see from Table I, some ensembles contain
∼2000 independent gauge fields, others ∼600–1000. To
increase statistics, we reuse each field four times (for
a ≈ 0.15 fm, 24 times) by computing quark propagators
that are evenly spaced in the time direction with a spatial
source origin that is chosen at random from one configu-
ration to the next.
We also use the asqtad action for the light valence

(spectator) quark. In this paper, we denote the physical
quark masses by mu, md, m̂ ¼ 1

2
ðmu þmdÞ, and ms; the

variable spectator mass bymx; and the sea-quark masses m̂0
and m0s, which are fixed within each ensemble. The bare
spectator masses amx are listed in Table II. In every case,
we compute light-quark propagators with the valence mass
equal to the light mass, amx ¼ am̂0, and, in several cases,
we also compute a partially quenched propagator
with amx ¼ 0.4am0s.
For the heavy b and c quarks we use Wilson fermions

[45] with the Sheikholeslami-Wohlert (SW) action [46],
adjusting the parameters in the action according to the
Fermilab method [47]. Table II also lists the parameters of
the heavy-quark action: the hopping parameter κ (for each
quark) and the clover coefficient of the SW action. We use
κ0b and κ0c to denote the values used in the computations,
reserving κb and κc for those that reproduce the Bs-and Ds-
meson masses most accurately. We set cSW to the value
from tree-level tadpole-improved perturbation theory,
cSW ¼ u−30 , with u0 from Table I. Table III gives the values
of κcrit where the quark mass vanishes for the SWaction on
each of our ensembles. These values were determined using
the methods discussed in Ref. [48]; note that κcrit is only
needed in the present work to fix the improvement
coefficients that correct the lattice currents described below.

The relative lattice spacing is determined by calculating
r1=a on each ensemble, where r1 is related to the heavy-
quark potential and is defined such that the force between
static quarks, r21Fðr1Þ ¼ 1.0 [49,50]. A mass-independent
procedure is used to set r1=a. This procedure takes the
measured values r1ðm̂0; m0s; βÞ=a and constructs a smooth
interpolation/extrapolation, which we use to replace the
measured values with r1ðm̂; ms; βÞ=a, evaluated now at the

TABLE III. Derived parameters that enter the simulations. The
(approximate) lattice spacings a and the sea-quark masses
am̂0=am0s (first two columns) identify the ensemble. Values for
r1=a are given in the third column, and κcrit values for the SW
action evaluated on our ensembles are given in the fourth column.
For r1=a, statistical errors are 0.1 to 0.3%, and the systematic
errors are comparable. For κcrit the errors are a few in the last
quoted digit.

a (fm) am̂0=am0s r1=a κcrit

0.15 0.0097=0.0484 2.2215 0.142432
0.12 0.02=0.05 2.8211 0.14073
0.12 0.01=0.05 2.7386 0.14091
0.12 0.007=0.05 2.7386 0.14095
0.12 0.005=0.05 2.7386 0.14096
0.09 0.0124=0.031 3.8577 0.139052
0.09 0.0062=0.031 3.7887 0.139119
0.09 0.00465=0.031 3.7716 0.139134
0.09 0.0031=0.031 3.7546 0.139173
0.09 0.00155=0.031 3.7376 0.13919
0.06 0.0072=0.018 5.3991 0.137582
0.06 0.0036=0.018 5.3531 0.137632
0.06 0.0025=0.018 5.3302 0.137667
0.06 0.0018=0.018 5.3073 0.137678
0.045 0.0028=0.014 7.2082 0.13664

TABLE II. Valence-quark parameters used in the simulations. The (approximate) lattice spacings a and the sea-
quark masses am̂0=am0s (first two columns) identify the ensemble. Here, amx denotes the bare masses for the light
spectator quarks, cSW and κ denote the parameters in the SWaction, and d1 the rotation parameter in the current. The
primes on κ and d1 distinguishes the simulation from the physical values.

a (fm) am̂0=am0s amx cSW κ0b d01b κ0c d01c
0.15 0.0097=0.0484 0.0097, 0.0194 1.567 0.0781 0.08354 0.1218 0.08825
0.12 0.02=0.05 0.02 1.525 0.0918 0.09439 0.1259 0.07539
0.12 0.01=0.05 0.01, 0.02 1.531 0.0901 0.09334 0.1254 0.07724
0.12 0.007=0.05 0.007, 0.02 1.530 0.0901 0.09332 0.1254 0.07731
0.12 0.005=0.05 0.005, 0.02 1.530 0.0901 0.09332 0.1254 0.07733
0.09 0.0124=0.031 0.0124 1.473 0.0982 0.09681 0.1277 0.06420
0.09 0.0062=0.031 0.0062, 0.0124 1.476 0.0979 0.09677 0.1276 0.06482
0.09 0.00465=0.031 0.00465 1.477 0.0977 0.09671 0.1275 0.06523
0.09 0.0031=0.031 0.0031, 0.0124 1.478 0.0976 0.09669 0.1275 0.06537
0.09 0.00155=0.031 0.00155 1.4784 0.0976 0.09669 0.1275 0.06543
0.06 0.0072=0.018 0.0072 1.4276 0.1048 0.09636 0.1295 0.05078
0.06 0.0036=0.018 0.0036, 0.0072 1.4287 0.1052 0.09631 0.1296 0.05055
0.06 0.0025=0.018 0.0025 1.4293 0.1052 0.09633 0.1296 0.05070
0.06 0.0018=0.018 0.0018 1.4298 0.1052 0.09635 0.1296 0.05076
0.045 0.0028=0.014 0.0028 1.3943 0.1143 0.08864 0.1310 0.03842
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physical masses m̂, ms. Table III lists r1=a values for each
of the ensembles that results from fitting the calculated
r1=a to the smooth function and extrapolating/interpolating
to physical masses. The absolute lattice spacing requires a
physical quantity to set the scale. We take the absolute
lattice spacing to be r1 ¼ 0.3117ð22Þ fm from the MILC
determination of fπ . The value used is explained and
justified in Ref. [51].
We have to adjust the light-quark bare masses and the

heavy-quark hopping parameters to their physical values
a posteriori. The adjustment of the light-quark masses is
carried out in the chiral extrapolation, discussed in
Sec. VI. For the heavy quarks, we have chosen κ0b
and κ0c in Table II close to the physical value based on
an initial set of runs that studied a range of κ but
computed only the two-point functions for heavy-
strange meson masses. After the full runs, including
three-point functions, we reanalyzed the two-point
functions to determine more precise κ values, as dis-
cussed in detail in Appendix C. Using information on
the κ dependence, we can then fine-tune our result.

B. B → D� correlation functions

To obtain the matrix elements in Eq. (1.5), we compute
the correlation functions

CB→D� ðts; tfÞ ¼
X
x;y

hOD�j
ðx; tfÞAj

cbðy; tsÞO†
Bð0; 0Þi; ð2:1Þ

CB→Bðts; tfÞ ¼
X
x;y

hOBðx; tfÞV4
bbðy; tsÞO†

Bð0; 0Þi; ð2:2Þ

and similarly CD�→B and CD�→D� . Here, OB and OD�j
are

lattice operators with quantum numbers needed to
annihilate B and D� mesons, in the case of D� with
polarization in the j direction; Vμ

cb and Aμ
cb are lattice

currents for b → c transitions. The lattices are gauge-
fixed before evaluating the correlation functions so that
we can use a smearing function that is extended over a
spatial slice.
We form the interpolating operators from a staggered

fermion field χ and heavy-quark field ψ in the SW
action:

OD�j
ðx; tÞ ¼

X
w

χ̄ðx; tÞΩ†ðx; tÞiγjSðx;wÞψcðw; tÞ; ð2:3Þ

O†
Bðx; tÞ ¼

X
w

ψ̄bðw; tÞSðw; xÞγ5Ωðx; tÞχðx; tÞ; ð2:4Þ

ΩðxÞ ¼ γx1=a1 γx2=a2 γx3=a3 γx4=a4 ; ½x ¼ ðx; tÞ�; ð2:5Þ

where Sðx; yÞ is a spatial smearing function. The free
Dirac index on Ω can be interpreted as a taste index (in
which case we average over taste) [42], or one can

promote χ to a four-component field [52], which leads
to the same results for the correlation functions of
bilinear operators.
We employ two smearing functions. One is the local

Sðx; yÞ ¼ δðx − yÞ. The other is the ground-state 1S wave
function of the Richardson potential. See Ref. [51] for
details.
We define the lattice vector and axial-vector currents to be

Vμ
hh ¼ Ψ̄hγ

μΨh; ð2:6Þ

Aμ
cb ¼ Ψ̄cγ

μγ5Ψb; ð2:7Þ

where h ¼ b, c are flavor indices. The fermion field Ψ
includes a correction factor to reduce discretization
effects [47],

Ψh ¼ ð1þ d1γ · DlatÞψh; ð2:8Þ

where Dμ
lat is a nearest-neighbor covariant difference oper-

ator. Its coefficient d1 is set to its value in tree-level tadpole-
improved perturbation theory, where it does not depend on
the other quark in the current. The matrix elements of the
lattice currents satisfy (≐ means “has the same matrix
elements as”) [53,54]

ZJμcb
Jμ ≐ J μ þ Oðα1þlZs ; α1þlds a; a2Þ; ð2:9Þ

where J μ is the continuum current corresponding to the
lattice current Jμ and the matching factors ZJμcb

are
defined such that Eq. (2.9) holds. In practice, ZJμcb

can
be determined only approximately, via either perturba-
tive or nonperturbative methods. Thus, lZ or d ¼ 0 for
tree-level matching of Z or d1, lZ or d ¼ 1 for one-loop
matching, etc. Nonperturbative matching schemes could
be set up, which would remove all powers of αs. Here
we implicitly use nonperturbative matching for flavor-
diagonal ZV4

hh
, one-loop matching for suitable ratios of

ZJ factors (see below), and tree-level matching for d1.
Higher-loop and nonperturbative calculations, except for
ZV4

hh
, are not available.

In the double ratio like Eq. (1.5) but with matrix elements
of lattice currents, the following ratio of matching factors
remains:

ρ2Ai ¼
ZAi

cb
ZAi

bc

ZV4
cc
ZV4

bb

: ð2:10Þ

In this ratio, all corrections associated with wave-
function renormalization cancel out, leaving only vertex
diagrams. Each Z contains the difference between
continuum and lattice vertex diagrams, and the ratio
introduces further cancellations. It is not surprising,
then, that one-loop calculations of ρAj yield very small
coefficients of αs [54].
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With the Fermilab method applied to the SW action, the
Lagrangian also leads to discretization effects of order
Oðα1þlcs a; a2Þ, where lc counts, as above, the matching of
the SW (clover) term. Again, one-loop matching is not
completely available (see Ref. [55]), so we use tree-level
matching. Table II lists the values of cSW used in this work.
Appendix B discusses the discretization effects in hA1

ð1Þ
(as extracted here) in detail.
For large enough time separations ts and tf − ts, the

correlation function

CB→D� ðts; tfÞ ¼ Z1=2
D� Z

1=2
B̄

hD�jAj
cbjB̄iffiffiffiffiffiffiffiffiffiffiffi

2MD�
p ffiffiffiffiffiffiffiffiffiffi

2MB
p e−MBtse−MD� ðtf−tsÞ

þ � � � ; ð2:11Þ
whereMB andMD� are the masses of the B and D� mesons
and ZH ¼ jh0jOHjHij2=2MH. The omitted terms from
higher-mass states are discussed in Sec. III. The other
correlation functions CD�→B, CB→B, CD�→D� have analo-
gous large-time behavior. Therefore, the ratio of correlation
functions

Rðts; tfÞ≡ CB→D� ðts; tfÞCD�→Bðts; tfÞ
CD�→D�ðts; tfÞCB→Bðts; tfÞ

→ RA1
; ð2:12Þ

where

RA1
¼ hD

�jAj
cbjB̄ihB̄jAj

bcjD�i
hD�jV4

ccjD�ihB̄jV4
bbjB̄i

¼
���� hA1
ð1Þ

ρAj

����
2

þ � � � ;

ð2:13Þ

is a lattice version ofRA1
, up to the matching factor ρAj and

discretization errors. The analysis of Rðts; tfÞ to extract RA1

is discussed in Sec. III, the calculation of ρAj is discussed in
Sec. IV, the light-quark discretization errors are analyzed in
Sec. VI, and the heavy-quark discretization errors are
derived in Appendix B.
Above we mentioned that we increase statistics by

choosing four (24 at a ≈ 0.15 fm) sources. This means
we choose four (24) origins ð0; 0Þ in Eqs. (2.1) and (2.2).
We do so by picking at random four (24) equally separated
time slices for t ¼ 0. On each time slice, we choose a
completely random point for x ¼ 0.
Starting at each origin [ð0; 0Þ in Eqs. (2.1) and (2.2)],

we construct the three-point correlation functions as
follows. We compute the parent heavy-quark propagator
from smeared ð0; 0Þ to all points, in particular ðy; tsÞ. We
also compute the spectator staggered-quark propagator
from ð0; 0Þ to all points. At time tf, we convolve this
propagator with the Dirac matrix and smearing function

of the sink, projecting onto a fixed momentum (here,
p ¼ 0). This combination is used for a further inversion
for the daughter heavy quark; this inversion yields a
sequential propagator encoding the propagation of the
spectator quark, a flavor change at the sink, and (reverse)
propagation of the daughter quark back to the decay. This
sequential propagator and the parent propagator are then
inserted into the appropriate trace over color and Dirac
indices.

III. ANALYSIS OF CORRELATION
FUNCTIONS

To obtain RA1
from Rðts; tfÞ with sufficient accuracy, we

have to treat the excited states [denoted by � � � in Eq. (2.11)]
carefully. From the transfer-matrix formalism, one finds

CX→Yðts; tfÞ ¼
X∞
r¼0

X∞
s¼0
ð−1Þrts=að−1Þsðtf−tsÞ=a

× Asre−M
ðrÞ
X tse−M

ðsÞ
Y ðtf−tsÞ ð3:1Þ

where even r and s label excitations of desired parity, and
odd r and s label excitations of opposite parity. The
appearance of the opposite-parity states and their oscillat-
ing time dependence are consequences of using staggered
fermions for the spectator quark. The Ars are transition
matrix elements, multiplied by uninteresting factors. For
the desired A00, these factors cancel in Rðts; tfÞ.
In practice, we can choose the time separations such that

only the lowest-lying states of each parity make a signifi-
cant contribution. As discussed in detail in Ref. [7], it is
advantageous to smear over time in a way that suppresses
the opposite-parity state, and define

R̄ðts; tfÞ≡ 1

2
Rðts; tfÞ þ

1

4
Rðts; tf þ 1Þ

þ 1

4
Rðts þ 1; tf þ 1Þ; ð3:2Þ

which is very close to RA1
, with small time-dependent

effects that one can disentangle via a fit to the ts
dependence.
The average in Eq. (3.2) is designed to suppress the

contribution from oscillating states that changes sign only
when the total source-sink separation is varied (the
“same-sign” oscillating-state contributions). The double
ratio, including the leading effects of the wrong-parity
states, is

R̄A1
ðts; tfÞ ¼

AB→D�
00 AD�→B

00

AD�→D�
00 AB→B

00

½1þ c̄B→D� ðts; tfÞ þ c̄D
�→Bðts; tfÞ − c̄D

�→D� ðts; tfÞ − c̄B→Bðts; tfÞ þ � � ��; ð3:3Þ
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where the function c̄X→Y contains the oscillating-state contributions, and is given by

c̄X→Yðts; tfÞ≡ AX→Y
01

AX→Y
00

ð−1Þtf−tse−ΔmYðtf−tsÞ
�
1

2
þ 1

4
ð1 − e−ΔmY Þ

�

þ AX→Y
10

AX→Y
00

ð−1Þtse−ΔmXts

�
1

2
þ 1

4
ð1 − e−ΔmXÞ

�

þ AX→Y
11

AX→Y
00

ð−1Þtf e−ΔmXts−ΔmY ðtf−tsÞ
�
1

2
−
1

4
ðe−ΔmY þ e−ΔmXÞ

�
: ð3:4Þ

The terms in square brackets in Eq. (3.4) are the suppres-
sion factors for the oscillating-state contributions. The
ΔmX;Y are the splittings between the ground-state masses
and the opposite-parity masses, and their values can be
computed precisely from fits to two-point correlators. We
find values for these splittings in the range between about
0.1 and 0.4 in lattice units. With these values of the
parameters the “same-sign” contributions [the third term
in Eq. (3.4)] are suppressed by a factor of ∼6–20 by
Eq. (3.2), where the suppression is greater at finer lattice
spacings. The other oscillating-state contributions change
sign as a function of ts and are given by the first two terms
in Eq. (3.4). These contributions are very small for our
double ratio, and they are further suppressed by a factor of
∼2 by the average in Eq. (3.2).
Figure 2 shows RA1

ðts; tfÞ and RA1
ðts; tf þ 1Þ for two

different, representative ensembles. One can see that the
plateau is lower for odd total source-sink separation than
for even total source-sink separation, whether the odd
source-sink separation is larger or smaller than the even
source-sink separation. This feature holds for all ensem-
bles. It suggests that the “same-sign” oscillating states are
visible in our data, and are comparable to, but somewhat
larger than, our current statistical errors. The average of
Eq. (3.2) suppresses this effect to around 0.1% on our

coarser lattices and around 0.03% on our finest lattices.
This effect is negligible compared to other errors. The fact
that this effect is visible independently of whether the odd
source-sink separation is larger or smaller than the even
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FIG. 2 (color online). RA1
at mx ¼ 0.2m0s on 0.12 fm (left) and on 0.09 fm (right) lattice spacings.
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source-sink separation indicates that this effect is larger
than other excited-state contributions and that within the
current statistical precision of our data, these can also be
neglected. That this is the case is verified by a calculation at
a larger source-sink separation on the 0.12 fm 0.2ms
ensemble. Figure 3 shows a comparison between the square
root of the average (3.2) for two different combinations of
source-sink separations. The larger source-sink separation
is computed with 16 time sources on 2256 configurations,
compared with four time sources on the same configura-
tions for the smaller separation. The source was moved
around the lattice randomly with a different seed for the two
calculations, so we expect the ratios to be less correlated
than is typical for quantities computed on the same
configurations. The agreement between the best fits to
the different source-sink separations is good to the 1σ level,
as expected if residual excited-state contamination is small.
Since ordinary excited-state contamination would tend to

cause the plateau fit to be too high, as can be seen by the
higher values of ts near the source and sink, this contami-
nation must be negligible within our current statistics
because the fit with the larger separation and smaller
contamination gives a slightly higher plateau value.
The square root of the average (3.2) is shown in Fig. 4 for

0.12 fm, 0.09 fm, and 0.06 fm lattice spacings. These plots
show data at unitary (full QCD) points, with valence
spectator- and light sea-quark masses equal to 0.2m0s.
The square root of R̄A1

ðts; tfÞ is fit to a constant in the
identified plateau region, including the full covariance
matrix to determine the correlated χ2 and to ensure that
the fits yielded acceptable p values. The fits are shown in
Fig. 4 superimposed over the data with 1σ error bands.
Source-sink separations and plateau ranges are approxi-
mately the same in physical units for all lattice spacings.
Time ranges for fits, their p values, and the raw values for
hA1
ð1Þ are given in Table IV.
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IV. PERTURBATION THEORY FOR ρA

As discussed in Sec. II B, we need the ratio of matching
factors, ρAj , defined in Eq. (2.10). This ratio has been
calculated in one-loop perturbation theory, which will be
discussed in detail in another publication. The perturbative
expansion for ρAj is

ρAj ¼ 1þ
X
l

ρ½l�Aj αlVðq�Þ; ð4:1Þ

where we make explicit a choice of scheme and scale for
the perturbative series. The calculation of ρ½1�Aj is a straight-
forward extension of the work in Ref. [54], modified to use
the improved gluon propagator.
For the expansion parameter αVðq�Þ, we would like to

make a choice that prevents large logarithms associated
with the β function from making the neglected terms
unnecessarily large. Brodsky, Lepage, and Mackenzie
[56] discussed how to do so by exploiting the nf depend-
ence of the second order in αV , and Lepage and Mackenzie
[57] explained how to define an equivalent scale choice
when the second order is not yet available. The Lepage-
Mackenzie version requires a coefficient �ρ½1�Aj defined by
weighting the Feynman integral for ρ½1�Aj with an additional
factor of lnðq2a2Þ, where q is the gluon momentum in the
one-loop diagram(s). Then the recommended (and empiri-
cally successful [57,58]) scale q� is given through

lnðq�aÞ ¼
�ρ½1�Aj

2ρ½1�Aj

; ð4:2Þ

when the scheme is the V scheme, such that the interquark
potential in momentum space is CFαVðq2Þ=q2.
Unfortunately, as the heavy-quark masses vary over the

range of interest, nearby zeroes of the numerator and
denominator in Eq. (4.2) lead to physically unreasonable
values for q�. Fortunately, the way to deal with such cases
has been spelled out by Hornbostel, Lepage, and
Morningstar (HLM) [59]. The HLM method requires
integrals weighted by higher powers of lnðq2a2Þ. This
prescription results in values for q�HLM that are close to 2=a.
We therefore use q� ¼ 2=a to obtain the ρAj listed in
Table V. As expected, ρAj varies somewhat as a function of
lattice spacing. It is even slightly different from ensemble to
ensemble at the same nominal lattice spacing, because
these ensembles have slightly different lattice spacings.

V. HEAVY-QUARK MASS TUNING

Our approach to tuning κb;c is similar to that described in
Ref. [48], and a detailed description of the current approach
is given in Appendix C. We start with the lattice dispersion
relation

E2ðpÞ ¼ M2
1 þ

M1

M2

p2 þ 1

4
A4ðap2Þ2

þ 1

3
A40a2

X3
j¼1
jpjj4 þ � � � ; ð5:1Þ

where M1 ≡ Eð0Þ defines the meson rest mass and the
kinetic mass is given by

TABLE IV. Fit results for double ratios at the full QCD points.
The (approximate) lattice spacings a and the sea-quark masses
am̂0=am0s (first two columns) identify the ensemble. The third
column is the pair of spectator quark source-sink separations, the
fourth is the time-slice fit range, the fifth is the p value of the fit,
and the sixth is the value of hA1

ð1Þ=ρAj determined from the fit.

a (fm) am̂0=am0s tf Fit range p value hA1
ð1Þ=ρAj

0.15 0.0097=0.0484 10, 11 5–7 0.85 0.9141(51)
0.12 0.02=0.05 12, 13 5–8 0.80 0.9035(28)
0.12 0.01=0.05 12, 13 5–8 0.97 0.9052(44)
0.12 0.007=0.05 12, 13 5–8 0.63 0.9160(53)
0.12 0.005=0.05 12, 13 5–8 0.68 0.9143(55)
0.09 0.0124=0.031 17, 18 7–11 0.63 0.9162(31)
0.09 0.0062=0.031 17, 18 7–11 0.54 0.9135(45)
0.09 0.00465=0.031 17, 18 7–11 0.78 0.9212(73)
0.09 0.0031=0.031 17, 18 7–11 0.95 0.9092(68)
0.09 0.00155=0.031 17, 18 7–11 0.79 0.9208(90)
0.06 0.0072=0.018 24, 25 8–14 0.84 0.9126(50)
0.06 0.0036=0.018 24, 25 8–14 0.93 0.9097(64)
0.06 0.0025=0.018 24, 25 8–14 0.13 0.9073(67)
0.06 0.0018=0.018 24, 25 8–14 0.55 0.9147(64)
0.045 0.0028=0.014 32, 33 7–14 0.87 0.9029(45)

TABLE V. One-loop estimate of ρAj . The first two columns
label each ensemble with the approximate lattice spacing in fm
and the sea simulation light- and strange-quark masses. The third
column is αVðq�Þ with q� ¼ 2=a. The fourth column is ρAj on
that ensemble with statistical errors from the VEGAS evaluation
of the one-loop coefficients.

a (fm) am̂0=am0s αVðq�Þ ρAj

0.15 0.0097=0.0484 0.3589 0.99422(4)
0.12 0.02=0.05 0.3047 0.99650(5)
0.12 0.01=0.05 0.3108 0.99623(5)
0.12 0.007=0.05 0.3102 0.99618(5)
0.12 0.005=0.05 0.3102 0.99617(5)
0.09 0.0124=0.031 0.2582 0.99978(4)
0.09 0.0062=0.031 0.2607 0.99963(4)
0.09 0.00465=0.031 0.2611 0.99957(4)
0.09 0.0031=0.031 0.2619 0.99950(4)
0.09 0.00155=0.031 0.2623 0.99946(4)
0.06 0.0072=0.018 0.2238 1.00334(3)
0.06 0.0036=0.018 0.2245 1.00323(3)
0.06 0.0025=0.018 0.2249 1.00317(3)
0.06 0.0018=0.018 0.2253 1.00312(3)
0.045 0.0028=0.014 0.2013 1.00608(2)
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M−1
2 ≡ 2

∂EðpÞ
∂p2

j

����
p¼0

: ð5:2Þ

The meson masses differ from the corresponding
quark masses, m1 and m2, by binding-energy effects. In
the Fermilab method, the lattice pole energy is fit to the
dispersion relation (5.1), and κ is adjusted so that the kinetic
mass agrees with experiment. We tune to the experimental
Ds-and Bs-meson masses to obtain κc and κb, respectively.
The simulation values κ0b;c differ from our current best

estimates of these parameters because of improvements in
statistics and methodology since the initial tuning runs.
Table VI shows our best estimates of κb;c, along with errors.
The first error is a combination of statistical and fitting
systematics, and the second error is that due to fixing the
lattice scale. For comparison, Table VI also shows the κ0b;c
values used in the runs. A detailed discussion of how the
tuned values of κb;c are obtained is given in Appendix C. As
a cross-check of our tuning procedure, we calculate the
hyperfine splittings ΔMðDsÞ ¼ MðD�sÞ −MðDsÞ and
ΔMðBsÞ ¼ MðB�sÞ −MðBsÞ. In Appendix C.4 we find

ΔMðDsÞ ¼ 146� 4 MeV; ΔMðBsÞ ¼ 44� 3 MeV;

ð5:3Þ

where the error includes statistics and the sum of all
systematic errors in quadrature. These are in good agree-
ment with the experimental values ΔMðDsÞ ¼ 143.8�
0.4 MeV and ΔMðBsÞ ¼ 48.7þ2.3−2.1 MeV.
We correct our values of hA1

ð1Þ for the mistuning of κ
using information on the heavy-quark mass dependence
from an additional run with κ0b;c nearer their physical values
on the coarse ensemble with am̂0=am0s ¼ 0.01=0.05. To

apply the correction we exploit information from heavy-
quark effective theory (HQET); the form factor at zero-
recoil has the heavy-quark expansion [60,61]

hA1
ð1Þ ¼ ηA

�
1 −

lV

ð2mcÞ2
þ 2lA

2mc2mb
−

lP

ð2mbÞ2
�
; ð5:4Þ

up to order 1=m2
Q, where ηA is a factor that matches HQET

to QCD and the l’s are long-distance matrix elements of
the HQET. Heavy-quark symmetry forbids terms of order
1=mQ at zero recoil [62]. The form factor depends on both
the bottom-quark mass and the charm-quark mass; we
correct for this dependence and propagate the uncertainty
due to the error in κb;c to the form factor before performing
the chiral/continuum extrapolation. The leading mb
dependence is given by the term that is inversely propor-
tional to mcmb in brackets in Eq. (5.4), and this depend-
ence, inversely proportional to mb for fixed charm-quark
mass, is the one used to correct the form factor for the
mistuning in mb. The leading charm-quark mass depend-
ence is, however, given by the term that is inversely
proportional to the charm-quark mass squared. Thus, we
determine the adjustment that must be made from the
simulated form factor hsim to the tuned value htuned using

htuned ¼ hsim þ
∂h

∂½1=ðr1mbÞ�
�

1

r1mb;tuned
−

1

r1mb;sim

�

þ ∂h
∂½1=ðr1mcÞ2�

�
1

ðr1mc;tunedÞ2
−

1

ðr1mc;simÞ2
�
;

ð5:5Þ

where mb;c is the kinetic b-or c-quark mass, and r1 sets the
relative lattice spacing on different ensembles. The slope

TABLE VI. Errors in the tuned κb;c parameters. The (approximate) lattice spacings a and the sea-quark masses
am̂0=am0s (first two columns) identify the ensemble. The third and fourth columns are the tuned κ values for the b
and c quarks, respectively. The first error is the statistics plus fitting error, and the second is an error due to the
uncertainty in the lattice scale. The fifth and sixth columns are the κ values used in the simulations.

a (fm) am̂0=am0s κb κc κ0b κ0c
0.15 0.0097=0.0484 0.0775(16)(3) 0.12237(26)(20) 0.0781 0.1218
0.12 0.02=0.05 0.0879(9)(3) 0.12452(15)(16) 0.0918 0.1259
0.12 0.01=0.05 0.0868(9)(3) 0.12423(15)(16) 0.0901 0.1254
0.12 0.007=0.05 0.0868(9)(3) 0.12423(15)(16) 0.0901 0.1254
0.12 0.005=0.05 0.0868(9)(3) 0.12423(15)(16) 0.0901 0.1254
0.09 0.0124=0.031 0.0972(7)(3) 0.12737(9)(14) 0.0982 0.1277
0.09 0.0062=0.031 0.0967(7)(3) 0.12722(9)(14) 0.0979 0.1276
0.09 0.00465=0.031 0.0966(7)(3) 0.12718(9)(14) 0.0977 0.1275
0.09 0.0031=0.031 0.0965(7)(3) 0.12714(9)(14) 0.0976 0.1275
0.09 0.00155=0.031 0.0964(7)(3) 0.12710(9)(14) 0.0976 0.1275
0.06 0.0072=0.018 0.1054(5)(2) 0.12964(4)(11) 0.1048 0.1295
0.06 0.0036=0.018 0.1052(5)(2) 0.12960(4)(11) 0.1052 0.1296
0.06 0.0025=0.018 0.1051(5)(2) 0.12957(4)(11) 0.1052 0.1296
0.06 0.0018=0.018 0.1050(5)(2) 0.12955(4)(11) 0.1052 0.1296
0.045 0.0028=0.014 0.1116(3)(2) 0.130921(16)(7) 0.1143 0.1310
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parameters are determined by a linear interpolation between
the two sets of points shown in Fig. 5. One of these points in
each of these plots is from our original production run, while
the other points are from runs where κb;c were separately
varied and chosen to be closer to their tuned values.
The slopes are also used to propagate the errors in the

tuned kappa values due to “statistics and fitting” to the
errors in each individual hA1

ð1Þ data point before perform-
ing the chiral/continuum extrapolation. This is done by
inflating the jackknife error of hA1

ð1Þ on each data point by
adding to it in quadrature the parametric error in hA1

ð1Þ due
to the “statistics and fitting" part of the κ-tuning error. We
make the assumption that the statistics and fitting errors in
the tuned κ values on different ensembles are independent
of one another, though we also test the size of the additional
error induced if this assumption is not true and find that it is
small. The κ-tuning “statistics and fitting” error is thus
directly incorporated into the statistical error of hA1

. The
scale error in the tuned κ values, however, is 100%
correlated across ensembles, and is therefore treated as a
separate systematic error.

VI. CHIRAL-CONTINUUM EXTRAPOLATION

Because the light u- and d-quark masses used in the
calculation are heavier than the physical ones, an extrapo-
lation in quark mass is necessary. This extrapolation can be
controlled using an appropriate chiral effective theory,
where one can also incorporate discretization effects
particular to staggered quarks. The chiral effective theory
that incorporates these effects is rooted staggered chiral
perturbation theory (rSχPT), which was extended to
include heavy-light quantities in Ref. [63].
There are discretization effects that are particular to

staggered quark actions. The staggered quark discretization

only partially solves the fermion doubling problem, reduc-
ing the number of species from 16 to 4. There remain
unphysical species of quarks, commonly referred to as
tastes. Quarks of different tastes can exchange high-
momentum gluons with momenta of order the lattice cutoff,
and this exchange breaks the degeneracy in the pion
spectrum for pions made of quarks of different tastes.
This taste-symmetry breaking leads to the staggered theory
having 16 light pseudoscalar mesons instead of one.
The tree-level relation in the chiral theory between the

pseudoscalar-mesonmasses and the quarkmasses is given by

M2
xy;ξ ¼ B0ðmx þmyÞ þ a2Δξ; ð6:1Þ

where ξ labels the meson taste, mx and my are the staggered
quark masses, B0 is the continuum low-energy constant, and
a2Δξ are the splittings of the 16 tastes. An additional SO(4)
taste symmetry, which is broken only at Oða4Þ, leads to some
degeneracy among the 16 pions, such that the taste index ξ
runs over themultipletsP,A,T,V, Iwith degeneracies 1, 4, 6,
4, 1, respectively. The splitting a2ΔP vanishes because of an
exact nonsinglet lattice axial symmetry.
Equation (34) of Ref. [64] gives the result for hA1

ð1Þ in
partially quenched χPT with degenerate up-and down-
quark masses (the 2þ 1 case) in the rooted staggered
theory. The result is

hðBxÞPQ;2þ1
A1

ð1Þ
ηA

¼ 1þ XAðΛχÞ
m2

c
þ g2D�Dπ

48π2f2
× logs1-loopðΛχÞ;

ð6:2Þ

where the term logs1-loopðΛχÞ stands for the one-loop
staggered chiral logarithms, the detailed expression for
which is given in Appendix A. XAðΛχÞ is a low-energy
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FIG. 5. hA1
ð1Þ at different values close to the tuned b- and c-quark masses. Each is plotted as a function of the leading (assumingmb is

sufficiently heavier than mc) heavy-quark mass dependence in Eq. (5.4), 1=ðr1mbÞ and 1=ðr1mcÞ2 for b and c, respectively.
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constant of the chiral effective theory, independent of the
light-quark mass, and its dependence on the chiral scale Λχ

cancels that of the chiral logarithms. The XAðΛχÞ term is
suppressed by a factor of 1=m2

c in the heavy-quark power
counting. The term ηA is a factor that matches HQET to
QCD, and contains perturbative QCD logarithmic depend-
ence on the heavy-quark masses. It is independent of the
light-quark mass. The coefficient of the chiral logarithm
term contains f, the pion decay constant and gD�Dπ, the
D�Dπ coupling in the chiral effective theory.
The one-loop logarithm term depends on the light valence-

and sea-quark masses, including the taste-breaking discreti-
zation effects from the light-quark sector. The expression
contains explicit dependence on the lattice spacing a, and
requires as inputs the parameters of the staggered chiral
Lagrangianδ0V andδ

0
A,which aredetermined fromchiral fits to

pionmasses and decay constants on the same ensembles. The
chiral formula for hA1

ð1Þ also requires as input the taste
splittings Δξ, which are obtained from separate spectrum
calculations of the various taste mesons. The values of the
staggered taste splittings are given in Table VII. We take the
values of the hairpin parameters δ0V and δ

0
A on thea ≈ 0.12 fm

lattices to be r21a
2δ0V ¼ 0.00 and r21a

2δ0A ¼ −0.28. Their
values at other lattice spacings are determined by scaling
these numbers by the ratio of the root-mean-squared (RMS)
splitting at the target lattice spacing and at a ≈ 0.12 fm. We
find that varying the staggered parameters within their
uncertainties produces a negligible error in hA1

, as further
discussed in Sec. VII C. The continuum low-energy constant
gD�Dπ is taken as an input in our fits. We take a value with an
error that encompasses recent lattice-QCD calculations and
the latestmeasurements of theD� decaywidth (see Sec.VII C
for details). TheD�-Dmass splitting ΔðcÞ is well determined
from experiment. In summary, the only free parameter in the
next-to-leading-order (NLO) chiral formula is the constant
XAðΛÞ, which is determined by fits to our lattice data for the
form factor hA1

ð1Þ.
The errors in the light-quark masses lead to negligible

uncertainty in hA1
; these masses are presented in Table VIII

in the “continuum,” where the values have been

extrapolated to the continuum, i.e., discretization errors
have been removed. The masses are in units of the 0.09 fm
lattice spacing with the 0.09 fm lattice value of the mass
renormalization in a mass-independent scheme. The value
of r1B0 evaluated at the same scale within the same scheme
and with discretization errors removed is also given in
Table VIII.
Table IX shows our results for the lattice form factor

hA1
ð1Þ for various light-quark masses on the different

ensembles. We computed the form factor at the full
QCD points on all of the ensembles, and on some of the
ensembles we included a partially quenched point with the
spectator light-quark mass equal to 0.4m0s in order to help
constrain the fits. Because these points have small stat-
istical errors due to the heavier spectator-quark mass, they
are especially useful in constraining the lattice-spacing
dependence. Table IX also presents the values of the pion
mass corresponding to the light spectator-quark mass for
the full QCD points. Both the pseudoscalar-taste pion mass
and the root-mean-square pion mass are given. Note that
the RMS and Goldstone pion masses presented in Table IX
use the mass-independent determination of r1=a to fix the
relative lattice scale, and thus differ somewhat from an
earlier set of masses on the same ensembles appearing in
supporting material of the Flavor Lattice Averaging Group
[65]. This earlier set of masses used mass-dependent r1=a
values to set the relative scale. As Table IX shows, our
lightest taste-Goldstone pion mass is 180 MeV, while the
lightest RMS pion mass is 260 MeV. Previous work on
MILC ensembles [22,66] suggests that when masses in
these ranges are combined with staggered χPT then the
systematic error from the resulting chiral/continuum
extrapolation can be estimated reliably. Although staggered
χPT allows us to remove the leading discretization effects
from the light quarks, the heavy-quark discretization effects
are more complicated; see Appendix B for details.
If we restrict ourselves to a strictly NLO χPT (one-

parameter) fit we find a not-so-good p value of 0.05, but if
we modify our fit so that it includes the NLO terms
and a free parameter proportional to a2 [a next-to-next-
to-leading-order (NNLO) analytic term] then we find a
reasonably good p value of 0.25. We find even better fits if

TABLE VII. Parameters used in the chiral extrapolation,
including the staggered taste splittings for the different taste
mesons. The first column is the approximate lattice spacing, and
the second through fifth columns are the taste splittings for the
taste scalar, axial-vector, tensor, and vector mesons, respectively.
The sixth column is the tree-level low-energy constant appearing
in Eq. (6.1).

a (fm) r21a
2ΔI r21a

2ΔV r21a
2ΔT r21a

2ΔA r1B0

0.15 0.9851 0.7962 0.6178 0.3915 6.761
0.12 0.6008 0.4803 0.3662 0.2270 6.832
0.09 0.2207 0.1593 0.1238 0.0747 6.639
0.06 0.0704 0.0574 0.0430 0.0263 6.487
0.045 0.0278 0.0227 0.0170 0.0104 6.417

TABLE VIII. Values of physical quark masses and r1B0 with
discretization errors removed in a mass-independent scheme. The
masses are in units of the 0.09 fm lattice spacing with the 0.09 fm
lattice value of the mass renormalization. The first column is the
physical s-quark mass, the second is the average of the u- and d-
quark masses, the third is the u-quark mass, and the fourth is the
d-quark mass. The fifth column is the value of the low-energy
constant r1B0 evaluated at the same scale within the same scheme
and with discretization errors removed.

ams × 102 am̂ × 103 amu × 103 amd × 103 r1B0

2.65(8) 0.965(33) 0.610(26) 1.32(5) 6.736

JON A. BAILEY et al. PHYSICAL REVIEW D 89, 114504 (2014)

114504-12



we include all analytic terms through NNLO. We do not
include the NNLO logarithms because they are unknown
and would require a two-loop calculation. The fit expres-
sion including all analytic NNLO terms is

hNNLOA1
ð1Þ

ηA
¼ c0 þ NLOlogs þ c1m2

XP

þ c2ð2m2
UP
þm2

SP
Þ þ c3a2; ð6:3Þ

where the subscript P on the meson masses indicates the
taste pseudoscalar mass. The fit parameter c0 represents the
quantity 1þ XAðΛχÞ=m2

c appearing on the right-hand side
of Eq. (6.2), while NLOlogs is a shorthand expression for the
last term on the right-hand side of Eq. (6.2). By heavy-
quark symmetry, the ci are suppressed by a factor of 1=m2

c.
The one-loop corrections start at OðΛ̄2=m2

QÞ so that one has
to go to NNLO to find terms of O½ðΛ̄2=m2

QÞp2�. In order to
estimate systematic errors we try adding a variety of even
higher-order analytic terms to this expression, as described
in detail in Sec. VII C. We prefer to take a central value for
the extrapolated form factor that is roughly in the middle of
the range of results from the various alternative fits used to
estimate our central value. The motivation for this form is
no greater than for the other fits that were tried. Our
preferred central value fit is to the form

hNNLOA1
ð1Þ

ηA
¼ c0 þ NLOlogs þ c1m2

XP

þ c2ð2m2
UP
þm2

SP
Þ þ c3a2 þ c4m4

XP
; ð6:4Þ

which, in addition to the analytic NNLO terms of
Eq. (6.3), includes an next-to-next-to-next-to-leading-order
(NNNLO) term proportional tom4

XP
. Because the various fit

Ansätze for hA1
ð1Þ considered have at most six free

parameters, we do not need to impose constraints on any
of the unknown coefficients. The coefficients are of the size
expected from power counting in heavy-meson chiral
perturbation theory.
Our preferred central value fit is shown in Fig. 6, where

the curves show the light-quark mass dependence at
different lattice spacings. The cyan band is the continuum
extrapolated result. A notable feature of the chiral extrapo-
lation is a cusp that appears close to the physical pion mass.
The cusp is due to the presence of theDπ threshold and the
fact that the D-D� splitting is very close to, but slightly
larger than, the physical pion mass. One can see from the
curves in Fig. 6 that the cusp is expected to be washed out
by finite-lattice-spacing effects, but is recovered in the
continuum limit. The p value for this fit is 0.78; the
alternative fits that also include higher-order analytic terms
have similar p values. Figure 7 shows nearly the same plot,

TABLE IX. Results for hA1
ð1Þ at various light-quark masses, including partially quenched points. The

(approximate) lattice spacings a and the sea-quark masses am̂0=am0s identify the ensemble (first two columns).
The third column labels the valence spectator-quark mass. The fourth and fifth columns are the approximate taste-
Goldstone and RMS pion masses associated with the valence spectator mass (values are only given for the unitary
points). The sixth column is the value of hA1

ð1Þ at that valence mass (corrected for κ mistuning and including the
perturbative matching factor). The error on hA1

ð1Þ is statistical only.
a (fm) am̂0=am0s amx Mπ;P (MeV) Mπ;RMS (MeV) hA1

ð1Þ
0.15 0.0097=0.0484 0.0097 340 590 0.9077(52)
0.15 0.0097=0.0484 0.0194 � � � � � � 0.9085(35)
0.12 0.02=0.05 0.02 560 670 0.9068(29)
0.12 0.01=0.05 0.01 390 540 0.9068(45)
0.12 0.01=0.05 0.02 � � � � � � 0.9068(30)
0.12 0.007=0.05 0.007 320 500 0.9175(53)
0.12 0.007=0.05 0.02 � � � � � � 0.9131(28)
0.12 0.005=0.05 0.005 270 470 0.9158(56)
0.12 0.005=0.05 0.02 � � � � � � 0.9108(28)
0.09 0.0124=0.031 0.0124 500 550 0.9180(32)
0.09 0.0062=0.031 0.0062 350 420 0.9155(46)
0.09 0.0062=0.031 0.0124 � � � � � � 0.9147(31)
0.09 0.00465=0.031 0.00465 310 380 0.9227(73)
0.09 0.0031=0.031 0.0031 250 330 0.9108(69)
0.09 0.0031=0.031 0.0124 � � � � � � 0.9125(37)
0.09 0.00155=0.031 0.00155 180 280 0.9227(90)
0.06 0.0072=0.018 0.0072 450 470 0.9142(51)
0.06 0.0036=0.018 0.0036 320 340 0.9127(65)
0.06 0.0036=0.018 0.0072 � � � � � � 0.9130(45)
0.06 0.0025=0.018 0.0025 260 290 0.9105(88)
0.06 0.0018=0.018 0.0018 220 260 0.9182(65)
0.045 0.0028=0.014 0.0028 320 330 0.9121(46)
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but with only the continuum curve displayed. The extrapo-
lated value for the form factor is also shown, including the
full systematic error for our final result.

VII. SYSTEMATIC ERRORS

In this section, we examine the uncertainties in our
calculation in detail. Statistical uncertainties are computed

with a single-elimination jackknife and fits use the full
covariance matrix to determine χ2. We devote a subsection
to each of the sources of uncertainty: fitting and excited
states, the heavy-quark mass and lattice-scale dependence,
the chiral extrapolation of the light spectator-quark mass
(in particular the D�-D-π coupling), discretization errors,
perturbation theory, and isospin effects.

A. Fitting and excited states

We determine plateau fits to the double ratio, Eq. (2.12).
The fits are done under a single-elimination jackknife, after
blocking the data by 4 on all ensembles. The χ2 is defined
using the full covariance matrix. Statistical errors are
determined in fits that include the full correlation matrix,
whichwas remade for each jackknife fit. In order to correctly
propagate the correlated statistical errors to the chiral/
continuum extrapolation fits, the jackknife data sets on
different ensembles are combined into a larger block-
diagonal jackknife data set. The block size of 4 is chosen
only to keep the combined data set to a manageable size for
the chiral and continuum extrapolation fits. We find that the
statistical errors do not grow with blocking, and that there-
fore the autocorrelation errors are negligible even without
blocking. This was not true in our previous calculation [7],
although that calculation used many of the same ensembles.
This is because in the current calculation,wemove the source
origin around the lattice randomly, whereas in the previous
calculation the source origin was fixed.
With several hundred configurations on each ensemble,

and over 2000 configurations on some ensembles, we do
not have difficulty resolving the full covariance matrix in
our correlator fits, and we do not need to resort to a
singular value decomposition cut on the eigenvalues of
the covariance matrix. We find that the averaged ratio
data [constructed from our correlators using Eq. (3.2)] on
the 0.09 fm lattices are well described by a fit to a
constant over a range of five time slices, and that the fit
range where an acceptable fit is obtained is roughly the
same in physical units across ensembles. The correlated
χ2=d:o:f: ranges from 0.08 to 0.85, with one exception.
On the 0.06 fm, 0.15ms ensemble, the χ2=d:o:f: is 1.71, a
bit higher than one might expect, based on fits to the
same physical time range on other ensembles. Also, the
double ratio RðtÞ appears somewhat asymmetric under
the interchange of source and sink on this ensemble, but
this must be a statistical fluctuation, since RðtÞ is
symmetric by construction. For this ensemble, we adopt
the PDG prescription and rescale the statistical error by
the square root of the χ2=d:o:f: Time ranges for fits, their
p values, and the raw values for hA1

ð1Þ are given in
Table IV. We take the good quality of our fits as evidence
that systematic errors due to excited states are small
compared to other errors, and aside from the inflation of
the error on one of our data points, we assign no further
error to fitting and excited states.
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FIG. 7 (color online). The full QCD points for hA1
ð1Þ versusm2

π

at five lattice spacings are shown in comparison to the continuum
curve. The cross is the extrapolated value, the solid line is the
statistical error, and the dashed line is the total systematic error
added to the statistical error in quadrature.
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FIG. 6 (color online). The full QCD points for hA1
ð1Þ versusm2

π

at five lattice spacings are shown in comparison to the continuum
curve and the various fit curves. Fit curves at each lattice spacing
are shown, with the lowest corresponding to a ¼ 0.15 and
increasing monotonically as a decreases.
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B. Heavy-quark mass and lattice-scale dependence

As discussed in Sec. V, the simulation values for κb;c
differ from the best tuned values for these quantities, since
the initial tuning analysis was supplemented by additional
data and improved methodology. We use Eq. (5.5) to
perform the shift in the form factor given the tuned values
of κb;c in Table VI. The dependence of hA1

on κ (or m2) can
also be used to propagate the errors in κ shown in Table VI
to the form factor. This is done by inflating the difference
from the mean under a jackknife for the data points on
different ensembles. The inflation factor is the sum in
quadrature of the statistical error and the parametric error in
hA1

due to the κ uncertainty labeled “statistics and fitting”
only. Thus, the statistical error in hA1

includes the “statistics
and fitting” error in the κ tuning. The error in the
determination of κb;c coming from setting the lattice scale
is treated separately below.
This treatment of the heavy-quark-mass tuning error

assumes that the errors in κ are independent for each
ensemble. The error would be larger if the adjustment in the
form factor varied systematically across multiple ensem-
bles. To test the size of such a systematic error, we redo the
central fit with all of the coarse ensembles shifted together
by 1σ of the estimated errors in κb;c. This leads to a small
shift in the central value which is negligible compared to
other errors. The errors in dh=d½1=ðr1mbÞ� and in
dh=½1=ðr1mcÞ2� are negligible compared to the other
heavy-quark-mass tuning errors.
The relative lattice spacing between different ensembles

is fixed in units of r1=a. The absolute lattice spacing is then
fixed using the MILC determination of r1 ¼
0.3117ð22Þ fm from fπ [51]. Because the form factor is
dimensionless, the error in setting the lattice scale mainly
affects hA1

ð1Þ by introducing an uncertainty in the deter-
mination of the bare b-and c-quark masses. Changing r1
within its error of approximately 0.7% leads to an addi-
tional 0.1% systematic error in hA1

ð1Þ.

C. Chiral extrapolation

We estimate the systematic error due to the chiral
extrapolation by comparing various types of fits including
analytic terms of higher order than NLO in rSχPT, since the
two-loop NNLO logarithms are unknown. We also com-
pare with continuum χPT, where staggered effects are
removed from the one-loop logarithms. Finally, we account
for additional errors that appear due to the uncertainties in
the parameters that enter the NLO rSχPT expression. The
largest of these is the uncertainty in gD�Dπ , the coupling
between the D�, D, and π in the (continuum) chiral
effective theory. As emphasized in our previous calculation
of the B → D�lν form factor [7], the chiral logarithms are
of order 10−3 in the region where we have data, and the
nonanalytic behavior is only important near the physical
pion mass. In that region, χPT is expected to provide a good
description of the physics. This is important, because very

near the physical pion mass there is a cusp in the form
factor. This is due to the presence of the Dπ threshold and
the fact that the D-D� splitting is so close to the physical
pion mass. Because this cusp is a physical effect, it should
be included in any version of the chiral extrapolation that is
used to estimate systematic errors.
Through NLO (one loop) in rSχPT there is only one free

parameter, an overall constant. The other parameters that
appear in the continuum expression through one loop are
determined from either the lattice or phenomenology. They
are gD�Dπ , fπ , mπ , and the D-D� mass splitting ΔðcÞ. The
constants fπ and gD�Dπ appear in an overall multiplicative
factor g2D�Dπ=48π

2f2π in front of the logarithmic term; see
Eq. (A1). The main uncertainty in the size of the cusp
comes from the uncertainties of these one-loop input
parameters. The parameters fπ , ΔðcÞ, and the pion mass
itself are all precisely determined from experiment, and
contribute only small errors to the overall determination of
the size of the cusp. The dominant error in the size of the
cusp comes from the uncertainty in gD�Dπ .
There are additional parameters that enter the one-loop

rSχPT expression due to lattice artifacts. These are the taste
splittings a2Δξ with ξ¼P;A;T;V;I, and the taste-violating
hairpin coefficients a2δ0A and a2δ0V . The former are well
determined from staggered meson spectrum calculations,
and the latter are determined from simultaneous rSχPT fits
tom2

π=ðmx þmyÞ and fπ . Because the chiral logarithms are
such a small contribution to the fit form in the region where
we have data, it makes essentially no difference whether we
include the modifications for staggered fermions or not. We
see no difference in the extrapolated continuum result when
comparing staggered and continuum χPT fit results through
four decimal places. Thus, the uncertainties in the param-
eters specific to rSχPT are negligible in our extrapolation.
We find that a fit to the NLO expression supplemented

by a term linear in a2, does an adequate job of fitting the
data, with χ2=d:o:f: ¼ 1.20 corresponding to p ¼ 0.25.
The quality of the fit can be improved either by pruning the
heaviest mass points or by adding higher-order analytic
terms to the fit function; we try both. For our central value
we choose a fit that falls around the middle of the range of
all the fits that we have tried. For our error, we take the
largest difference between the central value and the differ-
ent alternatives. Our preferred central value fit is to
Eq. (6.4), which, in addition to the analytic NNLO terms
of Eq. (6.3), includes an NNNLO term proportional tom4

XP
.

Alternative fits with good p values include the following:
Eq. (6.4) without the c4 term, Eq. (6.4) with an additional
term c6a2ð2m2

UP
þm2

SP
Þ, and repeating these fits but taking

only the ensembles with a ≤ 0.09 fm. This cut on the
lattice spacing also cuts out the data with the heaviest pion
masses, as can be seen in Table IX. We also considered a fit
that tests for the presence of higher-order taste-breaking
effects. This fit is similar to the central value fit but with the
taste-pseudoscalar pion mass in the analytic terms replaced
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by the taste-tensor pion mass (which is close to the RMS
pion mass). The largest variation from the central value of
the form factor in all of these fits is 0.0049, or 0.5%.
Figure 7 shows all of the full QCD points in our calculation
as a function of (taste-Goldstone) pion mass, as well as the
continuum extrapolated curve and the extrapolated value
for hA1

ð1Þ with the full systematic error.
The largest of the parametric uncertainties in our chiral

extrapolation is that due to the chiral Lagrangian coupling
gD�Dπ , which sets the size of the cusp. Our data do not
constrain it, so we must take its value from elsewhere. New
lattice calculations of gD�Dπ [67,68] have appeared since
our previous work on B → D�lν. In Ref. [67], two light
flavors of quarks were included in the sea, but otherwise the
systematic errors appear to be under control. The authors
find gD�DπðNf ¼ 2Þ ¼ 0.53ð3Þð3Þ, where the first error is
statistical and the second is systematic error due to chiral
extrapolation. The calculation in Ref. [68] included 2þ 1

light dynamical flavors, but only a single lattice spacing.
The authors found gD�Dπ ¼ 0.55ð6Þ, consistent with the
two-flavor calculation. These results are also consistent
with the values extracted from the experimental measure-
ments of the D� decay width [69–71]. A new preliminary
2þ 1 flavor result for the analogous coupling in the B
system reports gB�Bπ ¼ 0.569ð48Þð59Þ [72]. Finally, a 2þ
1 flavor calculation of the coupling in the static heavy-
quark limit [73] finds, after a careful study of systematic
effects, gstatic ¼ 0.449ð51Þ. Although the result of Ref. [67]
is a calculation directly at the charm-quark mass, it only has
two flavors of sea quarks, so we take an error that
encompasses that of the 2þ 1 flavor result in the static
limit in order to be conservative. Thus, in our fits we take
gD�Dπ ¼ 0.53� 0.08, leading to a parametric, systematic
uncertainty in hA1

ð1Þ of 0.3%.
The size of the cusp is also expected to be modified by

terms of higher order in the chiral expansion, i.e., the
two-loop chiral logarithms. Although possible higher-order
corrections are at least partially accounted for by our analytic
terms in the range of pion masses where we have data, the
cusp is entirely determined by the chiral effective theory, so it
is important to consider how that prediction might be
affected by higher-order corrections independent of the
analytic terms that we have added. Because the
effect occurs very near the physical pion mass, we
expect the relevant power counting to be that of
SUð2ÞL × SUð2ÞRχPT. We estimate the potential size of
the two-loop corrections to the cusp by considering the size
of the one-loop corrections to fπ compared to its SU(2)
chiral limit value f2, since these one-loop corrections to a
parameter appearing in the coefficient of the one-loop term
are expected to be typical of the size of the other two-loop
corrections. We take the most recent value for fπ=f2 ¼
1.062ð3Þ from the MILC Collaboration [74] and find that a
6% change in fπ leads to a 0.1% change in hA1

ð1Þ. Thus, for
our chiral extrapolation error we include an additional 0.1%

systematic error due to higher-order chiral corrections to the
cusp added in quadrature with the 0.5% systematic error
estimated from the spread in reasonable fits discussed above.
All other parametric uncertainties in the chiral formulas

can be neglected. The physical pion mass in the chiral
extrapolation is taken from experiment, so the errors from
the uncertainties in the low-energy constant B0 in Eq. (6.1)
and in the light-quark masses are negligible. We take the
charm-meson mass splitting ΔðcÞ from experiment, and
the error due to its uncertainty is also negligible. Changing
the (bare) strange-quark mass within its error of approx-
imately 2% also has a negligible effect on hA1

ð1Þ.

D. Finite-volume effects

The finite-volume effects can be estimated using heavy-
light χPT, where the integrals are replaced by discrete sums.
The corrections to the integrals in the formulas appearing
for B → D� decays were worked out by Arndt and Lin [75].
Although the finite-volume effects would be large very near
the cusp at the physical pion mass on the ensembles we are
using (ranging in size from 2.5–5.5 fm), for the values we
have actually simulated, the finite-size effects predicted by
χPT are less than one part in 104. This is not a result of any
particular cancellation, but rather it is due to the very small
contribution of the chiral logarithms to this quantity. Thus,
the finite-size effects are expected to be negligible for our
calculation, and we do not assign any additional error due
to them.

E. Discretization errors

Figure 8 shows the dependence of hA1
ð1Þ as a function

of a2, for fixed spectator-quark mass. The observed
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FIG. 8 (color online). hA1
ð1Þ versus a2 for spectator mass

mx ¼ 0.2m0s. The blue point at a ¼ 0 shows the extrapolated
value for this mx including the heavy-quark discretization error
added in quadrature with the statistical error.
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lattice-spacing dependence is, at most, as large as the
statistical error. The HQET theory of heavy-quark discre-
tization effects anticipates this small size but does not,
however, predict a simple power series for the a depend-
ence, making a naive extrapolation problematic. In
Appendix B, we present a detailed analysis for the expected
a dependence. In short, we expect the overall size of heavy-
quark discretization errors to be of order aΛ̄2=mc and a2Λ̄

2,
but we must choose a value of Λ̄. We compare the observed
variation with a2 of the data in Fig. 8 with the theory
[53,54]. We find that if we choose Λ̄ ¼ 450 MeV, then the
theoretical estimates are compatible with the data’s a
dependence. In this way, we deduce that the discretization
error on the superfine lattice (a ≈ 0.060 fm) is 1%, leading
to the row labeled “discretization errors” in Table X.

F. Perturbation theory

The calculation of ρAj defined in Eq. (2.10) is carried out
at one-loop order in perturbation theory, as discussed in
Sec. IV. Because ρAj is defined from a ratio of current
renormalization factors, its deviation from unity is expected
to be small by construction. Indeed, the one-loop correc-
tions to ρAj shown in Table V confirm our expectation.
They range from 0.05% to 0.6%. In order to estimate the
error due to the omitted higher-order corrections, we
consider the variation of the one-loop corrections to ρAj

with the quark masses used in this calculation. We also
consider the related renormalization factor ρV4, defined
from the charm-bottom vector current V4

cb analogously to
the definition of ρAj in Eq. (2.10). We find ρ½1� ≤ 0.1 for
both currents. We then estimate the uncertainty as ρ½1�max · α2s
with ρ½1�max ¼ 0.1 and αs ¼ αVð2=aÞ evaluated at
a ≈ 0.045 fm, which yields a systematic error of 0.4%.

G. Isospin effects

The experimental measurements of the branching frac-
tion for B → D�lν assume isospin symmetry, and different
isospin channels are averaged together [76]. We estimate
the size of the effect of isospin corrections based on the

chiral extrapolation. One could explicitly include the
difference between u- and d-quark masses in the chiral
effective theory, though this has not been worked out
through one loop for this process, to the best of our
knowledge. As a simple estimate of the size of isospin
effects we vary the end point of our chiral extrapolation
between the physical πþ and the π0 mass. We use the πþ
mass extrapolation for our central value, but shifting to the
π0 changes the result by 0.1%. Changing the charm-mass
splitting between the D�0 and the D�þ is a much smaller
effect. Thus, we quote an error of 0.1% due to isospin
effects.

VIII. ELECTROWEAK EFFECTS

In this section, we discuss the electroweak and electro-
magnetic effects in the semileptonic rate, Eq. (1.3). They do
not enter the lattice-QCD calculation but are needed, in
addition to the hadronic form factor F ð1Þ ¼ hA1

ð1Þ, to
obtain jVcbj. The factor ηEW (written as ηem in Ref. [1])
takes the form [10]

ηEW ¼ 1þ α

π

�
ln
MW

μ
þ tan2θW

M2
W

M2
Z −M2

W
ln

MZ

MW

�
; ð8:1Þ

where the weak mixing angle is specified via
cos θW ¼ g2=ðg22 þ g21Þ1=2; g2 and g1 are the gauge cou-
plings of SUð2Þ × Uð1Þ. The first (second) term stems
from W-photon (W-Z) box diagrams plus associated parts
from vertex and wave-function renormalization. This form
assumes that GF in Eq. (1.3) is defined via the muon
lifetime, which is the case for GF in Ref. [1]. In the SM,
MW ¼ MZ cos θW , and the bracket simplifies to lnðMZ=μÞ.
With this assumption, taking the factorization scale
μ ¼ MB� , and varying μ by a factor of 2 to estimate the
error, one finds

ηEW;SM ¼ 1.00662ð16Þ: ð8:2Þ

To reiterate, it is theoretically cleaner not to include this
factor in F ðwÞ. This way makes it more straightforward to
study or remove the μ dependence in future work.
In the experiments [76], the charged-lepton energy

spectrum is corrected for bremsstrahlung with the
PHOTOS [77] generator. For charged B decay, this package
has been shown [78] to reproduce the exact formula [79].
For neutral B decay, the chargedD− and lþ in the final state
attract each other, which is reflected in a slightly different
formula for the radiation [11]. Reference [12] recom-
mended treating this effect with a Coulomb correction, 1þ
απ=2 ¼ 1.01146 on the amplitude, which is larger than the
electroweak correction and similar in size to the uncer-
tainties from experiment and from QCD. Note, however,
that a detailed study of radiative corrections in K → πlν
finds that QCD-scale effects reduce the Coulomb effects,
such that the total is closer to 1% than 2% [80]. Already

TABLE X. Final error budget for hA1
ð1Þ where each error is

discussed in the text. Systematic errors are added in quadrature
and combined in quadrature with the statistical error to obtain the
total error.

Uncertainty hA1
ð1Þ

Statistics 0.4%
Scale (r1) error 0.1%
χPT fits 0.5%
gD�Dπ 0.3%
Discretization errors 1.0%
Perturbation theory 0.4%
Isospin 0.1%
Total 1.4%
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now, and certainly for any future determination of jVcbj, a
similar treatment is called for, theoretically first and then in
the combination of experimental measurements of neutral
and charged decays.
The current experiments do not take the Sirlin [10] and

Coulomb effects into account. Further, to our knowledge a
study of QCD-scale photons, analogous to Ref. [80], is not
available for heavy-meson decays. In particular, charged
and neutral decays are analyzed and combined without
different radiative corrections. The quantity reported to be
jVcbjF ð1Þ is really jVcbjjη̄EWjF ð1Þ, where η̄EW is a suitably
charge-weighted average of Eq. (8.1) and the Coulomb
effect. Table XI shows results for jVcbj from different
choices for the experimental input and the corresponding
estimate of η̄EW. The first entry shows an average with
Heavy Flavor Averaging Group (HFAG) methods from B0

decays only [81], while the second shows the B�-only
measurement from BABAR [82]; then η̄EW is simply
Eq. (8.2) with and without the Coulomb factor, respec-
tively. The third and fourth entries are the results from
single experiments, CLEO [83] and BABAR [84], in which
both modes were combined; here, we compute η̄EW by
assuming a 50-50 split, varying between 100-0 and 0-100
to estimate the error. This range is extreme, but with one
experiment, the QCD and QED errors are smaller than the
experimental error. The last row in Table XI shows the 2012
result from HFAG [76] with our estimate of the appropriate
charge-weighted average for η̄EW. The neutral data carry
greater weight in the HFAG average [81], so we take a value
of η̄EW slightly larger than a 50-50 split, with a generous
error range, to allow for other effects, such as photons at the
QCD scale.

IX. RESULTS AND CONCLUSIONS

We have improved on our previous calculation of the
zero-recoil form factor for B → D�lν decay by increasing
statistics, going to lighter quark masses at correspondingly
larger volumes, and going to finer lattice spacings. Our
final result, given the error budget in Table X, is

F ð1Þ ¼ hA1
ð1Þ ¼ 0.906ð4Þð1Þð5Þð3Þð9Þð4Þð1Þ; ð9:1Þ

where the errors are statistical, scale uncertainty, chiral
extrapolation errors, parametric uncertainty in gD�Dπ ,
heavy-quark discretization errors, perturbative matching,
and isospin effects. Adding all systematic errors in
quadrature, we obtain hA1

ð1Þ ¼ 0.906ð4Þð12Þ, which is
consistent with our previous published result hA1

ð1Þ ¼
0.921ð13Þð20Þ [7], but with a significantly smaller error.
The data added since our preliminary report [8] have
reduced the χPT and gD�Dπ errors moderately.
From Table XI, we choose the HFAG average of all data,

with our conservative estimate of the QED correction, as
our preferred way of obtaining jVcbj. Thus, we find

jVcbj ¼ ð39.04� 0.49expt � 0.53QCD � 0.19QEDÞ × 10−3:

ð9:2Þ
The QCD error is now commensurate with the experimental
error. This result is in agreement with our previous
published result [7], but differs by 3.0σ from the inclusive
determination jVcbj ¼ ð42.42� 0.86Þ × 10−3 [85].
The largest error in our determination of hA1

ð1Þ is the
systematic error due to heavy-quark discretization effects.
We have made a detailed study of the expected a depend-
ence using HQET at finite lattice spacing. A value of Λ̄ is
needed to compute this dependence; our choice of Λ̄ ≈
450 MeV is consistent with the size of the discretization
effects seen in the numerical data and can reproduce the
behavior of these effects over the five lattice spacings
included in our calculation. We could reduce this error by
going to finer lattice spacings or by using a more improved
Fermilab action, e.g., the Oktay-Kronfeld action [86].
When using this action, it would be necessary to improve
the currents to the same order.
Several subleading errors appear in our calculation at the

0.4–0.6% level. They would be nontrivial to improve.
Reducing the error from the QED Coulomb correction
would require a detailed study of electromagnetic effects
within HQET, and reducing the QCDmatching error would
require a two-loop lattice perturbation theory calculation or
nonperturbative matching. The chiral extrapolation error
would not necessarily be reduced by a straightforward
simulation at the physical light-quark masses because the
D� would become unstable apart from finite-volume

TABLE XI. Values of jVcbj implied by different choices of experimental inputs when accounting for electroweak and Coulomb
corrections. The first column is the mode or combination of modes that is taken from experiment, the second and third columns give the
experimental value for 103jVcbjjη̄EWjF ð1Þ and its source, the fourth column is our estimate of the correction factor jη̄EWj, and the last
column is the resulting 103jVcbj using the result in Eq. (9.1).

Mode 103jVcbjjη̄EWjF ð1Þ Ref. jη̄EWj 103jVcbj
B0 35.60� 0.57 [81] 1.0182� 0.0016 38.59� 0.62expt � 0.52QCD � 0.06QED
B� 35.14� 1.45 BABAR [82] 1.0066� 0.0016 38.53� 1.60expt � 0.52QCD � 0.06QED
Both 40.00� 2.04 CLEO [83] 1.0124� 0.0058 43.61� 2.22expt � 0.59QCD � 0.25QED
Both 35.83� 1.12 BABAR [84] 1.0124� 0.0058 39.06� 1.22expt � 0.53QCD � 0.22QED
Both 35:90� 0.45 HFAG [76] 1.015� 0.005 39.04� 0.49expt � 0.53QCD � 0.19QED
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effects. At the current level of precision, it is important to
extend the calculation to nonzero recoil. This would
provide a useful cross-check of the method used to
extrapolate the experimental form factor to zero recoil
[87]. Another important cross-check is our companion
calculation of jVcbj using the B → Dlν decay, which
has been reported in Ref. [88]. Full details, including its
determination of jVcbj, will be presented in a forthcom-
ing paper.
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APPENDIX A: STAGGERED CHIRAL
PERTURBATION THEORY FOR B → D�lν

AT ZERO RECOIL

The partially quenched expression for hA1
=ηA at zero

recoil through NLO in staggered chiral perturbation theory
was derived in Ref. [64]. For completeness, it is given here.
The result is

hðBxÞPQ;2þ1
A1

ð1Þ
ηA

¼ 1þ XAðΛχÞ
m2

c
þ g2DD�π

48π2f2

�
1

16

X
j ¼ xu; xu; xs

Ξ ¼ I; P; 4V; 4A; 6T

F̄jΞ

þ 1

3

�
R½2;2�XI
ðfMð5ÞXI

g; fμIgÞ
�
dF̄XI

dM2
XI

�
−

X
j∈fMð5ÞI g

D½2;2�j;XI
ðfMð5ÞXI

g; fμIgÞF̄j

�

þ a2δ0V

�
R½3;2�XI
ðfMð7ÞXV

g; fμVgÞ
�
dF̄XV

dM2
XV

�
−

X
j∈fMð7ÞV g

D½3;2�j;XV
ðfMð7ÞXV

g; fμVgÞF̄j

�
þ ðV → AÞ

�
; ðA1Þ

where

FðMj; zjÞ ¼
M2

j

zj

�
z3j ln

M2
j

Λ2
χ
−
2

3
z3j − 4zj þ 2π −

ffiffiffiffiffiffiffiffiffiffiffiffi
z2j − 1

q
ðz2j þ 2Þ

	
ln
h
1 − 2zj

	
zj −

ffiffiffiffiffiffiffiffiffiffiffiffi
z2j − 1

q 
i
− iπ


�

⟶ ðΔðcÞÞ2 ln
�
M2

j

Λ2
χ

�
þO½ðΔðcÞÞ3�; ðA2Þ

with F̄ðMj; zjÞ ¼ FðMj;−zjÞ, and zj ¼ ΔðcÞ=Mj, where ΔðcÞ is the D-D� mass splitting. The residues R½n;k�j and D½n;k�j;i are
defined in Refs. [89,90]. These residues are a function of two sets of masses: the numerator masses, fMg ¼
fM1;M2; :::;Mng and the denominator masses, fμg ¼ fμ1; μ2; :::; μkg. In our 2þ 1-flavor case, we have

fMð5ÞX g≡ fMη;MXg; fMð7ÞX g≡ fMη;Mη0 ;MXg; fμg≡fMU;MSg: ðA3Þ
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The expressions for the masses MηI , MηV , Mη0V
in terms of

the parameters of the rooted staggered effective theory are
given in Ref. [89].

APPENDIX B: HEAVY-QUARK
DISCRETIZATION EFFECTS

Let us define the various discretization errors in
ρAj

ffiffiffiffiffiffiffi
RA1

p
via

ρAj

ffiffiffiffiffiffiffi
RA1

p ¼ hA1
ð1Þ þ Oðα1þlρs Þ þ Oðα1þlcs aΛ̄2=mcÞ

þ Oðα1þlds a2Λ̄2Þ; ðB1Þ

where Λ̄ ≈MB −mb is a measure of nonperturbative QCD
effects in heavy-light mesons. These stem, respectively,
from the truncation of the perturbative series for ρAj,
truncation of the perturbative series for cSW (i.e., improve-
ment of the action), and from mismatches in the improved
lattice currents. That the power-law effects in Eq. (B1) start
with Λ̄2 is a special property of zero recoil, established
below. As written, Eq. (B1) holds for general, multiloop
matching; for the calculation described in this paper, we
have one-loop matching for ρAj, so lρ ¼ 1, and we have
tree-level improvement for the action and current,
so lc ¼ ld ¼ 0.
We now assemble the formulas needed to prove

the appearance of Λ̄2. The discretization effects are
estimated with HQET [53,54]. Wilson fermions exhibit
heavy-quark symmetries for small κ, so HQET provides a
suitable description. For the lattice gauge theory (LGT)
Lagrangian,

LLGT ≐ h̄ðiv ·D −m1Þhþ
h̄D2⊥h
2m2

þ h̄s · Bh
2mB

þ h̄½Dα⊥; iEα�h
8m2

D

þ h̄sαβfDα⊥; iEβgh
4m2

E
þ � � � ; ðB2Þ

where≐ can be read as “has the same matrix elements as.”
Here, v is a four-vector specifying the rest frame of the
heavy-light meson, such that v2 ¼ −1; the heavy-quark
field h satisfies −ivh ¼ h, and sαβ ¼ −iσαβ=2. Then,D

μ
⊥ ¼

Dμ þ vμv ·D is the covariant derivative orthogonal to v,
Bαβ ¼ ðδαμ þ vαvμÞFμνðδβν þ vβvνÞ is the chromomagnetic
field (in the v frame), and Eβ ¼ −vαFαβ is the chromo-
electric field (in the v frame). The HQET description for
continuum QCD has the same structure

LQCD ≐ h̄ðiv ·D −mÞhþ h̄D2⊥h
2m

þ zBh̄s · Bh
2m

þ zDh̄½Dα⊥; iEα�h
8m2

þ zEh̄sαβfDα⊥; iEβgh
4m2

þ � � � :
ðB3Þ

In matrix elements, the rest mass m1 does not enter, so one
tunes κ so that

1

2m2

¼ 1

2m
; ðB4Þ

and cSW so that

1

2mB
¼ zB

2m
¼ 1þ OðαsÞ

2m
; ðB5Þ

where the second equality follows because
zB ¼ 1þ OðαsÞ. In practice, we tune κ via the heavy-
strange meson mass, as discussed in Appendix C, and we
choose cSW at the tadpole-improved tree level, which
brings in the second error exhibited in Eq. (B1).
The LGT currents can also be described in HQET, and

the full description entails many operators [53,54]. Here,
however, we need only the temporal vector current,

ZVcb
V4 ¼ −ZVcb

v · V ≐ C̄Vcb
∥
c̄bþ ηð0;2Þ

VcbD2⊥

c̄D2⊥b
8m2

D2⊥b
þ ηð0;2Þ

VcbsB

c̄s · Bb
8m2

sBb

− ηð0;2Þ
VcbαE

c̄iEb
4m2

αEb

þ ηð2;0Þ
VcbD2⊥

c̄D
 2

⊥b
8m2

D2⊥c
þ ηð2;0Þ

VcbsB

c̄s · Bb
8m2

sBc
þ ηð2;0Þ

VcbαE

c̄iEb
4m2

αEc
þ zð1;1Þ

Vcb1

c̄D
 

⊥ ·D⊥b
2m3c2m3b

þ zð1;1Þ
Vcbs

c̄D
 α

⊥sαβDβ
⊥b

2m3c2m3b
; ðB6Þ

and the spatial axial-vector current (ϵ is the D� polarization vector),

ZAcb
ϵ · A ≐ C̄Acb⊥ c̄ϵ⊥γ

5bþ ηð0;2Þ
AcbD2⊥

c̄ϵ⊥γ5D2⊥b
8m2

D2⊥b
þ ηð0;2Þ

AcbsB

c̄ϵ⊥γ5s · Bb
8m2

sBb

− ηð0;2Þ
AcbαE

c̄ϵ⊥γ5iEb
4m2

αEb

þ ηð2;0Þ
AcbD2⊥

c̄D
 2

⊥ϵ⊥γ5b
8m2

D2⊥c

þ ηð2;0Þ
AcbsB

c̄s · Bϵ⊥γ5b
8m2

sBc
þ ηð2;0Þ

AcbαE

c̄iEϵ⊥γ5b
4m2

αEc
þ zð1;1Þ

Acb1

c̄ðD ⊥ϵ⊥γ5D⊥Þ1b
2m3c2m3b

þ zð1;1Þ
Acbs

c̄ðD ⊥ϵ⊥γ5D⊥Þsb
2m3c2m3b

: ðB7Þ

JON A. BAILEY et al. PHYSICAL REVIEW D 89, 114504 (2014)

114504-20



The continuum currents enjoy the same description, but
with different short-distance coefficients. The matching
factors ZV and ZA are defined so that the leading operators
on the right-hand sides of Eqs. (B6) and (B7) share the
normalization with the corresponding continuum currents.
With the one-loop calculation of ρAj , explained in Sec. IV,
the matching leads to lρ ¼ 1 in Eq. (B1). For the currents
defined in Sec. II B, as well as for the continuum currents,
the η coefficients and z coefficients all take the form
1þ OðαsÞ. The rotation in Eq. (2.8) ensures that

1

2m3

¼ 1

2m2

þ OðαsaÞ; ðB8Þ

i.e., ld ¼ 0 in Eq. (B1). The other masses in Eqs. (B6) and
(B7) deviate from m2 when m2a≪ 1 but all collapse to m2

asm2a → 0 [47,86]. These properties of the coefficients are
crucial to the proof that the discretization effects start with
Λ̄2 in Eq. (B1).
Note that no dimension-four currents arise, which would

describe discretization errors starting at order aΛ̄. At
nonzero recoil, such currents do appear, and their discre-
tization errors are shown in detail in Eqs. (2.37)–(2.44) of
Ref. [54]. At zero recoil, the heavy-quark symmetry
enlarges from SUb-spinð2Þ × SUc-spinð2Þ to SUspin-flavorð4Þ,
and a generalization of Luke’s theorem requires the leading
discretization/heavy-quark effects to vanish. The discreti-
zation effects then stem from second-order breaking of
heavy-quark symmetry, as explained in Ref. [53], leading
to the extra suppression of Λ̄=mc or aΛ̄ in Eq. (B1). Luke’s
theorem also ensures that single insertions of chromo-
electric interactions (spin-orbit and Darwin terms) drop out
at zero recoil.
We proceed by collecting results from Ref. [53] for the

zero-recoil discretization errors in matrix elements of the
currents in Eqs. (2.6) and (2.7) and combining them into a
formula for the discretization error in ρAj

ffiffiffiffiffiffiffi
RA1

p
. (Note that

in Ref. [53] ρA
ffiffiffiffiffiffiffi
RA1

p
stands for a different double ratio.)

The discretization errors stem from all higher-dimension
terms on the right-hand sides of Eqs. (B2), (B6), and (B7),
but always take the form

errori ¼ ðCLGTi − CQCDi ÞhOii; ðB9Þ

where the Ci denote the short-distance coefficients, which
are different for the lattice and continuum, and the Oi
denotes the HQET operators on the right-hand sides of
Eqs. (B2), (B6), and (B7). To get the errors, we then
combine asymptotic forms of CLGTi − CQCDi with power-
counting estimates of hOii. The former have been derived
in Refs. [47,86], and the latter are guided by the data and
some theoretical considerations to arrive at concrete error
estimates.

1. Second-order formulas at zero recoil

From Eqs. (7.20) and (7.30) of Ref. [53], the HQET
expansions through OðΛ̄2Þ of the matrix elements are

hBjZV4
bb
V4jBi ¼ 1þWð2Þ00 ; ðB10Þ

hD�ðϵÞjZV4
cc
V4jD�ðϵÞi ¼ 1þWð2Þ11 ; ðB11Þ

hD�ðϵÞjZAi
cb
ϵ · AjBi ¼ C̄Acb⊥ W

ð0Þ
01 þWð2Þ01 ; ðB12Þ

where C̄Acb⊥ ¼ 1þ OðαsÞ is a short-distance coefficient in
Eq. (B7), and Wð2Þ01 is written W̄ð2Þ01 þ δWð2Þ01 in Ref. [53].
The subscripts onWðiÞJJ0 indicate the meson spins (J ¼ 0 for
B and J ¼ 1 for D�), and the superscript denotes the order
in the heavy-quark expansion of the currents. The expres-
sions for the vector-current matrix elements have been
simplified by noting C̄Vhh

∥
¼ 1 for the flavor-diagonal

vector current, and Wð0ÞJJ ¼ 1 for h → h transitions.
Combining Eqs. (B10)–(B12), one finds the OðΛ̄2Þ
expansion

ρAj

ffiffiffiffiffiffiffi
RA1

p ¼ C̄Acb⊥ W
ð0Þ
01 þWð2Þ01 −

1

2
C̄Acb⊥ ðW

ð2Þ
00 þWð2Þ11 Þ:

ðB13Þ

We must obtain more explicit expressions for the terms on
the right-hand side and compare them to the analogous
terms in the HQETexpansion of hA1

ð1Þ in continuumQCD.
Let us start with Wð0Þ01 . From Eq. (7.31) of Ref. [53]

Wð0Þ01 ¼ 1 −
1

2
Δ2ðΔ2D − 2ΘBEÞ −

1

2
ΔBðΔBR1 − ΘBR2Þ

−
1

2mBc2mBb

�
4

3
R1 þ 2R2

�
; ðB14Þ

whereD, E, R1, and R2 are HQET matrix elements of order
Λ̄2, and

ΔI ¼
1

2mIc
−

1

2mIb
; I ¼ 2; B; ðB15Þ

ΘI ¼
1

2mIc
þ 3

2mIb
ðB16Þ

are combinations of the mass coefficients in Eq. (B2).
Beyond the leading 1, the terms in Wð0Þ01 come from double
insertions of the kinetic and chromomagnetic interactions.
Equation (B14) makes clear that we are working through
OðΛ̄2Þ in the heavy-quark expansion, although it accom-
modates, in principle, all orders in perturbation theory
in αs.
To obtain the analogous expression for Eq. (B14) in

continuum QCD, we simply replace m2h → mh (because
that is how the hopping parameter is tuned in the Fermilab
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method) and 1=mBh → zB=mh [compare Eqs. (B2) and
(B3)]. Taking the difference, one sees that the error in Wð0Þ01

stems from

1

2mBh
−

zB
2m2h

¼ afBh: ðB17Þ

We have chosen cSW such that fBh is of order αs, and the
mismatches in Wð0Þ01 lead to errors of order αsaΛ̄

2=mh.
Now let us turn to the error in the other terms in

Eq. (B13) and combine them into

Ẅð2Þ01 ¼ Wð2Þ01 −
1

2
C̄Acb⊥ ðW

ð2Þ
00 þWð2Þ11 Þ: ðB18Þ

The right-hand side comes from the matrix elements of the
dimension-five terms in Eqs. (B6) and (B7). The matrix
elements of E vanish, and the others lead to

Wð2ÞJJ ¼ −
�

1

4m2
D2⊥h

−
zð1;1Þ
Vhh1

ð2m3hÞ2
�
μ2π

þ dJ

�
1

4m2
sBh

−
zð1;1Þ
Vhhs

ð2m3hÞ2
�
μ2G
3
; ðB19Þ

Wð2Þ01 ¼ −
�ηð2;0Þ

AcbD2⊥
8m2

D2⊥c
þ

ηð0;2Þ
AcbD2⊥

8m2
D2⊥b
þ 1

3

zð1;1Þ
Acb1

2m3c2m3b

�
μ2π

−
�
ηð2;0Þ
AcbsB

8m2
sBc

− 3
ηð0;2Þ
AcbsB

8m2
sBb

−
zð1;1Þ
Acbs

2m3c2m3b

�
μ2G
3
; ðB20Þ

as in Eqs. (7.22), (7.33), and (7.34) of Ref. [53]. Here, μ2π is
the heavy-quark kinetic energy, and μ2G is known from the
B�-B splitting. Both μ2π and μ2G are of order Λ̄2. (Ref. [53]
used another notation with μ2π ¼ −λ1 and μ2G ¼ 3λ2.) We
choose to define m2

D2⊥h
and m2

sBh to all orders in αs via the
degenerate-mass vector current, so ηð2;0Þ

VhhD2⊥
≡ 1, etc., so no

η-like coefficients appear in Eq. (B19).
At the tree level, the coefficients written as inverse

masses are the same for all currents. By construction,
ηð2;0Þ
AcbD2⊥

, ηð0;2Þ
AcbD2⊥

, ηð2;0Þ
AcbsB

, and ηð0;2Þ
AcbsB

, take the form 1þ OðαsÞ.
Furthermore, an analogous all-orders definition of m3h
ensures that the zð1;1ÞJ• take the form 1þ OðαsÞ too. As
a → 0, the right-hand sides of Eqs. (B19) and (B20)
approach continuum QCD. In particular, the quantities
inside large parentheses in Eq. (B19) must vanish as a → 0.
Combining Eqs. (B19) and (B20) as specified

in Eq. (B18),

Ẅð2Þ01 ¼ −
�ηð2;0Þ

AcbD2⊥
− C̄Acb⊥

8m2
D2⊥c

þ
C̄Acb⊥ z

ð1;1Þ
Vcc1

8m2
3c
þ
ηð0;2Þ
AcbD2⊥

− C̄Acb⊥

8m2
D2⊥b

þ
C̄Acb⊥ z

ð1;1Þ
Vbb1

8m2
3b

þ 1

3

zð1;1Þ
Acb1

2m3c2m3b

�
μ2π

−
�ηð2;0Þ

AcbsB
− C̄Acb⊥

8m2
sBc

þ
C̄Acb⊥ z

ð1;1Þ
Vccs

8m2
3c

− 3
ηð0;2Þ
AcbsB

− C̄Acb⊥
8m2

sBb

− 3
C̄Acb⊥ z

ð1;1Þ
Vbbs

8m2
3b

−
zð1;1Þ
Acbs

2m3c2m3b

�
μ2G
3
: ðB21Þ

Once again, the analagous expression in continuum QCD can be obtained from Ẅð2Þ01 by changing the short-distance
coefficients accordingly. The errors in Ẅð2Þ01 stem from the mismatches

a2fD2⊥c ¼
ηð2;0Þ
AcbD2⊥

ðm0ca;m0baÞ
8m2

D2⊥c
−

C̄Acb⊥
8m2

D2⊥c
þ
C̄Acb⊥ z

ð1;1Þ
Vcc1ðm0ca;m0baÞ

8m2
3c

−
ηð2;0Þ
AcbD2⊥

ðmc=mbÞ
8m2

2c
; ðB22Þ

a2fD2⊥b ¼
ηð0;2Þ
AcbD2⊥

ðm0ca;m0baÞ
8m2

D2⊥b
−

C̄Acb⊥
8m2

D2⊥b
þ
C̄Acb⊥ z

ð1;1Þ
Vbb1
ðm0ca;m0baÞ
8m2

3b

−
ηð0;2Þ
AcbD2⊥

ðmc=mbÞ
8m2

2b

; ðB23Þ

a2fsBc ¼
ηð2;0Þ
AcbsB
ðm0ca;m0baÞ
8m2

sBc
−

C̄Acb
⊥

8m2
sBc
þ
C̄Acb

⊥ z
ð1;1Þ
Vccs ðm0ca;m0baÞ

8m2
3c

−
ηð2;0Þ
AcbsB
ðmc=mbÞ
8m2

2c
; ðB24Þ

a2fsBb ¼
ηð0;2Þ
AcbsB
ðm0ca;m0baÞ
8m2

sBb

−
C̄Acb⊥
8m2

sBb

þ
C̄Acb⊥ z

ð1;1Þ
Vbbs
ðm0ca;m0baÞ
8m2

3b

−
ηð0;2Þ
AcbsB
ðmc=mbÞ
8m2

2b

; ðB25Þ
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a2f3c3b1 ¼
zð1;1Þ
Acb1
ðm0ca;m0baÞ
2m3c2m3b

−
zð1;1Þ
Acb1
ðmc=mbÞ

2m2c2m2b
; ðB26Þ

a2f3c3 bs ¼
zð1;1Þ
Acbs
ðm0ca;m0baÞ
2m3c2m3b

−
zð1;1Þ
Acbs
ðmc=mbÞ

2m2c2m2b
; ðB27Þ

where the right-most terms are those stemming from
continuum QCD. Because the Fermilab method is based
on Wilson fermions (as opposed to lattice nonrelativistic
QCD), the continuum limit of the η’s and z’s must tend as
a → 0 to the analogous coefficients for continuum QCD:

lim
a→0

ηð•ÞJ• ðm0ca;m0baÞ ¼ ηð•ÞJ• ðmc=mbÞ; ðB28Þ

lim
a→0

zð1;1ÞJ• ðm0ca;m0baÞ ¼ zð1;1ÞJ• ðmc=mbÞ; ðB29Þ

with mc=mb ¼ m0ca=m0ba fixed. Therefore, in
Eqs. (B22)–(B25), the first and fourth should cancel against
each other, and so should the second and third. At nonzero
lattice spacing, even when m0ha ∼ 1, the difference be-
tween the first and second terms is of order αs, and similarly
for the difference between the third and fourth terms. This
complicated pattern of cancellation ensures that the right-
hand sides of Eqs. (B22)–(B25) is of order αsa2. Similarly,
the cancellation on the right-hand sides of Eqs. (B26) and
(B27) also leaves mismatches of order αsa2.
This completes the demonstration that the heavy-quark

discretization effects in Eq. (B1) start with Λ̄2. Note
especially that the discretization effects of order a from
the clover-term mistuning are suppressed by an additional
(small) factor Λ̄=mh. The discretization errors from the
currents are, owing to the double ratio, of order a2. Note
that to extend Eq. (B1) beyond ld ¼ 0, we would need not
only one-loop matching of the rotation in Eq. (2.8) but also
further rotations of the form D2⊥ψ and s · Bψ . In practice,
we have ld ¼ 0, so this complication is not needed for now.

2. Discretization errors

We now turn to explicit estimates of the total discretiza-
tion error. Each term of Eq. (B1) introduces an error into
our calculation, which we address in turn. The error of
order α2s from the one-loop computation of the matching
factor ρAj is discussed in Sec. VII F.

a. Errors of order αsaΛ̄
2=mh

This discretization error stems from the one-loop mis-
match of the chromomagnetic masses 1=2mBh appearing in
Wð0Þ01 . From Eq. (B14), it is

errorB ¼ a
fBb
2m2c

4E − a
fBc
2m2c

½R1 − ðR2 þ EÞ�

−
a
3

�
fBb
2m2c

þ fBc þ 3fBb
2m2b

�
½R1 þ 3ðR2 þ EÞ�;

ðB30Þ

where fBh ¼ fBðm0haÞ is the mismatch function for heavy
quark h. The reason for grouping the HQET matrix
elements this way is explained below. The mismatch
function fBðm0aÞ starts at order αs, and we do not have
an explicit expression for it. (The calculation is what one
needs to match cSW at the one-loop level.) We shall take
unimproved tree-level coefficients as a guide to the com-
binatoric factors, leading to the Ansatz

fBðm0aÞ ¼
αs

2ð1þm0aÞ
: ðB31Þ

The relative signs in Eq. (B30) are meaningful once one has
chosen a coherent Ansatz for the mass dependence of fB,
such as Eq. (B31), and if, as argued in Sec. 2 c, we know
the relative signs of the HQET matrix elements E,
R1 − ðR2 þ EÞ, and R1 þ 3ðR2 þ EÞ. If we assume nothing
about the latter, then the three terms on the right-hand side
of Eq. (B30) should be treated as independent and added in
quadrature.

b. Errors of order αsa2Λ̄
2

These discretization errors stem from the differences in
Eqs. (B22)–(B27). Let us start with the first two terms in
Eqs. (B22)–(B25). The numerator differences are of order
αs and the denominators can be deduced from Eqs. (A17)
and (A19) of Ref. [47]. When cB ¼ rs they share the same
coefficient

1

8m2
D2⊥

¼ 1

8m2
sB
¼ 1

8m2
2

þ a2fXðm0aÞ; ðB32Þ

where [47,86]

fXðm0aÞ ¼
1

4ð1þm0aÞ
−
1

2

�
m0a

2ð2þm0aÞð1þm0aÞ
�

2

:

ðB33Þ
These errors can thus be estimated to be

errorX1

¼ αs

�
1

2ð2m2cÞ2
þ a2fXc þ

1

2ð2m2bÞ2
þ a2fXb

�
μ2π

þ αs

�
1

3

1

2ð2m2cÞ2
þ a2

1

3
fXc −

1

2ð2m2bÞ2
− a2fXb

�
μ2G

ðB34Þ
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where the relative signs and combinatorial factors have
been retained. We do not, however, know the sign and size
of the (omitted) one-loop coefficients multiplying the two
brackets. In Eq. (B34), fXh means to evaluate Eq. (B32)
with the m0a of quark h ¼ c; b.
In Eqs. (B22)–(B25), the cancellation of the third and

fourth terms lead to discretization effects correlated with
the right-hand side of Eq. (B34). Because the tree level
matches exactly, we have

errorX2
¼ αs

�
1

2ð2m2cÞ2
þ 1

2ð2m2bÞ2
�
μ2π

þ αs

�
1

3

1

2ð2m2cÞ2
−

1

2ð2m2bÞ2
�
μ2G: ðB35Þ

As a → 0, however, errorX2
has to cancel the 1=ð2m2aÞ2

parts of errorX1
. On the other hand, for m0a ≫ 1, the fX

terms dominate all others. It seems safe, therefore, to
combine these errors into

errorX ¼ αsa2ðfXc þ fXbÞμ2π þ αsa2
�
1

3
fXc − fXb

�
μ2G:

ðB36Þ

Here, the relative sign and size of the two terms is
unknown, owing to the unknown one-loop coefficients
of the various η’s.
The last discretization errors of order αsa2Λ̄

2 stem from
Eqs. (B26)–(B27). At the tree level, the numerators are 1,
and in the denominators m3 ¼ m2. At the one-loop level,
mismatches appear,

error33 ¼ −a2
1

3
ðμ2π − μ2GÞf33ðm0ca;m0baÞ; ðB37Þ

where f33 is of order αs. Because, on the one hand, the
mismatch vanishes as a → 0, yet, on the other, the lattice
contribution freezes out as the masses become large, we
propose the following Ansatz:

f33ðm0ca;m0baÞ ¼
αs

2ð1þm0caÞ2ð1þm0baÞ
: ðB38Þ

This error is likely to be smaller than the others, because
μ2π − μ2G is small; cf. Sec. 2 c.

c. HQET matrix elements

We have good estimates for μ2π and μ2G, because they
appear in the heavy-quark expansions of the meson masses
and of kinematic distributions of inclusive semileptonic
decays. From the pseudoscalar-vector-meson mass
difference

μ2G ¼
3

4
ðM2

B� −M2
BÞ ¼ 0.364 GeV2 ¼ ð603 MeVÞ2;

ðB39Þ

which can be taken to be exact. Recent fits to inclusive
B → Xclν and B → Xsγ distributions yield a value for the
kinetic energy (in the “kinetic” scheme) [91]

μ2πð1 GeVÞ ¼ 0.424� 0.042 GeV2 ¼ ð651� 32 MeVÞ2:
ðB40Þ

Thus, we have error33 ≈ 0.0015 (on lattices with
a ≈ 0.09 fm). We do not have estimates for D, E, R1,
and R2 that are as good as Eqs. (B39) and (B40), but they
satisfy sum rules such that D > 0, R1 > maxðR2;−3R2Þ.

3. Error estimation

We would now like to combine the sources of heavy-
quark discretization errors into a total

error ¼⨁
i
erroriðm0aÞ; ðB41Þ

where ⨁ denotes a sum in quadrature over independent
terms in errorB, errorX, and error33. With the error
function fX derived and reasonable Ansätze for fB and f33,
the crucial ingredient in these estimates is the value chosen
for Λ̄, estimating the needed HQET matrix elements to be
of order Λ̄2. Below we study our data and choose Λ̄ to
reproduce the observed lattice-spacing dependence. We
follow the detailed derivation given above and use μ2π and
μ2G for errorX and error33. On the fine lattices
(a ≈ 0.09 fm), we take the typical αVðq�Þ to be 0.261,
as in Table V, and we use one-loop running to obtain
αVðq�Þ at the other lattice spacings.
The discretization formulas can be reapplied to estimate

the difference between ρAj

ffiffiffiffiffiffiffi
RA1

p
on a lattice of spacing a

versus the value on a reference lattice. Table XII shows

TABLE XII. Absolute difference of hA1
ð1Þ from mismatches in

the heavy-quark Lagrangian and current, estimating HQET
quantities E, R1, R2 with Λ2, Λ ¼ 450 MeV, and taking μ2π ¼
0.424 GeV2 and μ2G ¼ 0.364 GeV2. To obtain the totals, we use
three uncorrelated fB terms and two fX. The total difference is
estimated using the a ¼ 0.09 fm lattice as a baseline. The right-
most column shows the difference in the data between hA1

ð1Þ on a
given lattice and the value at a ≈ 0.09 fm, computed at mx ¼
0.2m0s as in Fig. 8.

a (fm) αVðq�Þ m0ba m0ca B X Total Data

0.15 0.340 3.211 0.699 0.020 0.0102 0.022 0.0072(81)
0.12 0.300 2.462 0.532 0.009 0.0044 0.010 0.0087(71)
0.09 0.261 1.664 0.362 – – – –
0.06 0.220 1.123 0.240 0.003 0.0035 0.005 0.0033(82)
0.045 0.198 0.808 0.176 0.004 0.0046 0.006 0.0042(69)
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such differences with Λ̄ ¼ 450 MeV and the fine
(a ≈ 0.090 fm) lattice as the reference. The variation is
similar to, albeit slightly larger than, the observed lattice-
spacing dependence in Fig. 8, as one can see by comparing
the columns labeled “Total” and “Data” in Table XII.
Guided in this way, Table XIII shows the total error with
Λ̄ ¼ 450 MeV. On the superfine lattice, the error is 1%,
which we quote in Sec. VII as the heavy-quark discretiza-
tion error on hA1

ð1Þ. This estimate is neither overly cautious
(Λ̄ is justified by the data) nor aggressive (we could have
pushed Λ̄ to be as small as the data would tolerate, or taken
the error estimate of 0.7% from the ultrafine lattice
spacing).

APPENDIX C: HEAVY-QUARK-MASS TUNING
AND HYPERFINE SPLITTING

Our method for tuning κ for charm and bottom quarks
closely follows that of Refs. [48,51], where further details can
be found. Here, however, we use a mass-independent scale-
setting scheme, determining r1=a, for each a, at the physical
sea-quark masses m̂ ¼ ms=27 and ms. Before we used a
mass-dependent setup, taking r1=a on each ensemble at the
simulation sea masses m̂0 and m0s. The new method com-
pensates formistunings in the sea-quarkmasses.Wealso usea
new method for smoothing the lattice-spacing dependence
that reduces errors, particularly at smaller lattice spacings.
Finally, these second-generation tunings also have higher
statistical precision than was available in Refs. [48,51].
We start with the dispersion relation for a heavy-light

meson on the lattice [47]

E2ðpÞ ¼ M2
1 þ

M1

M2

p2 þ 1

4
A4ðap2Þ2

þ 1

3
A40a2

X3
j¼1
jpjj4 þ � � � ; ðC1Þ

where

M1 ≡ Eð0Þ ðC2Þ
is called the rest mass, and the kinetic mass is given by

M−1
2 ≡ 2

∂EðpÞ
∂p2

j

����
p¼0

: ðC3Þ

These meson masses M1 and M2 differ from the corre-
sponding quark masses, m1 and m2, by binding-energy
effects. The bare mass or, equivalently, the hopping
parameter κ must be adjusted so that these masses repro-
duce an experimental charmed or b-flavored meson mass.
When M1 and M2 differ, as they do when mQa ≪ 1, one
must choose. Weak matrix elements are unaffected by the
heavy-quark rest massm1 [53], so it does not make sense to
adjust the bare mass to M1. On the other hand, as seen in
Appendix B, the analysis of discretization effects using
HQET makesM2 the natural choice. We therefore focus on
M2, adjusting κ to the strange pseudoscalars Ds and Bs,
extrapolated to physical sea-quark masses, both because the
signal degrades for lighter valence-quark masses and
because this avoids introducing an unnecessary systematic
uncertainty due to a chiral extrapolation in the valence-
quark mass.

1. Tuning from the dispersion relation
on the m̂0=m0s ¼ 0.2 ensembles

We outline tuning the charm and bottom κ values with
the following steps, which are described in more detail
below. We work at all available lattice spacings with the
m̂0=m0s ¼ 0.2 ensembles.

(i) We have generated correlators for heavy-light pseu-
doscalar mesons at multiple κ values and with light-
quark masses bracketing the tuned strange-quark
mass on the ensemble with m̂0=m0s ¼ 0.2 at each of
the lattice spacings a ≈ 0.045, 0.06, 0.09, 0.12, and
0.15 fm. The charm- and bottom-quark mass regions
are bracketed with at least three κ values each. In
general, the available two-point data are a mix of
results from κ tuning only production runs and
results from full analysis production runs.

(ii) Ground-state energies aEðapÞ for a range of apwere
determined by (constrained) chi-square minimiza-
tion fits including local-local, smeared-local and
smeared-smeared (source-sink) two-point functions.

(iii) The energies E are fit to the dispersion relation in
Eq. (C1) in constrained chi-square minimizations
using prior distributions for the coefficientsM1=M2,
A4 and A40 motivated by the tree-level dispersion
relation for a clover heavy quark with estimated
corrections for binding-energy effects in a heavy-
light meson [51].

(iv) We linearly adjust each meson kinetic mass

M2ðmqÞ ¼ M2ðmsÞ þ Cvðmq −msÞ=ms ðC4Þ

to get the value corresponding to the physical
valence strange quark mq ¼ ms listed in Table XIV

TABLE XIII. Absolute error on hA1
ð1Þ from mismatches in the

heavy-quark Lagrangian and current, estimating HQET quantities
E, R1, R2 with Λ2, Λ ¼ 450 MeV, and taking μ2π ¼ 0.424 GeV2

and μ2G ¼ 0.364 GeV2. To obtain the totals, we use three
uncorrelated fB terms and two fX.

a (fm) αVðq�Þ m0ba m0ca B X Total

0.150 0.340 3.211 0.699 0.020 0.016 0.026
0.120 0.300 2.462 0.532 0.017 0.011 0.020
0.090 0.261 1.664 0.362 0.014 0.006 0.016
0.060 0.220 1.123 0.240 0.009 0.003 0.010
0.045 0.198 0.808 0.176 0.007 0.001 0.007
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for each ensemble. The Cv are determined either by
interpolation of the lattice results or estimated from
the experimental meson masses and the physical
quark masses.

(v) On the asqtad ensembles, the mass m0s of the
heaviest sea-quark flavor can differ significantly
from the physical strange-quark mass, ms. We
correct linearly for this sea-quark mass variation:

M2ðm̂0; m0sÞ ¼ M2ðm̂;msÞ þ Csð2x̂þ xsÞ ðC5Þ

where M2ðm̂; msÞ is the meson mass in the limit of
physical sea-quark masses, x̂ ¼ ðm̂0 − m̂Þ=ms, and
xs ¼ ðm0s −msÞ=ms. The average physical mass is
m̂ ¼ ðmu þmdÞ=2 while m̂0 is the sea-quark mass
used in simulations. We estimate r1Cs ≈ 0.02 for the
Ds and r1Cs ≈ 0.012 for the Bs based upon an
analysis of the sea-quark mass dependence on the
a ≈ 0.12 fm lattice, and we take the physical mass m̂
from Table XIV.

(vi) On each ensemble, the lattice masses M2ðκh; msÞ,
adjusted to the correct (valence and sea) strange-
quark mass, must be fit to an interpolating function
prior to implicitly solving for the κ value needed to
match the latticeM2 to the experimental value of the
Ds- or Bs-meson mass. We have tested two different
interpolating functions, finding a negligible differ-
ence in the resulting tuned κ values. For the first fit

TABLE XIV. Ensembles with sea-quark m̂0=m0s ¼ 0.2 that are
used in κ tuning, smoothed values of r1=a and the physical quark
masses, ms and m̂ ¼ ðmu þmdÞ=2 obtained from the analysis of
the light spectrum and decay constants [66].

≈a (fm) r1=a β am0s am̂0 ams am̂

0.15 2.221530 6.572 0.0484 0.0097 0.04185 0.001508
0.12 2.738591 6.76 0.05 0.01 0.03357 0.001215
0.09 3.788732 7.09 0.031 0.0062 0.02446 0.0008922
0.06 5.353063 7.47 0.018 0.0036 0.01751 0.0006401
0.045 7.208234 7.81 0.014 0.0028 0.01298 0.0004742
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FIG. 9 (color online). Interpolation of r1M2ðκÞ to the corresponding physical Ds- and Bs-meson masses (indicated by the horizonal
lines). Separate (quadratic or linear) interpolations are performed for charm and bottom. These results are from Analysis B. The figure
for the a ≈ 0.15 fm lattice is not shown.
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function we use the same HQET-inspired form as in
our previous tuning analyses:

M2ðκÞ ¼ Λþm2ðκÞ þ
λ1

m2ðκÞ
; ðC6Þ

where the quark mass m2 is computed to tree level.
The parameters Λ and λ1 are determined in a chi-
square minimization. The set of two parameters are
determined separately for charm and bottom. The
second fit function is quadratic or linear in the tree-
level bare quark mass am0. Again, the coefficients of
the best fit are determined separately for charm and

bottom. In Fig. 9 we show examples of polynomial
interpolations of r1M2ðκÞ and indicate values cor-
responding to the known Ds and Bs masses.

(vii) We use MILC’s smoothed r1=a measurements and
the value r1 ¼ 0.3117ð22Þ fm [51] to set the lattice
spacing in our determinations of κc and κb.

The process outlined above is used in two separate
analyses. Analysis A is based on the two-point functions
listed in Table XV and a block-elimination jackknife with
block sizes ranging from 5 to 32 to estimate statistical
errors. Analysis B uses the two-point functions listed in
Table XVI together with a bootstrap procedure in the error
analysis. For several ensembles, Analysis B adds two

TABLE XV. Analysis A of m̂0=m0s ¼ 0.2 ensembles, configurations × sources and two-point valence masses and κ values. In all cases
we use local-local, smeared-local, and smeared-smeared (source-sink) two-point functions in fits. The number of states (+ opposite
parity states) and time range fit are shown. Where three fit ranges are shown, the first refers to the smeared-smeared correlator, the
second, the smeared-local correlator, and the third, the local-local correlator. Where only one range is shown, all three correlators are fit
to the same range. Two-point functions with momenta jpj ≤ j2j2π=L are included in the analysis.

a (fm) cfgs × srcs amq κ States t range

0.15 631 × 8 0.0387, 0.0484 0.070, 0.076, 0.080 2þ 2 [5, 17]
0.0387, 0.0484 0.090, 0.100, 0.115 2þ 2 [6, 18]
0.0387, 0.0484 0.115, 0.122, 0.125 2þ 2 [8, 20]

0.12 2259 × 4 0.340, 0.370 0.074, 0.086, 0.098 2þ 2 [9, 16]
0.340, 0.370 0.1175, 0.1200, 0.1225 2þ 2 [11, 21]

0.09 1912 × 8 0.0250, 0.0270 0.090, 0.092, 0.094 2þ 2 [10, 20]
0.0250, 0.0270 0.1240, 0.1255, 0.1270 3þ 3 [12, 24]
0.0261, 0.0310 0.1276, 0.979 3þ 3 [12, 20]

0.06 670 × 4 0.0188 0.100, 0.106, 0.122 2þ 2 [15, 31]
0.0188 0.124, 0.127, 0.130 2þ 2 [20, 30]; [24, 34]; [28, 38]

0.045 801 × 4 0.130, 0.135 0.106, 0.111, 0.116 2þ 2 [18, 36]
0.130, 0.135 0.128 2þ 2 [19, 35]; [20, 36]; [20, 36]
0.130, 0.135 0.130, 0.132 2þ 2 [20, 36]

TABLE XVI. Analysis B of m̂0=m0s ¼ 0.2 ensembles, configurations × sources and two-point valence masses and κ values. In all cases
we use local-local, smeared-local, and smeared-smeared (source-sink) two-point functions in fits. The number of states (+ opposite
parity states) and time range fit are shown. Two-point functions with momenta jpj ≤ j3j2π=L are fit.

a (fm) cfgs × srcs amq κ States t range

0.15 631 × 8 0.0484 0.070, 0.076, 0.080 3þ 3 [6, 22]
0.0484 0.085, 0.090, 0.094, 0.110 3þ 3 [6, 22]
0.0484 0.115, 0.122, 0.125 3þ 3 [6, 22]

631 × 24 0.0484 0.0781, 0.1218 3þ 3 [6, 22]
0.12 2259 × 4 0.349 0.0820, 0.0860, 0.0901 3þ 3 [6, 24]

0.349 0.1230, 0.1254, 0.1280 3þ 3 [6, 28]
0.09 1912 × 8 0.0270 0.090, 0.092, 0.094 3þ 3 [12, 36]

1931 × 4 0.0261 0.0979 3þ 3 [12, 36]
1912 × 8 0.0270 0.1240, 0.1255, 0.1270 3þ 3 [12, 40]
1931 × 4 0.0261 0.1276 3þ 3 [12, 40]

0.06 670 × 4 0.0188 0.100, 0.106, 0.122 3þ 3 [26, 48]
673 × 8 0.0188 0.1052 3þ 3 [26, 48]
670 × 4 0.0188 0.124, 0.127, 0.130 3þ 3 [22, 52]
673 × 8 0.0188 0.1296 3þ 3 [22, 52]

0.045 801 × 4 0.130 0.106, 0.111, 0.1143, 0.116 3þ 3 [19, 60]
0.130 0.128, 0.130, 0.1310, 0.132 3þ 3 [19, 70]
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additional (a charm-like and a bottom-like) κ values from
the two-point functions generated in our full analysis
campaign. The rest and kinetic masses from the two
different analyses for the five m̂0=m0s ¼ 0.2 ensembles
with different lattice spacing are listed in Tables XVII–
XXI. The charm and bottom κ values obtained in the two
analyses are tabulated, with statistical errors, in

Table XXII. The table also shows a comparison of κ
values obtained from the HQET-inspired interpolation
versus an interpolation quadratic in m0. The tabulated
(quadratic) results are plotted in Fig. 10 for comparison.
The results from the two analyses are statistically con-
sistent (with highly correlated statistical errors). We take a
weighted average from the two analyses (see Table XXII)

TABLE XVII. Results for rest and kinetic masses (in lattice units) on the a ≈ 0.15 fm ensemble.

Analysis A Analysis B
κ amq aM1 aM2 amq aM1 aM2

0.125 0.04213 1.1459(7) 1.284(14) 0.0484 1.1566(6) 1.295(15)
0.122 1.2324(9) 1.406(24) 1.2427(7) 1.419(18)
0.115 1.4182(10) 1.717(22) 1.4282(9) 1.719(28)
0.110 … … 1.5515(10) 1.938(37)
0.100 1.7759(14) 2.524(56) … …
0.090 1.9991(19) 3.165(101) 2.0077(18) 3.003(100)
0.085 … … 2.1181(21) 3.290(123)
0.080 2.2193(22) 3.764(131) 2.2287(23) 3.629(156)
0.076 2.3087(24) 4.077(155) 2.3182(26) 3.901(182)
0.070 2.4444(29) 4.654(232) … …

TABLE XVIII. Results for rest and kinetic masses (in lattice units) on the a ≈ 0.12 fm ensemble.

Analysis A Analysis B
κ amq aM1 aM2 amq aM1 aM2

0.1280 0.03357 � � � 0.0349 0.9239(3) 1.008(8)
0.1254 � � � 1.0066(3) 1.120(10)
0.1230 � � � 1.0787(4) 1.223(13)
0.1225 1.0918(4) 1.228(15) � � � � � �
0.1200 1.1628(4) 1.327(17) � � � � � �
0.1175 1.2309(5) 1.429(23) � � � � � �
0.0980 1.7040(9) 2.378(69) � � � � � �
0.0901 � � � � � � 1.8837(11) 3.000(123)
0.0860 1.9728(16) 3.064(137) 1.9760(11) 3.181(152)
0.0820 � � � � � � 2.0651(12) 3.404(197)
0.0740 2.2419(24) 4.037(261) � � � � � �

TABLE XIX. Results for rest and kinetic masses (in lattice units) on the a ≈ 0.09 fm ensemble.

Analysis A Analysis B
κ amq aM1 aM2 amq aM1 aM2

0.1276 0.02468 0.7698(3) 0.798(6) 0.0261 0.7720(2) 0.810(7)
0.1270 0.7900(3) 0.842(9) 0.0270 0.7940(2) 0.844(5)
0.1255 0.8392(3) 0.895(8) 0.8428(2) 0.907(7)
0.1240 0.8862(4) 0.953(10) 0.8898(2) 0.971(8)
0.0979 1.5306(12) 2.210(83) 0.0261 1.5577(7) 1.975(45)
0.0940 1.6450(10) 2.390(70) 0.0270 1.6479(7) 2.306(67)
0.0920 1.6902(10) 2.498(84) 1.6931(7) 2.411(79)
0.0900 1.7353(10) 2.605(95) 1.7382(7) 2.525(88)
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and use the resulting charm and bottom κ values in
subsequent steps of the analysis.

2. Smoothing and extending κ tuning to other ensembles

In the second step of our κ-tuning analysis we improve
the raw tuned results by smoothing them as a function of
lattice spacing and by adding the constraint that the rest
masses M1 extrapolate to their physical values at zero
lattice spacing. This treatment gives the small adjustments

in the central values and the reduction in error, shown in the
last column of Table XXII. The improvement in error gets
progressively better as the lattice spacing is decreased.
The continuum extrapolation of the rest massesM1 adds

a useful constraint to the κ-tuning analysis, since the rest
masses are determined to much higher statistical accuracy
than the kinetic masses M2. On each ensemble with fixed
lattice spacing a=r1, their dependence on the heavy
valence-quark κ can be described accurately with an

TABLE XX. Results for rest and kinetic masses (in lattice units) on the a ≈ 0.06 fm ensemble.

Analysis A Analysis B
κ amq aM1 aM2 amq aM1 aM2

0.130 0.01777 0.5518(4) 0.563(5) 0.0188 0.5536(3) 0.570(4)
0.1296 � � � � � � 0.5693(2) 0.582(4)
0.127 0.6593(5) 0.678(11) 0.6608(4) 0.696(7)
0.124 0.7568(7) 0.790(16) 0.7581(5) 0.817(10)
0.122 � � � � � � � � � � � �
0.112 1.0924(13) 1.325(56) 1.0935(12) 1.271(33)
0.106 1.2412(18) 1.621(95) 1.2430(14) 1.536(52)
0.1052 � � � � � � 1.2640(9) 1.543(49)
0.100 1.3833(23) 1.975(164) 1.3856(18) 1.845(75)

TABLE XXI. Results for rest and kinetic masses (in lattice units) on the a ≈ 0.045 fm ensemble.

Analysis A Analysis B
κ amq aM1 aM2 amq aM1 aM2

0.132 0.01298 0.3818(2) 0.394(3) 0.0130 0.3819(2) 0.384(1)
0.1310 � � � � � � 0.4239(2) 0.429(2)
0.130 0.4631(3) 0.484(5) 0.4632(2) 0.470(2)
0.128 0.5368(4) 0.564(7) 0.5370(3) 0.550(3)
0.116 0.9025(6) 1.056(32) 0.9021(6) 1.021(16)
0.1143 � � � � � � 0.9480(5) 1.056(18)
0.111 1.0336(6) 1.266(48) 1.0331(8) 1.225(26)
0.106 1.1576(7) 1.535(75) 1.1573(9) 1.446(37)

TABLE XXII. Charm (κc) and bottom (κb) results from an analysis of the energy-momentum dispersion relation on the m̂0=m0s ¼ 0.2
ensembles. Results from Analyses A and B are listed with statistical errors. Under Analysis A we tabulate κ values found using an
HQET-inspired interpolating function. The weighted average of A:poly and B:poly results and the results after the smoothing fit are
listed. The third column shows κ values used in the production campaign.

a (fm) System Production A:HQET A:poly B:poly Weighted average Smoothed

0.15 Charm 0.1218 0.12210(30) 0.12187(33) 0.12247(22) 0.12229(26) 0.12237(26)
0.12 0.1254 0.12452(47) 0.12464(57) 0.12467(25) 0.12467(32) 0.12423(15)
0.09 0.1276 0.12721(14) 0.12708(13) 0.12731(13) 0.12720(13) 0.12722(9)
0.06 0.1296 0.12959(12) 0.12944(13) 0.12957(07) 0.12954(09) 0.12960(4)
0.045 0.1310 0.13124(10) 0.13107(10) 0.13089(03) 0.13090(04) 0.130921(16)
0.15 Bottom 0.0781 0.0803(11) 0.0792(18) 0.0762(19) 0.0778(18) 0.0775(16)
0.12 0.0901 0.0864(12) 0.0856(18) 0.0878(29) 0.0862(22) 0.0868(9)
0.09 0.0979 0.0971( 8) 0.0971(09) 0.0952(13) 0.0965(10) 0.0967(7)
0.06 0.1052 0.1064(15) 0.1067(14) 0.1046(08) 0.1051(10) 0.1052(5)
0.045 0.1143 0.1125(10) 0.1129(10) 0.1116(04) 0.1118(05) 0.1116(3)
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interpolating function M1ðκ; a=r1Þ, which we take to be
quadratic in the bare heavy-quark mass and which we
determine separately for charm-like and bottom-like
masses. Thus, on each ensemble, a tuned value of κ and
its error implies, through interpolation, an inferred value of
M1ða=r1Þ with appropriately propagated error. (The errors
from the interpolation were negligible compared with the
errors arising from uncertainties in the tuned values of κ
themselves.) The inferred rest masses are shown in
Table XXIII for the Ds and Bs on the ensembles with
m̂0=m0s ¼ 0.2, and are uncorrected for unphysical sea-quark
masses. We determine the sea-quark-mass correction fol-
lowing Eq. (C5), but with a coefficient C0s appropriate for
the rest mass. The resulting sea-quark-mass correction is
shown in Table XXIII. Our smoothing procedure then fits
the inferred, adjusted values of M1ða=r1Þ to a smooth
function of lattice spacing a=r1, with the constraint that the
intercept M1ð0Þ agrees with the physical mass.

For the Bs we use the empirically chosen form

M1ða2;BsÞ ¼ MðBsÞphys þ b1xþ b2x2 ðC7Þ

where x ¼ ða=r1Þ2=½0.1þ ða=r1Þ2�. In units of the physical
Bs-meson mass M this parameter becomes
x ¼ ðaMÞ2=½7.3þ ðaMÞ2�, which reduces the model to a
quadratic in a2 for aM ≪ 3. The resulting fit is shown in
the left panel of Fig. 11 (χ2=d:o:f: ¼ 0.4=3, p ¼ 0.94).
For charm-like masses, evidently, the value of aMðDsÞ is

sufficiently small that a simple quadratic in ða=r1Þ2
suffices:

M1ða2;DsÞ ¼ MðDsÞphys þ c1
a2

r21
þ c2

a4

r41
: ðC8Þ

The resulting fits are shown in the right panel of Fig. 11
(χ2=d:o:f: ¼ 2.4=3, p ¼ 0.49).

TABLE XXIII. Rest masses ofDs and Bs interpolated to the respective weighted-average κc and κb values for each of the m̂0=m0s ¼ 0.2
ensembles in the tuning sample. σtune is the error propagated from the uncertainty in the weighted averages of κc and κb and δMsea is the
correction applied to the rest masses due to the extrapolation to the physical sea-quark masses. The rest masses listed in the second
through fifth columns are the results obtained before applying the sea-quark-mass correction. Masses are in MeV.

a=r1 M1ðDsÞ σtune δMsea M1ðBsÞ σtune δMsea

0.4501 1721.2 10.4 −11:0 3190.0 57.2 −6.7
0.3652 1779.9 16.9 −20:7 3411.9 87.0 −12:6
0.2639 1878.7 10.5 −14:1 3801.2 58.5 −8.6
0.1868 1927.5 11.3 −7.3 4280.3 82.8 −4.4
0.1387 1950.2 7.4 −9.0 4622.1 59.1 −5.5
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FIG. 10 (color online). Comparison of charm and bottom κ values from analyses A (red) and B (green) together with the κ values used
in the production campaign.
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We then use the best fits to determine the smoothed
values of M1 at each lattice spacing. Ensemble by ensem-
ble, through the valence-quark-mass interpolation, these
smoothed values, in turn, provide the smoothed κ’s for each
0.2m0s ensemble. They are recorded in Table XXII.
Finally, we need to extend our determination of κc and κb

to predict their values for ensembles with values of m̂0=m0s
other than 0.2. Because we are using a mass-independent
scheme, we interpolate only in β, where we note that the
variation of β with sea-quark mass (at approximately
constant lattice spacing) is very slight. Because κc and
κb are tuned to masses adjusted to the physical sea-quark
masses, this mass-independent scheme is based on physical
hadron (π, K, Ds, and Bs) masses and physical fπ at all
lattice spacings. To predict the κ values at other β’s the

functions κcðβÞ and κbðβÞ are fit to a cubic spline. The
spline is used only to determine the derivatives dκc=dβ and
dκb=dβ at the βi’s for the five 0.2m0s ensembles. The
derivatives are, in turn, used to obtain κc and κb at the
slightly shifted β values for each of the four lattice spacings
where we need them. The results are the final smoothed κ
values listed in Table XXIV.

3. Scale error

As noted above, we take r1 ¼ 0.3117ð22Þ fm [51]. The
error in the scale determination introduces an error in
converting the experimental mass to aM2, which prop-
agates, in turn, to the tuned κ’s. The systematic error on the
tuned κ’s due to the uncertainty in the lattice-scale
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FIG. 11 (color online). Lattice rest masses (in MeV) for the Bs (left) and Ds (right) at physical valence and sea-quark masses as a
function of ða=r1Þ2.

TABLE XXIV. Final, smoothed mass-independent κc and κb values and production values for various ensembles. The second error
reflects the uncertainty in the r1 determination. See Sec. 3 for the preferred way to handle it. Smoothing is discussed in Sec. 2.

Ensemble Tuned (final) Production
≈a (fm) β m̂0=m0s κc κb κc κb

0.15 6.566 0.1 0.12231(26)(20) 0.0772(16)(3) � � � � � �
6.572 0.2 0.12237(26)(20) 0.0775(16)(3) 0.1218 0.0781
6.586 0.4 0.12252(26)(20) 0.0780(16)(3) � � � � � �

0.12 6.76 0.1 0.12423(15)(16) 0.0868(9)(3) 0.1254 0.0901
6.76 0.14 0.12423(15)(16) 0.0868(9)(3) 0.1254 0.0901
6.76 0.2 0.12423(15)(16) 0.0868(9)(3) 0.1254 0.0901
6.79 0.4 0.12452(15)(16) 0.0879(9)(3) 0.1259 0.0918

0.09 7.075 0.05 0.12710(9)(14) 0.0964(7)(3) 0.1275 0.0976
7.08 0.1 0.12714(9)(14) 0.0965(7)(3) 0.1275 0.0976
7.085 0.14 0.12718(9)(14) 0.0966(7)(3) 0.1275 0.0977
7.09 0.2 0.12722(9)(14) 0.0967(7)(3) 0.1276 0.0979
7.10 0.3 0.12730(9)(14) 0.0970(7)(3) � � � � � �
7.11 0.4 0.12737(9)(14) 0.0972(7)(3) 0.1277 0.0982

0.06 7.46 0.1 0.12955(4)(11) 0.1050(5)(2) 0.1296 0.1052
7.465 0.14 0.12957(4)(11) 0.1051(5)(2) 0.1296 0.1052
7.47 0.2 0.12960(4)(11) 0.1052(5)(2) 0.1296 0.1052
7.475 0.3 0.12962(4)(11) 0.1052(5)(2) � � � � � �
7.48 0.4 0.12964(4)(11) 0.1054(5)(2) 0.1295 0.1048

0.045 7.81 0.2 0.130921(16)(70) 0.1116(3)(2) 0.1310 0.1143
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determination is therefore obtained by changing r1 from its
central value by one standard deviation and propagating
this change through our κ-tuning analysis. Our final tuned
κb and κc results including both statistical and r1 systematic
errors are shown in Table XXIV. We note that the derivative
of the κ’s with respect to r1 is negative. So increasing r1 by
0.0022 causes κ to decrease by the amount shown. This
exercise was done only on the 0.2m0s ensembles. We
assume that the errors are the same for ensembles at nearby
β (nearly same lattice spacing).
The correct way to propagate the scale error to the

dimensionful quantities that we calculate is first to compute
the physical quantity for a fixed r1, propagating only the
statistical error in κ (i.e., not first combining statistical and
scale errors in some way), and then to recompute the same
quantity with the shifted κ and shifted r1. The difference in
the central values of the final result is, then, the r1
systematic error.

4. D�s -Ds and B�s -Bs hyperfine splittings

The hyperfine splittings, MðD�sÞ −MðDsÞ and
MðB�sÞ −MðBsÞ, are sensitive to the heavy-quark mass

and to discretization effects, and they therefore provide a
good test of both our analysis of discretization errors and of
our κ-tuning analysis. As with the pseudoscalar mesons Ds
and Bs, we made sea-quark-mass adjustments for the vector
mesons D�s and B�s , as discussed above. We computed the
hyperfine splitting at the physical strange-quark mass over
a range of valence κ values. For purposes of interpolation
we fit the rest-mass splitting on each ensemble as a
quadratic in 1=ðam0Þ, the inverse bare quark mass. This
fitting function works well over the entire range of valence
κ’s from charm to bottom. After interpolation we apply a
correction for heavy-quark discretization errors to leading
order in heavy-quark effective theory as described in
Ref. [48]. The resulting values are listed in Tables XXV
and XXVI and are shown in Fig. 12. An error budget is also
tabulated. For the remaining heavy-quark discretization
error (beyond leading order), we used the full leading-order
correction at 0.06 fm. Error contributions are combined in
quadrature. Our results for the splittings are extrapolated
three ways to zero lattice spacing: the values corrected
for heavy-quark discretization errors are extrapolated lin-
early in ða=r1Þ2; the uncorrected values are similarly
extrapolated; the corrected values are simply averaged

TABLE XXV. Hyperfine splitting ΔMhfsðDsÞ ¼ MD�s −MDs
in MeV at the physical valence- and sea-quark masses as a function of

a=r1. The splittings shown in the second column include a correction for heavy-quark discretization errors to leading order [48], while
the third column shows the uncorrected value. The remaining columns give the error budget. Shown are the fit error, charm-mass tuning
error, sea-quark-mass adjustment, the combination (in quadrature) of these three sources of statistical error, the systematic scale error,
the systematic heavy-quark discretization error, and the combination (in quadrature) of the statistical and systematic errors. The three
rows at zero lattice spacing give, respectively, the value obtained by linear extrapolation of the corrected splittings in ða=r1Þ2, by
similarly extrapolating the uncorrected splittings, and by taking the mean of the corrected splittings, and the last row gives the
experimental value.

a=r1 ΔMhfsðDsÞ Uncorrected Fit Tune Sea quark Net stat. r1 scale Hvy. qk. Total

0.4501 145.4 136.1 1.4 1.0 4.1 4.5 2.1 1.8 5.2
0.3652 142.8 136.3 6.6 0.9 7.7 10.1 1.8 1.8 10.5
0.2639 144.9 141.0 1.9 0.7 5.2 5.6 1.9 1.8 6.2
0.1868 143.9 141.7 3.4 3.7 2.8 5.8 2.0 1.8 6.4
0.1387 148.1 146.7 2.3 2.3 3.4 4.7 2.1 1.8 5.4
0.0000 146(4) Corrected
0.0000 145(4) Uncorrected
0.0000 146(3) Mean
Expt 143.8(4)

TABLE XXVI. The same as Table XXV, but for the hyperfine splitting ΔMhfsðBsÞ ¼ MB�s −MBs
.

a=r1 ΔMhfsðBsÞ Uncorrected Fit Tune Sea quark Net stat. r1 scale Hvy. qk. Total

0.4501 43.6 39.2 1.4 1.3 3.5 4.0 0.6 1.4 4.3
0.3652 44.0 40.6 2.8 0.9 6.8 7.4 0.6 1.4 7.5
0.2639 45.7 43.3 1.2 0.7 4.7 4.9 0.7 1.4 5.1
0.1868 40.5 39.1 2.8 0.7 2.5 3.8 0.6 1.4 4.1
0.1387 45.8 44.7 2.4 0.5 3.0 3.9 0.6 1.4 4.1
0.0000 44(3) Corrected
0.0000 43(3) Uncorrected
0.0000 44(2) Mean
expt 48:7þ2.3−2.1
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(extrapolated with slope fixed to zero). All results are
consistent. They are compared with the experimental values
given in the last line of each table [1]. The largest
uncertainty comes from the adjustment from the simulation
sea-quark masses to the physical sea-quark masses. For the
Ds hyperfine splitting, the prediction is well within 1σ of

the experimental value, and for the Bs, about 1.3σ below
(lower panels of Fig. 12). Without the leading heavy-quark
correction, the extrapolated result for theDs splitting is also
well within 1σ of the experimental value and for the Bs,
slightly more than 1.3σ below (upper panels), but the
extrapolation model [linear in ða=r1Þ2] is then less reliable.
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FIG. 12 (color online). Hyperfine splittings for the Ds (left) and Bs (right) systems in MeV, shown with full errors, extrapolated
[linearly in ða=r1Þ2] to zero lattice spacing. Experimental values are indicated by the (red) points at a ¼ 0. Upper panels: before
correction for leading heavy-quark discretization error. Lower panels: after correction.
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