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A study of the possible interactions between fermions assuming only rotational invariance has revealed
15 forms for the potential involving the fermion spins. We review the experimental constraints on
unobserved macroscopic, spin-dependent interactions between electrons in the range below 1 cm. An
existing experiment, using 1 kHz mechanical oscillators as test masses, has been used to constrain mass-
coupled forces in this range. With suitable modifications, including spin-polarized test masses, this
experiment can be used to explore all 15 possible spin-dependent interactions between electrons in this
range with unprecedented sensitivity. Samples of ferrimagnetic dysprosium iron garnet have been
fabricated in the suitable test mass geometry and shown to have spin densities on the order of
1020ℏ=cm3 with very low intrinsic magnetism.
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I. INTRODUCTION

The possible existence of unobserved interactions of
nature with ranges from microns to millimeters and very
weak couplings to matter has begun to attract a great deal of
scientific attention. Many theories beyond the Standard
Model possess extended symmetries that, when broken at
high energy scales, lead toweakly coupled, light bosons such
as axions, familons, and Majorons, which can generate
relatively long-range interactions [1]. Several theoretical
attempts to explain darkmatter and dark energy also produce
new weakly coupled long-range interactions. The fact that
the dark energy density, of order ð1 meVÞ4, corresponds to a
length scale of ∼100 μm encourages searches for new
phenomena at this scale in particular [2]. Particles that might
transmit such interactions are sometimes referred to generi-
cally as weakly-interacting sub-eV particles [3] in recent
theoretical literature, or as “portals” to a hidden sector [4].
A general classification of interactions between non-

relativistic fermions assuming only rotational invariance
reveals 16 different operator structures [5]. Of these, 15
involve the spin of at least one of the particles and 7 their
relative momentum. In general, experimental constraints on
unobserved interactions that depend on the spin and/or
velocity of the particles are fewer and less stringent than
those for static, spin-independent interactions [2]. However,
new experimental results from initial searches for the former
interactions have accelerated over the last few years.

In particular, the velocity-dependent interactions involving
the spin of both particles have been constrained at long range
using the geomagnetic field [6] and at the atomic scale from
an analysis of spin-exchange interactions [7].
One approach to the search for short-range forces uses

planar, 1 kHzmechanical oscillators as test masseswith a stiff
conducting shield in between them to suppress backgrounds
[8]. A fully -constructed experiment in the lab of the authors
uses tungsten test masses to search formass-coupled forces in
the range below 1 mm. With modifications including spin-
polarized test masses, this technique can be used to create
localized spin sources in closeproximitywithnonzero relative
velocity. It thus has the capability to probe essentially all of the
spin andvelocity-dependent interactionsdescribed inRef. [5],
with unprecedented sensitivity in the range of interest.
Ferrimagnetic rare earth iron garnets show promise as spin-
polarized test masses with low intrinsic magnetism, and
several samples have been fabricated in the suitable geometry.
This paper is organized as follows. Section II reviews the

parametrization in Ref. [5], as applied to the proposed spin-
dependent force search. The current short-range limits on
polarized electron interactions are reviewed in Sec. III. The
experiment, with details on polarized test masses made
from dysprosium iron garnet, is described in Sec. IV.
Sensitivity calculations based on the available test masses
are presented in Sec. V.

II. PARAMETRIZATION

In the nonrelativistic, zero-momentum transfer limit, the
long-range potential Viði ¼ 1;…; 16Þ in the general clas-
sification in Ref. [5] for single boson exchange depends
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(in the enumeration in Ref. [5]) on 72 dimensionless
coupling constants f1;2i . Here, the superscripts denote the
species of interacting fermions.
In the experiment described in Sec. IV, the polarized

particles (that is, the particles with nonzero projection of

spin averaged over the volumes of the test masses) are
electrons. There are nine components of the spin-spin
potential between two polarized electrons. Three are
static, given (in Systeme International (SI) units, and
adopting the numbering scheme in Ref. [5]) by
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Here, ~s1;2 ¼ ℏσ̂1;2=2 are the spins of electrons (in test masses 1 and 2), r̂ ¼ ~r=r is the unit vector along the direction between
them, ℏ is Planck’s constant, c is the speed of light in vacuum, me is the electron mass, and λ is the interaction range.
The remaining six components depend on the relative velocity ~v of the electrons:
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There are six components in the case in which only one test mass is polarized. The potentials between a polarized electron
and an unpolarized atom of atomic number Z and mass number A are given by

TABLE I. Coefficients f1;2i in terms of scalar, pseudoscalar, vector, and axial coupling constants for the case of
single massive spin-0 and spin-1 boson exchange, following Ref. [5], as applied to the experiment in Sec. IV. The
approximation A ¼ 2Z is used in Eq. (3) for couplings to unpolarized masses, which for the case of the proposed
experiment (which uses silicon masses) is accurate to within 1%. The results for fee⊥ þ fep⊥ þ fen⊥ ðs ¼ 1Þ and
feev þ fepv þ fenv ignore additional terms scaled by me=mp;n and me=M, where M is explained in Ref. [5].

Parameter s ¼ 0 s ¼ 1
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aThis is the more generic notation used or implied in Ref. [6].
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where r̂ points from the electron to the atom and ~v is their
relative velocity. Following Ref. [5], only one linear
combination of the separate components in Eq. (3) has
been used [as in the expression for V6þ7 in Eq. (2)], and the
coupling constants are given in terms of the f1;2i by

f1;2⊥ ¼ −f1;24 − f1;25

f1;2r ¼ −f1;29 − f1;210

f1;2v ¼ f1;212 þ f1;213 : ð4Þ

The potentials V11, V12þ13, and V16 violate parity ðPÞ; V6þ7

violates time-reversal symmetry ðTÞ; and V9þ10, V14 and
V15 violate both P and T. The potentials V3 and V9þ10 are
the dipole-dipole and monopole-dipole interactions studied
by Moody and Wilczek [9]. The remaining potential (V1)
corresponds to the well-known Yukawa type between
unpolarized objects, to which the sensitivity of the experi-
ment in Sec. IV is discussed elsewhere [10].
For the case of spin-0 or spin-1 boson exchange, the

coefficients f1;2i can be expressed in terms of the scalar and
pseudoscalar couplings gS; gP or vector and axial couplings
gV; gA, respectively. The case of single massive spin-0
exchange is derived in Ref. [5], as is the case for spin 1 in
the context of a massive Z0 boson. The results are
summarized in Table I, with various simplifications, for
the experiment in Sec. IV.

III. EXPERIMENTAL LIMITS

Figure 1 shows the experimental limits on static spin-
spin interactions between electrons [Eq. (1)] in the range
between 1 μm and 10 cm. The best limits above 1 cm
derive from the spin-polarized torsion pendulum experi-
ment in the Eot–Wash group at the University of
Washington, previously used to constrain spin-dependent
forces at terrestrial and astronomical ranges [11]. The “spin
pendulum” consists of an array of Alnico and SmCo5
permanent magnets arranged so that the orbital moments in
the latter cancel the spin moments in the former, resulting in
a polarized test mass with negligible external field. A recent
shorter-range version of this experiment [12] used a set of
similarly designed spin sources placed 15–20 cm from the
pendulum, arranged in several configurations to enhance
sensitivity to V2, V3, and V11 in Eq. (1). The results appear
to be the first short-range limits for electrons interpreted

directly in terms of these potentials. They are reported in
Ref. [12] as limits on the couplings ðgeAÞ2, ðgePÞ2, and geAgeV ,
respectively, and are shown in Fig. 1 according to those
parametrizations and the feei . The limits on fee2 and fee3 are
1–4 orders of magnitude more sensitive than previous
results in the range near 1 cm, and the limit on fee11 appears
to be the first such constraint in the range of interest.
Figure 1 also shows the limits on fee2 that can be derived

from the spin-polarized torsion pendulum at the University
of Virginia (UVA) [13]. The spin sources in this experiment
consisted of compensated rare earth ferrimagnets, which
inspired the proposed experiment in Sec. IV, in the form of
powder pressed into high-permeability cylinders and polar-
ized along their symmetry axes. The results of the original
experiment are reported in terms of a fraction α of the
strength of the (infinite-ranged) magnetic dipole-dipole
interaction between electrons:

α ¼ ð1.6� 6.9Þ × 10−12: ð5Þ
The test cylinders were oriented side by side with their axes
parallel, a configuration that strongly suppressed the σ̂ · r̂
terms in the dipole-dipole potential and in which the finite-
sized test masses could be approximated by point dipoles
up to correction factors of order unity. The curve in Fig. 1 is
thus obtained by converting the limit on α to a magnetic
dipole-dipole energy and equating it to the expression for
V2 in Eq. (1), where r is fixed at the 3.4 cm test mass
separation reported in Ref. [13]. The long-range limit of the
curve corresponds to the result reported for this experiment
in Ref. [5].1

Similarly, short-range limits on fee3 can be derived from
the experiment by Ni and coworkers at the National Tsing
Hua University in Taiwan [14,18,19]. This experiment used
a magnetometer based on a Superconducting Quantum
Interference Device (SQUID) to monitor the interaction
between spin-polarized test masses (also consisting of
compensated rare earth ferrimagnets) and a sample of
paramagnetic salt, as the test masses were rotated around

1The exact long-range limit is stronger than the result in
Ref. [5], on account of an apparent error in Eq. (4.12) of that
reference, at least partially confirmed by the authors. The term
containing the fine structure constant in that equation is misscaled
by a factor of 4π [17]. This is compensated somewhat by the
larger value of r (10 cm) assumed in Ref. [5] for the experiment in
Ref. [13].
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the sample at a distance of about 5 cm. The results of this
experiment are also reported in terms of the electron
magnetic dipole-dipole interaction.2 The most sensitive
result [14] is αs ¼ ð1.2� 2.0Þ × 10−14. The test mass
polarization was oriented either directly toward or away
from the salt, maximizing the contribution from the σ̂ · r̂
terms. The curve in Fig. 1 is thus obtained by converting αs
to a magnetic dipole-dipole energy and equating it to the
expression for V3 in Eq. (1), with r fixed at 5 cm. Again, the
long-range limit of the curve corresponds to the result
reported for this experiment in Ref. [5].3

Below about about 2 mm, stronger limits on fee3 can be
inferred from precision measurements of the hyperfine
splitting in the ground state of positronium [15,21,22].
There is currently a ∼4σ difference between these mea-
surements and QED theory [16,23,24]. The horizontal line
in the middle plot in Fig. 1 results from equating the energy
discrepancy to the expression for V3 in Eq. (1), with r fixed
at the positronium Bohr radius (0.1 nm). An analogous
analysis of the same system has been used to constrain
unparticles [25].
The V3 plot also shows the prediction for the axion (for

the case of a spin-0 interaction), for which there exists an
explicit relationship between the coupling strength and the
range. The value is derived from Ref. [9] and also rescaled
to fee3 according to Table I. The cutoff at 10 meV is the limit
inferred from SN1987a [26]. As noted in Ref. [27], if the
recent BICEP2 measurement of the tensor-to-scalar ratio in
the cosmic microwave background [28] is correct, the
remaining axion prediction in Fig. 1 (and Fig. 3) is still
allowed, lending additional interest to this part of the
parameter space.
Figure 2 shows the limits on velocity-dependent spin-

spin interactions [Eq. (2)] in the range of interest. For the
case of electrons, these interactions appear to be uncon-
strained in this range. At λ ¼ 1 km, the lower limit of the
range analyzed in Ref. [6], the constraints on electron
interactions range from 10−32–10−22 for the case of V14 and
V8 to 10−7–10−1 for the case of V16 and V15, with the
remaining interactions constrained at 10−17–10−12.
For comparison, the solid line in the V8 plot is the limit

calculated for the nucleon coupling fnp8 by a California
State University–East Bay collaboration, based on the
analysis of atomic spin exchange interaction cross sections
[7]. The analysis compared the theoretical cross sections,
calculated with the usual spin-dependent electromagnetic

FIG. 1 (color online). Projected sensitivity of the proposed
experiment to static spin-spin interactions [Eq. (1)], with current
limits and theoretical prediction. Interaction strength according
to all parametrizations in Table I is plotted vs the range λ (lower
axes) and the mass of an unobserved boson (upper axes).
Excluded regions are above the curves. For V2, the solid curve
is the 1σ direct limit on ðgeAÞ2 [12], also expressed as fee2 .
The dashed curve is the limit from Ref. [13] reinterpreted in
terms of Eq. (1). For V3, the bold solid curve is the direct limit
on ðgePÞ2 [12], also rescaled to fee3 in Eq. (1). Dashed curves are
the limit from Ref. [14] and the anomaly from Refs. [15–16]
reinterpreted in terms of Eq. (1); the thin solid curve is the
prediction for the axion [9]. For V11, the solid curve is the direct
limit on geAg

e
V [12], also expressed as fee11.

2As noted in Ref. [5], the explicit potential, which appears in
Refs. [18] and [19], scales as 1=r, as opposed to the expected
1=r3. The authors of Ref. [5] suspected this to be a typographical
error, which has been confirmed [20].

3The corresponding result in Ref. [5], Eq. (4.10), contains the
same order-of-magnitude (4π) error as Eq. (4.12). The error is
also present in Eq. (4.11). The limits on the vector, axial, and
pseudoscalar couplings derived from these results (Eqs. (5.32),
(5.34), and (6.4) of Ref. [5]) should be scaled accordingly.
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potentials responsible for spin exchange replaced with
potentials of the form in Eqs. (1) and (2), with data from
He-Na collisions. The result for V8 is reported in Ref. [7] as
a limit on the coupling gnAg

p
A and has been rescaled in Fig. 2

according to Table I, with the additional substitution ~s2 ¼
3ℏσ̂2=2 in the equation for V8 to account for the Na nuclei
that carried the proton spin. The limit has also been
extended beyond the micron range reported in Ref. [7].
Short-range limits on the interactions in Eq. (3) are

shown in Fig. 3. The velocity-dependent interactions V4þ5

and V12þ13 appear to be unconstrained for the case of
polarized electrons. For comparison, the solid line in the
V4þ5 plot is the limit on the corresponding coupling for
polarized nucleons from an experiment at the Paul Scherrer
Institute [29]. This experiment used Ramsey’s technique of
separated oscillatory fields to compare the precession rate
of polarized cold neutrons in a beam passing in close
proximity to a polished copper plate with the precession
of neutrons in a reference beam. The result in Ref. [29],
which assumes no coupling to electrons (fne⊥ ¼ 0) and

FIG. 2 (color online). Projected sensitivity of proposed experiment to velocity-dependent spin-spin interactions [Eq. (2)].
For comparison, the solid curve in the V8 plot is an extension of the 2σ limit on gnVg

p
V for nucleons [7], also rescaled to fnp8 in Eq. (2).
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fnp⊥ ¼ fnn⊥ ≡ fnN⊥ , is interpreted as a limit on the coupling
ðgAÞ2; the contribution from any gV term is assumed
negligible given the much stronger short-range constraints
on this parameter from torsion pendulum experiments with

unpolarized test masses. The limit in Fig. 3 (≈ðgAÞ2=4) has
been rescaled in accordance with these assumptions.
Similarly, the solid line in the V12þ13 plot is the limit on

the corresponding coupling for polarized neutrons derived
from the neutron spin rotation experiment at NIST [30].
This experiment is designed to be sensitive to the rotation ϕ
of the polarization of a transversely polarized beam of
neutrons passing through a liquid 4He target. The rotation ϕ
arises from a P-violating σ̂ · p̂ term in the forward scatter-
ing cross section, whether induced by an interaction such as
V12þ13 or the Standard Model weak interaction to which
the experiment is ultimately designed to be sensitive. The
analysis in Ref. [30] uses the result on ϕ, currently an upper
limit, to constrain V12þ13. The limit is reported in terms of
gVgnA, where gV contains a factor Z ¼ 2 for 4He. Equating
the expression for V12þ13 in Ref. [30] to Eq. (3) for
polarized neutrons, and using Z ¼ 2, A ¼ 4 yields the
result (fnev þ fnpv þ fnnv ¼ gVgnA) in Fig. 3.
The best limit on the V9þ10 interaction for electrons is

derived from the axionlike particle torsion pendulum in the
Eot–Wash group, which consists of a thin silicon wafer
suspended between the two halves of a split toroidal
magnet [31]. The magnet provides the polarized electrons
and the wafer a source of unpolarized nucleons highly
insensitive to the classical magnetic field present. The limit
in Ref. [31] is reported in terms of gNS g

e
P, where

gNS ≡ gpS ¼ gnS ¼ gaS=A, and it is assumed geS ¼ 0. Since
the unpolarized mass consists of silicon, the limits in Fig. 3
(feer þ fepr þ fenr ≈ 2gNS g

e
P) are scaled according to Table I

with these assumptions, where the dashed line is the
projected thermal limit from Ref. [31]. The same scaling
applies to the prediction for the axion, shown in the V9þ10

plot for the case of an s ¼ 0 interaction. The prediction is
again from Ref. [9], updated to account for the value of
θQCD [33] inferred from the current best limit on the electric
dipole moment of the neutron [34].
Finally, the V9þ10 plot in Fig. 3 also shows the indirect

limits derived from a combination of data from laboratory
experiments and astrophysical arguments [32]. These are
limits on the coupling gNS g

e
P, i.e., for the case of an s ¼ 0

interaction, in which the constraints on gNS come from short-
range gravity experiments with unpolarized test masses
[35–37], and the limit on geP comes from stellar cooling.
They have been scaled by the same factor in Fig. 3 as the
limit in Ref. [31] to maintain consistency with the results in
Ref. [32]. As noted in Ref. [5], analogous constraints on
gNS g

e
S can be inferred by combining the same results for gNS

with the stellar cooling limit on geS. Using g
e
S ≤ 1.3 × 10−14

from Ref. [32], the resulting limits are shown in the V4þ5

plot for the case of an s ¼ 0 interaction.

IV. SHORT-RANGE EXPERIMENT

The experiment is illustrated in Fig. 4. It has been used
previously to set limits on mass-coupled forces in the range
of interest [8], and a more sensitive version of it is currently

FIG. 3 (color online). Projected sensitivity of the proposed
experiment to interactions between polarized and unpolarized
particles [Eq. (3)], with current limits and theoretical prediction.
For comparison, solid curves in the V4þ5 and V12þ13 plots are the
direct limits (2σ and 1σ, respectively) for the case of polarized
neutrons [29,30]. ForV9þ10, thebold solid curve is the2σ direct limit
on gNS g

e
P [31], also rescaled to feer þ fepr þ fenr in Eq. (3); the bold

dashedcurve is theprojected thermal limit.The thinsolid curve is the
predictionfor theaxion[9].Lowersolidcurves in theV4þ5 andV9þ10

plots are the indirect limits inferred from stellar cooling arguments
[32]; the additional projected curves show expected improvements
from the proposed experiment with unpolarized test masses [10].
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fully operational. The experimental test masses consist of
1 kHz, planar mechanical oscillators with a thin shield
between them to suppress backgrounds. The planar geom-
etry is especially efficient for concentrating as much mass
as possible at the range of interest. It is nominally null with
respect to 1=r2 forces and thus effective in suppressing
Newtonian backgrounds. The (active) source mass is driven
at a resonance frequency of the (passive) detector mass to
maximize the signal. For the mass-coupled force search, the
test masses are made from tungsten, which has a density of
about 19 g=cm3. Resonant operation places a heavy burden
on vibration isolation. The 1 kHz operational frequency is
chosen since in this frequency range it is possible to
construct a simple, passive vibration isolation system with
high dimensional stability [38], permitting the test mass
surfaces to be maintained within a few microns of each
other for indefinite periods.
The source mass is a nodally mounted cantilever driven

by a piezoelectric wafer attached in a region of high modal
curvature. The detector is a planar double-torsional oscil-
lator originally developed for cryogenic condensed matter
physics experiments [40,41]. It consists of two coplanar
rectangles, joined along their central axes by a short
segment. The resonant mode of interest is the first anti-
symmetric torsion mode, in which the rectangles counter-
rotate about the axis defined by the segment. This mode is
distinguished by a high mechanical quality factor (Q),
important for increasing sensitivity and suppressing ther-
mal noise. To eliminate backgrounds mediated by electro-
static, residual gas, and possible Casimir effects, it is
essential to place a stiff conducting shield between the
test masses. The previous experiment [8] used a 60-
micron-thick gold-coated sapphire plate clamped at two

opposite ends, which was completely effective at sup-
pressing these backgrounds. The existing experiment uses
a thinner shield made from a stretched copper membrane.
Detector oscillations are read out with a capacitive trans-
ducer coupled to a differential amplifier, which is sufficiently
sensitive to monitor the detector thermal motion [39].
To make the experiment sensitive to spin-dependent

interactions, samples of spin-polarized materials can be
attached to the test masses (Fig. 4). The principal chal-
lenges will be to fabricate such samples with the necessary
thin planar geometry while retaining the polarization and to
control the extra backgrounds due to residual magnetic
forces that cannot be eliminated. For the spin-polarized
material, compensated ferrimagnets are an intriguing pos-
sibility. These materials contain at least two magnetic
sublattices in which the magnetic moments are oppositely
aligned. The contributions of each sublattice to the mag-
netization of a sample depend on temperature in such a way
that there is a “compensation” temperature (Tc) at which
their magnitudes are equal and thus cancel. For materials in
which the contributions to the magnetism of each sublattice
from spin and orbital motion of the electrons are different,
at the compensation temperature there is a net spin.
The effect on the detector Q of attaching a polarized

sample is not known. However, silicon test mass proto-
types, which are particularly attractive as low-susceptibility
substrates for the spin-dependent experiments, have been
measured to have Qs as high as 2 × 106 between 77 K and
room temperature. For the purpose of the sensitivity
estimates, a conservative value of Q ¼ 10000 is assumed.
To locate the compensation temperature (assuming

Tc < 295 K), the experiment can be cooled radiatively with
a high-emissivity shield surrounding the central apparatus.
The test mass temperatures can be further adjusted with
thermoelectric elements. The absolute magnetization of the
samples away from the compensation temperature, from
which the degree of spin polarization can be deduced, can
be measured using external coils to produce a resonant,
calibrated, quasiuniform magnetic gradient to drive the test
masses.

A. Test mass development

One candidate material for the polarized test masses,
Dy6Fe23, has been used in previous experiments [13,14,18,
19,42]. Dy6Fe23 is a ferrimagnet with a net spin and a
compensation temperature of about 250 K. The Dy-Fe
system exhibits several phases, however, and synthesis of
the pure 6–23 phase can be problematic [43,44]. It oxidizes
readily, and the samples in the reported experiments are
encapsulated, making it less attractive for fabrication of
small samples that must be kept in close proximity. This
work investigates the rare earth iron garnets, in particular,
dysprosium iron garnet (DyIG), Dy3þ3 Fe3þ2 Fe3þ3 O12, as a
possible alternative. The garnets are chemically stable and
can be produced in the lab with little difficulty.

FIG. 4 (color online). (adapted from [8] and [39]) Basic test
mass geometry of the proposed experiment. In the particular
configuration, a thin sample of spin-polarized material (here
DyIG) covers half of the small forward rectangle of the detector
mass. In other configurations, a similar sample is attached to the
underside of the forward part of the source mass. The thin, stiff,
conducting shield between the test masses is not shown.
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1. Molecular field model

DyIG is a ferrimagnet in which three sublattices con-
tribute to the magnetization. The Dy3þ ions occupy
dodecahedral sites (commonly denoted c) in the garnet
lattice, the Fe3þ octahedral sites (denoted a), and tetrahe-
dral sites (denoted d) [45]. The Dy3þ moments are
nominally aligned with the octahedral ion moments and
antialigned with the tetrahedral moments. The total mag-
netization per molecule M at a particular temperature is
thus

M ¼ Mc þMa −Md: ð6Þ

FollowingRef. [45], the contribution of each sublattice can
be calculated in a molecular field model. The temperature-
dependent sublattice moments are given by

McðTÞ ¼ Mcð0ÞBJcðxcÞ
MaðTÞ ¼ Mað0ÞBJaðxaÞ
MdðTÞ ¼ Mdð0ÞBJdðxdÞ; ð7Þ

where Mið0Þ are the 0 K moments and the BJiðxiÞ are the
Brillouin functions for sublattice i. For pure DyIG (that is,
no substitution of the ions on any sublattice), the 0 K
moments are

Mcð0Þ ¼ 3gcμBJcNA

Mað0Þ ¼ 2gaμBJaNA

Mdð0Þ ¼ 3gdμBJdNA: ð8Þ

Here, μB is the Bohr magneton in units of erg/Gauss, and a
factor of Avogadro’s number NA is included to convert M

to units of μB/molecule. The coefficients in Eq. (8)
represent the relative numbers of c, a, and d sites in
the garnet molecule [46]. The terms gi and Ji are the
Lande g factor and total angular momentum of the ion on
sublattice i.
The Boltzmann energy ratios xi in Eq. (7) are given by

xc ¼
gcJcμB
kBT

½NccMc þ NacMa þ NcdMd�

xa ¼
gaJaμB
kBT

½NacMc þ NaaMa þ NadMd�

xd ¼
gdJdμB
kBT

½NcdMc þ NadMa þ NddMd�; ð9Þ

where the Nij are the molecular field coefficients. Here, the
exchange fields (terms in brackets) are expressed in Gauss
so that the Nij are in units of mol=cm3. With appropriate
values of gi and Ji, Eqs. (7) and (9) are solved iteratively for
the three lattices simultaneously. The Nij are adjusted by
trial and error to reproduce the data on magnetization vs
temperature for pure DyIG crystals.
Figure 5 shows the result of the calculations of mag-

netization vs temperature using Nac ¼ −4.0 mol=cm3,
Ndc ¼ 6.0 mol=cm3 [45], and Ncc ¼ 0 [47] and
Naa ¼ −65.0 mol=cm3, Nad ¼ 97.0 mol=cm3, and Ndd ¼
−30.4 mol=cm3 [48]. The calculation predicts Tc ¼
226 K. At Tc, the three Dy3þ ions contribute 4.1 μB to
the magnetic moment of the DyIG molecule. The two Fe3þ

on the a sublattice contribute 9.5 μB, and the three Fe3þ on
the d sublattice contribute -13.6 μB. The (absolute value of
the) total magnetization curve displays good agreement
with data from measurements on single crystal spherical
samples [49].

FIG. 5 (color online). Left: Magnetization of DyIG vs temperature, from the results of the molecular field calculation described in the
text. Contributions from the ions on each sublattice are shown (bold curves), together with the sum (dashed curve). Right: Magnetization vs
temperature of the particular DyIG samples fabricated for the proposed experiment. At each temperature investigated, there are two data
points for each sample, one taken as the sample is cooled from 295 K, the other as the sample warmed from 200 K. The dashed line is the
(negative of the) calculated total magnetization in the left-hand plot, for comparison with the slope of the experimental curves at Tc.
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An analogous calculation for terbium iron garnet (TbIG),
using the appropriateNij from the same references, predicts
Tc ¼ 266 K. The Tb3þ ions contribute 4.0 μB to the total
moment at Tc.
The Fe3þ ions on the a and d sublattices have spin

S ¼ 5=2 and orbital angular momentum L ¼ 0.
Consequently, Ja ¼ Jd ¼ 5=2 and ga ¼ gd ¼ 2 for the
calculation in Fig. 5. It should be noted that, for ions in
the 3dn series bonded in an anion lattice such as garnet, the
3d shells are exposed to the electrostatic fields of the lattice
so that L is uncoupled from S, the process known as
quenching. A consequence is that S is the principal source
of the magnetic moment and g ¼ 2 a good approximation
for most ions in this series. The same effect has implica-
tions for the correct values of Jc and gc.
The configuration of the Dy3þ ion is 4f9. In contrast to

the Fe3þ ions, the magnetically active 4f electrons in the
rare earth are shielded by the electrons in the full 5s and 5p
outer shells, and thus they are not expected to be affected by
the lattice fields. The free Dy3þ ion has Sc ¼ 5=2 and
Lc ¼ 5, for Jc ¼ 15=2 and gc ¼ 4=3. However, these are
not the values used in the calculation in Fig. 5. To
reproduce the data, the effective value of Jc is reduced,
the process known as canting. Reference [45] discusses two
possible models.
In the first or semiclassical model, the Jc vector is tilted

with respect to the direction defined by the spins of the d
lattice. Thus, a projection J0c ¼ 5.25 is used in Eqs. (7)–(9),
together with gc ¼ 4=3. In the second model, Lc is partially
quenched in the lattice field, leading to an actual reduction
in Jc. Following the notation in Ref. [45], the quenching
factor is γ ¼ 0.38, so that L00

c ¼ γLc ¼ 1.9, J00c ¼ L00
cþ

Sc ¼ 4.4, and

g00c ¼ 1þ J00cðJ00c þ 1Þ þ ScðSc þ 1Þ − L00
cðL00

c þ 1Þ
2J00cðJ00c þ 1Þ ¼ 1.57:

Either model produces the curves in Fig. 5.4 However, as
explained in Ref. [45], the latter model with partially
quenched Lc is more consistent with the results of
measurements in fields applied along the direction of the
crystal fields. It is also more conservative for the purpose of
estimating the spin excess of DyIG at Tc and thus is
adopted here.
The spin contribution of the ions on the ith sublattice to

the total magnetic moment can be deduced from the spin g
factors, gsi . For the Fe3þ ions, which have L ¼ 0 and

gs ¼ g ¼ 2, all of the contribution is due to spin. For the
Dy3þ ions in the lattice,

g00s ¼ 1þ ScðSc þ 1Þ − L00
cðL00

c þ 1Þ
J00cðJ00c þ 1Þ ¼ 1.14:

In this case, 73% of the magnetic moment is due to spin,
and 27% is due to the orbital motion of the electrons. Thus,
at Tc, μsc ¼ 3.1 μB, and the total spin excess per molecule
(in units of ℏ) is

STc
¼ jμsT j

2μB
¼ j3.1þ 9.6 − 13.8j

2
¼ 0.6: ð10Þ

The analogous calculation for TbIG (Lc ¼ Sc ¼ 3; γ ¼
0.32 [45]) yields STc

¼ 0.3. Thus, while TbIG may be
more attractive for its higher Tc, the spin excess is reduced
by a factor of 2.

2. Synthesis and properties

Samples of DyIG practically sized for use in the
proposed experiment are synthesized via the chemical
process described in Ref. [50]. The material is precipitated
from a mixed metal hydroxide precursor solution and dried
in an oven (air atmosphere) at 393 K for 12 h. It is then
hand ground to fine powder and pressed (force ¼ 10 kN)
into 3.2-mm-diameter pellets using a precision die mounted
in a hydraulic press. The pellets are then fired in the oven at
1173 K for 18 h. Repetition of the grinding, pressing, and
firing steps has been shown to increase purity [50,51]; these
steps were repeated twice for the pellets in the present
study. Two such samples were fabricated: sample 1 with
thickness 0.84 mm and density 3.4 g=cm3 and sample 2
with thickness 0.97 mm and density 3:5 g=cm3.
The sample magnetic properties were measured with a

SQUID magnetometer (Quantum Design MPMS–XL)
calibrated with a palladium standard. Both samples were
magnetized to saturation at room temperature in an applied
field of 2 T; then the applied field was ramped to zero.
Sample 1 was magnetized in the direction normal to the
plane of the pellet along the symmetry axis, and sample 2
was magnetized in plane (both polarizations are necessary
for sensitivity to all potentials in Eqs. (1)–(3), as explained
in Sec. V).
The remnant magnetization of the samples was then

measured as the temperature was reduced below the
anticipated Tc, then raised back to room temperature.
Results are shown in Fig. 5. For both samples, the
magnetization drops to zero at a Tc near 223 K, reverses
below, then recovers to the initial magnetization at room
temperature. Subsequent measurements show this behavior
to be repeatable upon multiple excursions through Tc and
when the samples are held at Tc for several hours. Results
are very similar for the two polarizations, indicating little

4The values listed in Ref. [45] are J0c ¼ 5.3 and γ ¼ 0.41 (for
J00c ¼ 4.6 and g00c ¼ 1.54). Use of these values in the authors’ own
calculation yields a prediction of Tc ¼ 235 K, in poorer agree-
ment with the data in Ref. [49] and Fig. 5. Presumably the
differences can be accounted for by rounding in the calculations
or of the reported values for γ, J0c, and the Nij. Using either value
of γ, the final results for the spin density of the samples are
unchanged at the level of precision used.
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if any extra demagnetization in the case of normal
polarization.
The spin density of each sample at Tc (assuming the

density of the pellets to be uniform) is given by

ns ¼
NAρ

A
STc

; ð11Þ

where ρ is the mass density of the sample and A ¼
958.5 g=mol is the atomic weight of DyIG. Following
Ref. [13], an additional correction factor, equal to the ratio
of the slope of the calculated magnetization curve to the
measured curves at Tc, is applied in order to account for
incomplete magnetization of the flat, polycrystalline sam-
ples used. This ratio is 0.36, resulting in spin densities
of ns ¼ 4.0 × 1020ℏ=cm3 for sample 1 and ns ¼ 4.1 ×
1020ℏ=cm3 for sample 2.

V. PROJECTED SENSITIVITIES

The sensitivity of the experiment is based on the
expectation that essentially all experimental backgrounds
can be suppressed below the detector thermal noise and
amplifier noise. This represents an ultimate practical
sensitivity; results with reduced but competitive sensitivity
in the presence of other backgrounds are expected to be
realized sooner.
Experimental signals are estimated by converting

Eqs. (1)–(3) to forces and integrating them numerically
over the test mass geometry, assuming values of 1 for the
coupling constants. For simplicity, it is assumed that each
of the interactions in Eqs. (1)–(3) acts independently, as is
the case for the limits in Sec. III. (Additional limits on the
interactions in Eq. (1) are presented in Ref. [12], in which
this assumption is relaxed.) The thermal noise force due to
dissipation in the detector is found from the mechanical
Nyquist formula,

FT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBTmω0

Qτ

s
; ð12Þ

where kB is Boltzmann’s constant, T is the temperature, m
is the mass of the detector oscillator, ω0 is the resonance
frequency, Q is the mechanical quality factor, and τ is the
experimental integration time. The ratio of this force to the
result of the integration of Eqs. (1)–(3) at each value of λ
used (that is, a signal-to-noise ratio of 1) yields the
sensitivity curves for the coupling constants. Since the
experiment is sensitive to changes in the signal as the test
mass separation is varied, the integration models the
sinusoidal modulation of the source mass and calculates
the Fourier amplitudes of the integrated signal. In the
thermal noise limit, the amplitude of the oscillations of the
detector is of order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðmω2

0Þ
p

∼ 1 pm (Table II), and

thus the relative velocity term ~v in Eqs. (1)–(3) is very well
approximated by the source velocity.
To maximize sensitivity at short range, a small but

reasonable minimum test mass gap (that is, the distance
of closest approach) is assumed. This is fixed at 120 μm.
This allows for a 100-μm-thick shield between the test
masses (40 μm thicker than the shield used successfully in
previous experiments [8], thus reserving space for addi-
tional magnetic shielding if needed). For each value of λ
investigated, the source mass amplitude is optimized for the
maximum signal. For the static interactions in Eqs. (1)–(3),
this results in values of order λ. For all λ above 1 mm, an
amplitude of 1 mm is used, which is taken to represent a
practical maximum with the piezoelectric drive technique.
The optimization is the same for the velocity-dependent
interactions. The exceptions are V8 and V16, which, on
account of the v2 dependence, increase monotonically with
source amplitude at any λ over the range of interest. For
these interactions, the maximum practical source amplitude
of 1 mm is used at each value of λ.5

Sensitivity to all interactions in Eqs. (1)–(3) is possible in
principle with simple modifications to the test mass
geometry and polarization. The different configurations
are illustrated in Fig. 6. For the purposes of the sensitivity

TABLE II. Test mass geometry and other properties used in
sensitivity calculations. For searches in which the source is
centered over the detector (V4þ5; V15; V16), the active detector
area is 58 mm2. For interactions V4þ5; V9þ10, and V12þ13, the
source is unpolarized and consists of silicon (density 2.3 g=cm3).

Parameter Value

Active detector area 29 mm2

Active source mass area 36 mm2

Test mass thickness 1 mm
Test mass density 3.5 g=cm3 (DyIG)
Test mass spin density 4 × 1020=cm3

Minimum source-detector gap 120 μm
Signal frequency 1 kHz
Detector quality factor 1 × 104

Temperature 225 K
Integration time 200 hr

5On account of the v2 dependence, the principal signals for V8

and V16 are at twice the source frequency, for source amplitudes
below λ. Given the narrow detector resonance at ω0, sensitivity to
these interactions is maximized by driving the source at ω0=2.
Since the corresponding reduction in source velocity leads to a
reduction of the signal by a factor of 4, this is practical only for
the case in which the second harmonic exceeds the fundamental
by more than a factor of 4, which is true only for λ > 0.5 mm.
Generally, since the sinusoidal source velocity scales with
amplitude, higher harmonics of all other velocity-dependent
potentials exceed the size of the optimized fundamental as the
source amplitude increases. The excess is never more than a
factor of 2, however, and cannot be exploited for additional
sensitivity.
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calculations, pure vertical translation of the source mass
(along the z axis in Fig. 6) is assumed, with instantaneous
velocity v. This is a good approximation for the planar
geometry, but there will be small corrections for the actual
mode shape of a practical source mass. The six configu-
rations include four in which the spin-polarized material
covers only half of the detector mass and the source mass
is positioned over that half, so that the resulting force is
optimized to excite the sensitive torsional mode of the
detector:
(C1) Detector and source polarization in plane and

parallel. Presumably the easiest configuration to
attain for spin-spin interactions and sensitive to
potentials proportional to σ̂1 · σ̂2.

(C2) Polarization normal to the test mass planes and
parallel to ~v, for optimum sensitivity to σ̂1 · σ̂2 and
spin-spin interactions proportional to σ̂ · r̂ and σ̂ · ~v.

(C3) Polarization normal (detector only) and parallel to ~v,
for optimum sensitivity to spin-mass interactions
proportional to σ̂ · r̂ and σ̂ · ~v.

(C4) Polarization in-plane and crossed, for sensitivity to
spin-spin interactions proportional to ðσ̂1 × σ̂2Þ · r̂
and ðσ̂1 × σ̂2Þ · ~v.

In the two remaining configurations, the polarized material
covers the entire detector surface, and the source is centered
over the detector, for sensitivity to interactions proportional
to ~v × r̂. The ~v × r̂ term averages to zero over the surface of
the detector in this configuration; however, the associated
vector field has the profile of a vortex centered in the detector
plane. Thus, for σ̂1 parallel to the detector torsion axis, a
force proportional to σ̂1 · ð~v × r̂Þ, while averaging to zero
over the entire detector plane, averages to a nonzero value on
one side of the torsion axis and the negative of this value on
the other, efficiently driving the torsional mode of interest:
(C5) Polarization in plane, parallel to detector torsion

axis, for sensitivity to spin-mass interactions propor-
tional to σ̂ · ð~v × r̂Þ.

(C6) Polarization mixed, with one parallel to detector
torsion axis, for sensitivity to spin-spin interactions
proportional to ½σ̂1;2 · ð~v × r̂Þ�ðσ̂2;1 · r̂Þ and ½σ̂1;2·
ð~v × r̂Þ�ðσ̂2;1 · ~vÞ.

Parameters used in the sensitivity calculations are listed in
Table. II.
Results for sensitivity to the static spin-spin interactions

[Eq. (1)] are shown in Fig. 1. The sensitivity to the V2

interaction is comparable to the Eot–Wash and UVA
experiments in the range near 1 cm, but many orders more
so only a few millimeters below on the account of the small
test mass separation.
The projected limit on V2 is the most sensitive relative to

the others, by at least 4 orders of magnitude, in the range of
interest. The remaining projections can be roughly grouped
into three regions of successively decreasing sensitivity,
determined by the number of additional factors of 1=r or
v=c in the expressions for the corresponding interactions
[Eqs. (1)–(3)] relative to V2.
The sensitivity to the V3 dipole-dipole interaction is

about 8 orders of magnitude greater than the limit inferred
from positronium spectroscopy at 20 μm. Results for
sensitivity to the velocity-dependent spin-spin interactions
[Eq. (2)] are shown in Fig. 2. The proposed technique
would appear to have unique sensitivity in this range.
Results for sensitivity to interactions between polarized

electrons and unpolarized atoms [Eq. (3)] are shown in
Fig. 3. The sensitivity to the V9þ10 monopole-dipole
interaction is about 8 orders of magnitude greater than
the current experimental limits at 20 μm. The lower dashed
curves in the V4þ5 and V9þ10 plots are the projected limit on
gNS g

e
S and gNS g

e
P, respectively, using the value for geS and geP

FIG. 6. Test mass and spin polarization configurations used to
search for interactions V2–V16 as assumed in the sensitivity
calculations. Here, σ1 is the net polarization direction of the spins
in the detector mass and σ2 in the source mass. The relative
velocity of the spins in each test mass is strongly dominated by
the velocity of the source, v. The detector torsion axis is along x.
C1: polarization in plane, parallel (V2, V3). C2: polarization
normal (V2, V3, V6þ7, V8). C3: polarization normal, detector only
(V9þ10, V12þ13). C4: polarization in plane, crossed (V11, V14).
C5: polarization in plane, detector only (V4þ5). C6: polarization
mixed (V15, V16). Note that in C1–C4 the source subtends half
the detector area, and the polarized material σ1 covers only the
detector area subtended. In C5 and C6, the source mass is
centered over the detector, and σ1 covers the entire detector
area.
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from stellar cooling [32] and the projected limit on gNS from
the version of the proposed experiment using dense,
unpolarized test masses [10].
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