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We investigate SUð3Þ gauge theories in four dimensions withNf fundamental fermions on a lattice using
the Wilson fermion. Clarifying the vacuum structure in terms of Polyakov loops in spatial directions and
properties of temporal propagators using a new method that we call “local analysis,” we conjecture that the
“conformal region” exists together with the confining region and the deconfining region in the phase
structure parametrized by β and K, both in the cases of the large Nf QCD within the conformal window
(referred as conformal QCD) with an IR cutoff and small Nf QCD at T=Tc > 1 with Tc being the chiral
transition temperature (referred to as high-temperature QCD). Our numerical simulation on a lattice of the
size 163 × 64 shows the following evidence of the conjecture. In the conformal region, we find that the
vacuum is the nontrivial Zð3Þ twisted vacuum modified by nonperturbative effects and that temporal
propagators of mesons behave at large t as a power-law-corrected Yukawa-type decaying form. The
transition from the conformal region to the deconfining region or the confining region is a sharp transition
between different vacua, and therefore, it suggests a first-order transition both in conformal QCD and
high-temperature QCD. To confirm the conjecture and distinguish it from the possibility of crossover
phenomena, we need to take the continuum/thermodynamic limit, which we do not attempt in this work.
Within our fixed-lattice simulation, we find that there is a precise correspondence between conformal QCD
and high-temperature QCD in the temporal propagators under the change of the parameters Nf and T=Tc,
respectively: one boundary is close to meson states, and the other is close to free quark states. In particular,
conformal QCD with Nf ¼ 7 corresponds to high-temperature QCD with Nf ¼ 2 at T ∼ 2Tc, both of
which are in close relation to a meson unparticle model. From this, we estimate the anomalous mass
dimension γ� ¼ 1.2ð1Þ for Nf ¼ 7. We also show that the asymptotic state in the limit T=Tc → ∞ is a free
quark state in the Zð3Þ twisted vacuum. The approach to a free quark state is very slow; even at T=Tc ∼ 105,
the state is affected by nonperturbative effects. This is possibly connected with the slow approach of the
free energy to the Stefan-Boltzmann ideal gas limit.
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I. INTRODUCTION

Recently, much attention has been paid to conformal
theories in the d ¼ 4 dimension since conformal theories or
nearly conformal theories are attractive candidates for the
beyond standard model. In the evolution of the Universe,
conformal theories might play key ingredients in many
aspects, presumably more than we know today. All con-
formal field theories have their own distinct features. To
confront the nature, it is important to understand each
conformal theory, and for this purpose, it is urgent to clarify
the global structure of conformal theories [1].
One important class of simple conformal field theories in

d ¼ 4 is realized by the so-called Banks-Zaks fixed point
[2] in many flavor gauge theories. The possibility of the
existence of a conformal theory in SUð3Þ gauge theory with
Nf flavors in the fundamental representation was first
pointed out by W. Caswell in [3].
From the perturbative computation of the beta function,

we believe that the upper critical number of flavors Nf for

the existence of an infrared (IR) fixed point in SUð3Þ gauge
theory is 16. We denote the lower critical number of flavors
by Nc

f. The region of NfðNc
f ≤ Nf ≤ 16Þ that has the IR

fixed point is called the conformal window.
In the case of Nf ≃ 16, the coupling constant at the IR

fixed point is small, and therefore, the perturbation theory
may be applicable. However, in the case of Nf ∼ Nc

f,
nonperturbative effects are important, and nonperturbative
tools are essential.
Lattice gauge theories are systematic and nonperturba-

tive tools for investigating issues such as the lower critical
number of flavors Nc

f, the anomalous mass dimension and
the spectrum. Many lattice studies were indeed performed
[4–54]. Numerical tools such as the step-scaling scheme
[55] and the Monte Carlo renormalisation group (MCRG)
method, as well as the calculation of mass spectrum and the
analysis of the phase structure, have been used in order to
identify the IR fixed point and the conformal window [1].
However, the determination of the lower critical number

of flavors Nc
f is still much controversial. One possible
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reason for the controversy arises from the fact that
pinpointing the IR fixed point for Nc

f is the strong coupling
problem and technically it is hard to reach such a region
even with the step-scaling scheme. Another possible
reason, when the mass spectrum is used to find the Nc

f,
is that the suitable mass region for the investigation of
conformal properties is limited, as is clarified in this article.
However, in many calculations the mass spectrum outside
of this region is used.
In our previous paper [4], we conjectured that the lower

critical number of flavor Nc
f ¼ 7. In Appendix A, we report

a brief summary of the paper with some updates. In this
article, we do not assume a particular value ofNc

f in general
discussions. The aim of this paper is to establish the
properties intrinsic to the conformal window such as the
vacuum structure and specific behaviors of temporal
propagators. We would like to check these properties for
various Nf, including Nf ¼ 7, and we verify whether our
conjecture of Nc

f ¼ 7 is consistent with them.

A. Strategy and objectives

In this article, we discuss the following two categories in
SUð3Þ gauge theories with Nf flavors in the fundamental
representation, which possess an IR fixed point:

(i) Large NfðNc
f ≤ Nf ≤ 16Þ QCD within the con-

formal window (referred as conformal QCD)
(ii) Small Nfð2 ≤ Nf ≤ Nc

f − 1Þ QCD at temperature
T=Tc > 1 with Tc being the critical temperature
(referred as high-temperature QCD)

The existence of an IR fixed point in conformal QCD is
well known as the Banks-Zaks IR fixed point [2], as
mentioned above. In high-temperature QCD, the existence
of an IR fixed point has been recently pointed out in
Ref. [56]. We clarify the precise relation between the IR
fixed point and the “conformal symmetry” in detail below
since this is not literally true at first sight (e.g., the non-
vanishing trace anomaly for high-temperature QCD; see also
Appendix B for a brief review of our argument in [56]).
Let us further consider the case where there is an IR

cutoff in the theory which possesses an IR fixed point. In
the case of conformal QCD in the continuum limit, the
compact space and/or time gives an IR cutoff. In the case of
high-temperature QCD, the temperature T plays a role of an
IR cutoff together with a cutoff due to possible compact
space, depending on how to take the continuum limit. We
note that any lattice calculation is performed on a finite
lattice. Thus, any calculation on a lattice possesses an IR
cutoff.
In case there is an IR cutoff, we introduce a new concept,

“conformal theories with an IR cutoff”: In the “conformal
region,” where the quark mass is smaller than the critical
value, temporal propagators GHðtÞ of meson behave at
large t as a power-law-corrected Yukawa-type decaying
form instead of the exponential decaying form observed in
the “confining region” and “deconfining region.” We note

the exponential decay form in the deconfining region is
approximate due to the finiteness of the t region. This point
is discussed in some detail below. One of the objectives of
this article is to verify the existence of the conformal region
and a power-law-corrected Yukawa-type decaying form
instead of the exponential decaying form of meson propa-
gators in the conformal region on a finite lattice with a fixed
size of 163 × 64.
We stress that QCD in compact space and/or time is a

conformal theory with an IR cutoff for β ≥ βc, as is
discussed below. Here the βc is the critical bare coupling
constant (β ¼ 6=g20) at which a chiral transition occurs for
the massless quark. In the case of the compact space, the
temperature may be defined by 1=Nta as usual.
On the other hand, one of our final goals is the

verification of the conjecture of the conformal theory with
an IR cutoff for the case of the thermodynamical limit of
high-temperature QCD in the flat space, in addition to the
continuum limit of the conformal QCD in the flat space at
zero temperature. Since we define the conformal region
from the properties of the temporal propagators, we need a
lattice with large Nt in order to verify the idea of the
conformal theories with an IR cutoff. Therefore, we take
the same lattice size 163 × 64 for the simulation of high-
temperature QCD.
We understand that our quantitative predictions for

thermodynamic properties for high-temperature QCD will
be affected by the small spatial lattice size. However, since
our theoretical argument only relies on the vanishing beta
function and the existence of an IR cutoff (either by a
temporal one or a spatial one), this lattice size does not spoil
our objective to investigate qualitatively the behavior of
propagators. If we could confirm our concepts of conformal
field theories with an IR cutoff on this size lattice, wewould
be able to naturally conjecture that our proposal will be
realized on a larger spatial lattice such as 2563 × 64.
Testing our conjecture on a larger lattice in order to take
the thermodynamic limit is important if we would like to
compare our results with the experiment. However, it is
beyond the scope of this article. We will make a small
comment in Sec. XII.
After verification of the existence of the conformal

region and a power-law-corrected Yukawa-type decaying
form on the lattice with a size of 163 × 64, we would like to
reveal the properties of the conformal region and the
temporal propagators in all cases of conformal QCD and
high-temperature QCD as a whole. In particular, we would
like to clarify the underlying physics leading to the
behavior of the characteristic form of the propagators
and extract the physical properties of each theory.
We utilize two tools to investigate the issues: One is a

new method of analyzing the propagators of mesons which
we call the local analysis of propagators. The other is the
analysis of the vacuum in terms of the Polyakov loops in
spatial directions.
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We find that the vacuum corresponding to the conformal
region is the nontrivial Zð3Þ twisted vacuum modified by
nonperturbative effects. Clarifying the relation between the
vacuum structure and properties of temporal propagators in
each vacuum, we show that the transition from the power-
law-corrected Yukawa-type decaying form to the exponen-
tial decay is a transition between different vacua, and
therefore, it is a first-order transition both in conformal
QCD and high-temperature QCD.
Finally, we argue from our theoretical analysis based on

the renormalization group (RG) flow and our numerical
simulations that there is a precise correspondence between
the conformal QCD and high-temperature QCD within the
conformal region. The correspondence between the two
sets of conformal theories with an IR cutoff is realized
between a continuous parameter T=Tc and a discrete
parameter Nf: one boundary is close to meson states,
and the other is close to free quark states.
In particular, conformal QCD with Nf ¼ 7 corresponds

to high-temperature QCD with Nf ¼ 2 at T ∼ 2Tc both of
which are in close relation to a meson unparticle model.
From this, we estimate the anomalous mass dimension γ� ¼
1.2ð1Þ for Nf ¼ 7. We also show that the asymptotic state
in the limit T=Tc → ∞ is a free quark state in the Zð3Þ
twisted vacuum. The approach to a free quark state is very
slow; even at T=Tc ∼ 105, the state is affected by non-
perturbative effects. We believe that this is related with the
slow approach of the free energy to the Stefan-Boltzmann
ideal gas limit. To conclude the precise relation, we need to
perform a similar analysis in the thermodynamical limit.
The fact above is consistent with our conjecture that the

lower critical flavor number Nc
f ¼ 7 [57].

B. Outline of the paper

The rest of the paper is organized as follows. In Sec. II,
we provide theoretical and numerical background to study
an IR fixed point in lattice QCD. In Sec. III, we introduce
the new concept of conformal theories with an IR cutoff
and discuss its implications. In Sec. IV, we study the
structure of propagators to confirm the existence of
conformal regions. In Sec. V, we study the vacuum
structure of lattice QCD. In Sec. VI, we analyze the
propagators in each vacuum. In Sec. VII, we discuss the
detailed relation between the vacuum structure and
the existence of conformal region. In Sec. VIII, we analyze
the effects of boundary conditions on the structure of
vacuum. In Sec. IX, we introduce the concept of unparticle
models as an effective description in the conformal region.
In Sec. X, we propose the correspondence between
conformal QCD and high-temperature QCD. In Sec. XI,
the correspondence is further studied to predict the mass
anomalous dimensions. In Sec. XII, we conclude the paper
with further discussions.
We have six appendixes. In Appendix A, we review the

history of our previous works. In Appendix B, we review

the (finite temperature) beta function and its relation to
trace anomaly. In Appendix C, we derive the unparticle
propagators. In Appendix D, we report the computation of
one-loop vacuum energy in lattice QCD with various
boundary conditions. In Appendix E, we review our
viewpoint on the chiral phase transition in Nf ¼ 2 QCD.
We collect the figures not listed in the main text in
Appendix F.

II. BACKGROUND

A. Action and observables

We define continuous gauge theories as the continuum
limit of lattice gauge theories, defined on the Euclidean
lattice of the sizeNx ¼ Ny ¼ Nz ¼ N andNt. To obtain the
thermodynamic interpretation, we in general impose an
antiperiodic boundary condition in the time direction for
fermion fields and periodic boundary conditions otherwise.
We also discuss the case when antiperiodic boundary
conditions in spatial directions for fermion fields are
imposed.
Our general argument that follows can be applied to any

gauge theories with (vectorlike) fermions in arbitrary
representations, but to be specific, we focus on SUð3Þ
gauge theories with Nf fundamental fermions (quarks). We
employ the Wilson quark action and the standard one-
plaquette gauge action. The theory is defined by two
parameters: the bare coupling constant g0 and the bare
degenerate quark mass m0 at ultraviolet (UV) cutoff. We
also use, instead of g0 and m0, β ¼ 6=g20 and the hopping
parameter K ¼ 1=2ðm0aþ 4Þ.
We measure, together with the plaquette and the

Polyakov loop in each space-time direction, the quark
mass mq defined through Ward-Takahashi identities
[58,59]

mq ¼
h0j∇4A4jPSi
2h0jPjPSi ; ð1Þ

where P is the pseudoscalar (PS) density and A4 is the
fourth component of the local axial vector current, with
renormalization constants being suppressed. The quark
mass mq thus defined only depends on β and K and does
not depend on whether it is in the confining region or the
deconfining region up to order a corrections [60].
In addition to them, we investigate in detail the t

dependence of the propagator of the local meson operator
in the H channel:

GHðtÞ ¼
X
x

hψ̄γHψðx; tÞψ̄γHψð0Þi; ð2Þ

where the summation is over the spatial lattice points. In
this paper, we mostly focus on the PS channelH ¼ PS, but
we also measure other channels and use the vector channel
to see the chiral symmetry.
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B. Simulations

We make numerical simulations for Nf ¼ 7, 8, 12, 16 as
candidates of conformal QCD and for Nf ¼ 2 as high-
temperature QCD on a lattice with a fixed size of 163 × 64.
The algorithms we employ are the blocked hybrid Monte

Carlo (HMC) algorithm [61] in the case Nf ¼ 2N and the
rational HMC algorithm [62] for Nf ¼ 1 in the case
of Nf ¼ 2Nþ 1.
We specify the coupling constant β ¼ 11.5 for Nf ¼ 16,

taking account of the fact that the IR fixed point for Nf ¼
16 is β ¼ 11.48 in two-loop approximation (see Sec. II D),
while β ¼ 6.0 for Nf ¼ 7, 8, 12, 16, varying the hopping
parameter K so that the quark mass takes the value from
0.40 to 0.0, except for a few cases in the deconfining region
or the confining region for comparison. We further perform
simulations for Nf ¼ 12 at β ¼ 8.0.
For high-temperature QCD, identifying the chiral tran-

sition aroundK ¼ 0.151 at β ¼ 6.0 on a lattice 163 × 64 by
the “on-Kc method” in Ref. [63], we choose the following
values of βs: β ¼ 6.5; 7.0; 8.0; 10.0, and 15.0.
If we formally estimate the temperatures based on

Δβ ∼ 0.5 for the scale change of a factor two from the
beta function in the one-loop approximation with Nf ¼ 2,
we obtain T=Tc ∼ 2; T=Tc ∼ 4; T=Tc ∼ 16; T=Tc ∼ 100,
and T=Tc ∼ 105, respectively. We take several values of
K for each β in such a way that the quark masses m0

qs take
values 0.00 ≤ mq ≤ 0.30, except for a few cases.
We show the parameters for simulations and the numeri-

cal results in Tables I–VII. All results for masses of mesons
and the quarks are expressed in units of the inverse of the
lattice spacing a−1 in the text and the tables.

We choose the run parameters in such a way that the
acceptance of the global metropolis test is about 70%. The
statistics are 1,000 molecular dynamics (MD) trajectories
for thermalization and 1,000 MD trajectories for the
measurement or 500 MD trajectories for thermalization
and 500 ∼ 900 MD trajectories for the measurement. We
estimate the errors by the jackknife method with a bin size
corresponding to 100 HMC trajectories.

C. Continuum limit

The continuum limit of a lattice theory is defined by
taking the lattice space a → 0 with N → ∞ and Nt → ∞,
keeping L ¼ Na and Lt ¼ Nta fixed.
When Nf ≤ 16, the point g0 ¼ 0 and m0 ¼ 0 in the two

parameter space ðg0; m0Þ is a UV fixed point. Therefore, a
theory governed by this fixed point is an asymptotically
free theory. We restrict ourselves to the theory defined by
this UV fixed point in this article.
There are four cases in the continuum limit:
(1) L and Lt are finite: the space is the three-torus T 3,

finite temperature T ¼ 1=Lt.
(2) L is finite and Lt is ∞: the space is T 3, zero

temperature.
(3) L is ∞ and Lt is finite: the space is the Euclidean

plane R3, finite temperature T ¼ 1=Lt.
(4) L and Lt are ∞: the space is R3, zero temperature.
When L and/or Lt are finite, the system is bounded by an

IR cutoff ΛIR. In numerical simulations, to achieve the limit
corresponding to case 3, we can first take the limit Nt
infinity (thermodynamical limit) and then we take the limit
N infinity. On the other hand, to achieve the limit

TABLE I. Numerical results for Nf ¼ 16: “s” in the second column represents the initial status. The continuation is from the lower K
(l) or from the higher KðhÞ. The third column is the number of trajectories for measurement. The fourth column is the plaquette value.
Themq in the fifth column is the quark mass defined in Eq. (1).m in the sixth and seventh columns are the mass of PS and V channels in
the case of the exponential decay defined in Eq. (7). The ~m in eighth and tenth columns and α in the ninth and 11th columns are,
respectively, the “mass” and the exponent of PS and V channels in the case of the Yukawa-type decay defined in Eq. (9).

Nf ¼ 16 β ¼ 11.5

K s Ntra plaq mq mπ mV ~mπ απ ~mV αV

0.120 l 1000 0.820199(7) 0.3995(1) 0.7930(5) 0.7931(5) � � � � � � � � � � � �
0.121 l 500 0.820543(7) 0.3672(2) 0.7451(19) 0.7458(20) � � � � � � � � � � � �
0.122 l 500 0.820856(7) 0.3346(1) 0.6844(8) 0.6847(8) � � � � � � � � � � � �
0.123 l 500 0.821214(6) 0.3039(1) 0.6389(9) 0.6397(11) � � � � � � � � � � � �
0.124 l 500 0.821560(7) 0.2733(1) 0.5858(8) 0.5930(18) � � � � � � � � � � � �
0.125 l 1000 0.821918(05) 0.2435(1) 0.5401(27) 0.5411(25) � � � � � � � � � � � �
0.125 h 1000 0.821927(06) 0.2498(1) � � � - 0.615(5) 1.37(5) 0.615(6) 1.34(6)
0.1255 l 1000 0.822127(06) 0.2348(1) � � � � � � 0.599(3) 1.28(3) 0.601(3) 1.23(3)
0.126 l 1000 0.822324(07) 0.2158(1) � � � � � � 0.504(3) 0.99(9) 0.502(3) 0.99(19)
0.1262 h 1000 0.822411(04) 0.2122(3) � � � � � � 0.522(9) 1.72(7) 0.532(7) 1.5(4)
0.1264 l 500 0.822497(11) 0.2072(1) � � � � � � 0.548(12) 1.45(13) 0.545(13) 1.5(15)
0.1266 h 1000 0.822577(06) 0.2010(1) � � � � � � 0.534(3) 1.44(8) 0.533(4) 1.4(5)
0.127 h 1000 0.822745(08) 0.1864(1) � � � � � � 0.451(5) 1.29(10) 0.446(6) 1.34(14)
0.130 h 1000 0.824107(06) 0.0998(2) � � � � � � 0.425(4) 1.19(2) 0.411(7) 1.48(8)
0.1315 h 1000 0.824866(09) 0.0552(4) � � � � � � 0.397(4) 1.15(2) 0.394(7) 1.23(9)
0.13322 h 1000 0.825790(08) 0.0029(4) � � � � � � 0.390(5) 1.09(4) 0.396(8) 1.02(14)
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corresponding to case 4, we can put N ¼ rNt with r an
aspect ratio, and finally, we take the limit N infinity
simultaneously keeping r fixed.
When we take the continuum limit, we have to fix the

physical scale. In confining QCD, the natural choice is to
fix the mass of the hadron by demanding

L ·mPS > c ð3Þ

and take L → ∞ limit, where the value c ∼ 5 is typically
used in the literature. For the conformal QCD, this choice
turns out to be subtle because there should be no scale in
conformal field theories after taking the continuum limit.

TABLE II. Numerical results for Nf ¼ 7: the meanings of the columns are the same as Nf ¼ 16.

Nf ¼ 7 β ¼ 6.0

K s Ntra plaq mq mπ mV ~mπ απ ~mV αV

0.1300 l 1000 0.615510(20) 0.5500(3) 1.2216(10) 1.2263(11) � � � � � � � � � � � �
0.1370 l 1000 0.623238(15) 0.3081(3) 0.8443(25) 0.8501(27) � � � � � � � � � � � �
0.1380 l 1000 0.624511(16) 0.2777(2) 0.7979(19) 0.8032(24) � � � � � � � � � � � �
0.1390 l 1000 0.625859(17) 0.2475(2) 0.7358(27) 0.7431(31) � � � � � � � � � � � �
0.1400 l 1000 0.627285(23) 0.2181(2) 0.6824(31) 0.6916(33) � � � � � � � � � � � �
0.1410 l 900 0.628794(14) 0.1889(2) 0.6304(26) 0.6394(32) � � � � � � � � � � � �
0.1412 l 1000 0.629129(20) 0.1833(2) 0.6250(21) 0.6356(23) � � � � � � � � � � � �
0.1412 h 1000 0.629037(12) 0.1814(2) � � � � � � 0.557(5) 0.78(5) 0.560(5) 0.80(7)
0.1413 l 500 0.629228(12) 0.1794(3) 0.5978(30) 0.6022(33) � � � � � � � � � � � �
0.1413 h 1000 0.62927(12) 0.1780(4) � � � � � � 0.512(9) 1.39(8) 0.514(9) 1.36(7)
0.1415 h 600 0.629559(13) 0.1721(2) � � � � � � 0.513(3) 1.09(7) 0.516(3) 1.10(11)
0.1420 h 1000 0.630328(21) 0.1587(4) � � � � � � 0.525(13) 1.05(14) 0.522(15) 1.21(16)
0.1430 h 700 0.631951(20) 0.1309(2) � � � � � � 0.523(6) 0.39(10) 0.529(07) 0.51(11)
0.1446 h 1000 0.634723(22) 0.0842(5) � � � � � � 0.472(6) 0.46(6) 0.483(05) 0.54(03)
0.1452 h 500 0.635759(19) 0.0614(1) � � � � � � 0.426(12) 0.80(1) 0.426(12) 1.03(02)
0.1459 h 1000 0.637062(17) 0.0450(2) � � � � � � 0.410(11) 0.80(14) 0.413(14) 1.01(18)
0.1464 h 700 0.637981(17) 0.0303(2) � � � � � � 0.381(8) 0.64(13) 0.393(09) 0.73(14)
0.1472 h 1000 0.639496(15) 0.0060(2) � � � � � � 0.405(8) 0.75(10) 0.406(09) 1.06(10)

TABLE III. Numerical results for Nf ¼ 8 at β ¼ 6.0: the meanings of the columns are the same as Nf ¼ 16.

Nf ¼ 8 β ¼ 6.0

K s Ntra plaq mq mπ mV ~mπ απ ~mV αV

0.1446 h 1000 0.634723(22) 0.0738(1) � � � � � � 0.422(8) 0.79(9) 0.430(9) 0.84(12)
0.1457 h 1000 0.637062(17) 0.0342(2) � � � � � � 0.386(5) 0.78(7) 0.385(7) 1.05(12)

TABLE IV. Numerical results for Nf ¼ 12 at β ¼ 6.0: the meanings of the columns are the same as Nf ¼ 16.

Nf ¼ 12 β ¼ 6.0

K s Ntra plaq mq mπ mV ~mπ απ ~mV αV

0.120 l 500 0.616908(25) 0.9515(73) 1.632(12) 0.1635(12) � � � � � � � � � � � �
0.125 l 900 0.622451(14) 0.7035(71) 1.388(19) 0.1390(21) � � � � � � � � � � � �
0.130 l 500 0.629336(94) 0.4944(98) 1.123((19) 1.125(18) � � � � � � � � � � � �
0.135 l 500 0.637354(48) 0.3184(27) 0.8534(26) 0.8574(20) � � � � � � � � � � � �
0.136 l 1000 0.639298(10) 0.2854(3) 0.7960(41) 0.8004(45) � � � � � � � � � � � �
0.136 h 1000 0.639307(11) 0.2850(1) � � � � � � 0.781(4) 0.72(5) 0.769(3) 0.75(5)
0.137 h 500 0.641257(21) 0.2521(47) � � � � � � 0.687(10) 1.11(12) 0.688(10) 1.16(11)
0.140 h 500 0.647566(24) 0.1576(17) � � � � � � 0.550(5) 0.83(7) 0.546(5) 1.00(11)
0.1425 h 500 0.653517(15) 0.0781(2) � � � � � � 0.371(10) 1.32(14) 0.364(0) 1.49(19)
0.144 h 500 0.657296(17) 0.0304(22) � � � � � � 0.406(5) 0.62(11) 0.406(6) 0.99(5)
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TABLE VI. Numerical results for Nf ¼ 2. The symbols a, b, and c in the second column at β ¼ 100.0 and K ¼ 0.1258 mean that the
state is close to ð1=3; 1=3; 1=3Þ, ð0; 1=3; 1=3; 0Þ, and ð0; 0; 1=3Þ, respectively (see Sec. VA for the definition of state). Otherwise, the
meanings of the columns are the same as Nf ¼ 16.

Nf ¼ 2

K s Ntra plaq mq mπ mV ~mπ απ ~mV αV

β ¼ 5.9
0.152 l 1000 0.602192(18) 0.0332(1) 0.3280(60) 0.4492(59) � � � � � � � � � � � �

β ¼ 6.5
0.110 l 500 0.596366(17) 1.6932(23) 2.1372(15) 2.1398(15) � � � � � � � � � � � �
0.145 l 1000 0.648107(13) 0.0587(2) 0.4249(45) 0.4414(49) � � � � � � � � � � � �
0.1455 l 600 0.648321(13) 0.0465(3) 0.4112(56) 0.4194(70) � � � � � � � � � � � �
0.146 l 1000 0.648546(14) 0.0337(3) � � � � � � 0.371(9) 0.71(8) 0.371(12) 0.98(14)
0.1465 l 1000 0.648799(14) 0.0213(4) � � � � � � 0.286(19) 0.73(19) 0.279(14) 1.08(26)
0.147 l 1000 0.649046(14) 0.0083(2) � � � � � � 0.295(16) 1.00(16) 0.286(6) 1.41(20)

β ¼ 7.0
0.142 l 700 0.678445(09) 0.0592(3) � � � � � � 0.386(13) 0.74(15) 0.402(11) 0.66(10)
0.143 l 500 0.678788(10) 0.0333(4) � � � � � � 0.360(13) 0.69(22) 0.356(10) 0.94(23)
0.144 l 600 0.679108(16) 0.0074(2) � � � � � � 0.354(14) 1.02(14) 0.320(14) 1.87(18)

β ¼ 8.0
0.139 l 700 0.725022(14) 0.0345(2) � � � � � � 0.318(12) 0.97(14) 0.299(12) 1.41(21)
0.140 l 800 0.725140(91) 0.0084(1) � � � � � � 0.376(7) 1.02(7) 0.403(6) 0.67(9)

β ¼ 10.0
0.110 l 600 0.783954(05) 0.8644(2) 1.3959(5) 1.3953(5) � � � � � � � � � � � �
0.125 l 600 0.784657(10) 0.3046(1) 0.6518(16) 0.6520(16) � � � � � � � � � � � �
0.130 l 700 0.785016(08) 0.1626(1) 0.3887(5) 0.3907(7) � � � � � � � � � � � �
0.130 h 900 0.785036(11) 0.1676(1) � � � � � � 0.495(11) 1.40(11) 0.498(10) 1.32(11)
0.135 l 1000 0.785549(08) 0.0280(2) � � � � � � 0.372(69) 1.11(6) 0.373(3) 1.14(10)

β ¼ 15.0
0.130 l 1000 0.860880(03) 0.0455(1) � � � � � � 0.385(55) 1.21(4) 0.3972(6) 1.00(9)

β ¼ 100.0
0.100 l 1000 0.979878(01) 1.0054(1) � � � � � � 1.466(1) 1.14(1) 1.467(1) 1.11(1)
0.120 l 600 0.979884(01) 0.1860(1) � � � � � � 0.519(1) 1.35(1) 0.510(4) 1.49(7)
0.122 l 800 0.979885(01) 0.1227(1) � � � � � � 0.454(2) 1.25(1) 0.447(4) 1.36(7)
0.125 l 900 0.979888(01) 0.2741(1) � � � � � � 0.389(10) 1.29(12) 0.415(5) 0.825(65)
0.1258 a 1000 0.979889(01) 0.0016(1) � � � � � � 0.373(7) 1.39(6) 0.346(16) 1.87(22)
0.1258 b 1000 0.979889(01) 0.0014(1) � � � � � � 0.318(3) 0.79(2) 0.326(14) 0.65(23)
0.1258 c 1000 0.979889(01) 0.0012(1) � � � � � � 0.224(3) 0.45(2) 0.238(10) 0.24(16)

β ¼ 1000.0
0.125 l 800 0.9979990(01) 0.0031(1) � � � � � � 0.396(4) 1.19(4) 0.441(6) 0.37(4)

TABLE V. Numerical results for Nf ¼ 12 at β ¼ 8.0. The meanings of the columns are the same as Nf ¼ 16.

Nf ¼ 12 β ¼ 8.0

K s Ntra plaq mq mπ mV ~mπ απ ~mV αV

0.120 l 600 0.730676(9) 0.5685(3) 1.0882(11) 1.0881(11) � � � � � � � � � � � �
0.125 l 600 0.733366(10) 0.3940(1) 0.8293(7) 0.8297(6) � � � � � � � � � � � �
0.128 l 500 0.735300(9) 0.3002(1) 0.6680(5) 0.6690(4) � � � � � � � � � � � �
0.129 l 500 0.736007(10) 0.2705(1) 0.6186(22) 0.6207(23) � � � � � � � � � � � �
0.129 h 500 0.736011(16) 0.2784(2) � � � � � � 0.685(5) 1.27(7) 0.686(6) 1.27(8)
0.130 h 700 0.736759(9) 0.2485(2) � � � � � � 0.668(4) 0.86(5) 0.670(4) 0.85(6)
0.133 h 1000 0.739240(14) 0.1598(2) � � � � � � 0.411(12) 0.80(1) 0.413(11) 1.01(18)
0.135 h 800 0.741071(7) 0.1008(3) � � � � � � 0.389(24) 1.52(22) 0.378(35) 1.73(43)
0.138 h 600 0.741081(9) 0.01261(1) � � � � � � 0.381(6) 1.06(8) 0.370(15) 1.33(22)
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As we argue, the choice of c leads to different phases in the
continuum limit. We also evaluate the upper limit value of c
to retain the conformal behavior in the continuum limit.

D. Banks-Zaks fixed point

Within the perturbation theory, the zero-temperature beta
function for the SUð3Þ gauge coupling constant can be
computed as

BðgÞ ¼ −
ð33 − 2NfÞ

48π2
g3 −

ð102 − 38
3
NfÞ

ð16π2Þ2 g5 þOðg7Þ: ð4Þ

The fixed-point Bðg�Þ ¼ 0 exists for 8.05 < Nf < 16.5
with the two-loop approximation. Of course, the two-loop
result is not trustworthy for lower values ofNf, so the lower
bound of the conformal window cannot be obtained from
the perturbation theory.
As we review in Appendix B, the beta function is related

to the trace anomaly. The trace of the energy-momentum
tensor in massless QCD is given by

Tμ
μ ¼ BðgÞTrF2

μν ð5Þ

as an operator identity. It vanishes when the theory is at the
IR fixed point g ¼ g�, and vanishing of the trace anomaly
means that it is conformal invariant.
At the conformal fixed point, one may compute the

anomalousmass dimension. The perturbation theory predicts

γm ¼ 1

2π2
g2; ð6Þ

which should be compared with the lattice simulation after
establishing how to read the anomalous mass dimension
from the temporal propagators, as we show later. For
reference, for Nf ¼ 16, the fixed point value from (4) is
β0 ¼ 11.48, and the mass anomalous dimension is
γ� ¼ 0.026. We further note that the conserved current
operator is not renormalized. Therefore, the anomalous
dimension vanishes.

E. Phase structure

In order to investigate properties of the theory in the
continuum limit, it is vital to clarify the phase structure of
lattice QCD.
Although we would like to extract the phase diagram in

the continuum limit, we have to perform simulations at finite
N. Therefore, the phase diagram is a three-dimensional space
parameterized by g0, m0, and N. Thus, first of all, one has
to make clear what kind of phases there are in this three-
dimensional space.
We claim that we are able to classify the phase space into

three regions: (1) the confining region, (2) the deconfining
region, and (3) the conformal region.
Let us first recall that there are no order parameters that

distinguish the deconfining phase from the confining
phase, except for the two limits; in the limit mq → ∞,
the Polyakov loop for the t direction can be used at the
deconfining phase transition, and in the limit mq → 0, the
chiral scalar density can be used at the chiral transition.
Therefore, it is not possible in principle to state which phase
is realized at the intermediate quark mass mq. However, in
the 3 ≤ Nf ≤ 6 case, there is a first-order transition line
from the chiral transition point toward heavier quark mass.
In such a case, one may state that either the chiral symmetry
is restored or the chiral symmetry is broken, depending on
the region it belongs to.
The deconfining transition is a first-order phase transition,

and similar to above, there is a first-order transition line
from the deconfining transition point to lighter quark mass.
In this case, one may say either the quark confinement or
deconfinement, depending on the region. However, in the
intermediate quark mass region, the first-order transition
becomes weak and probably disappears. Thus, the confining
region and the deconfining region are connected; therefore,
in strict meaning, both regions belong to one phase.
We use the terminology confining region instead of the

confining phase since, as mentioned above, there is no
order parameter in general.
When there is a Banks-Zaks IR fixed point [2] at finite

coupling constant g on the massless line which starts from
the UV fixed point, the long-distance behavior is deter-
mined by the IR fixed point. This defines a conformal
theory. The meaning of the conformal theory is discussed
later. We recall that the region of Nf for the existence of the

TABLE VII. Numerical results with antiperiodic and periodic boundary conditions in spatial directions for Nf ¼ 7 at β ¼ 6.0: the
meanings of the columns are the same as Nf ¼ 16, except for the second column.

Nf ¼ 7 β ¼ 6.0

K s Ntra plaq mq mπ mV ~mπ απ ~mV αV

0.1446 pbc 1000 0.634723(22) 0.0842(5) � � � � � � 0.4726(46) 0.46(6) 0.4834(47) 0.54(3)
0.1446 apbc 1000 0.634656(33) 0.0880(3) 0.5462(41) 0.5690(49) � � � � � � � � � � � �
0.1459 pbc 1000 0.637062(17) 0.0450(2) � � � � � � 0.4106(117) 0.80(14) 0.4131(135) 1.01(18)
0.1459 apbc 1000 0.637104(21) 0.0479(1) 0.5479(19) 0.5690(32) � � � � � � � � � � � �
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IR fixed point Nc
f ≤ Nf ≤ 16 is called the conformal

window.
On the other hand, when 1 ≤ Nf ≤ Nc

f − 1, the beta
function does not possess an IR fixed point in the
continuum limit with infinite space-time, which implies
the quark confinement. When the lattice size is finite, the
vicinity of the point g0 ¼ 0 along mq ¼ 0 is the chiral
symmetric phase, and there is a chiral phase transition on
the quark massless line mq ¼ 0.
The scenario above is a common lore, although there is

an alternative possibility that in between the confinement
(chiral symmetry broken) region and the chiral symmetric
conformal region at zero temperature, a new phase like the
magnetic phase may exist.
In this article, we propose a new concept of conformal

region that are discussed in detail in later sections, particu-
larly in Sec. VII. Analyzing the vacuum structure in terms of
the Polyakov loops in spatial directions and the specific
behavior of the temporal propagators of meson, we show that
there exists the conformal region in addition to the confining
region and the deconfining region, as shown in Fig. 1. On
a finite lattice, both in the cases 1 ≤ Nf ≤ Nc

f − 1 and
Nc

f ≤ Nf ≤ 16, when the bare coupling constant g0 is small
enough and when the quark mass mq is larger than the

critical mass, the system is in the deconfining region. On the
other hand, when g0 is larger, it is in the confining region.
In the continuum limit, we argue that in the case Nc

f ≤
Nf ≤ 16 only the confining region outside of the conformal
region remains, as shown in Fig. 2: (right panel) when the
infrared cutoff ΛIR is finite and (left panel) when ΛIR ¼ 0.
In the case 1 ≤ Nf ≤ Nc

f − 1, only the deconfining region
outside of the conformal region remains, as shown in Fig. 3.

F. Phase transition on a finite lattice

As mentioned above, our final goal is to investigate
conformal theories in the continuum limit. However, we
have to restrict ourselves to the calculations on a lattice with
a fixed size in this article.
The phase transition occurs only in the system with

infinite degrees of freedom. On a finite lattice, when
physical quantities exhibit a “discontinuous gap” (or more
precisely a sharp transition) at some point and when
theoretical argument supports the existence of the phase
transition, we identify the transition as a first-order tran-
sition in the continuum limit. Strictly speaking, all of the
discontinuities we discuss only exist in the continuum limit,
and our numerical simulation on a fixed lattice gives only
an indication of the discontinuity as a sharp transition. In

FIG. 1 (color online). Phase diagram on a finite lattice: (left) 1 ≤ Nf ≤ Nc
f − 1 and (right) Nc

f ≤ Nf ≤ 16. In the case Nc
f ≤ Nf ≤ 16,

the massless quark line originating from the UV fixed point hits the bulk transition point at finite β, and no massless line exists in the
confining region. The region above the bulk transition corresponds to the doublers of the Wilson fermion. On the other hand, in the case
1 ≤ Nf ≤ Nc

f − 1 on the massless quark line, there is a chiral phase transition point. Below the critical point the massless line is in the
confining region.

FIG. 2. The phase diagram for the case Nc
f ≤ Nf ≤ 16 predicted from the RG argument: (left) for ΛIR ¼ 0 and (right) for ΛIR ¼ finite.

The shaded strong coupling region for small quark masses does not exist in the β −mq plane [57] because the region corresponds to
Wilson doublers when mapped in terms of β − K.
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this respect, without taking the continuum limit, we cannot
exclude the possibility that the phase transition we propose
may result in the crossover.
For a second-order transition, we have to carefully apply

a scaling law in order to judge the existence of the phase
transition. The same remark for the discontinuity applies
here as well.

III. CONFORMAL THEORIES WITH
AN IR CUTOFF

We have recently investigated field theories that possess
an IR fixed point with an IR cutoff and introduced the
nomenclature “conformal field theories with an IR cutoff”
reported in short reports (Refs. [64] and [56]).

A. Definition and examples

We first define the conformal field theories with an IR
cutoff. The first assumption is that the beta function (either
zero temperature or finite temperature) vanishes. Of course,
if there were no other dimensionful quantities, this would
imply that the theory is scale invariant, and all of the
correlation functions show a strict power behavior. In
(perturbative) QCD at zero temperature, they are further
conformal invariant due to vanishing of trace anomaly (see
Appendix B for more details).
Our new observation is that when such theories have a

finite cutoff, then they will show the universal behavior that
we call conformal field theories with an IR cutoff. In

particular, we claim that within the suitable parameter
region that we call the conformal region, the temporal
propagators show a power-law-corrected Yukawa-type
decaying form. In the examples we study in this paper,
the conformal field theories with an IR cutoff are realized as
discussed below.

1. Conformal QCD

When the flavor number Nf is within the conformal
window Nc

f ≤ Nf ≤ 16, the beta function possesses the
Banks-Zaks IR fixed point. The continuum limit 1, 2, or 3
defines a theory with an IR cutoff.

2. High-temperature QCD

When the flavor number Nf is exclusive with the
conformal window, 1 ≤ Nf ≤ Nc

f − 1, and T ≥ Tc with
Tc the chiral phase transition point, the beta function of a
running coupling constant gðμ;TÞ at temperature T pos-
sesses an IR fixed point as shown in Ref [56] (it is
recapitulated in Appendix B). The temperature T plays a
role in the IR cutoff, together with a possible cutoff due to
compact space.
As long as T < Tc, the beta function is negative all

through g. As the temperature is increased further, the form
of the beta function will change as in Fig. 4: (Left) when
T > Tc but T ∼ Tc, the beta function changes the sign from
negative to positive at large g; as the temperature increases
the fixed point moves toward smaller g. (Right) when
T ≫ Tc it changes the sign at small g.

3. Numerical simulations on a finite lattice

All numerical simulations are performed on a finite
lattice, which introduces an IR cutoff. Therefore, any lattice
conformal QCD (Nf is within the conformal window
Nc

f ≤ Nf ≤ 16) and lattice high-temperature QCD (Nf is
1 ≤ Nf ≤ Nc

f − 1 and T ≥ Tc) are conformal field theories
with an IR cutoff.

B. Phase transition from an RG argument

We have shown two examples of conformal field theories
with an IR cutoff: conformal QCD and high-temperature
QCD. One of the main claims of the paper is that within the
conformal region, there is a correspondence between a set of

FIG. 3. The phase diagram predicted from the RG argument for
fixed temperature T with T=Tc > 1 in the case 1 ≤ Nf ≤ Nc

f − 1:
The shaded strong coupling region does not correspond to the
temperature T=Tc > 1.

FIG. 4. The beta function βðgðμ;TÞÞ at finite temperature T.
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theories in each class. We now argue that when we increase
the quark mass in each theory with the other parameters
fixed (e.g., N, β0, and Nf), they show the first-order phase
transition and leave the conformal region. Depending on
the parameters, the region outside of the conformal region
can be either the confining region or the deconfining region
for a finite lattice simulation, as shown in Fig. 1.

1. From conformal to confining

Let us discuss the mechanism of the phase transition
from the conformal region to the confining region from the
argument based on the RG flow. For this purpose, we
quickly remind ourselves of the properties of the RG flow
of the quark mass and the gauge-coupling constant when
the beta function possesses an IR fixed point.
Suppose the IR cutoff is zero. When quarks have tiny

masses, the RG trajectory would stay close to the critical
line, approaching the IR fixed point, and finally would pass
away from the IR fixed point to infinity. Therefore, the IR
behavior is governed by the confining region. Only on the
massless quark line is the scale invariance realized at the IR
fixed point (see the left panel of Fig. 2).
When the cutoff ΛIR is finite, the RG flow from UV to IR

does stop evolving at the scale ΛIR. When the typical mass
scale (e.g., that of a meson) mH is smaller than ΛIR, it is in
the conformal region. On the other hand, whenmH is larger
than ΛIR, the flow passes away from the IR fixed point to
infinity with relevant variables integrated out, thus being in
the confining region (see the right panel of Fig. 2).
This scenario implies that when physical quantities in the

IR limit (e.g., hadron masses) are mapped into a diagram in
terms of physical parameters at UV (e.g., the bare coupling
constant and the bare quark mass), there will be gaps in the
physical quantities along the boundary between the two
phases. Thus, the phase transition will be a first-order
transition.

2. From conformal to deconfining

A similar argument for the RG flow applies for the phase
transition into the deconfining region. Let us consider the
case where the bare-coupling constant g0 is sufficiently
small on a finite lattice (see Fig. 1). When the typical mass
scalemH is smaller than ΛIR, it is in the conformal region as
before. However, when mH is larger than ΛIR, the RG flow
passes away from the IR fixed point to a point in the
deconfining region.
The transition from the conformal region to the decon-

fining region is a first order when the lattice size is finite,
as in the case of the conformal region to the confining
region.
Since the deconfining region and the conformal region

are supposed to be in the same universality class in the
infinite volume limit (see, e.g., [65]), the phase transition
between the two will become weaker in the same limit.

3. Confining or deconfining in conformal QCD?

With the finite lattice size, whether the theory is con-
fining or deconfining by increasing the quark mass depends
on the bare-coupling β0 and the lattice size as well as the
number of flavor Nf.
In Secs. V–VII, after presenting our numerical simu-

lations, we argue that these two different possibilities
realized in finite lattice simulations may be a potential
source of the controversy of the conformal behavior of the
intermediate ranges of the conformal window such as
Nf ¼ 12, when one tried to study the mass spectrum by
including the mass values outside of the conformal region.

4. Continuum limit

When the lattice size is finite, the large t behavior of
the meson propagator GðtÞ is the exponential type both in
the confining region and the deconfining region. More
strictly, in the deconfining region, the exponential decay
form is an approximate form due to the finiteness of the
t range.
In the continuum limit, in the case of the confining

region with T ¼ 0, the asymptotic behavior is exactly
exponential with the mass of the ground state, while in
the case of the deconfining region with T finite, the spectral
decomposition of GðtÞ is necessary to accommodate the
exact asymptotic behavior.
When the continuum limit is taken in the case where

the Nf is within conformal region Nc
f ≤ Nf ≤ 16, the

confining region for larger quark masses enlarges, and
the deconfining region finally disappears with N → ∞
(see Fig. 2).
In the case 1 ≤ Nf ≤ Nc

f − 1, when g0 is larger than the
critical coupling constant, there is no conformal region, and
only the confining region dominates in the continuum limit.
On the other hand, when g0 is smaller (that is, T=Tc kept
larger than unity), only the deconfining region remains for
larger quark masses (see Fig. 3).
In our discussions, we have considered the simplified

RG flow in which only the gauge coupling constant and the
quark mass are the relevant parameters. As long as we are in
the perturbative regime, this is completely justified. In the
nonperturbative regime, there is a theoretical possibility
that perturbatively irrelevant operators become relevant in
the IR, changing the RG flow. If this were the case, the
lattice simulations of conformal window would become
much harder because we have to tune these extra param-
eters [e.g., OðaÞ lattice action] to reach the fixed point. As
far as our numerical analysis with the fixed lattice size
suggests, this does not seem to happen (see also the
functional RG group analysis of the extended RG flow
at zero temperature and at finite temperature in [66,67]). Up
to nonuniversal scheme dependence, our RG argument in
relation to how the confinement/deconfinement occurs does
not contradict with their analysis.
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C. In relation to mass-deformed CFT

As we have already emphasized, in the continuum limit
without an IR cutoff, the conformal region only exists on
the strict massless line mq ¼ 0. Once we have any nonzero
quark mass, the theory is in the confining phase. The first-
order phase transition line that we have proposed between
the confining region and the conformal region becomes
coincident with the massless line. The phase transition
clearly occurs at mq ¼ 0 for the conformal QCD in the
continuum limit without an IR cutoff. While the free energy
becomes continuous there because the energy gap behaves
as 1=L, some other physical observables may become
discontinuous.
In this continuum limit, the confining region with the

tiny quark mass has been known as the mass-deformed
conformal field theory and has been studied intensively in
the literature (see, e.g., [35,37]). As long as the RG flow
stays for a sufficiently long time close to the fixed point,
which requires that the mass is significantly smaller
compared with the UV cutoff or any other energy scale,
various physical observables in the mass-deformed con-
formal field theory will show the scaling behavior. Here the
quark mass serves as the effective IR cutoff in the fermion
sector [51,52], and the competition with the intrinsic IR
cutoff from the finite lattice size is our main focus.
Approaching the massless line makes the correlation length
divergent, and the critical exponent is determined from the
properties of the conformal fixed point. However, it is not
obvious if this criterion has been really achieved in the
finite lattice simulations.
The fate of the mass-deformed conformal field theory

under the presence of a finite cutoff is twofold. It could be
either our conformal region (when the mass is small
enough) or confining region (when the mass is larger).
In the literature, guided by the expected scaling behavior
without the IR cutoff in the mass-deformed conformal field
theory, the simulations have been mainly aimed at the
confining region. In contrast, our main focus in the
following is the conformal region, which is directly
connected to the conformal field theory in the continuum
limit on the massless line. Note again that the conformal
region with nonzero mass exists whenever the IR cutoff is
nonzero. As we discuss in the following sections, this
enables us to continuously connect the propagators, in
principle, to the massless and continuum limit without
encountering the phase transition. Indeed, we see the
remnant of the power-law behavior in the propagators in
the finite lattice simulations in the conformal region, which
is not visible in the confining region.
One important remark is in order. In the above para-

graphs, we have started with the mass-deformed conformal
field theory defined in the continuum limit with no IR
cutoff. With the finite IR cutoff, which we have already
discussed in Secs. II and III, there exists yet another
possible phase, the deconfining region. The properties of

this region are remotely distinguished from the mass-
deformed conformal field theory, and we should not be
able to test the prediction of the mass-deformed conformal
field theory in the deconfining region. The region remains
in the continuum limit if we keep the temperature finite, but
as we have already mentioned, it should go away in the
conformal QCD at zero temperature.
We see that in the finite-size lattice simulations, it depends

on the details of the simulation parameters, i.e., the coupling
constant or the lattice size whether the confining region or
deconfining region will appear above the phase transition
line from the conformal region. This is elaborated in
Sec. VII C in the example of Nf ¼ 12. A further remark
on the finite-size scaling appears in Sec. VII H.

IV. ANALYSIS OF PROPAGATORS

A. Long-distance behavior of propagators

Based on the above RG argument, we conjecture that the
long-distance behavior for the propagator of the local
meson operator

GHðtÞ ¼
X
x

hψ̄γHψðx; tÞψ̄γHψð0Þi

qualitatively differs depending on whether the quark mass
is smaller than the critical mass or not.
When the theory is in the relatively heavy quark region, it

decays exponentially at large t as

GHðtÞ ¼ cH expð−mHtÞ: ð7Þ
In contrast, in the conformal region defined by

mH ≤ cΛIR; ð8Þ
where c is a constant of order 1, the propagator GðtÞ
behaves at large t as

GHðtÞ ¼ ~cH
expð− ~mHtÞ

tαH
; ð9Þ

which is a power-law-corrected Yukawa-type decaying
form instead of the exponential decaying form [Eq. (7)].
In the continuum limit, we have to discuss conformal

QCD and high-temperature QCD separately.
When the theory is in the confining region in conformal

QCD, mH in Eq. (7) is the mass of the ground state hadron
in the channel H. In the continuum limit with L ¼ ∞ (i.e.,
ΛIR ¼ 0), the propagator on the massless quark line takes
the form

GHðtÞ ¼ ~c
1

tαH
: ð10Þ

If we take the coupling constant g0 ¼ g� at the UV cutoff,
αH takes a constant value, and the RG equation demands
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αH ¼ 3 − 2γ�; ð11Þ
for the PS channel with γ� being the anomalous mass
dimension γ at g ¼ g�. The theory is scale invariant and is
shown to be conformal invariant within the perturbation
theory [68] (see, e.g., [69,70] and the references therein
from the AdS/CFT approach). The distinction between
scale invariance and conformal invariance in lattice QCD
was addressed in [71]. When 0 ≤ g0 < g�, αH depends
slowly on t as a solution of the RG equation. In the IR limit
t → ∞, we must retain αHðtÞ → 3 − 2γ�.
In the thermodynamical limit at finite temperature,

Eqs. (7) and (9) are valid only approximately due to the
finiteness of the t range. A more rigorous way to obtain a
physical implication would be to make the spectral decom-
position of GHðtÞ.
However, our objective in this article is to verify the

existence of the conformal region and the power-law-
corrected Yukawa-type decaying form on a finite lattice
in the case of conformal theories with an IR cutoff. It is
beyond the scope of our objective to obtain the thermo-
dynamical physical quantities.
The conjecture should be satisfied in (1) large Nf QCD

within the conformal window with an IR cutoff and
(2) small Nf QCD at high-temperature T=Tc > 1 with
Tc being the chiral transition temperature.
In order to investigate the large t behavior of a propa-

gator, we define the effective mass mHðtÞ by

coshðmHðtÞðt − Nt=2ÞÞ
coshðmHðtÞðtþ 1 − Nt=2ÞÞ

¼ GHðtÞ
GHðtþ 1Þ :

In the case of exponential-type decay, the effective mass
approaches a constant in the large t region, which is called
a plateau.
We show the t dependence of the effective mass in the PS

channel with three types of sources for the four examples
(light-quark mass and relatively heavy-quark mass cases in
each categories):

(1)
(a) Nf ¼ 7; β ¼ 6.0; K ¼ 0.1400 (mq ¼ 0.25).
(b) Nf ¼ 7; β ¼ 6.0; K ¼ 0.1459 (mq ¼ 0.045).

(2)
(a) Nf ¼ 2; β ¼ 10.0; K ¼ 0.125 (mq ¼ 0.30).
(b) Nf ¼ 2; β ¼ 10.0; K ¼ 0.135 (mq ¼ 0.028).

Three types of symbols represent three types of source-
sink: the local-sink local-source (squares), local-sink
(quark-antiquark) doubly exponentially smeared source
of a radius 5 lattice units (circles), and local-sink doubly
wall source (triangles).
We show in Fig. 5 typical examples of exponential

decay in two cases of relatively heavy quark mass cases:
Nf ¼ 7; β ¼ 6.0; K ¼ 0.1400 (mq ¼ 0.25), and Nf¼2;
β¼10.0;K¼0.125 (mq ¼ 0.30).
We see the clear plateau of the effective mass at

t ¼ 24 ∼ 31 in both cases.
Next we show the scattered plot of the Polyakov loop in

the complex plane in Fig. 6 in these cases. (The difference
for the scales should be noted.) Apparently the former is a
disordered state, which implies the confining region, while
the latter is an ordered state, which implies the deconfining
region. These results can be better understood when we
consider the phase structure. We discuss this point in
Sec. VII.
Now we show in Fig. 7 typical examples of the Yukawa-

type decay in two cases of the very light-quark masses:
Nf ¼ 7; β ¼ 6.0; K ¼ 0.1459 (mq ¼ 0.045), and Nf ¼ 2;
β ¼ 10.0; K ¼ 0.135 (mq ¼ 0.028).
We see in both cases that the effective mass is slowly

decreasing without plateau up to t ¼ 31, suggesting the
power-law correction. We show the power-law-corrected fit
for the local-local data with the fitting range t ¼ ½15∶31� in
Fig. 8. The fits with αH ¼ 0.8ð1Þ and αH ¼ 1.1ð1Þ repro-
duce the data very well.
The χ2=dof ¼ 0.2166 × 10−2ð�0.3352 × 10−2Þ=14 and

0.1375 × 10−1ð�0.7847 × 10−2Þ=14 are very small. This
does not mean that the fits are excellent, but it reflects that
the correlation in the t direction is not taken into account. It

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

 0  2  4  6  8  10 12 14 16 18 20 22 24 26 28 30 32

K=0.1400, mq=0.22

loc(t)-loc(0)
loc(t)-dsmr(0)
loc(t)-dwal(0)

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

 0  2  4  6  8  10 12 14 16 18 20 22 24 26 28 30 32

Beta=10.0, K=0.125, Nf=2, 163x64,  PS-channel

loc(t)-loc(0)
loc(t)-dsmr(0)
loc(t)-dwal(0)

FIG. 5 (color online). The effective mass: (left) Nf ¼ 7 at β ¼ 6.0 and K ¼ 0.1400 and (right) Nf ¼ 2 at β ¼ 10.0 and K ¼ 0.125
(see the text for the three types of sources).
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is well known that it requires data in high statistics to take
into account the correlation. Furthermore, it is a notorious
problem to fit data with power terms. Therefore, it is hard to
estimate the error including the correlation. We have
estimated the errors by a jackknife method.
We have confirmed in all cases with mq ≤ 0.4 that the

propagator of a meson GHðtÞ behaves at large t as a power-
law-corrected Yukawa-type decaying form GHðtÞ ¼

~cH exp ð− ~mHtÞ=tαH instead of the exponentially decaying
form cH exp ð−mHtÞ.
We show in Fig. 9 the scattered plot of the Polyakov loop in

spatial directions. The patterns are apparently different from
those in the confining region and the deconfining region.
They exhibit the characteristics in the conformal region.
We defer the detailed discussion on the Polyakov loop

and the boundary of the conformal region after the
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FIG. 6 (color online). The scattered plots of Polyakov loops in the x, y, and z directions overlaid: (left) Nf ¼ 7 at β ¼ 6.0 and
K ¼ 0.1400 and (right) Nf ¼ 2 at β ¼ 10.0 and K ¼ 0.125.
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discussion of the structure of the vacuum in Sec. VII. We
show that the boundary between the conformal region and
the confining region is a first-order transition in the
Nf ¼ 7; 12, and 16 cases.

B. Local analysis of propagators

We are able to extract the properties of a quark and
antiquark system in the IR region from the long-distance
behavior of temporal propagators. However, the propaga-
tors contain more information for the properties of a quark
and antiquark system. For example, from the short-distance
behavior, we may extract the properties in the UV region.
In order to investigate the dynamics of the theory, we

make a detailed analysis of temporal propagators that we
call the local analysis of propagators [56]. We restrict
ourselves to the case of the local-sink local-source for the
local analysis. We parametrize the propagator GðtÞ as

GðtÞ ¼ c
expð−mðtÞtÞ

tαðtÞ
: ð12Þ

It is possible to determine c;mðt0Þ; αðt0Þ locally, using
three-point dataGðt0Þ; Gðt0 þ 1Þ; Gðt0 þ 2Þ. This is not a fit.
One important point is thatmðtÞ andαðtÞ aresmooth functions
in t. In spirit, this is analogous to the Callan-Symanzik RG
approachwherewe interpretmðtÞ as thescale-dependentmass
andαðtÞ as thewave-function renormalization factor.Wehave
alsomade fits to the formEq. (12) using five-point data.The fit
gives generally similar results with the three-point determi-
nation. It implies that the three-point determination will
represent the dynamics of the system.
The mðtÞ and αðtÞ at short distance are governed by the

UV fixed point and take the value of a free quark and an
antiquark:mðtÞ ¼ 2mq and αðtÞ ¼ 3.0 in the limit t → 0 of
the continuum theory. While in the limit t → ∞, mðtÞ and
αðtÞ are governed by the IR fixed point. First, themðtÞ should
approach a hadronic mass mH. The exponent αH in t → ∞
with t ~mH ≪ 1 takes the universal formula 3 − 2γ�, while
with t ~mH ≫ 1 it takes a value depending on the dynamics.

The mðtÞ and αðtÞ evolve with t from UV to IR and
thereby contain useful information on the dynamics, which
we discuss below.
We show the mðtÞ and αðtÞ for the four examples

discussed above:
(1) Fig. 10, exponential decay

(a) Nf ¼ 7; β ¼ 6.0; K ¼ 0.1400 (mq ¼ 0.25)
(b) Nf ¼ 2; β ¼ 10.0; K ¼ 0.125 (mq ¼ 0.30)

(2) Fig. 11, power-corrected Yukawa-type decay
(a) Nf ¼ 7; β ¼ 6.0; K ¼ 0.1459 (mq ¼ 0.045)
(b) Nf ¼ 2; β ¼ 10.0; K ¼ 0.135 (mq ¼ 0.028)

In Fig. 10, where the propagators decay exponentially,
the exponents αðtÞ take values close to 3.0 at t ¼ 3 (we
disregard the data at t ¼ 1 and 2, as they are affected by the
boundary) and decrease monotonously down to 0.0. In the
confining region (left), it decays without a particular
pattern, while in the deconfining region (right), it stays
around 3.0, which means a free quark and antiquark pair, at
t ¼ 4 ∼ 8. The mðtÞ take values close to 2mq at t ¼ 3 and
increase to the values of a meson state mH, which are
around 0.6 ∼ 0.7.
In Fig. 11, both of the exponents αðtÞ exhibit character-

istic t dependence. However, they are quite different from
each other. On the left panel, it shows a plateau at
t ¼ 14 ∼ 31. On the other hand, it shows a shoulder t ¼
10 ∼ 16 on the right panel of the figure. The difference
arises from the difference of the dynamics.
The four examples exhibit the usefulness of the local

analysis of propagators. We are able to learn not only the
phase structure of the theories but also the detailed
dynamics. We fully utilize the technique in the following.

V. STRUCTURE OF THE VACUUM AND
POLYAKOV LOOPS

A. The Zð3Þ twisted vacuum

To understand the phase structure in relation to the
expectation values of the Polyakov loops, we discuss the
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vacuum structure of the perturbative QCD on the lattice
in the one-loop approximation by computing the zero-
temperature vacuum energy.
In the perturbative QCD in the finite volume, the

classical vacua are characterized by the flat connection.
In the case of our torus lattice, the flat connection is given
by the Polyakov loop in x; y; z directions [in fundamental
representation of SUð3Þ]:

Ux ¼ exp

�
i
Z

Axdx

�
¼ diagðei2πax ; ei2πbx ; ei2πcxÞ

Uy ¼ exp

�
i
Z

Aydy

�
¼ diagðei2πay ; ei2πby ; ei2πcyÞ

Uz ¼ exp

�
i
Z

Azdz

�
¼ diagðei2πaz ; ei2πbz ; ei2πczÞ; ð13Þ

with ai þ bi þ ci ∈ Z for ði ¼ x; y; zÞ from the unitary
condition. Note that ai ¼ bi ¼ ci ¼ 1

3
; 2
3
gives a nontrivial

center of the gauge group.

When the space is compact, we expect that a nontrivial
potential for the flat direction is quantum mechanically
generated similarly to the Hosotani mechanism [72]. The
one-loop effective energy, including both fermion loops
and gauge field loops for the Nf ¼ 16 case with mq ¼ 0.0
on a 163 lattice, is calculated at the zero temperature in
the six-parameter space; ai, bi in the x, y, and z directions.
The details of calculation are given in Appendix D. The
effective potential and the contour map in terms of two
parameters, a, b in one direction among six parameters, are
shown in Figs. 12 and 13.
By denoting the Polyakov loop in the x; y, and z

directions by Px ¼ 1
3
TrUx, Py ¼ 1

3
TrUy, and Pz¼1

3
TrUz,

respectively, and writing

ðPx; Py; PzÞ ¼ jPj exp ð2πiððPx; Py; PzÞÞÞ;

where jPj is the absolute value and ððPx; Py; PzÞÞ is the
argument in units of 2π of Polyakov loops, it turns out that
the local extremum of the one-loop energy is given by
elements of the Zð3Þ center:

FIG. 12 (color online). The effective potential Veffða; bÞ in terms of a and b: m ¼ 0.0 (left) and m ¼ 1.0 (right).

FIG. 13 (color online). The contour of the effective potential Veffða; bÞ in terms of a and b: m ¼ 0.0 (left) and m ¼ 1.0 (right).
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ððPx; Py; PzÞÞ ¼ ð0; 0; 0Þ; ð0; 0;�1=3Þ;
ð0;�1=3;�1=3Þ; ð�1=3;�1=3;�1=3Þ;

with jPj ¼ 1.0. They are 33 fold and become degenerate
in the quench limit mq → ∞. This is expected because
without the matter the theory must be symmetric under the
center of the gauge group. In the above, the order of
Px; Py; Pz is cyclic.
From now on, we present the mean value of the argument

of the state without the � symbol for simplicity. We use
ð0; 0; 0Þ; ð0; 0; 1=3Þ; ð0; 1=3; 1=3Þ, and ð1=3; 1=3; 1=3Þ to
denote the phase of the mean values of the Polyakov loops
in units of 2π, without mentioning the absolute value.
When the state is in a confining region, the mean value of
the Polyakov loop as a complex number is zero, and
therefore, we denote the state by ð�; �; �Þ.
The effective energy depends on the Zð3Þ value, and we

clearly see from Figs. 12 and 13 that the eightfold states
ð1=3; 1=3; 1=3Þ are the lowest energy states in periodic
boundary conditions in the one-loop approximation. The
(0, 0, 0) state is locally unstable when mq is light, whereas
it becomes locally stable as the mq becomes heavy;
mq ¼ 0.15 ∼ 0.25. We can also confirm that the (0, 0, 0)
state is unstable at m ¼ 0.0 but stable at m ¼ 1.0 from
Figs. 12 and 13 of the effective potential.
In Ref. [53], a similar result is obtained in the case of the

twisted boundary conditions in the x and y directions:
Assuming a priori that the lowest state is represented by the
Zð3Þ center in the z and t directions, the vacuum takes the
nontrivial center in the fermion one-loop approximation.
We have several remarks of the vacuum structure. First,

in the one-loop approximation, the global vacuum structure
does not depend on the number of fermions very much,
while the shape of the potential does depend on the number
of fermions. For example, the shape of the potential for
Nf ¼ 2 and mq ¼ 0.0 is similar to that for Nf ¼ 16.
Second, the discussion here is done in the zero-temperature
limit, and the phase structure at finite temperature does not
necessarily follow the vacuum structure here. Finally, we
expect that the strong interaction does change the structure of
the vacuum, as we see that the Polyakov loop behaves very

differently in the confining region from that in the deconfin-
ing region. At the same time, we also see that in the
perturbative regime in the deconfining region, the one-loop
vacuum structure discussed here more or less survives.

B. The vacuum of conformal QCD

1. Nf ¼ 16

We compare the vacuum of Nf ¼ 16 obtained by
simulations at β ¼ 11.5 with K ¼ 0.1315 (mq ¼ 0.055)
with the vacuum in the one-loop approximation obtained
above. The history of the Polyakov loop at β ¼ 11.5 is
shown in Fig. 14. The argument is very stable during 1,000
trajectories, taking the value of �2=3π. However, the
magnitude is about ∼0.2, clearly smaller than 1.0. This
implies that the vacuum of Nf ¼ 16 at β ¼ 11.5 is close to
the vacuum in the one-loop approximation but is not well
described by the perturbation theory.

2. Smaller Nf

We show in Fig. 15 the Polyakov loop for Nf ¼ 7, 8, 12,
and 16 in the cases we have observed the Yukawa-
type decay.
As Nf decreases, the magnitude decreases, and the

fluctuation of magnitude and argument increases.
Therefore, the transition among the vacua often occurs
in the cases Nf ¼ 8 and 7. However, the mean value of the
arguments are ð1=3; 1=3; 1=3Þ in units of 2π.

C. The vacuum of high-temperature QCD, Nf ¼ 2

1. The β ¼ 10.0 ∼ 1000.0

In Figs. 16 and 38,39 in Appendix F, we show the
Polyakov loop forNf ¼ 2 at β ¼ 10.0; 15.0; 100.0; 1000.0.
As the temperature increases, the argument is more stable
during simulations, taking the value of �2=3π. The
magnitude increases as the temperature increases, taking
the values ∼0.1; 0.2; 0.82, and 0.96, respectively. The
approach to the magnitude unity is very slow. That is, at
T=Tc ≃ 102 or 105, jPj≃ 0.1 ∼ 0.2.
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2. Smaller β

In Fig. 17, we show the Polyakov loop at lower
temperatures in the cases where we have observed the
Yukawa-type decay for Nf ¼ 2 at β ¼ 6.5; 7.0, and 8.0.
We clearly see that as β decreases in high-temperature

QCD, the magnitude decreases, and the fluctuation of
magnitude and argument increases. Therefore, the tran-
sition among the vacua often occurs. Nevertheless, the
mean value of the arguments is ð1=3; 1=3; 1=3Þ down
to β ¼ 6.5.
However, at β ¼ 5.9, which is smaller than the chiral

transition point, the mean value of the Polyakov loop
vanishes as a complex number, which shows that the state is
in the confining region.

VI. TEMPORAL PROPAGATORS IN
VARIOUS VACUA

A. Free Wilson fermion and β ¼ 100.0

In the limit T=Tc → ∞, it is natural to consider that the
quark pair becomes a free quark pair. Therefore, we
calculate the propagator of the PS channel using the free
Wilson quark propagator in the vacuum: in all of the four
species of vacua, shown in the previous section.
We also calculate the meson propagators for Nf ¼ 2,

at β ¼ 100.0 and K ¼ 0.1258, which correspond to
T ∼ 1056Tc and mq ¼ 0.015
We have performed simulations first at a small value for

the temperature T=Tc ≃ 2 and gradually increased the

temperature. At small values of temperatures, the transition
among the four vacua often occurs because the barriers
among them are low, and therefore, the lowest energy state
is chosen during the simulations. Then the temperature is
gradually increased up to β ¼ 100.0. In this way, the state
becomes ð1=3; 1=3; 1=3Þ.
Alternatively, by choosing a configuration in the

quenched QCD as the initial state and varying the simu-
lation parameters in several ways, we are also able to obtain
the state at β ¼ 100.0 and K ¼ 0.1258, with ð0; 1=3; 1=3Þ
and ð0; 0; 1=3Þ. However, we are unable to obtain the state
with (0,0,0). This is consistent with the analysis of the
vacuum energy that the state (0,0,0) is locally unstable,
when mq ≤ 0.15.
Let us show on the right side of Figs. 18 and 40–42 in

Appendix F themðtÞ and αðtÞ of the free fermion state with
mq ¼ 0.01 calculated in the four species of the vacuum,
together with the results of Monte Carlo calculations at
β ¼ 100.0 with K ¼ 0.1258, which corresponds to mq ¼
0.0015 on the left side. The figures corresponding to the
state (0,0,0) at β ¼ 100.0 with K ¼ 0.1258 are missing due
to the reason given above.
The similarities between the free Wilson quark states and

the β ¼ 100.0 states are excellent. However, if one closely
looks at the both, one notices that the exponents αðtÞ at
large t in the case of β ¼ 100.0 are systematically larger
than those of the free Wilson cases. We discuss this
point later.
The values of the mass determined bymðtÞ at t → 31 are

in good tendency with the value estimated by the lowest
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FIG. 17 (color online). The scattered plots of Polyakov loops in the x, y, and z directions overlaid; Nf ¼ 2 at β ¼ 8.0 and K ¼ 0.139,
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Matsubara frequency: For ð1=3; 1=3; 1=3Þ, mPS ¼
0.384ð8Þ vs

ffiffiffi
3

p
4π=3L ¼ 0.45345. For ð0; 1=3; 1=3Þ,

mPS ¼ 0.328ð3Þ vs ffiffiffi
2

p
4π=3L ¼ 0.37024. For ð0; 0; 1=3Þ,

mPS ¼ 0.226ð3Þ vs 4π=3L ¼ 0.2618.
The differences between the free cases and the simu-

lation results are discussed below.

B. β ¼ 10.0;15.0;100.0;1000.0

In order to understand the difference for αðtÞ and mðtÞ at
large t between the free case and the state at β ¼ 100.0, we
calculate the PS propagator in the vacuummentioned above
at β ¼ 10.0; 15.0; 100.0; 1000.0.
The results of the αðtÞ are shown in Fig. 43. The αðtÞs at

four values of β seem almost the same each other at first
glance.
However, we know already that the magnitudes jPj are

0.1, 0.2, 0.82, 0.96, respectively, for β ¼ 10.0; 15.0; 100.0;
1000.0.
We see that as the temperature increases up to

β ¼ 1000.0, which corresponds formally to T=Tc≃
10598, the exponent αðtÞ at large t becomes smaller and
approaches to the free case.
This implies that even at β ¼ 1000.0 nonperturbative

effects still work to reduce the magnitude of the Polyakov
loop and the temporal propagators differ slightly from
the free case. Therefore, the perturbation around the
vacuum may not give a quantitatively good result
at T=Tc ¼ 102 ∼ 105.
In a similar way, the discrepancy of the observed value of

the mass and the one estimated by the lowest Matsubara

frequency with the twisted boundary condition of the free
quarks tends to be resolved at a higher temperature. At
β ¼ 1000.0withK ¼ 0.125, we obtainmPS ¼ 0.4254ð16Þ,
which is significantly closer to the prediction mPS ¼
0.45345 than at β ¼ 100.0 with mPS ¼ 0.384ð8Þ.
We think that this is closely related to the slow approach

of the free energy to the Stefan-Boltzmann ideal gas limit.
To conclude that, we must perform simulations toward the
thermodynamical limit.

VII. CONFORMAL REGION AND
VACUUM STRUCTURE

The conformal region is defined by Eq. (8),

mH ≤ cΛIR;

where the propagator GðtÞ behaves at large t as a power-
law-corrected Yukawa-type decaying form [Eq. (9)]

GHðtÞ ¼ ~cH
expð− ~mHtÞ

tαH
;

instead of the exponential decaying form [Eq. (7)] observed
in the confining region and deconfining region.
We have shown examples of the Yukawa-type decays

in many cases: Nf ¼ 7, 8, 12, and 16 in conformal QCD
and Nf ¼ 2, β ¼ 6.5; 7.0; 8.0; 10.0; 100.0; 1000.0 in high-
temperature QCD.
The RG argument implies that the boundary is a first-

order transition. Indeed, in the previous paper [64] we have
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shown in the case Nf ¼ 7 that the existence of two states at
the same parameters and the transition is first order.
In this section, we intensively investigate the conformal

region in several cases: Nf ¼ 16, Nf ¼ 12, Nf ¼ 7 in
conformal QCD and Nf ¼ 2; β ¼ 10.0 in high-temperature
QCD. In doing so, we clarify that the vacuum of the
conformal region is ð1=3; 1=3; 1=3Þ and outside the boun-
dary is either the (0,0,0) vacuum for the deconfining region
or the ð�; �; �Þ vacuum for the confining region. Therefore,
the transition across the boundary is the transition between
different vacua, and we argue that the transition must be
first order, being consistent with the gap observed in other
physical quantities.
We also make a cautious remark that in order to investigate

conformal properties such as the anomalous mass dimension
from the spectrum one must be inside the conformal region.
Otherwise, one may obtain either the deconfining behavior
or the confining behavior depending on the β and lattice size,
irrespective of the conformal behavior inside the conformal
region. We show examples in the case Nf ¼ 12.
In relation to the first-order phase transition, the search of

the gap in spectrum is crucial. To systematically address the
question, we carefully perform simulations in the following
way. We first simulate at small quark mass (large K) where

the propagator GðtÞ behaves at large t as a power-law-
corrected Yukawa-type decaying form. Then we simulate at
a smaller K (larger quark mass) using the configuration at
the larger K. We gradually decrease K. When the step size
of K is small enough, one will find a gap in the PS mass at
some K. Further, we decrease K. After reaching some K,
we then increase K in the opposite direction to the above.
Then we find a gap at the same (or similar) K to the one in
the process of decreasing K.
When the step size is large, one may miss the gap since

each vacuum is quasistable. In particular, at large β, large
Nf and large quark mass, one may obtain the result of a
quasistable state. We give such examples also in the
case Nf ¼ 12.

A. Nf ¼ 16

The results in the Nf ¼ 16 case formq andmPS (or ~mPS)
are shown in Fig. 19. We note that the quark mass mq
denoted by filled circles on the left panel is excellently
proportional to 1=K in the whole region from 0.00 to 0.4.
For the propagators of the PS meson, we observe a

clear transition from the exponentially decaying form to
the power-law-corrected Yukawa-type decaying form at
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K ¼ 0.125. The transition region is enlarged on the right
panel in Fig. 19.
The values of mPS and ~mPS are different in the limit

K ¼ 0.125 from smaller K (denoted by K ¼ 0.125l) and
from larger K (denoted by K ¼ 0.125h). The effective mass
plot at K ¼ 0.125h and K ¼ 0.125l on the right and left
panels of Fig. 20, respectively, clearly shows not only quite
a large difference of the effective mass at large t but also a
completely different decaying behavior.
The scattered plots of the Polyakov loops in the complex

plane atK ¼ 0.125h andK ¼ 0.125l are shown on the right
and left panels of Fig. 21, respectively. In the conformal
region, the arguments are �2=3π, and the magnitudes
are jPj≃ 0.18, while outside the conformal region the
arguments are 0 and the magnitudes are ∼0.05 ∼ 0.2. It is
characteristic in the deconfining region.
The vacuum of all the other states in the conformal

region are ð1=3; 1=3; 1=3Þ, while all of the states outside
the conformal region are (0,0,0).
The m2

PS and mPS are plotted as a function of mq in
Fig. 22 on the right and left panels, respectively. The
mPS plotted linearly as a function of mq outside the
conformal region can be smoothly extrapolated to
the mPS ¼ 0 point in the limit mq ¼ 0 compared with
the m2

PS extrapolation. This behavior is as expected
in the deconfining region.

Thus, we conclude that the conformal region is the
ð1=3; 1=3; 1=3Þ vacuum, and the deconfining region is the
(0, 0, 0) vacuum. The transition across the boundary is a
first-order transition between different vacua.
From the analysis we have made, we are able to draw the

phase structure as shown on the left panel of Fig. 32. The
transition in the quench limit on the lattice 163 × 64 is
estimated to be about β ¼ 6.7. This value is independent
from Nf. Therefore, the β ¼ 11.5 is in the deconfining
region at least for heavy quarks. As the quark mass
decreases, the line of β ¼ 11.5 hits the boundary between
the deconfining region and the conformal region.
The mq dependence of ~mPS inside the conformal region

is rather complicated around mq ≃ 0.2. Apparently the
small ~mPS region suffers from finite size effects. To verify
the scaling relation [35,71,73] for ~mPS as a function of mq,
we have to control finite size effects.
The transition occurs at mPS ≃ 0.539 with mq ≃ 0.244

(K ≃ 0.125) from which we estimate c≃ 1.94 with our
working definition of ΛIR ¼ 2πðN3 × NtÞ−1=4.

B. Nf ¼ 7

We have observed in Ref. [56] a transition from the
exponentially decaying form to the power-law-corrected
Yukawa-type decaying form around K ¼ 0.1413: the

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

im
ag

in
ar

y 
pa

rt

real part

Polyakov loop; Nf=16, beta=11.5, K=0.125h

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

real part

Polyakov loop; Nf=16, beta=11.5, K=0.125l

im
ag

in
ar

y 
pa

rt
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results of new simulations measuring the Polyakov loop on
the fly are shown in Fig. 25, which are the same as the
previous results within errors. The effective mass plots for
K ¼ 0.1413h and K ¼ 0.1413l shown on the right and left
panels of Fig. 26 clearly indicate a gap of the mass cross the
transition.
The vacuum structure in terms of the Polyakov loops

becomes less clear as Nf decreases, as shown in Sec. VIII.

First we show the scattered plot of the Polyakov loops in
the complex plane for two states in Fig. 44: One is an
example state outside of the conformal region,K ¼ 0.1400,
and the other in the conformal region, K ¼ 0.1459. The
state K ¼ 0.1459 on the left panel indicates that the state
is ð1=3; 1=3; 1=3Þ, while the state K ¼ 0.1400 on the
right panel implies that the state is in the confining
state ð�; �; �Þ.
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As these two states approach to the boundary K ¼ 1.413
from the both sides, the difference between the two states
becomes less clear, as shown in Fig. 45.
As discussed in Sec. II C, the order parameters, the

chiral condensate in the massless limit, and the Polyakov
loop in the time direction in the quenched limit are not
well defined far from the massless limit and the quenched
limit, respectively. The Zð3Þ center values are good
indicators for the structure of the vacuum, when β is
large or Nf is large. However, they are not good indicators
when Nf becomes small in conformal QCD or small β in
high-temperature QCD due to nonperturbative effects.
This is similar to the behavior of the chiral condensate
and the Polyakov loop in the time direction, as dis-
cussed above.
Irrespective of the existence of a good indicator in terms

of the Zð3Þ center values, the transition across the boundary
is a strong first-order transition, manifesting it in terms of
the temporal propagators.
All of the states outside the conformal region are

the confining region, from the Polyakov loop analysis.
In accordance with this, the mPS quadric plotted as
a function of mq in Fig. 27 on the right panel can
be smoothly extrapolated to the mPS ¼ 0 point in the limit
mq ¼ 0 compared with the linear plot on the left panel.
From the analysis we have made, we also are able

to draw the phase structure for Nf ¼ 7, as on the right

panel of Fig. 32. The point β ¼ 6.0 is in the confining
region.
The mq dependence of ~mPS is rather complicated around

mq ≃ 0.2. Apparently the small ~mPS region suffers from
finite size effects. To verify the scaling relation [35,71,73]
for ~mPS as a function of mq, we have to control the finite
size effects. We have more to say about the finite size
scaling in section VII H.
The transition occurs at mPS ≃ 0.601 with mq ≃ 0.216

(K ≃ 0.1413) from which we estimate c≃ 2.16 with our
working definition of ΛIR ¼ 2πðN3 × NtÞ−1=4.

C. Nf ¼ 12

The mq dependences of mPS outside of the conformal
region are different in the cases Nf ¼ 16 and Nf ¼ 7: In
the Nf ¼ 16 case, the linear mPS is proportional to mq,
which is the relation expected in the deconfining (chiral
symmetric) region, while in the case of Nf ¼ 7 the
square of mPS is proportional to mq, which is the relation
expected in the confining (chiral symmetry broken)
region. This difference is not originated from the differ-
ence of Nf, but from the β value. To make this point
clear, we make simulations for Nf ¼ 12 at β ¼ 6.0
and β ¼ 8.0.
We show two typical examples of scattered plot of the

Polyakov loops in each case: Fig. 28 shows the examples in
the case β ¼ 6.0. They are consistent with the fact that the
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FIG. 27 (color online). The mPS (or ~mPS) vs mq for Nf ¼ 7: (left) linear mPS and (right) squared mPS.
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states are ð�; �; �Þ, which is characteristic in the confining
region. On the other hand, the plots of Fig. 29 are for
β ¼ 8.0. The Polyakov loops are on the real axis. This
implies that the states are (0,0,0), which is characteristic in
the deconfining region.
The m2

PS and mPS are plotted as a function of mq for
β ¼ 6.0 and β ¼ 8.0, respectively, in Figs. 30 and 31. The
mPS quadrically plotted as a function of mq at β ¼ 6.0 can
be more smoothly extrapolated to the mPS ¼ 0 point in the

limit mq ¼ 0 compared with the linear plot on the left
panel. On the other hand, at β ¼ 8.0, the mPS linearly
plotted in mq can be more smoothly extrapolated to the
mPS ¼ 0 point in the limit mq ¼ 0 compared with the
quadric plot on the right panel.
From all results, we are able to draw the phase structure

for Nf ¼ 12: on the right panel of Fig. 32 for β ¼ 6.0
(confining region) and on the left panel for β ¼ 8.0
(deconfining region).
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Here is a cautionary remark. The mq dependence of mPS
outside of the conformal region is determined by the lattice
size and the beta. It is irrelevant to the conformal behavior.
In order to obtain conformal properties, one should be
inside the conformal region.
Another comment concerns quasistable states. Doing the

simulation by decreasing K in a small step and taking a
state ð1=3; 1=3; 1=3Þ as the initial state, one find a transition
at some K to a state (0,0,0) or ð�; �; �Þ. This implies that the
potential energy of the states (0,0,0) or ð�; �; �Þ is smaller
than that of the state ð1=3; 1=3; 1=3Þ for K ≤ Kc. It should
be stressed that this is different from the perturbation theory
where the state ð1=3; 1=3; 1=3Þ is the lowest state for all K.
Because of this fact, the first-order transition occurs.
As mentioned above, each vacuum is quasistable, in

particular, at large β, large Nf, and large quark mass.
Instead of the process in small steps of K, when one jumps
from K > Kc to some smaller K, the state may stay at a
state ð1=3; 1=3; 1=3Þ. We have checked in the Nf ¼ 12
case that at β ¼ 6.0, mc

q ¼ 0.284 (Kc ¼ 0.136) and the
allowed region for the next step from a state
ð1=3; 1=3; 1=3Þ is 0.285 ≤ mq ≤ 0.704. On the other hand,
at β ¼ 8.0, mc

q ¼ 0.271 (Kc ¼ 0.129), and the allowed

region is 0.271 ≤ mq ≤ 0.394. If we would take a next step
wider than this allowed region, the state will be a state
ð1=3; 1=3; 1=3Þ. The state is quasistable for order of 1,000
trajectories. The allowed region becomes smaller for
increasing β as expected.
Furthermore, if one would not systematically decrease or

increase K but would use a bisectionlike method to choose
K, one would obtain a complicated phase structure with
quasistable vacua.

D. Nf ¼ 2 at β ¼ 10.0

Now we investigate a case in high-temperature QCD. It
was shown in Sec. IVA for Nf ¼ 2 at β ¼ 10.0 that the
propagator behaves at large t exponential decay at
K ¼ 0.125 (mq ¼ 0.30), while Yukawa-type decay is at
K ¼ 0.135 (mq ¼ 0.028).
Here we further investigate the state at K ¼ 0.130. We

observe two states: one at K ¼ 0.130h continued from K ¼
0.135 and the other at K ¼ 0.130l from K ¼ 0.125.
Effective mass plots are shown in Fig. 23, and the scattered
plots of the Polyakov loops in the complex plane are in
Fig. 24. Thus, we see that the difference between the two
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FIG. 32 (color online). The phase diagram on a finite lattice for Nc
f ≤ Nf ≤ 16: the solid line toward the quench QCD K ¼ 0 is the

boundary between the deconfining and confining regions. The dashed line represents the simulation line. The massless line hits the bulk
transition point at finite β.
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sates is exactly the same as in the nf ¼ 16 case: The
conformal region can be identified with the vacuum
ð1=3; 1=3; 1=3Þ, while the deconfining region with
(0,0,0). The transition across the boundary is a first-order
transition between different vacua in this case also.
We are able to draw the phase structure as shown in

Fig. 33, which is similar to the left panel of Fig. 32.
However, in Fig. 32 there is no mq ¼ 0 in the confining
phase, which is quite different from Fig. 33.

E. Phase structure on a lattice

From the above detailed analyses for Nf ¼ 16, Nf ¼ 12,
Nf ¼ 7, and Nf ¼ 2; β ¼ 10.0, we make one of the main
conclusions in this article, announced in Sec. II E that the
phase structures on a finite lattice are as shown in Fig. 1.
Thus, there exists on a finite lattice the conformal region in
addition to the confining region and the deconfining region
both in conformal QCD and high-temperature QCD.

F. The vector channel

We have mainly discussed the temporal propagators in
the PS channel so far. We have also measured the
propagator in the vector channel, the results being listed
in the tables. In general, the signal is worse in the vector
channel, in particular, at the very small quark mass. This is
common to the usual QCD.
In the confining region, the pion mass in the chiral limit

satisfies m2
π ∼mq as a softly broken Goldstone particle.

Therefore, mV deviates from mπ and takes a nonzero value
in the chiral limit. In the case Nf ¼ 2, we are able to take a
very small quark mass mq ¼ 0.0332ð1Þ at β ¼ 5.9, which
is lower than the chiral transition at β ¼ 6.0. We see clearly
that the vector meson deviates from the PS meson: mπ ¼
0.328ð6Þ and mV ¼ 0.449ð6Þ. At β ¼ 6.0 for Nf ¼ 12 and
Nf ¼ 7, there is a tendency formV to be slightly larger than
mπ . However, the quark mass is heavy to conclude the
deviation.

In the deconfining region at β ¼ 11.5 for Nf ¼ 16, at
β ¼ 6.0 for Nf ¼ 12, and at β ≥ 6.5 for Nf ¼ 2, mπ agrees
with mV within errors. This is consistent with the fact
that the chiral symmetry is not spontaneously broken.
However, the quark mass is relatively heavy, and we have
to measure the scalar meson to conclude that the chiral
symmetry is conserved.
In the conformal region, we measure both the mass ~m

and the exponent of power-modified Yukawa-type decay.
From the tables, we see that the ~mV agrees with ~mπ with
almost one standard deviation, while αV is in general
systematically larger than αPS, albeit errors are large.
Theoretically, it is possible that the anomalous dimension
in the vector channel is different from the PS cannel.
To conclude the difference, we need many more high-
statistics data.

G. Nf ¼ 18

It is believed that when Nf ≥ 17 the theory is a free
theory in the continuum limit since the point g0 ¼ 0 and
m0 ¼ 0 is an IR fixed point in this case. The simulations are
performed both at heavy quarks, K ¼ 0.100 (mq ¼ 1.00),
and light quarks, K ¼ 0.125 (mq ¼ 0.027). The result for
heavy quarks is in complete agreement with the free case
with mq ¼ 1.00, as shown in Fig. 47. The result for light
quarks is also in good agreement with the free case.
However, the behavior in the IR limit is slightly different.

FIG. 33 (color online). The phase diagram on a finite lattice for
1 ≤ Nc

f ≤ −1: the solid line toward the quench QCD K ¼ 0 is the
boundary between the deconfining and confining region. The
dashed line represents the simulation line. The massless line runs
through from β ¼ ∞ to β ¼ 0.
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In Fig. 34, the local mass mðtÞ and the local exponent αðtÞ
enlarged at large t for Nf ¼ 18 and Nf ¼ 16 (at K ¼ 0.125
and β ¼ 10.0) together with the free fermionmq ¼ 0.01 are
shown. The Nf ¼ 18 case is closer to the free case, but
there is still a gap between the Nf ¼ 18 case and the free
case. Although it would be intriguing to take the continuum
limit of the Nf ¼ 18 case, since the direction of the RG
flow is opposite to the Nf ≤ 16, it is out of the scope of this
article. The results obtained so far are consistent with the
common lore that the theory must become a free theory in
the continuum limit.

H. Finite-size scaling

Since our discussions on the conformal field theory with
an IR cutoff crucially depend on the existence of the finite
lattice, in particular at zero temperature, it would be
important to ask if our theoretical as well as numerical
results are consistent with the finite-size scaling argument
based on the RG analysis. We would like to stress that
the finite-size scaling is based on very general properties
of the RG, and it is applicable to any vacua irrespective of if
the theory is in the conformal region or in the confining
region. Some of the implicit assumptions, however, may be
valid only when the theory stays for a sufficiently long time
close to the fixed point. Such an assumption does not
necessarily hold in the confining region, as we discuss in
the following.
Let us consider the conformal QCD in a finite box

with the size L. The simple scaling argument (see, e.g.,
[32,33,35–38] and the references therein for the argument
as well as attempts for its verification in numerical
simulations) tells that any dimensionful quantity such as
mPS (or ~mPS) is a function of the scaling variable
x ¼ L1þγ�mq as

L ·mPS ¼ fðxÞ: ð14Þ

In the thermodynamics limit x → ∞, it was claimed [35]

that the scaling function should behave as fðxÞ ∼ x
1

1þγ�

under the assumption that the RG flow stays for a
sufficiently long time close to the fixed point. Note that
this assumption is not valid if we takemq → ∞with a fixed
L, so the naive limit in the confining region may not be
used to determine the mass anomalous dimension. This
scaling relation also assumes that the continuum limit
a → 0 is implicitly taken. Indeed, we have seen that mq

dependence on mPS in the confining region in the large mq

limit (for any Nf) does not satisfy this scaling behavior with
nontrivial γ� corresponding to the fixed point. We stress that
this is not in contradiction with the underlying IR fixed point
in any means. It is rather due to the fact that the largemq limit
is not ideal to probe the underlying IR fixed point from the
scaling behavior of fðxÞ with the fixed lattice size.

On the other hand, our numerical results in the conformal
region predict the behavior of the scaling function in the
opposite limit (x ∼ 0):

fðxÞ ¼ c0 þ gðxÞ; ð15Þ

where gð0Þ ¼ 0. The power ansatz gðxÞ ∼ xα is typically
employed in the literature (e.g., [51,52]). The function fðxÞ
from our numerical simulations can be read from Figs. 22,
27, 30, and 31, where we have also discussed some
qualitative features of the shape of fðxÞ in the main text.
One remark here is that the contribution from the constant
c0 dominates in the conformal region (as also noted in
[51,52] for the small x region in Nf ¼ 12). A theoretical
explanation of this constant is given by studying the
effective potential for the Polyakov loops, where we have
shown that when β → ∞, the constant c0 is determined by
the nontrivial condensation of the Polyakov loops. In
addition, the presence of the first-order transition tells us
that fðxÞ is discontinuous as a function of x. Indeed, we
have shown that the value of c0 is affected by the choice of
the vacuum. Apart from this, our results have no discrep-
ancy with the existing finite-size scaling argument as they
should. This is because the finite-size scaling is just a
consequence of the RG with the fixed point. Note that the
crucial assumption that the RG flow stays close to the fixed
point is much more reliable in the conformal region than in
the confining region. It remains an open problem to
determine the large x behavior within the conformal region
to see the scaling behavior of fðxÞ.
While our results give a prediction of the scaling function

fðxÞ for small x as long as our assumption that the RG flow
stays for a sufficiently long time close to the fixed point is
valid, we have not directly checked the L (in)dependence of
the scaling function numerically except for the trivial limit
of β → ∞ because our numerical analysis is done with the
fixed lattice size. It would be interesting to study the finite-
size scaling function fðxÞ systematically under the change
of the lattice size to see if further evidence for the fixed
point may be obtained.
As we have already mentioned at the end of Sec. II C,

the continuum limit is subtle in the conformal QCD. We
would like to propose to take the limit while keeping the
condition

L ·mPS < c ð16Þ

in order to be within the conformal region, as we have
demonstrated for a fixed L. This condition is equivalent to
evaluating fðxÞ below the discontinuity. If we would like to
take the limit in the confining region, we have to pay extra
care to ensure that the RG flow stays close to the fixed point
for a sufficiently long time. It is, however, beyond our
scope of this paper to take the continuum limit, and we
leave it for the future study.
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VIII. BOUNDARY CONDITIONS AND THE
STRUCTURE OF THE VACUUM

We have shown that in the case of periodic boundary
conditions in spatial directions for fermions, the lowest
effective energy states (the vacuum) in the one-loop
approximation are the eightfold states ð1=3; 1=3; 1=3Þ.
On the other hand, the (0,0,0) state is locally unstable
when mq is light, whereas it becomes locally stable as the
mq becomes heavy: mq ¼ 0.15 ∼ 0.25.
The lowest energy state depends on the boundary

conditions. We discuss the other relevant cases here.
In the case of antiperiodic boundary conditions in spatial

directions, we are able to show that the (0,0,0) state is the
lowest energy state by performing the one-loop computa-
tion of the vacuum energy at zero temperature, as in the
case of periodic boundary conditions.
We compare, in the cases of antiperiodic boundary

conditions in spatial directions, analytic results for free
Wilson fermions with mq ¼ 0.01 on the left panel of
Fig. 46 with the results of simulations shown on the right
panel for Nf ¼ 2 at β ¼ 100.0 with K¼ 0.125ðmq ¼ 0.03Þ.
Both of them show the characteristic pattern for the vacuum
(0,0,0), and they are in good agreement with each other.
However, when one closely looks at the details, one notices
that the exponent of the free case is smaller and the mass is
larger than those of Nf ¼ 2 case at large t. The situation is
similar to the periodic case. The difference is due to
nonperturbative effects.
The value of the massmðtÞ at large t should be compared

with the lowest Matsubara frequency 2
ffiffiffi
3

p
π=L ¼

0.680115, which is larger than that of the periodic boun-
dary conditions with twisted vacuum 2

ffiffiffi
3

p
2π=ð3LÞ ¼

0.45345. The result for the Nf ¼ 2 case mðtÞ at large t
is mðtÞ ¼ 0.634ð2Þ, which is close to 0.680.
We make short runs of simulations for other cases such

as Nf ¼ 7; 8; 12; 16 and Nf ¼ 2 at β ¼ 6.5; 7.0; 8.0. The
most characteristic shared feature for them is that mðtÞ
becomes larger than those for periodic boundary condi-
tions. Therefore, it is more difficult to investigate the
conformal properties.
We perform a long run for Nf ¼ 7 at K ¼ 0.1446 and

0.1459. We obtain mPS ¼ 0.5462ð41Þ at K ¼ 0.1446 and
mPS ¼ 0.5479ð19Þ at K ¼ 0.1459, with the fit range
[28:31]. We do not see the power-law-corrected Yukawa-
type decay since we think mPS ¼ 0.5462ð41Þ and 0.5479
(19) are larger than the critical mass.
When antiperiodic and periodic boundary conditions are

mixed, the Polyakov loop in the lowest energy state takes
either exp ð�i2π=3Þ or 1 depending on the boundary
conditions in that direction.
In the limit L → ∞, physical quantities will not depend

on boundary conditions. Therefore, it is natural to con-
jecture that the true vacuum in the limit L → ∞ is a
weighted superposition of 27-fold local minima with four
different species.

When β is large on a finite lattice with a medium size, the
transition between two different local minima is hard to
occur. However, as the lattice size is increased, the barrier
between the vacua is decreased as Oð1=LÞ. Therefore,
although it takes time, it will eventually reach an equilib-
rium state.
In order to obtain a physical quantity in the continuum

limit, we first perform simulations on a large lattice for a
long period in such a way that the transition among
different vacua occurs with a nonnegligible probability.
We repeat the same computation by changing the
lattice size. Finally, we fit the data with a constant plus
a 1=L term and extract the physical quantity in the
continuum limit.
Ideally, we would like to repeat a similar procedure

with antiperiodic boundary conditions and get the physi-
cal quantity in the continuum limit. Then we should be
able to check that the result does not depend on the
boundary conditions. Probably this requires a lot of
CPU times.
We need certainly more works to investigate the vacuum

and conformal properties in the limit L → ∞.

IX. UNPARTICLE MODELS

In order to understand the relation between the power
exponent obtained in the Yukawa-type power-decaying
form of the propagators and the mass anomalous dimen-
sions, we need a concrete theoretical model that realizes the
effects of an IR cutoff in (strongly coupled) conformal field
theories. For this purpose, let us discuss a meson unparticle
model, which is motivated by the soft-wall model in AdS/
CFT correspondence [74] (for details, see Appendix C). We
regard the unparticle models as effective descriptions of the
conformal field theory with an IR cutoff in the con-
tinuum limit.
The soft-wall model predicts the form of the propagator

in the momentum space as

hOðpÞOð−pÞi ¼ 1

ðp2 þm2Þ1−α : ð17Þ

The spectrum in the momentum representation has a cut
instead of a pole. As we see in Appendix C, this ansatz of
the propagator explains the power-law-corrected Yukawa-
type form of the propagator in position space.
When mt ≪ 1, the mass anomalous dimension and the

power are related by αðtÞ ¼ 3 − 2γ�. This is model inde-
pendent and universal. On the other hand, when mt ≫ 1,
the computation in Appendix C shows that αðtÞ ¼ 2 − γ�
for t ≫ Λ−1

CFT. Here ΛCFT is the scale under which the
coupling constant does not effectively run. When β0 is
sufficiently close to the fixed-point value, it is very close to
the UV cutoff.
A possible scenario for T=Tc ≫ 1 is to treat ψ̄γ5ψðxÞ as

the nonbound state of unfermions. The soft-wall model
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predicts the form of the propagator with scale dimension
Δf in the momentum space as

hΨðpÞΨ̄ð−pÞi ¼ ðpμγμ þmÞ 1

ðp2 þm2Þ52−Δf
: ð18Þ

As shown in Appendix C, one can compute the power
corrections for the meson operators out of the fermion
unparticle model. When mt ≪ 1, αðtÞ ¼ 3 − 2γ�. On the
other hand, when mt ≫ 1, αðtÞ ¼ 1.5 − γ� for t ≫ Λ−1

CFT.

X. CORRESPONDENCE BETWEEN CONFORMAL
QCD AND HIGH-TEMPERATURE QCD

As a highlight of our discussions on the conformal field
theories with an IR cutoff, we propose the direct corre-
spondence between conformal QCD and high-temperature
QCD in the conformal region. This enables us to under-
stand the boundary of the conformal region and the
computation of the mass anomalous dimension.

A. Similarity of the beta function

We first observe the similarity of the beta functions on
the Nf dependence of the conformal QCD and the T=Tc
dependence of high-temperature QCD, as shown in Fig. 35:
When Nf ¼ Nc

f and T=Tc ∼ 1, the beta function changes
the sign at large g, as Nf and T=Tc increase, and the point
of the sign change moves toward smaller g. When Nf ¼ 16
and T=Tc ≫ 1, it changes signs at very small g.
This fact is only suggestive for the similarity on the

dynamics of the two sets of conformal theories with an IR
cutoff. We argue that the similarity is more than that.

B. Correspondence on the t dependence of propagators

Now let us compare the exponent αðtÞ and the local mass
mðtÞ between conformal QCD and high-temperature QCD.
The form of αðtÞ changes with the temperature T=Tc in
high-temperature QCD or the number of flavor Nf in
conformal QCD. On the other hand, the t dependence of
mðtÞ does not depend very much on them.

We show the two sets of αðtÞ side by side in Fig. 36, the
conformal QCD data on the right panel and the high-
temperature QCD data on the left panel in order to compare
them directly. We take a quark mass that is not close to the
boundaries of the conformal region in order to avoid
boundary effects. We also check in several cases that the
quark mass dependence is weak in the case that the quark
mass is well between the boundaries. We do not make a fine
tuning to state the correspondence.
We observe that the correspondence on the t dependence

of αðtÞ between the two sets of data is excellent with each
of the following pairs: T ∼ 2Tc and Nf ¼ 7, T ∼ 4Tc
and Nf ¼ 8, T ∼ 16Tc and Nf ¼ 12, and T ∼ 256Tc
and Nf ¼ 16.
Thus we plot schematically the correspondence between

conformal QCD and high-temperature QCD, as in
Fig. 35. The correspondence is a powerful tool to inves-
tigate the properties of conformal theories. The T=Tc
is a continuous variable, while the Nf is a discrete variable.
Therefore, we are able to use the information in high-
temperature QCD to understand the properties of
conformal QCD.
On the other hand, for conformal QCD, we are able to

extend the region to Nf ≥ 17 out of the conformal window.
This extension is useful to investigate the limiting behavior
of high-temperature QCD in the limit T=Tc → ∞ since
there is no state for T=Tc > ∞.
The correspondence we propose can be supported by the

following RG argument. When the quark mass mq is
sufficiently small, the RG equation for our propagator is
governed by just one number, the mass anomalous dimen-
sion γ�, so whenever the mass anomalous dimension is the
same, they must satisfy the same equation (e.g., [35]), which
gives a heuristic support to how the correspondence works.
The implicit assumption here is that they are in the same
vacuum. Due to this, the correspondence does not neces-
sarily work outside of the conformal region because
the confining vacuum and the deconfining vacuum are
different.
While this agreement of the RG equation is a necessary

kinematical condition for the correspondence, we would

FIG. 35. The correspondence between conformal QCD and high-temperature QCD in terms of the beta function. The horizontal line
on the top represents the correspondence between the number of flavor Nf and the temperature T=Tc.
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like to stress that our correspondence tells us more than
that. The agreement of the detailed form of the propagator
(even with the finite size corrections) suggests the under-
lying universal dynamics beyond what conformal invari-
ance dictates.
In order to make the underlying dynamics clear, in

addition to the vacuum structure, we need a comparison
with the unparticle models we proposed in Sec. IX.

C. Nf ¼ 7 and T=Tc ≃ 2

We note that both in the Nf ¼ 7 case of conformal QCD
and at T ∼ 2Tc in high-temperature QCD, we have a
plateau in the αðtÞ at large t (15 ≤ t ≤ 31).
This behavior of the propagator at large t implies

Eq. (17) in the momentum representation. Thus, in both
cases, the IR behavior of the state is well described by the
meson unparticle model.
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FIG. 36 (color online). The correspondence of the local exponent αðtÞ for high-temperature QCD (left) and for conformal QCD (right).
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The value of αðtÞ at plateau (t ¼ 15 ∼ 31) is 0.8(1) for
K ¼ 0.1452 and K ¼ 0.1459 in the Nf ¼ 7 case. We have
taken, to avoid boundary effects, the quark masses middle
among those within the conformal region.
Applying the formula αðtÞ ¼ 2 − γ�, we have

γ� ¼ 1.2ð1Þ. Although this value should be refined in
the future by taking the continuum limit, this value implies
that the anomalous mass dimension is of order unity.

D. Nf ¼ 16 and T=Tc ≃ 256

As discussed in Sec. V, the vacuum of Nf ¼ 16 at β ¼
11.5 (and Nf ¼ 2 at T=Tc ≃ 100.0) is close to the twisted
Zð3Þ vacuum, but is different in the magnitude of the
Polyakov loop taking jPj≃ 0.2. It is tempting to identify
the corresponding effective theory as the fermion unparticle
model in the continuum limit. The smallness of the
deviation from the free fermion certainly suggests that
the model cannot be a meson unparticle.
It is important to note that the unparticle models are

effective descriptions and do not directly encode the
vacuum structure nor boundary conditions. It is interesting
to question whether the fermion unparticle model with
twisted boundary condition might explain this difference.
However, it turns out to be hard to resolve the difference by
the fermion unparticle model within the lattice size that we
have studied.
Comparing the previous subsection with this subsection,

we note the effect of the finite lattice size is smaller for the
meson unparticle models due to the pointlike nature of the
bound states, so we expect that the meson unparticle
models near Nf ¼ Nc

f are more trustworthy in comparison
with the lattice simulation.

XI. TWO SETS OF CONFORMAL THEORIES
WITH AN IR CUTOFF

Now we have two sets of conformal theories with
an IR cutoff: (1) 7 ≤ Nf ≤ 16 in conformal QCD and
(2) 1 ≤ T=Tc ≤ ∞ in high-temperature QCD.
We have verified on a finite lattice 163 × 64 that the two

sets satisfy the properties of conformal theories with an IR
cutoff.
We have pointed out from our theoretical analysis based

on the RG flow and our numerical simulations that there is
a precise correspondence between conformal QCD and
high-temperature QCD. The correspondence between the
two sets is realized between a continuous parameter T=Tc
and a discrete parameter Nf as depicted in Fig. 35:

(i) T ∼ 2Tc and Nf ¼ 7,
(ii) T ∼ 4Tc and Nf ¼ 8,
(iii) T ∼ 16Tc and Nf ¼ 12,
(iv) T ∼ 64Tc and Nf ¼ 16.

One boundary is close to meson states, and the other is
close to free quark states.

Now, we have systematic understanding of high-
temperature QCD for 1 ≤ T=Tc ≤ ∞. In the limit T → Tc,
the ground state becomes a meson state. As the T=Tc
increases, a meson becomes a meson unparticle. The meson
unparticle with α in Eq. (17) smoothly changes the state with
α. When Nf ¼ 2, the transition at T ¼ Tc is second order
(or weak first order), and therefore, it is expected that the α
changes smoothly at T → Tc. As T → Tc, α → 0. Note that
α ¼ 0 means γ� ¼ 2, from the formula α ¼ 2 − γ� (see
Appendix C for a debate on the critical value for confine-
ment). We check in the future the smoothness for other
cases Nf ¼ 3 ∼ 6.
The state gradually changes following T=Tc through

nonmeson unparticle states toward a free fermion anti-
fermion pair state in the twisted Zð3Þ vacuum. Here, of
course, γ� ¼ 0.0.
Therefore, at T=Tc → ∞, γ� ¼ 0.0, and at T=Tc ¼ 1,

γ� ¼ 2.0. It is natural to assume that γ� is a monotonous
function of T=Tc. We may regard the set of high-temperature
QCD for 1 ≤ T=Tc ≤ ∞ as a conformal window. The
window from T=Tc ¼ 1 to T=Tc → ∞ is complete in the
sense that it covers 0.0 ≤ γ� ≤ 2.0.
Corresponding to this viewpoint, we also have reached

systematic understanding of the range of conformal win-
dows 7 ≤ Nf ≤ 16 in conformal QCD. Similarly, a meson
at Nf ¼ 6 becomes an unparticle at Nf ¼ 7, changes
through nonmeson unparticle states, and finally reaches
close to a free fermion state at Nf ¼ 16. When Nf ≥ 17, it
is a free quark state due to the loss of the asymptotic
freedom.
It is natural to assume that the mass anomalous dimen-

sion γ� takes a monotonously increasing discrete value
between 0.0 and 2.0 from Nf ¼ 16 and Nf ¼ 7.
Since high-temperature QCD covers 0.0 ≤ γ� ≤ 2.0 and

conformal QCD takes discrete values of γ� between 0.0 and
2.0, the correspondence is realized between a continuous
parameter T=Tc and a discrete parameter Nf. This is the
precise origin of the correspondence between the two
observed in the local analysis of propagators.
The plateau at 15 ≤ t ≤ 31 in αðtÞ for T ∼ 2Tc disap-

pears as the temperature increases to T ∼ 4Tc. Translating
this fact into conformal QCD is that the plateau in αðtÞ at
15 ≤ t ≤ 31 observed as the IR behavior of Nf ¼ 7
disappears for Nf ¼ 8.
We stress that the IR behavior of the Nf ¼ 7 reported in

this paper is numerically verified independently from the
assumption of the conformal window. However, solely
from this fact we are not able to conclude that Nf ¼ 7 is
within the conformal window. It implies the Nf ¼ 7 is
either in the conformal window or in high-temperature
QCD. If the Nf ¼ 7 would be in high-temperature QCD,
there should be a chiral phase transition point, and there
should be a confining region below the critical point βc.
Nevertheless, since there is no confining region on the
massless line for actions composed of the Wilson fermion

K.-I. ISHIKAWA et al. PHYSICAL REVIEW D 89, 114503 (2014)

114503-32



action and any type of gauge actions, it is unlikely that
Nf ¼ 7 belongs to high-temperature QCD. This is the same
logic as in Ref. [4].
Another viewpoint is this: If the case Nf ¼ 7 were

outside of the conformal window, it would imply that there
is no corresponding state to T ∼ 2Tc, which is closest state
to a meson in our proposed correspondence. Logically, this
possibility cannot be excluded. However, we believe that
the physical picture for the case where Nf ¼ 7 is within the
conformal window is more appealing.
Thus, our analyses presented in this article are consistent

with our conjecture Nc
f ¼ 7. We would like to conclude the

conjectureNc
f ¼ 7 by investigating directly the existence of

the IR point in the future study.

XII. SUMMARY AND DISCUSSION

Motivated by RG argument, we theoretically conjectured
that conformal QCD with an IR cutoff and high-
temperature QCD show the common feature as the con-
formal theories with an IR cutoff: In the conformal region,
where the quark mass is smaller than the critical value, a
propagator GðtÞ of a meson behaves at large t as a power-
law corrected Yukawa-type decaying form [Eq. (9)] instead
of the exponential decaying form observed in the confining
region and deconfining region:

GHðtÞ ¼ ~cH
expð− ~mHtÞ

tαH
:

We note that the behavior Eq. (9) is proposed based
on the AdS/CFT correspondence with a soft-wall cut-
off in the literature [74]. The meson propagator in the
momentum space has a cut instead of a pole: GHðpÞ ¼
1=ðp2 þ ~m2

HÞ1−αH . The propagator in the position space
(after space integration) takes the form Eq. (9) in the
limit t ~mH ≫ 1.
In the continuum limit with L ¼ ∞ (i.e., ΛIR ¼ 0), the

propagator on the massless quark line takes the form
[Eq. (10)]:

GHðtÞ ¼ ~c
1

tαH
:

If we take the coupling constant g0 ¼ g� at the UV cutoff,
αH takes a constant value, and the RG equation demands
[Eq. (11)]:

αH ¼ 3 − 2γ�;

for the PS channel with γ� being the anomalous mass
dimension γ at g ¼ g�. The theory is scale invariant (and
shown to be conformal invariant within perturbation theory
[68]; see also, e.g., [70] and the references therein from the
AdS/CFT approach). When 0 ≤ g0 < g�, αH depends
slowly on t as a solution of the RG equation. In the IR
limit t → ∞, we must retain αHðtÞ → 3 − 2γ�.

Clarifying the vacuum structure and properties of tem-
poral propagators in QCD with Nf flavors in fundamental
representation, we have verified numerically on a lattice
163 × 64 the following: The conformal region exists
together with the confining region and the deconfining
region in the phase structure parametrized by β and K both
in conformal QCD and in high-temperature QCD. The
structure of the vacuum of the conformal region is
characterized by the Polyakov loops in spatial directions,
and the vacuum is the nontrivial Zð3Þ twisted vacuum
modified by nonperturbative effects. On the other hand, the
vacua of the confining region and the deconfining region
are the vacuum characterized by the zero-expectation
values and the untwisted vacuum, respectively.
We find the transition from the conformal region to the

deconfining region or the confining region is a transition
between different vacua in our finite lattice simulations, and
therefore, we conjecture that the transition is a first-order
transition both in conformal QCD and in high-temperature
QCD. However, we do not exclude the possibility that the
phase transition becomes weaker or the discontinuities
vanish as crossovers in the continuum/thermodynamic
limit, whose confirmation need further studies.
The results for the existence of the conformal region

mean that when the quark mass decreases from a heavy
mass with fixed β, there is a first-order transition at the
critical quark mass mc

q, and after the critical mass, there is
no singular point up to the zero mass. In particular, the
hadronic mass smoothly changes from very small quark
mass to the zero quark mass. This is realized indeed in the
fact that Eq. (10) is consistent with the ~mH ¼ 0 limit of
Eq. (9). Conversely, we can say that the smoothness
from massive quark to the mq ¼ 0 limit and Eq. (10) at
mq ¼ 0 requires the behavior Eq. (9) or a similar one.
The exponential form is expected from the view point
of physics. The form also corresponds to a cut in
the momentum representation, as mentioned above.
Furthermore, all numerical results are beautifully fitted
with Eq. (9). From all of these, we conclude that the
ansatz based on the RG argument is to the point.
It should be noted that when ΛIR is finite, even at the

massless quark, mH is not zero in general. Therefore, the
propagator behaves as Eq. (9) at large t. In the weakly
coupled region (i.e., high temperature or Nf ∼ 16), we have
shown that the main source of the mH is due to the
nontrivial Polyakov loop condensate with some nonper-
turbative contributions.
We argue from our theoretical analysis based on the RG

flow and our numerical simulations that there is a precise
correspondence between conformal QCD and high-
temperature QCD in the temporal propagators under the
change of the parameters Nf and T=Tc with the same
anomalous mass dimension.
Thereby we clarify the global structure of conformal

theories with an IR cutoff on the finite lattice. The
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conformal window from T=Tc ¼ 1 to T=Tc → ∞ is
complete in the sense that it covers 0.0 ≤ γ� ≤ 2.0, while
the conformal window from Nf ¼ 16 to Nf ¼ 7 takes a
discrete value of γ� between 0.0 and 2.0. The one boundary
of the two sets is close to meson states, and the other is
close to free quark states. This observation turns out to be
very useful to reveal the characteristics of each theory.
In particular, we find the correspondence between

conformal QCD with Nf ¼ 7 and high-temperature
QCD with Nf ¼ 2 at T ∼ 2Tc being in close relation to
a meson unparticle model. From this, we estimate the
anomalous mass dimension γ� ¼ 1.2ð1Þ for Nf ¼ 7. We
also show that the asymptotic state in the limit T=Tc → ∞
is a free quark state in the Zð3Þ twisted vacuum. The
approach to a free quark state is very slow; even at
T=Tc ∼ 105, the state is affected by nonperturbative effects.
We have verified our conjectures on the finite lattice

163 × 64. Since our conjectures are based on the general
RG argument, we expect that the conjectures are also
satisfied on a larger lattice. This will be studied in future
research.
For now, let us theoretically speculate about what will

happen in the continuum limit of the conformal QCD and
the high-temperature QCD separately. In the case of
conformal QCD, the vacuum structure of the conformal
region is the nontrivial Zð3Þ twisted vacuum modified
by nonperturbative effects, as far as the lattice size is not
very large and the periodic boundary conditions are
imposed for fermions in spatial directions. As lattice size
N increases, the transition to other vacua occurs since the
energy difference decreases as 1=N. Finally, in the limit
N → ∞, we are able to obtain physical quantities in the
continuum theory.
The phase diagrams that we expect in the continuum

limit are shown in Fig. 2 (left, for ΛIR ¼ 0, and right, for
ΛIR ¼ finite). The shaded strong coupling region for small
quark masses does not exist in the β −mq plane [57]. When
the phase structure is described in terms of β − K, the
corresponding phase belongs to a region for Wilson
doubles. Therefore, when it is mapped to the β −mq
planes, the region corresponding to the shaded one does
not exist.
In high-temperature QCD, our conjecture is applicable to

any QCD with compact space, even for the case L < 1=T.
However, the thermodynamical limit where L ¼ ∞ is most
relevant to our Universe.
In the thermodynamical limit at finite temperature, the

exponential type decay Eq. (7) and the power-law-corrected
Yukawa-type decay Eq. (9) are valid only approximately
due to the finiteness of the t range. In order to obtain
physical quantities in the thermodynamical limit, a more
rigorous way would be to make the spectral decomposition
of GHðtÞ by using, e.g., the maximal entropy method [75].
Let us consider what can be conjectured in the thermo-

dynamical limit. The existence of an IR fixed point is

deduced from general argument. In addition, the temper-
ature plays as an IR cutoff. Thus, we safely conjecture the
conformal behavior in the conformal region in the con-
tinuum limit. However, as mentioned earlier, the vacuum
structure is not necessarily the nontrivial Zð3Þ twisted
vacuum.
As one application of the conformal field theory with an

IR cutoff in the thermodynamical limit, we have recently
pointed out that the hyperscaling relation of physical
observables may modify the existing argument about the
order of the chiral phase transition in the Nf ¼ 2 case. We
recapitulate our argument in Appendix E.
We also believe that the very slow approach to a free

quark state in the limit T=Tc → ∞ on the 163 × 64 lattice is
closely connected with the slow approach of the free energy
to the Stefan-Boltzmann ideal gas limit. We would like to
investigate the case where the aspect ratio Nt=N is small
like Nt=N ¼ 1=4 to conclude it in the future.
Based on the global structure of conformal theories with

an IR cutoff on the finite lattice we have established in this
article, we would like to investigate further the global
structure of conformal theories in the continuum limit. In
parallel, we would like to confront the nature from the
viewpoint of the conformal theories. In particular, we
believe in the scenario in which the model for the beyond
standard model and the thermodynamics in the early
Universe are described by the conformal theories (with
an IR cutoff). In addition to these phenomenological
applications, it is of our utmost priority to unambiguously
establish the lower critical flavor number for the conformal
window.
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APPENDIX A: OUR PREVIOUS WORKS

We started our projects at an early stage. In 1992 [76] we
pointed out, employing the Wilson fermion, that forNf ≥ 7
there is a bulk transition in the strong coupling limit when
the quark mass decreases from the large value and there is
no massless state in the confining region.
To investigate the continuum limit of the theory, we then

started the analysis of the phase structure. In particular, in
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order to understand the phase for the region that corre-
sponds to the small quark mass, we made the analysis of the
phase structure for very large Nf up to 300. When Nf is
very large, there is no bulk transition, and the massless
quark line from β ¼ ∞ smoothly moves to the point at
β ¼ 0. Decreasing Nf gradually, we conclude that the
region that corresponds to the small quark mass corre-
sponds to the region of doublers; that is, K ≥ 1=8 at
β ¼ ∞ [77,78].
We further applied an MCRG method to investigate the

RG flow (the last in [77]) in the Nf ¼ 12 case. However,
we noticed the well-known subtlety of MCRG method:
Without very precise calculations, it depends on the
observable to match and the number of RG transforma-
tion. Furthermore, because of the fact that the massless
line for mq hits a bulk transition around β ¼ 4.0, it is
difficult to determine the location of the IR fixed point.
We only stated that the lower limit of the IR fixed point
is β ≤ 5.0.
In 2004, we published the results obtained so far in [4].

The salient facts that we found are the following: In the case
7 ≤ Nf ≤ 16, the massless line originating from the UV
fixed point hits a bulk transition at finite β. The massless
line belongs to a deconfining region all through the line. In
contrast, in the confining region at the strong coupling
region there is no massless line. Thus, this confining region
is irrelevant to the continuum theory.
On the other hand, in the case Nf ≤ 6, there is a chiral

transition on the massless quark line originating from the UV
fixed point [63]. In the strong coupling region β < βc the
massless line exists in the confining region. As the lattice size
increases, the confining region enlarges, and finally, the
confining region occupies the phase space as far as the
couplingconstant iskept larger than thechiral transitionvalue.
From this analysis, we conjectured that the conformal

window is 7 ≤ NF ≤ 16 for the SUð3Þ and similarly 3 ≤
NF ≤ 10 for the SUð2Þ.
We make a side remark. For Nf ≤ 6 at a strong coupling

constant, thesystemis in theconfiningregioneven in thechiral
limit. In particular, at β ¼ 0 in the chiral limit, the pion mass
should vanishwithin order a correction.We had assumed that
the chiral point at β ¼ 0 is K ¼ 0.25, which is the quenched
value. In fact, the chiral pointKc decreases asNf increases, as
pointed out in Ref. [79]. However, as stated clearly on the
fourth page (right column, 17th line) inRef. [79], “This fact is
sufficient to leave the conclusions of Ref. [1] intact.”
Here Ref. [1] corresponds to Ref. [4]. That is, the

conclusions in Ref. [4] that there is a bulk transition and
that there is no massless state in the strong region for 7 ≤
NF ≤ 16 are intact. All of the results and statements in
Ref. [79] are consistent with our results. We just have to
refine the results with the correct value for Kc.
Actually, new simulations at β ¼ 0 for Nf ¼ 6 QCD

with Wilson fermions have been carried out in order to
reinforce our conclusion [4,76] that the chiral limit is in the

confining region with the chiral symmetry spontaneously
broken. The results are given below.
Please do not confuse the unrefereed conference report

[80] with the refereed paper (Ref. [79]). In the unrefereed
paper, there are some statements that are difficult for us to
understand, such as the Nf ¼ 6 case in the SUð3Þ gauge
theory with Wilson fermions is not in the confinement
region because the pion mass at Kc ¼ 0.25 is not zero.
However, we believe that this is logically incorrect. Of
course, one must measure the pion mass at the correct
K ¼ 0.243ð2Þ. We have updated the calculation at β ¼ 0
for Nf ¼ 6 with the corrected value. The result clearly
shows that the Nf ¼ 6 case in the SUð3Þ gauge theory with
Wilson fermions is in the confining region, as usually
expected.
They said that they do not support the claim that the

critical flavor of the conformal window is 7, since we only
made simulations on the lattice with Nt ¼ 4. This is not
correct. In fact, we made simulations on lattice with
Nt ¼ 4; 6; 8, and 18, as written in the paper [4].

1. Results at β ¼ 0 for Nf ¼ 6 QCD

The simulations are performed as similarly as possible to
those in Ref. [79]. Configurations are generated on 83 × 16
lattices with periodic boundary conditions for both gauge
and fermion fields in all directions (different from the
boundary conditions in the other parts of this article) for
K ¼ 0.2, 0.21, 0.22, 0.23, 0.235, and 0.239. We employ the
HMC algorithm. The run parameters are chosen in such a
way that the acceptance is about 70%
Chiral extrapolations of m2

π and mq are made with
quadratic polynomial functions of 1=K (Fig. 37). Fits
to m2

π and mq with lightest four data points reproduce
data well with reasonable χ2=dof of 0.20 and 0.84,
respectively. We find that m2

π and mq vanish at almost
the same Kc:

Kcðm2
πÞ ¼ 0.24326ð7Þ; KcðmqÞ ¼ 0.24301ð13Þ:

ðA1Þ
This strongly supports that the chiral symmetry is sponta-
neously broken in the critical limit.
In addition, we measure the number of iterations Ninv of

the solver (BiCGStab-L2) necessary to invert the Dirac
operator. As K increases, Ninv diverges toward Kc, as
shown in Fig. 37. This implies that zero eigenvalues
appear in the Dirac operator around Kc. We also have
tried to simulate at K ¼ Kcðm2

πÞ and found that the
BiCGStab solver fails to converge. These observations
are consistent with fact that the system is in the confining
region at Kc.
We also estimate the chiral condensate using the Banks-

Casher relation [81]. Following Ref. [82], we first calculate
the effective chiral condensate
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ΣeffðM;mÞ ¼ π

2V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
m
M

�
2

s
∂νðM;mÞ

∂M ; ðA2Þ

where νðM;mÞ is the average number of eigenmodes of the
Hermitian Dirac operator γ5DðmÞ with eigenvalues α in
the range −M < α < M, m ¼ ð1=K − 1=KcÞ=2 and V is
the lattice volume. We extrapolate ΣeffðM;mÞ tom ¼ 0 and
then to M ¼ 0. As Fig. 37 shows, the chiral condensate
takes a finite value in the limits of m ¼ 0 and M ¼ 0. This
implies that chiral symmetry is spontaneously broken.

APPENDIX B: THE RUNNING COUPLING
CONSTANT, THE BETA FUNCTION, AND THE
TRACE ANOMALY AT FINITE TEMPERATURE

Let us consider the case where the renormalized quark
mass is zero. Then the renormalized coupling constant is
the only relevant variable in the theory. A running coupling
constant gðμ;TÞ at temperature T can be defined as in the
case of T ¼ 0. The following discussion can be applied to
any definition of the running coupling constant gðμ;TÞ.
Several ways to define the running coupling constant
gðμ;TÞ are proposed in the literature (see, e.g.,
Ref. [83]). For example, in [83], a running coupling
constant gðr;TÞ is defined in terms of the quark antiquark
free energy [Eq. (8) in [83]], where r, the distance between
the static quark and antiquark, plays the running scale. An
alternative way is the Wilson MCRG method to investigate
the running coupling, fixing the temperature T ¼ 1=Nta at
the block transformation.
In the UV regime, since the theory is asymptotically free,

the running coupling constant at finite T can be expressed
as a power series of the running coupling constant at T ¼ 0
as long as g is small [55]. The leading term is universal in
the limit g → 0.
However, in the IR region, gðμ;TÞ is quite different from

gðμ;T ¼ 0Þ since the IR cutoffΛIR in the time direction is T
while the IR cutoff is zero at zero temperature.
Furthermore, when T=Tc > 1, where the quark is not
confined, the running coupling constant gðμ;TÞ cannot
be arbitrarily large. This means that there is an IR fixed

point with nontrivial zero of the beta function when
T=Tc > 1. This is the key observation in this article.
As long as T < Tc, the beta function is negative all

through g. As the temperature is increased further, the form
of the beta function will change, as in Fig. 4: (Left) When
T > Tc but T ∼ Tc, the beta function changes the sign from
negative to positive at large g; as the temperature increases,
the fixed point moves toward smaller g. (Right) When
T ≫ Tc, it changes the sign at small g.
Numerical results of the running coupling constant

gðr;TÞ shown in Fig. 2 in [83] are consistent with the
above statement: The running coupling constant gðr;TÞ
increases as r increases up to some value and does not
further increase more than that, and the maximum value
decrease as T=Tc increases.
To avoid a possible confusion about the implication of

vanishing of the beta function at finite temperature we have
just introduced, we recall the relation between the trace
anomaly of energy momentum tensor and the beta function
with massless quarks:

hTμ
μijT ¼ Bðg−2ðμÞÞhTrðFμνðμÞÞ2ijT;

where Bðg−2ðμÞÞ is the zero temperature beta function
evaluated at g ¼ gðμÞ and hTrðFμνðμÞÞ2ijT is the field
strength squared at temperature T renormalized at scale μ.
The derivation of the relation is a standard method that is

probably well known. For the reader who is not familiar
with it, a simple note is attached as a subsection below.
In Lorentz invariant zero-temperature field theories, the

vanishing beta function means that the theory is scale
invariant. In general, scale invariance and conformal
invariance are two distinct concepts [68] because the
requirement of scale invariance alone is weaker. In (per-
turbative) QCD, we can further show from Eq. (B8) that the
trace anomaly vanishes and that the theory is conformal
invariant in the chiral limit mq ¼ 0 (see, e.g., [70] for a
review). In our situation, however, we claim that the beta
function at finite temperatures vanishes, which does not
imply vanishing of the trace of the energy-momentum
tensor. Thus, the vanishing beta function at T > Tc does
not contradict with the nonvanishing of the difference of
energy density and three times the pressure.
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FIG. 37 (color online). (Left) m2
π and mq vs 1=K and their chiral extrapolations. (Center) 1=Ninv vs 1=K. The vertical line indicates

1=KcðmqÞ. (Right) Effective chiral condensate at m ¼ 0. Solid and dashed lines are a guide for the eye.
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1. Note on the trace anomaly at finite temperature

The trace of the energy-momentum tensor ϵ − 3p is
given by

hTμ
μijT ¼ ϵ − 3p ¼ −T5

∂
∂T ðT−4fÞ; ðB1Þ

where f is the free energy density given by f ¼ − T
Z logZ.

In massless QCD, the free energy density is given by

f ¼ T4f̄ðT;Λ0; g0Þ; ðB2Þ

where f̄ is dimensionless. Λ0 is the cutoff, and g0 is the bare
QCD coupling constant. (In lattice QCD, g0 appears in the
action, and Λ0 and T are defined implicitly through
Nt=Λ0 ¼ T, where Nt is the lattice size in the t direction.)
Since f̄ is dimensionless, the dependence on T is only
through T=Λ0, and we have the trivial identity

Λ0

∂
∂Λ0

f̄ ¼ −T
∂
∂T f̄: ðB3Þ

On the other hand, renormalizability of QCD means that
the cutoff Λ0 and the bare coupling constant g0 must be
correlated so that the QCD scale Λ is fixed (irrespective of
the temperature). This is governed by the RG equation

Λ0

∂
∂Λ0

f̄ ¼ Bðg−20 Þ ∂
∂g−20 f̄; ðB4Þ

where Bðg−20 Þ is the zero-temperature QCD beta function at
the cutoff scale. This is nothing but the statement that f̄ is a
function of T=Λ. For this to hold, Bðg−20 Þ must be the zero-
temperature QCD beta function.
Combining (B3) and (B4), we can rewrite the thermo-

dynamic trace identity (B1) in QCD as

hTμ
μijT ¼ ϵ − 3p ¼ −T5

∂
∂T ðT−4fÞ ¼ T4Bðg−20 Þ ∂

∂g−20 f̄:

ðB5Þ

At this point, we recall the (bare) Schwinger action
principle

∂
∂g−20 f̄ ¼ −

1

T3V
∂

∂g−20 logZ ¼ 1

T3V

�Z
d4xTrðF0

μνÞ2
�����

T

∼ T−4hTrðF0
μνÞ2ijT; ðB6Þ

where TrðF0
μνÞ2 is the bare field strength squared defined at

the cutoff scale. In the third line, the translational invariance
was assumed. Thus, indeed, we arrive at the anomalous
trace identity

hTμ
μijT ¼ Bðg−20 ÞhTrðF0

μνÞ2ijT: ðB7Þ

We again emphasize that Bðg−20 Þ is the zero-temperature
beta function.
The right-hand side of (B7) is RG invariant. Therefore,

we may change the renormalization scale as we wish:

hTμ
μijT ¼ Bðg−2ðμÞÞhTrðFμνðμÞÞ2ijT; ðB8Þ

where Bðg−2ðμÞÞ is the zero-temperature beta function
evaluated at g ¼ gðμÞ and hTrðFμνðμÞÞ2ijT is thermal
expectation value of the field strength squared at temper-
ature T, renormalized at scale μ. In particular, we may put
μ ¼ T in (B8). However, the Bðg−2ðμ ¼ TÞÞ is different
from the beta function at fixed temperature T; Bðg−2ðμ;TÞÞ
we have defined in this appendix and used for the fixed
point for the high-temperature QCD.

APPENDIX C: MASSIVE UNPARTICLE
CORRELATOR

In general, there is no universal way to construct the
temporal propagators of mass-deformed conformal field
theories. Some particular proposals are made in the
literature of unparticles. They are motivated by the soft-
wall model in AdS/CFT correspondence [74].

1. Mass-deformed scalar unparticle correlator

Let us discuss the mass-deformed scalar unparticle
correlator hOðxÞOð0Þi with scale dimension Δ. The soft-
wall model predicts the form in the momentum space as

hOðpÞOð−pÞi ¼ 1

ðp2 þm2Þ2−Δ : ðC1Þ

In position space, the Fourier transform gives (up to
constant)

hOðxÞOð0Þi ¼ KΔðmjxjÞ
jxjΔ ; ðC2Þ

where KΔðzÞ is the modified Bessel function.
We would like to study the temporal propagatorR
d3~xhOðxÞOð0Þi. In the mt ≪ 1 limit, we can approxi-

mate KΔðmjxjÞ ∼ 1
ðmjxjÞΔ, so the integral givesZ

d3~xhOðxÞOð0Þi ∼
Z

d3~x
1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ~x2

p
Þ2Δ ∼

1

t−3þ2Δ : ðC3Þ

In terms of the anomalous dimension Δ ¼ 3 − γm, we
have ∼ 1

t3−2γm .
On the other hand, in the other extreme limit mt ≫ 1,

one can approximateKΔðmjxjÞ ∼ e−mjxjffiffiffiffiffiffiffi
mjxj

p and integrate over ~x

by Gaussian integral by expanding
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ~x2

p
∼ tþ ~x2

2t. The
result is
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Z
d3~xhOðxÞOð0Þi ∼

Z
d3~x

e−m
ffiffiffiffiffiffiffiffiffi
t2þ~x2

p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ~x2

p
ÞΔþ1

2

∼
e−mt

tΔ−1
:

ðC4Þ

With the anomalous dimension Δ ¼ 3 − γm, we have
e−mt

t2−γm .
For a free scalar (¼ confined free hadrons), Δ ¼ 1, so the
temporal propagator is ∼e−mt with no power as expected.
There is a debate whether γm ¼ 1 [84] or γm ¼ 2 [85]

would be the critical value for confinement. The CFT
unitarity argument suggests γm ¼ 2, and it is realized here
in the naive application of AdS/CFT. On the other hand, the
“conformality lost” scenario cited above suggests γm ¼ 1.
It is possible that AdS/CFT accommodates the latter
possibility because whenΔ < 2we observe the ambiguities
in the boundary condition in the soft-wall model.

2. Mass-deformed unfermion correlator

Another plausible scenario is to treat ψ̄γ5ψðxÞ as the
nonbound state of unfermions. We see that it has a different
mt ≫ 1 asymptotic.
Let us discuss the mass-deformed unfermion correlator

hΨðxÞΨ̄ð0Þi with scale dimension Δf. The soft-wall model
predicts the form in the momentum space as

hΨðpÞΨ̄ð−pÞi ¼ ðpμγμ þmÞ 1

ðp2 þm2Þ52−Δf
: ðC5Þ

In position space, we have

hΨðxÞΨ̄ð0Þi ¼ ð∂μγμ þmÞ
KΔf−1

2
ðmjxjÞ

jxjΔf−1
2

: ðC6Þ

We would like to study
R
d3~xhΨ̄γ5ΨðxÞΨ̄γ5Ψð0Þi. When

mt ≪ 1, we can neglect mass and obtain

Z
d3~xhΨ̄γ5ΨðxÞΨ̄γ5Ψð0Þi ∼

Z
d3~x

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ~x2

p
Þ4Δf

∼
1

t−3þ4Δf
: ðC7Þ

For free fermion, we have Δf ¼ 3
2
, and we obtain ∼ 1

t3. If
Δf ¼ 3

2
− γm

2
(so that Ψ̄Ψ has dimension Δ ¼ 3 − γm), we

obtain ∼ 1
t3−2γm , as in the scalar unparticle scenario. This is

uniquely determined from the scale invariance.
On the other hand, in the other extreme limit mt ≫ 1,

one can approximate KΔf−1
2
ðmjxjÞ ∼ e−mjxjffiffiffiffiffiffiffi

mjxj
p and integrate

over ~x by the Gaussian integral by expandingffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ~x2

p
∼ tþ ~x2

2t. The result is

Z
d3~xhΨ̄γ5ΨðxÞΨ̄γ5Ψð0Þi ∼

Z
d3~x

e−m
ffiffiffiffiffiffiffiffiffi
t2þ~x2

p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ~x2

p
Þ2Δf

∼
e−2mt

t2Δf−3
2

: ðC8Þ

For free fermion, we have Δf ¼ 3
2
, and we obtain ∼ e−2mt

t
3
2

as
expected. If Δf ¼ 3

2
− γm

2
due to the anomalous dimension

(so that Ψ̄Ψ has dimension Δ ¼ 3 − γm), we obtain ∼ e−2mt

t
3
2
−γm

.

APPENDIX D: VACUUM

1. Periodic boundary condition

In general quantum field theories, the one-loop correc-
tions to the zero-temperature vacuum energy are obtained
by the sum over the (tree-level) on-shell energy

E ¼
X
boson

EB

2
−

X
fermion

EF

2
; ðD1Þ

which is the same as computing the one-loop determinant
�Tr logðDÞ in the path integral formulation. In the pertur-
bative QCD at zero temperature on the lattice, tree-level
degenerate vacua are characterized by the flat connection.
On T3, the most generic Polyakov loop [in fundamental rep
of SUð3Þ] with a flat connection would be

Ux ¼ exp

�
i
Z

Axdx

�
¼ diagðei2πax ; ei2πbx ; ei2πcxÞ

Uy ¼ exp

�
i
Z

Aydy

�
¼ diagðei2πay ; ei2πby ; ei2πcyÞ

Uz ¼ exp

�
i
Z

Azdz

�
¼ diagðei2πaz ; ei2πbz ; ei2πczÞ; ðD2Þ

with ai þ bi þ ci ∈ Z for i ¼ x; y; z up to gauge trans-
formation. Note that ai ¼ bi ¼ ci ¼ 1

3
; 2
3
gives a nontrivial

center of the gauge group. Due to the one-loop corrections
(D1), we obtain a nontrivial potential for ðai; bi; ciÞ, which
will determine the one-loop vacua.
For free Wilson fermion, the on-shell energy used in

(D1) can be obtained by

k2½kx; ky; kz� ¼ ðsin2ðkxÞ þ sin2ðkyÞ
þ sin2ðkzÞÞm2½kx; ky; kz�

¼ ðmq þ 3 − cosðkxÞ − cosðkyÞ − cosðkzÞÞ2;
ðD3Þ

where mq is the quark mass in the action, with the implicit
form

coshðE½kx; ky; kz�Þ ¼ 1þ k2 þm2

2ð1þmÞ : ðD4Þ
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The mode number ki is determined from the boundary
condition for the quarks.
If we do the singular gauge transformation, the Wilson

line can be encoded in the twisted boundary condition for
the quark field, which in turn changes momentum quan-
tization in the summation. Therefore, the one-loop potential
is obtained by

−VFðai; bi; ciÞ ¼
XN−1þai

ni¼ai

E½2πnx=N; 2πny=N; 2πnz=N�

þ
XN−1þbi

ni¼bi

E½2πnx=N; 2πny=N; 2πnz=N�

þ
XN−1þci

ni¼ci

E½2πnx=N; 2πny=N; 2πnz=N�:

ðD5Þ

The summation is taken for ni ¼ ai; ai þ 1; ai þ 2; � � �. In
the figure, we subtracted Vð0; 0; 0Þ since the absolute value
is unphysical and thereby cancels the singular behavior in
the massless quark limit.
One can compute the one-loop shift of energy (vacuum

energy) of the gauge field by using the similar formula to
the above by the momentum shift for the adjoint repre-
sentation. For SUð3Þ, the adjoint representation (octet) of
the gauge group obtains the shift of momentum in
ða − bÞ; ðb − aÞ; ðc − aÞ; ða − cÞ; ðb − cÞ; ðc − bÞ; 0; 0:

þVBðai; bi; ciÞ ¼
XN−1þai−bi

ni¼ai−bi

EG½2πnx=N;2πny=N;2πnz=N�

þ ðseven other shifts in the momentumÞ:
ðD6Þ

Here EGð~kÞ is determined from the pole of the propagator
of the gauge fields:

sinhðEG½kx; ky; kz�=2Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðkx=2Þ þ sin2ðky=2Þ þ sin2ðkz=2Þ

q
: ðD7Þ

Note that the one-loop energy is typically divergent both
in IR and UV, but since we are only interested in the energy
difference, if we subtract the energy by Vð0; 0; 0Þ, the result
is finite. The total effective energy in terms of ðax; ayÞ is
shown in Fig. 12, and the contour of the effective energy is
shown in Fig. 13. The minimums are at ðax ¼ 1=3; ay ¼
1=3Þ and ðax ¼ 2=3; ay ¼ 2=3Þ.

2. Antiperiodic boundary condition

We could instead use the antiperiodic boundary
condition for the quarks. With the above Wilson line

introduced, the one-loop potential for quark fields
becomes

−VFðai;bi;ciÞ¼
XN−1þaiþ1=2

ni¼aiþ1=2

E½2πnx=N;2πny=N;2πnz=N�

þ
XN−1þbiþ1=2

ni¼biþ1=2

E½2πnx=N;2πny=N;2πnz=N�

þ
XN−1þciþ1=2

ni¼ciþ1=2

E½2πnx=N;2πny=N;2πnz=N�:

ðD8Þ

The one-loop potential from gauge field does not change.
We realize that ai ¼ bi ¼ ci ¼ 0 is the minimum of the
total potential.

APPENDIX E: THE ORDER OF THE CHRIAL
PHASE TRANSITION IN Nf ¼ 2 CASE

Here we discuss an implication of the existence of the IR
fixed point in high-temperature QCD for the issue of the
order of the chiral phase transition in the Nf ¼ 2 case. Our
key observation is the existence of an IR fixed point at
T > Tc. We stress that the reasoning for the existence can
be justified even in the thermodynamic limit.
Pisarski and Wilczek [86] mapped Nf ¼ 2 QCD at high

temperature to the three-dimensional sigma model and
pointed out that if UAð1Þ symmetry is not recovered at the
chiral transition temperature, the chiral phase transition of
QCD in the Nf ¼ 2 case is second order with exponents of
the three-dimensional Oð4Þ sigma model.
For the Wilson quarks, it was shown that the chiral

condensate satisfies remarkably the Oð4Þ scaling relation,
with the RG improved gauge action and the Wilson quark
action [87] and with the same gauge action and the clover-
improved Wilson quark action [88] (see, for example,
Fig. 6 in Ref. [87]). It was also shown for staggered quarks
that the scaling relation is satisfied in the Nf ¼ 2þ 1 case
[89], extending the region from T=Tc > 1 adopted in [87]
and [88] to the region including T=Tc < 1. These results
imply that the transition is second order.
However, recently, it was shown that the expectation

value of the chiral susceptibility χπ − χσ is zero [90] in
thermodynamic limit when the SUð2Þ chiral symmetry is
recovered under the assumptions we discuss below. This
is consistent with that fact that the UAð1Þ symmetry is
recovered, which implies that the transition is first order
according to [86]. Apparently the two conclusions are in
contradiction.
Here we revisit this issue with the new insight of

conformal field theories with an IR cutoff. It is assumed
in Ref. [90] that the vacuum expectation value of mass-
independent observable is an analytic function of m2

q, if the
chiral symmetry is restored. However, in the conformal
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region, the propagator of a meson behaves as Eq. (3), and
the relation between the mH and the mq is given by the
hyperscaling relation [35,73]

mH ¼ cm1=ð1þγÞ
q ;

with γ� the anomalous mass dimension. This anomalous
scaling implies that mH is not analytic in terms of m2

q and
that the analyticity assumption does not hold. It should be

noted that theWard-Takahashi identities in [90] are proved in
the thermodynamic limit, and therefore, the numerical veri-
fication of the hyperscaling in the limit will be decisive. We
stress, however, that the hyperscaling is theoretically derived
with the condition of the existence of the IR fixed point
and multiplicative renormalization of mq. We believe that
this violation of the analyticity assumption resolves the
apparent discrepancy, as also mentioned in [90] as a viable
possibility.

APPENDIX F: SUPPLEMENTARY FIGURES
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FIG. 38 (color online). The time history of the argument and the absolute value of Polyakov loops for Nf ¼ 2 at β ¼ 10.0 and
K ¼ 0.135, β ¼ 15.0 and K ¼ 0.130, and β ¼ 100.0 and K ¼ 0.1258.
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FIG. 39 (color online). The time history of the argument and the absolute value of Polyakov loops for Nf ¼ 2 at β ¼ 1000.0 and
K ¼ 0.125.
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FIG. 40 (color online). The local mass mðtÞ and the local exponent αðtÞ for Nf ¼ 2 at β ¼ 100.0 and K ¼ 0.1258 (left) and for a free
particle ð1=3; 1=3; 0Þ with mq ¼ 0.01 (right).
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FIG. 41 (color online). The local mass mðtÞ and the local exponent αðtÞ for Nf ¼ 2 at β ¼ 100.0 and K ¼ 0.1258 (left) and for a free
particle ð1=3; 0; 0Þ with mq ¼ 0.01 (right).
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FIG. 42 (color online). The local mass mðtÞ and the local exponent αðtÞ for a free particle (0,0,0) with mq ¼ 0.01.
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