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We describe a new technique to determine the contribution to the anomalous magnetic moment of the
muon coming from the hadronic vacuum polarization using lattice QCD. Our method reconstructs the
Adler function, using Padé approximants, from its derivatives at q2 ¼ 0 obtained simply and accurately
from time-moments of the vector current-current correlator at zero spatial momentum. We test the method
using strange quark correlators on large-volume gluon field configurations that include the effect of up and
down (at physical masses), strange and charm quarks in the sea at multiple values of the lattice spacing and
multiple volumes and show that 1% accuracy is achievable. For the charm quark contributions we use our
previously determined moments with up, down and strange quarks in the sea on very fine lattices. We find
the (connected) contribution to the anomalous moment from the strange quark vacuum polarization to be
asμ ¼ 53.41ð59Þ × 10−10, and from charm to be acμ ¼ 14.42ð39Þ × 10−10. These are in good agreement with
flavor-separated results from nonlattice methods, given caveats about the comparison. The extension of
our method to the light quark contribution and to that from the quark-line disconnected diagram is
straightforward.
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I. INTRODUCTION

The magnetic moment of the muon can be determined
extremely accurately in experiment. Its anomaly, defined as
the fractional difference of its gyromagnetic ratio from the
naive value of 2 ðaμ ¼ ðg − 2Þ=2Þ is known to 0.5 ppm [1].
The anomaly arises from muon interactions with a cloud of
virtual particles. However, the theoretical calculation of aμ
in the Standard Model shows a discrepancy with the
experimental result of about 25ð9Þ × 10−10 [2–4] which
could be an exciting indication of the existence of new
virtual particles. Improvements of a factor of 4 in the
experimental uncertainty are expected and improvements in
the theoretical determination would make the discrepancy
(if it remains) really compelling [5].
The current theoretical uncertainty is dominated by that

from the hadronic vacuum polarization (HVP) contribution,
depicted in Fig. 1. This contribution is currently determined
most accurately from experimental results on eþe− →
hadrons or from τ decay to be of size 700 × 10−10 with

a 1% error [3,4]. Higher order contributions from QCD
processes, such as the hadronic light-by-light diagram, have
larger percentage uncertainty but make an order of magni-
tude smaller contribution, so do not contribute as much to
the overall theoretical uncertainty.
In 2002 Blum [6] showed how to express the HVP

contribution in terms of the vacuum polarization function
evaluated at Euclidean q2, which greatly facilitates its
calculation from lattice QCD. He reviews the status of

FIG. 1 (color online). The hadronic vacuum polarization con-
tribution to the muon anomalous magnetic moment is represented
as a shaded blob inserted into the photon propagator (represented
by a wavy line) that corrects the point-like photon-muon coupling
at the top of the diagram.
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such calculations in [7], which now include sea quarks
[8–11]. Lattice QCD calculations, however, are not yet at a
level where they can compete with the precision of values
that use experimental results. A key problem has been
that of determining the hadron vacuum polarization at
small values of the (Euclidean) squared 4-momentum, q2,
of Oðm2

μÞ which are the key ones contributing to aμ.
Extrapolating from higher values of q2 leads to model
uncertainties and direct calculation at lower q2 using
‘twisted boundary conditions’ produces noisy results.
Efforts are underway to improve both of these approaches
[12,13]. See also [14–16].
Here we sidestep this issue by expressing the g − 2 HVP

contribution in terms of a small number of derivatives of the
hadronic vacuum polarization function evaluated at q2 ¼ 0.
In effect, we work upwards from q2 ¼ 0 into the region of
important, but still very small, q2 values. The advantage of
this method is that the derivatives are readily and accurately
computed from time-moments of the current-current cor-
relator at zero spatial momentum.
We can approximate the hadronic vacuum polarization

function by its Taylor expansion when q2 is of orderm2
μ, but

the series diverges when q is of order or larger than the
threshold energy for real hadron production (2mπ for u=d
quarks). Contributions from high momenta, say q ≥ 1 GeV,
are suppressed by ðmμ=qÞ2 but remain important if one
desires better than 1%precision. To deal with highmomenta,
we replace the Taylor expansion by its Padé approximants
[17]. Successive orders of Padé approximant converge to the
exact vacuum polarization function for all positive
(Euclidean) q2 [18,19]. This follows from the dispersion
relation for the vacuum polarization [13]. As we will show,
only a few orders are needed to achieve 1% accuracy or
better. The Padé approximants capture the entire contribution
for all q2, through analytic continuation from low q2 to high
q2, and so, unlike in some other approaches to HVP, we need
not calculate high-q2 contributions using perturbation theory
(since this would constitute double-counting).
A further advantage of our approach is that it works with

both local lattice approximations to the vector current, and
exactly conserved but nonlocal approximations. Local
approximations are easy to code and less noisy than
nonlocal approximations, and so are widely used in lattice
simulations. The fact that they are not exactly conserved
leads to nonzero contributions to the vacuum polarization
function Πμνðq2Þ at q2 ¼ 0, but such contributions are
discarded automatically when we express g − 2 in terms of
derivatives of Πμν.
In this paper we illustrate our method by applying it to

correlators made of s quarks, using well-tuned s-quark
masses on gluon field configurations that include up, down,
strange and charm quarks in the sea. The sea up and down
quarks have physical values, so no chiral extrapolation to
the physical point is needed. We have three values of the
lattice spacing, allowing good control of the extrapolation

to zero lattice spacing. A study on three different volumes
at one value of the lattice spacing allows us also to control
finite volume effects.
We also give a result for the much smaller charm

contribution, using moments determined previously by
us [20,21] on configurations covering a large range of
lattice spacing values and including up, down and strange
quarks in the sea.
The next section gives details of the lattice calculation

and tests of our approach; we then discuss our results and
give our conclusions.

II. LATTICE CALCULATION

For the strange quark contribution to aμ we use the highly
improved staggered quark (HISQ) action [22] for all quarks.
This has small discretization errors [22–24] and is numeri-
cally very fast. We calculate HISQ s-quark propagators on
gluon field configurations generated by the MILC collabo-
ration that include u, d, s and c quarks in the sea using the
HISQ formalism [25,26]. Details of the ensembles are given
in Table I. They range in lattice spacing from 0.15 fm down
to 0.09 fm with the spatial length of the lattice as large as
5.6 fm on the finest lattices. At each lattice spacing we have
two values of the average u=d quark mass: one fifth the s
quark mass and the physical value (ms=27.5 [27]). The
tuning of the valence masses is more critical than that of the
sea, so the valence and sea s masses differ slightly. We tune
the valence s mass accurately using the mass of the ηs, a
pseudoscalar pure ss̄ meson which does not occur in the
real world. In lattice QCD, where the ηs can be prevented
from mixing with other mesons, its properties can be very
accurately determined [28]. Its mass (688.5(2.2) MeV [29])
is very sensitive to the s quark mass, making it useful for
tuning. At a third value of the u=d quark mass, one tenth
of the s-quark mass, we have three different volumes to
test for finite volume effects. These are sets 4, 5 and 7 and
correspond to a lattice length in units of the π meson mass
[29] of MπL ¼ 3.2, 4.3 and 5.4. In addition we de-tuned
the valence s-quark mass there by 5% (set 6) to test for
tuning effects.
The s quark propagators are combined into a correlator

with a local vector current at either end. The end point is
summed over spatial sites on a time slice to set the spatial
momentum to zero. The source is created from a set of U(1)
random numbers over a time slice for improved statistics.
The local current is not the conserved vector current for this
quark action and must be normalized. We do this com-
pletely nonperturbatively by demanding that the vector
form factor for this current be 1 between two equal mass
mesons at rest (q2 ¼ 0) [31]. The Z factors are given in
Table I. They differ from 1 by at most 1% (on the 0.15 fm
lattices) and vary from one lattice spacing to another by less
than 0.5%. We therefore only calculate them for the
ml=ms ¼ 0.2 ensembles at each lattice spacing. At large
time separations between source and sink these correlators
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give the mass and decay constant of the ϕmeson [31]. Here
we are concerned with the properties of the correlation
function at the shorter times that feed into the theoretical
determination of aμ;HVP.
The contribution to the muon anomalous magnetic

moment from the HVP associated with a given quark
flavor, f, is obtained by inserting the quark vacuum
polarization into the photon propagator [6]

aðfÞμ;HVP ¼
α

π

Z
∞

0

dq2fðq2Þð4παQ2
f ÞΠ̂fðq2Þ; ð1Þ

where α≡ αQED and Qf is the electric charge of quark f in
units of e. Here

fðq2Þ≡m2
μq2A3ð1 − q2AÞ
1þm2

μq2A2
; ð2Þ

where

A≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 þ 4m2

μq2
q

− q2

2m2
μq2

: ð3Þ

Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
pressed by quark mass factors since they would vanish for
equal mass u, d and s quarks since

P
u;d;sQf ¼ 0 [6].

The quark polarization tensor is the Fourier transform of
the vector current-current correlator. For spatial currents at
zero spatial momentum

Πiiðq2Þ ¼ q2Πðq2Þ ¼ a4
X
t

eiqt
X
~x

hjið~x; tÞjið0Þi; ð4Þ

with q the Euclidean energy. We need the renormalized
vacuum polarization function, Π̂ðq2Þ≡ Πðq2Þ − Πð0Þ.
Time-moments of the correlator give the derivatives at q2 ¼
0 of Π̂ [32] (see, for example, [33,34]):

G2n ≡ a4
X
t

X
~x

t2nZ2
Vhjið~x; tÞjið0Þi

¼ ð−1Þn ∂
2n

∂q2n q
2Π̂ðq2Þ

����
q2¼0

: ð5Þ

Here we have allowed for a renormalization factor ZV for
the lattice vector current. Note that time-moments remove
any contact terms between the two currents.1 G2n is easily
calculated from the correlators calculated in lattice QCD,
remembering that time runs from 0 at the origin in both
positive and negative directions to a maximum value of T=2
in the centre of the lattice.
Defining

Π̂ðq2Þ ¼
X∞
j¼1

q2jΠj ð6Þ

then

Πj ¼ ð−1Þjþ1
G2jþ2

ð2jþ 2Þ! : ð7Þ

To evaluate the contribution to aμ we will replace Π̂ðq2Þ
with its ½n; n� and ½n; n − 1� Padé approximants derived
from the Πj [17]. We perform the q2 integral numerically.

TABLE I. The lattice QCD gluon field configurations used here come from the MILC collaboration [25,26]. β ¼ 10=g2 is the QCD
gauge coupling, and w0=a [29] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [30]. We take w0 ¼ 0.1715ð9Þ fm
fixed from fπ [29]. L and T give the length in the space and time directions for each lattice. amsea

l , amsea
s and amsea

c are the light
(ml ≡mu ¼ md), strange, and charm sea quark masses in lattice units and amval

s , the valence strange quark mass, tuned from the mass of
the ηs, aMηs . ZV;s̄s gives the vector current renormalization factor obtained nonperturbatively [31]. The lattice spacings are
approximately 0.15 fm for sets 1–2, 0.12 fm for sets 3–8, and 0.09 fm for sets 9–10. Light sea-quark masses range from ms=5 to
the physical value and lattice volumes ranging from 2.5 fm to 5.8 fm. The number of configurations is given in the final column. We used
16 time sources on each (12 on sets 1 and 2).

Set β w0=a amsea
l amsea

s amsea
c amval

s aMηs ZV;s̄s L=a × T=a ncfg

1 5.80 1.1119(10) 0.01300 0.0650 0.838 0.0705 0.54024(15) 0.9887(20) 16 × 48 1020
2 5.80 1.13670(50) 0.00235 0.0647 0.831 0.0678 0.526799(81) 0.9887(20) 32 × 48 1000
3 6.00 1.3826(11) 0.01020 0.0509 0.635 0.0541 0.43138(12) 0.9938(17) 24 × 64 526
4 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42664(9) 0.9938(17) 24 × 64 1019
5 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42637(6) 0.9938(17) 32 × 64 988
6 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0507 0.41572(14) 0.9938(17) 32 × 64 300
7 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42617(9) 0.9938(17) 40 × 64 313
8 6.00 1.4149(6) 0.00184 0.0507 0.628 0.0527 0.423099(34) 0.9938(17) 48 × 64 1000
9 6.30 1.8869(39) 0.00740 0.0370 0.440 0.0376 0.31384(9) 0.9944(10) 32 × 96 504
10 6.30 1.9525(20) 0.00120 0.0363 0.432 0.0360 0.30480(4) 0.9944(10) 64 × 96 621

1The vector current need not be exactly conserved, provided
that it is renormalized correctly with ZV because: a) there are no
contributions from contact terms in the moments, and b) the only
lattice operators that can mix with the vector current have higher
dimension and so are suppressed by powers of a2.
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Equation (5) is, of course, approximate when the
temporal extent T of the lattice is finite. This error is
exponentially suppressed, and usually negligible, because
GðtÞ falls to zero quickly with increasing jtj (≤ T=2) and
has effectively vanished well before jtj gets to edge of the
lattice at T=2. At large jtj the correlator is dominated by the
lowest-energy vector state in the simulation,

GðtÞ → a0ðe−E0jtj þ e−E0ðT−jtjÞÞ; ð8Þ

so that terms containing T are suppressed by a factor of
expð−E0T=2Þ. Such terms become important for high order
moments, since tnGðtÞ peaks at t ≈ n=E0 for large n, but
they are negligible for the moments of interest here. Their
impact on asμ is easily estimated (see Sec. III); for example,
they enter at the level of 0.002% in our analysis for
configuration set 10 in Table I.
The power of the Padé approximants is illustrated in

Fig. 2 which shows the precision of different approximants
compared with the exact result for a simple test case: the
one-loop quark vacuum polarization function from pertur-
bation theory. We set the quark mass equal to the kaon mass
so that the Taylor expansion has the same radius of
convergence as the physical s-quark vacuum polarization;
this function also has the same high-q2 behavior as the
physical function. The Padés converge exponentially
quickly to the correct result, achieving better than 1%
precision after only two terms are included. It is also clear
that the high-q2 contributions are accurately approximated
by the Padés since q > 1 GeV, for example, contributes
about 1.8% of the total g − 2 correction here. Note also that
the [2,2] approximant is accurate to better than 0.5% even
when the quark mass is reduced to mπ (as one might do to
simulate u=d vacuum polarization).

The results in Fig. 2 are for exact moments. The finite
precision of moments from a simulation obviously limits
the precision of the final results for the anomaly. The
finite precision also limits the order to which Padé
approximants can be computed, since noisy input data
cause spurious poles to appear in high-order approxim-
ants [35]—all poles should be simple, real, and located
at the poles or on the branch cut of the exact vacuum
polarization function [19]. Higher orders are possible
with more precise moments. The Padés typically con-
verge before spurious poles appear, so that the precision
of the final results tracks that of the input moments. This
is illustrated in Fig. 3 where we have added noise to the
exact moments from one-loop perturbation theory, and
compare the precision of outputs with that of the inputs.
Each point in the plot represents a different simulation,
with different noise, and the colors indicate the order of
the approximant used.
As a final check of our analysis method and our

simulation codes, we generated lattice correlators using
our codes but without gauge fields (that is with link
variablesUμðxÞ ¼ 1), and verified (to 0.1%) that the results
for aμ agree with continuum one-loop perturbation theory
in the limit of zero lattice spacing.
Returning to results from our lattice simulations, the

Taylor coefficients Πj and contributions to aμ from each of
our s-quark correlators are shown in Table II. In each case
results converge to within errors by the [1,1] Padé approx-
imant, and no spurious poles appear on any of our sets up to

FIG. 2 (color online). Fractional error in the muon anomaly aμ
caused by replacing the quark vacuum polarization from one-loop
perturbation theory with its ½n; n� and ½n; n − 1� Padé approx-
imants. The exact result is always between the ½n; n − 1� and
½n; n� approximants. The quark mass is set equal to the kaon mass
in this test case.

FIG. 3 (color online). Fractional errors in the muon anomaly
aμ caused by adding random noise to the moments of the one-
loop vacuum polarization. Results are shown for 400 different
simulations, each with different amounts of random noise. They
are plotted against the fractional uncertainty in the leading
moment. In each simulation, ½n; n� Padé approximants are used
where n is increased until results for apthμ converge or spurious
poles appear in the approximant. Color indicates the value of
n used: red for [1,1], green for [2,2], and blue for [3,3].
Simulation results agreed with the exact result to within �1σ
in 70% of the simulations, as expected. The quark mass is set
equal to the kaon mass in each case.
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and including [2,2], as expected from our test case. Our
results on sets 4–7 show that finite-volume effects are
negligible within our 0.1% statistical errors, but tuning the
valence s quark accurately is seen to be important.
To obtain a final estimate we fit the [2,2] results from

each configuration set to a function of the form

asμ;lat ¼ asμ × ð1þ ca2ðaΛQCD=πÞ2 þ cseaδxsea þ cvalδxvalÞ;
ð9Þ

where ΛQCD ¼ 0.5 GeV, and δxsea and δxval allow for
mistuning of the sea and valence light-quark bare masses:

δxsea ≡
X

q¼u;d;s

msea
q −mphys

q

mphys
s

ð10Þ

δxs ≡mval
s −mphys

s

mphys
s

: ð11Þ

For our lattices with physical u=d sea masses δxsea is very
small. a2 errors from staggered “taste-changing” effects
will remain and they are handled by ca2. The four fit
parameters are a2μ, ca2 , csea and cval; we use the following
(broad) Gaussian priors for each:

asμ ¼ 0� 100 × 10−10

ca2 ¼ 0ð1Þ csea ¼ 0ð1Þ cval ¼ 0ð1Þ: ð12Þ

Our final result for the connected contribution for s
quarks to g − 2 is

asμ ¼ 53.41ð59Þ × 10−10: ð13Þ

The fit to [2,2] Padé results from all 10 of our configuration
sets is excellent, with a χ2 per degree of freedom of 0.22
(p value of 0.99). In Fig. 4 we compare our fit with the data

from configurations with ms=ml equal 5 and with the
physical mass ratio.
The error budget for our result is given in Table III.

The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polari-
zation to be of order 0.1% from perturbation theory [20],
suppressed by the small charge of the s quark. Our results
show negligible dependence (< 0.1%) on the spatial size of
the lattice, which we varied by a factor of two. Also the
convergence of successive orders of Padé approximant
indicates convergence to better than 0.1%; results from fits
to different approximants are tabulated in Table IV.

TABLE II. Columns 2–5 give the Taylor coefficients Πj [Eq. (6)], in units of 1=GeV2j, for each of the lattice data sets in Table I. The
errors given include statistics and the (correlated) uncertainty from setting the lattice spacing using w0, which dominates. Estimates of
the connected contribution from s quarks to aμ;HVP are given for each of the [1,0], [1,1], [2,1] and [2,2] Padé approximants in columns
6–9; results are multiplied by 1010.

Set Π1 Π2 Π3 Π4 ½1; 0� × 1010 ½1; 1� × 1010 ½2; 1� × 1010 ½2; 2� × 1010

1 0.06598(76) −0.0516ð11Þ 0.0450(15) −0.0403ð19Þ 58.11(67) 53.80(59) 53.95(59) 53.90(59)
2 0.06648(75) −0.0523ð11Þ 0.0458(15) −0.0408ð18Þ 58.55(66) 54.19(58) 54.33(59) 54.29(59)
3 0.06618(75) −0.0523ð11Þ 0.0466(15) −0.0425ð20Þ 58.28(66) 53.93(58) 54.09(58) 54.04(58)
4 0.06614(74) −0.0523ð11Þ 0.0467(15) −0.0427ð19Þ 58.25(65) 53.90(57) 54.06(58) 54.01(57)
5 0.06626(74) −0.0527ð11Þ 0.0473(15) −0.0438ð19Þ 58.36(65) 53.99(57) 54.15(57) 54.10(57)
6 0.06829(77) −0.0557ð12Þ 0.0514(17) −0.0490ð22Þ 60.14(67) 55.55(59) 55.73(59) 55.67(59)
7 0.06619(74) −0.0524ð11Þ 0.0468(15) −0.0430ð19Þ 58.29(65) 53.93(57) 54.10(57) 54.05(57)
8 0.06625(74) −0.0526ð11Þ 0.0470(15) −0.0429ð19Þ 58.34(65) 53.98(57) 54.14(57) 54.09(57)
9 0.06616(77) −0.0531ð12Þ 0.0483(17) −0.0450ð22Þ 58.27(68) 53.87(59) 54.04(60) 53.99(59)
10 0.06630(72) −0.0534ð11Þ 0.0487(16) −0.0458ð20Þ 58.39(64) 53.98(56) 54.15(56) 54.10(56)

FIG. 4 (color online). Lattice QCD results for the connected
contribution to the muon anomaly aμ from vacuum polarization
of s quarks. Results are for three lattice spacings, and two light-
quark masses: mlat

l ¼ ms=5 (lower, blue points), andmlat
l ¼ mphys

l
(upper, red points). The dashed lines are the corresponding
values from the fit function, with the best-fit parameter values:
ca2 ¼ 0.29ð13Þ, csea ¼ −0.020ð6Þ and cval ¼ −0.61ð4Þ. The
gray band shows our final result, 53.41ð59Þ × 10−10, with
mlat

l ¼ mphys
l , after extrapolation to a ¼ 0.
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Note that the a2 errors are quite small in our analysis.
This is because we use the highly corrected HISQ
discretization of the quark action. Our final (a ¼ 0) result
is only 0.6% below our results from the 0.09 fm lattices
(sets 9 and 10). The variation from our coarsest lattice to
a ¼ 0 is only 1.8%. We compared this with results from the
clover discretization for quarks, which had finite-a errors in
excess of 20% on the coarsest lattices.
Finally we also include results for c quarks in Tables III

and IV. These are calculated from the moments (and error
budget) published in [20]. Our final result for the connected
contribution to the muon anomaly from c-quark vacuum
polarization is

acμ ¼ 14.42ð39Þ × 10−10: ð14Þ

The dominant source of error here is in the determination
of the ZV renormalization factors. This error could be
substantially reduced by using the method we used for the
s-quark contribution [31].

III. DISCUSSION/CONCLUSIONS

The ultimate aim of lattice QCD calculations of aμ;HVP is
to improve on results from using, for example, σðeþe− →
hadronsÞ that are able to achieve an uncertainty of below
1%. We are not at that stage yet. However, our results here
show that a 1% error can be achieved now for the connected
piece of the s-quark contribution and a 1% error could
easily be achieved for the c quark. It then makes sense to try

to separate out the s-quark or c-quark piece of the result
from σeþe− for comparison. The flavour identification is not
completely unambiguous in that case nor can disconnected
contributions or QED effects be removed, so the accuracy
with which this can be done is limited.
For the c-quark contribution a result of 14.4ð1Þ ×

10−10 is given by [36], with which our result is in good
agreement. For the s-quark contribution, we can make
predictions based on the data compilation from [3] for
energies up to 2 GeV in the dispersion integral and by
using perturbative QCD for higher energies. The leading
contribution can be estimated from the sum of the KþK−

and K0
LK

0
S channels, adding up to 35.5 × 10−10. As most

of this contribution is from the ϕ resonance, we can
assume that this is included in the lattice calculation. It is
less clear how much of the remaining ϕ decay channels
should be included for the comparison, as these may
require the inclusion of disconnected diagrams in the
lattice calculation. However, using the branching frac-
tions for ϕ → KþK− and ϕ → K0

LK
0
S we can predict a

maximum ϕ contribution of 42.8 × 10−10. Other channels
containing K̄K (K̄Knπ, K̄Kω) and ηϕ, which are taken
into account in [3], add up to 6.6 × 10−10. It is not clear
to what extent these are included in the lattice calcu-
lation presented here and to what extent they derive from
a light quark loop coupled to the electromagnetic current
together with s sea quarks. The s-quark contribution for
energies above 2 GeV can be reliably calculated from
perturbative QCD. It is 5.9 × 10−10 and must certainly be
included in the comparison. With these numbers we
predict the total s-quark contribution from data and
perturbative QCD to be 55.3ð8Þ × 10−10. From the
caveats mentioned, this should be seen as an upper
limit for the comparison with lattice QCD. Previous
lattice QCD calculations have not reported separate
results for s or c quarks (if calculated), despite the
simplicity of doing this when only the connected
contribution has been calculated. It would seem sensible
to do this for comparison of different lattice results in the
future.
The extension of our method for light-quark (u, d)

vacuum polarization is straightforward, with one modi-
fication. The light-quark contribution is the most impor-
tant in the total HVP, being about 12 times larger than that
for the strange quark, in part because of a factor of 5 from
the electric charges. The one complication is that the
signal-to-noise at large t is much worse for the light-quark
correlators (because 2mπ is small compared to mρ),
greatly increasing the statistical errors of the moments.
This is easily handled by fitting Monte Carlo data for
the correlator GðtÞ with a standard multi-exponential
fit function Gfitðt; pÞ, where the pβ are fit parameters.
The moments are then calculated from Gfitðt; p�Þ, using
the best-fit parameter values p ¼ p�, rather than from the
data. The fit function has similar errors to the data at low

TABLE III. Error budgets for connected contributions to the
muon anomaly aμ from vacuum polarization of s and c quarks.

asμ acμ

Uncertainty in lattice spacing (w0, r1) 1.0% 0.6%
Uncertainty in ZV 0.4% 2.5%
Monte Carlo statistics 0.1% 0.1%
a2 → 0 extrapolation 0.1% 0.4%
QED corrections 0.1% 0.3%
Quark mass tuning 0.0% 0.4%
Finite lattice volume < 0.1% 0.0%
Padé approximants < 0.1% 0.0%

Total 1.1% 2.7%

TABLE IV. Contributions to aμ from s- and c-quark vacuum
polarization. Only connected parts of the vacuum polarization are
included. Results, multiplied by 1010, are shown for each of the
Padé approximants.

Quark ½1; 0� × 1010 ½1; 1� × 1010 ½2; 1� × 1010 ½2; 2� × 1010

s 57.63(67) 53.28(58) 53.46(59) 53.41(59)
c 14.58(39) 14.41(39) 14.42(39) 14.42(39)
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t, but much smaller errors (orders of magnitude) at large t,
and therefore much smaller errors in the moments. By
using the fit function, we build into our g − 2 analysis
knowledge about how GðtÞ’s behavior at large t is
constrained by its behavior at small t.
We tested this fitting idea on our s-quark data, using data

for t ¼ 0, �1 and the best-fit function (Gfit) for all other t
when computing moments. We obtained results identical,
to four decimal places or better, with what we found above
(Table II) and with slightly smaller statistical errors. We
also tested this idea on a single low-statistics sample of
correlators from four time sources on 400 configurations
(a subset of Set 8 of Table I) with the valence quark
mass equal to the physical light-quark mass mphys

l . Using
Gfitðt; p�Þ in place of the GðtÞ reduced the statistical errors
from �100% to �6%, indicating that errors of around 3%
might be achieved using the full statistics. As expected, the
Padé approximants converged to better than 1% by the [1,1]
approximant. We will discuss light quarks in a separate
paper, but an uncertainty of 1%, as achieved here for s
quarks, seems feasible on ensemble sizes of 10× that
used here.
Using GfitðtÞ to calculate moments also allows us to

remove systematic errors caused by the finite temporal size
T of our lattices. This is because it is trivial to take T → ∞
in GfitðtÞ after fitting but before calculating the moments.
The resulting shifts in aμ are typically very small—for
example, only 0.09% for the physical u=d quark propa-
gators in our test analysis above—but the correction is
worth making anyway because it is so simple.
Our method also provides a straightforward extension to

include disconnected contributions. All that is necessary is
to calculate the disconnected contribution to the vector
correlator at zero spatial momentum and that can be done
with existing techniques, again provided adequate statistics

are available.2 To reduce errors below 1% on the total HVP
contribution may require direct calculation of QED effects
on the lattice and the incorporation of u and d quark
propagators of different mass, techniques that are being
tested now in the lattice QCD community.
In conclusion, we have shown that a simple method

using a small number of time-moments of vector current-
current correlators can yield 1% accurate results for
the hadronic vacuum polarization contribution to aμ.
For the connected s-quark and c-quark contributions
we find, respectively, asμ ¼ 53.41ð59Þ × 10−10 and
acμ ¼ 14.42ð39Þ × 10−10.
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Note added.—After our paper appeared we received
the results of a preliminary analysis by members of the
ETM Collaboration [38], separating asμ and acμ from their
analysis of the complete four-flavor connected HVP
contribution to aμ [39]. They find asμ ¼ 53ð3Þ × 10−10

and acμ ¼ 14.1ð6Þ × 10−10, in agreement with our results.
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