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The hyperradial Schrodinger equation is considered with the Killingbeck potential which is a
combination of harmonic and Cornell terms. Having calculated the wave function of a three-body
baryonic system with the aid of the hyperspherical approach, we investigate the Isgur-Wise function for
Lambda baryons and related concepts including the differential decay width, charge radius and the
curvature parameters. In particular, the decay width of A, — A, transition is reported.
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I. INTRODUCTION

To analyze the particle physics phenomena, various
approaches have been proposed with their own capabilities,
failures or limitations. In particular, the Isgur-Wise (IW)
formalism works well and is quite economical for the
analysis of heavy-quark systems. Within this technique, the
decay properties of heavy quark systems is expressed in
terms of universal form factors which are functions of
y = v.2/, where v and v’ are the four velocities of initial and
final states [1,2]. In many cases of heavy quark limit, such
as A, — A, transition, only one universal form factor,
called the Isgur-Wise function (IWF) in the jargon, should
be calculated [3]. Having calculated the IWF, we obtain
invaluable knowledge on various significant quantities
including branching ratio, decay width and Cabibbo-
Kobayashi-Maskawa (CKM) matrix [4-6].

Until now, different authors have studied various aspects
of the approach. Yaouanc et al. obtained the bounds on the
so-called curvature parameter of the IWF for A, — A €7,
decay mode [7]. Baryonic IWFs were studied by Jugeau
[8]. Study of baryonic weak decays in the light-front quark
model was presented by Hong-Wei Ke et al. [9]. Using the
QCD sum rules within the framework of heavy quark
effective theory, the slope parameter and decay branching
ratios were calculated for Lambda transition in Ref. [10].
Ebert and co-authors applied the relativistic quark model to
the problem and thereby calculated the semileptonic decay
rates of heavy baryons [11]. The IWF for Lambda decays
was also reported by Jenkins et al. [12]. Viet developed
the heavy diquark model for baryons and characterized
the matrix elements of weak currents of baryons via
universal IWF [13]. The analysis of the heavy baryon
transitions was also addressed by Korner et al. where they
discussed the decay rates, angular decay distributions,
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form factors of heavy baryons in a light-front constituent
quark model [15].

The aim of this work is to investigate the IWF for
Lambda baryon transition. In our paper, we propose a
different approach to obtain the analytical solutions and
make use of the baryon hyperspherical coordinates to
calculate the system wave function. We then consider
the Lambda transition and comment on the differential
decay width. Section IV includes the numerical results and
the decay width of A, — A, transition is reported in
Tables I-III. Conclusions are given in Sec. V.

TABLE I. Parameters of IWF for Lambda baryons.

Baryon Vs c
A, (m =5.62) 1.1458 0.3065
A. (m =2.286) 1.0364 0.2501
TABLE 1II. Decay width of A, — A, transition versus
B(A, — ab).

Model (A, - A€D) [ours] T(A, - A.€D) [16]

First model 8.32B(A, — ab)
x 1010 s~1
5.1B(A. — ab)

x 1010 ¢~!

5.7B(A. — ab)
x 1010 g~1
Second model

TABLE IIL
V| = 0.04.

Decay width of A, — A, transition for

I' (in 1010 s71)
first model

I (in 1010 s71)
second model

A, decay modes
(Br%) [17]

lifetimes and polarization effects [14]. In an interesting  0.37 0.23 et anything (4.5)

study, Cardarelli and Simula investigated the corresponding 4.16 2.57 p anything (50)

2.91 1.79 A anything (35)
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II. THE HYPERSPHERICAL APPROACH AND
THE BARYON WAVE FUNCTION

Let us consider the three-body baryonic system. Then the
configuration of three particles is described by the two
Jacobi vectors p and 4 defined as [18,19]

- 1 . 2 - 1 . - -
p=—=(r — 1), A=—=(r + 71, —27r3).

7 7 D

Instead of p and :1, one can introduce the hyperspherical
coordinates, which are given by the angles Q, = (,.¢,)
and Q; = (0,, ¢,) together with the hyperradius x and the
hyperangle £ defined respectively by

x=/p*+ 12, §—tan_1<§>.

Therefore, the Hamiltonian of the system is expressed as

(2)

2 2
pp p,1
H=—"+4+—"2+V(x).
2m+2m+ ()

(3)

The corresponding kinetic energy operator of a three-
body problem takes the form (2 = c = 1) [18,19]

w_ﬁ(sz,,,m@)

X dx x2

1 1 [ d?
A Ay =—— (&
Zm( ot ) 2m <dx2+

4)

where the eigenfunctions of L? are hyperspherical har-
monics [18]

L(Q,,2,8)Y e, 6, (2,2, 8)

= }/(7/+4)Y[y],€,,.€,q(g/)’gl’§) (5)
with the grand angular momentum y = 2n + €, + €, and
t,, t, are the angular momenta associated with the p, 1
variables. Any three-body state can be expanded in the
hypersherical harmonics basis [18]

l/j(ﬁv /1) = Z Nyl//u.y(x)Y[y].Q,,@ (Q/)vg)m 5)3 (6)

7€,

where the hyperradial wave function y, , (x) is a solution of

the equation
(5o ) 3) = 2l = Vs, (),
(7)

Choosing the combination of Cornell and harmonic
terms,

5d

xdx X

y(y +4)
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V(x) = ax® + bx — E, (8)
X

which is often called the Killingbeck potential, and

applying the transformation , ,(x) = x~ %gol,‘y(x), the

hyperradial Schrédinger equation appears as [18]

2
@y (x) + [2mE —2ma x* — 2mbx + %
2 +3)2r +5
_ ( )(2 ) (po,]/('x) = 0. (9)
4x

By proceeding on the basis of the ansatz approach of
Ref. [18], we get the ground-state wave function as

mao 2mc
wo, (x) = Nox? exp(— 5 0x2 — o+ S)x). (10)

We suppose A, — A, transition and continue with two
versions of IWF.

III. ISGUR-WISE FUNCTION
A. The first model

IWF is defined as the overlap of the wave function of two
hadrons. In the heavy-baryon transitions, the function has
the form [20,21]

) = /== lwalw,).

where o is referred to the zero recoil point. Substituting
Eq. (10) into Eq. (11) gives

(11)

[Se]

®
/x27+5 exp (_7()(’”& +my, )x*

0

2
=162 Npor || ——
g(w) 6” nor w+1

2¢
(2r+5)

(my +mAh)x> dx, (12)

where N, m, , m,, are normalization constant,
masses of A, and A, baryons, respectively. By using
the values of potential parameters in Ref. [18], at
w=1, the IWF is normalized when N,, = 0.0001986,
which on the other hand indicates {(w)|,_; = 1. In this
case, the IWF as a function of the @ parameter has the

form
[ 2

The slope (charge radius) and the convexity of the IWF
are defined via [22]

(13)
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a dw

w=1
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¢ = 5 . (14)

We measured the slope for Lambda transition as 0.2500. The convexity parameter is also obtained as 0.1875. By using
the obtained IWF of Eq. (13), we can calculate the decay width for the semileptonic decay of A, — A.. The differential

decay width for this transition has the form [16]

24 mp, A @)V — 1By + 1) — 2 — 4a?]. (15)

ar _
do 3
Hence,
1.43
A 204.6350191 Vw? — 1(8.595612783w — 2 — 40)2)
N l+w
1

with A = Z5 [V, PB(A, = ab), where B(A, - ab) is
the branching ratio for the decay A, — a(3") + 5(07). In
addition, n = Z—\\’ and V., is the Kobayashi-Maskawa

matrix element [16]. In Fig. 1, we have plotted % VS @
for model 1. In this model, we obtain I'(A, — A.€D) =

8.32B(A, — ab) x 1010 71,

B. The second model

At the zero recoil point, IWF can be parametrized in a
Taylor series as [3,9,23]

fw)=1-p*(wo—1)+clw—1)>+---. (17)

Because of the dominance of slope and curvature
parameters, the higher terms in the IWF are often neglected.
Summing up the above equations, we state that the IWF in
hyperspherical coordinates is written as

180
160
140
~ 1204
“:; i
& 1004
= 3wl
~ |
60
40 -
20
0 - T T T T T T T T T
1.0 11 12 13 14 15
o
FIG. 1. The differential decay width for A;, — A.€7 in model 1.

dw = 62.41960610A (16)

E(w) = / 1672253 [y (x) |* cos(px)dx. (18)
0
Now, writing the expansion of cos(px),
2.2 4.4
. op | pix
COS(pX)—l—T+T+, (19)
and considering p?> = 2m?(w — 1) (where p? is the square
of virtual momentum transfer), we obtain

Ew) = / 16725y (x) 2 — 1622 (@ — 1)
0

x/|w(x)|2x7dx—l—§ﬂ2m4(a)—1)2/|y/(x)|2x9dx.
0 0

(20)

By a simple comparison of Egs. (17) and (20), the slope
and curvature parameters are presented as

pr= 16752m2/ |y (x)]2x" dx,
0

(e8]

8
c :§ﬂ2m4/ ly (x)[2x7dx. (21)
0
Table I shows the calculated parameters of IWF for

heavy Lambda baryons. The normalization constant of the
wave function can be also calculated from

[so]
1672N2 / XSmRS g — (22)
0

It is evident that in this model at w = 1, £(1) = 1.0.
Recalling Eq. (15), the differential decay width for Lambda
transition is calculated as [16]
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r=A / 102.3175095(2.1458 — 1.1458w + 0.3065(w — 1)?)?>V w? — 1(8.595612783w — 2 — 4w?)dw

1
= 38.54437473A .

In Fig. 2, we have plotted A‘% vs @ for model 2. We
have calculated the total decay width for semileptonic
transition of the Lambda baryon as I'(A, —» A.€D) =
5.1B(A. = ab) x 10'0 571,

IV. RESULT AND DISCUSSION

In our numerical results, we have used the values of
the quark masses from Ref. [16] as m, = m; = 0.65 GeV

100 A

80

60

dr 5
5 dw(GeV )

20

10 11 12 13 14 15
43

FIG. 2. The diffrential decay width for A, — A.€ in model 2.

—
3
e
10 1.1 12 13 14 1.5
w
|— — models model2 |
FIG. 3. Comparison of IWF in two models.

(23)

and m;, = 5.02 GeV, m, = 1.58 GeV. It seems that the
slope of the IWF should have a larger value for baryons
than the case of mesons. Then IWF drops faster in the
case of baryons. Guo and Muta reported the slope of
IWF for Lambda baryon as 1.4 [16] which is in
agreement with the second model of the present paper.
In Table I, we have reported the slope of the IWF for
the Lambda baryon as p?> = 1.1458. In the case of
Lambda transition, the slope parameter is reported as
p?> =2.01 by Huang et al. [10]. They also showed that
£(1) = 0.29 [10]. Ivanov et al. reported 1.04, 1.09, 1.12,
1.22 for the charge radius of the A, baryon [24] and
1.05, 1.09, 1.12, 1.22, 1.32 for the charge radius of the
%, baryon [24]. The UKQCD -collaboration computed
p>=1141.0 for A, - A €D decays [25]. We have
presented the total decay width for semileptonic tran-
sition of the Lambda baryon in the two mentioned
models. As we see in Table II, the obtained value
(A, = A.tD) = 5.1B(A, — ab) x 10'° s~! in the sec-
ond model is in agreement with the result of Guo and
Muta which reports I'(A, - A.€D) = 5.7B(A. — ab) x
10'° s=1 [16]. Moreover, it is consistent with the
reported value of the first model T'(A, » A.€D) =
8.32B(A, — ab) x 10'° s~!, Table III shows our calcu-
lation of decay width of the A, — A. transition for
|Vye| = 0.04. The decay width of the A) - Afe 7,
process is reported as 5.39 (in 10'° s7!) in Ref. [24].
The UKQCD collaboration obtained the decay rate

integrated over the w parameter as [1?dw %(Ab -

A +€D) =14 15|V, [2101 s7! [25]. Our obtained
results in Table III are acceptable when compared with
the result of the UKQCD collaboration. It has to be
mentioned that when |V,.| = 0.04 the reported value of
the UKQCD collaboration will be 2.2400000003 X
10'0 s=! [25] which is in the vicinity of our values
in Table III. In Figs. 1 and 2, the behavior of differ-
ential decay width of A, - A.€? vs w is shown.
Figure 3 gives a comparative view of IWF in the two
applied models. By comparing the results with
Refs. [10,16,24,25] it seems that the second model
yields a more physically motivated result and is there-
fore more suitable to investigate hadrons including a
single heavy quark.

V. CONCLUSIONS

We calculated the baryon wave function using
the hyperspherical coordinates by considering the
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Killingbeck potential which is the combination of
Cornell and quadratic potentials. Using the obtained
wave function, we investigated the IWF for heavy
baryon transition and reported the slope parameter for

PHYSICAL REVIEW D 89, 114027 (2014)

the Lambda baryon. An analysis of differential decay
width for the transition was also discussed and the
comparison with other related results indicated the
acceptability of the solutions.
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