
Prompt-photon plus jet associated photoproduction at HERA
in the parton Reggeization approach

B. A. Kniehl*

II. Institut für Theoretische Physik, Universität Hamburg,
Luruper Chaussee 149, 22761 Hamburg, Germany

M. A. Nefedov†

Samara State University, Academician Pavlov Street 1, 443011 Samara, Russia
and II. Institut für Theoretische Physik, Universität Hamburg,

Luruper Chaussee 149, 22761 Hamburg, Germany

V. A. Saleev‡

Samara State University, Academician Pavlov Street 1, 443011 Samara, Russia
and S. P. Korolyov Samara State Aerospace University, Moscow Highway 34, 443086 Samara, Russia

(Received 14 April 2014; published 17 June 2014)

We study the photoproduction of isolated prompt photons associated with hadron jets in the framework
of the parton Reggeization approach. The cross section distributions in the transverse energies and
pseudorapidities of the prompt photon and the jet as well as the azimuthal-decorrelation variables measured
by the H1 and ZEUS collaborations at DESY HERA are nicely described by our predictions. The main
improvements with respect to previous studies in the kT-factorization framework include the application of
the Reggeized-quark formalism, the generation of exactly gauge-invariant amplitudes with off-shell initial-
state quarks, and the exact treatment of the γR → γg box contribution with off-shell initial-state gluons.
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I. INTRODUCTION

The photoproduction of prompt photons with large
transverse momenta provides a formidable laboratory for
precision tests of perturbative quantum chromodynamics
(QCD) and a useful source of information on the parton
content of the proton and the real photon. The initial-state
photon may interact with the partons inside the proton
either directly (direct photoproduction) or via its partonic
content (resolved photoproduction).
The inclusive photoproduction of prompt photons, singly

and in association with jets, received a lot of attention, both
experimentally and theoretically. On the experimental side,
the H1 [1,2] and ZEUS [3–5] collaborations measured the
cross section distributions in the transverse energies ðETÞ
and the pseudorapidities ðηÞ of the prompt photon and the
jet as well as in azimuthal-decorrelation parameters such as
the azimuthal angle enclosed between the prompt-photon
and jet transverse momenta (Δϕ) and the component of
the prompt-photon transverse momentum orthogonal to the
direction of the jet transverse momentum (p⊥). Also, the
distributions in the variables estimating the momentum
fractions of the initial-state partons xLOp , xLOγ , and xobsγ were
measured. This rich set of observables allows one to
perform a detailed study of the underlying partonic

processes and to assess the relevance of different perturba-
tive corrections.
On the theoretical side, attempts to describe these data

were made both at next-to-leading order (NLO) in the
conventional collinear parton model (CPM) [6,7] and in
approaches accommodating off-shell initial-state partons,
such as the kT-factorization approach (KFA) [8–10] and its
implementation with Reggeized partons, which we refer to
as the parton Reggeization approach (PRA) [11]. In the
case of inclusive prompt-photon photoproduction, both the
NLO CPM and leading-order (LO) KFA predictions
underestimate all the measured distributions, as may be
seen, e.g., from the comparative figures in Refs. [1,2,4],
while the LO PRA predictions describe the ET distributions
quite well and the η distributions reasonably well [11].
As for prompt-photon plus jet associated photoproduc-

tion, NLO CPM predictions generally agree with the
measured η distributions, slightly underestimate the ET
distributions, and provide a poor description of the azimu-
thal-decorrelation observables [1,2], due to the fact that
these distributions collapse to delta functions at LO in the
CPM and, therefore, strongly depend on the radiation of
additional partons. The available KFA predictions provide a
better description of the measured ET distributions and
azimuthal-decorrelation observables, but are implemented
with matrix elements that manifestly violate gauge invari-
ance, which renders the quantitative improvements of the
predictions questionable. Furthermore, in the early studies
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[8,9], the partonic subprocess pertaining to the scattering of
a photon and an off-shell gluon γg� → γgwas not taken into
account. Later, this contributionwas found to be numerically
significant [10], due to the large gluon luminosity under
HERAconditions. But the treatment of this contributionwas
approximate because the virtuality of the initial-state gluon
was not taken into account at the amplitude level, but only in
the kinematics of the process [10].
In view of the shortcomings of the previous calculations

mentioned above, it is an urgent matter to perform an
improved analysis of prompt-photon plus jet associated
photoproduction in the PRA, which allows one to treat off-
shell initial-state quarks and gluons in a gauge-invariant
way. Moreover, it is crucial to include the full dependence
on the transverse momentum of the off-shell (Reggeized)
initial-state gluon R in the process γR → γg. These are two
main goals of the present paper.
This paper has the following structure. In Sec. II, a basic

introduction to the PRA, a list of the relevant partonic
subprocesses, and the amplitudes for the tree-level con-
tributions are presented. In Sec. III, the calculation of the
one-loop amplitude of the partonic subprocess γR → γg is
discussed in some detail, and the cross-checks applied to
the results obtained are described. A compact expression
of this amplitude is presented in the Appendix. The results
of the numerical calculations and comparisons with exper-
imental data and previous studies are carefully discussed in
Sec. IV, and a few concluding remarks are collected
in Sec. V.

II. PRA FORMALISM AND TREE-LEVEL
CONTRIBUTIONS

In hadron-hadron or lepton-hadron collisions with large
center-of-mass energies

ffiffiffi
S

p
, different kinds of perturbative

corrections are relevant for different processes and different
regions of phase space. For example, the higher-order
corrections for the production of heavy final states, such as
Higgs bosons, top-quark pairs, dijets with large invariant
masses, or Drell-Yan pairs, by initial-state partons with
relatively large momentum fractions x ∼ 10−1 are domi-
nated by soft and collinear gluons and may increase the
cross sections up to a factor of 2.
By contrast, relatively light final states, such as small-

transverse-momentum heavy quarkonia, single jets, prompt
photons, or dijets with small invariant masses, are produced
by the fusion of partons with small values of x, typically
x ∼ 10−3, because of the large values of

ffiffiffi
S

p
. Radiative

corrections to such processes are dominated by the produc-
tion of additional hard jets. The only way to treat such
processes in the conventional CPM is to calculate higher-
order corrections in the strong coupling constant αs ¼
g2s=ð4πÞ, which could be a challenging task for some
processes even at the NLO level. To overcome this difficulty
and take into account a sizable part of the higher-order
corrections in the small-x regime, the KFA, also known as

high-energy factorization approach, was introduced [12].
The KFA works with off-shell initial-state partons, which
carry not only a fraction x of longitudinal momentum,
but also a significant transverse momentum qT , with
jqT j ∼ x

ffiffiffi
S

p
. The corresponding factorization formula may

be schematically represented as

dσðYÞ ¼
X
i;j

Φiðx1; t1; μFÞ ⊗ Φjðx2; t2; μFÞ

⊗ dσ̂ijðx1;qT1; x2;qT2;YÞ; ð1Þ
where the sum runs over the parton species i, j,⊗ denotes a
convolution over the relevant momentum components of the
partons, Y is the set of kinematic variables of the final state,
and dσ̂ij are the partonic cross sections. The unintegrated
parton distribution function (unPDF) Φiðxi; ti; μFÞ depends
on the longitudinal-momentum fraction xi and the virtuality
ti ¼ q2

Ti of the parton and the factorization scale μF, which
separates the stages of the evolution of the unPDF and the
hard scattering. The unPDF is normalized by the following
condition: Z

μ2F
dtΦiðx; t; μFÞ ¼ xfiðx; μFÞ; ð2Þ

where fiðx; μFÞ is the respective CPM PDF.
In the asymptotic high-energy (Regge) regime, the

characteristic scales of the scattering process obey the
following hierarchy: ΛQCD ≪ μF ∼ μR ≪

ffiffiffi
S

p
, where ΛQCD

is the asymptotic scale parameter of QCD and μR is the
renormalization scale. Deeply in the Regge regime, all the
produced particles are highly separated in rapidity, obeying
the so-called multi-Regge kinematics, while the kT order-
ing of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) [13] evolution is completely broken. So, the
evolution of the unPDFs is governed by large logarithms
of a new type, namely logð1=xÞ. To resum these logarithms,
theBalitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equa-
tionwas introduced [14]. This leads to a powerlike growth of
the gluon unPDF in the small-x region, while the effect on
the quark unPDFs is subleading, so that the gluon unPDF is
expected to strongly dominate at high energies.
At intermediate energies, however, the quark unPDFs

and DGLAP effects cannot be neglected, and the unPDFs
may be obtained by certain approaches taking into
account both DGLAP and BFKL effects, for example by
the Kimber-Martin-Ryskin approach [15] or by a solution
to the Ciafaloni-Catani-Fiorani-Marchesini evolution
equation [16].
Special care is required to define hard-scattering matrix

elements in the KFA because initial-state partons are now
off shell, which generally entails gauge dependence in
QCD. In the KFA studies of heavy-quark pair production or
deep-inelastic scattering, the polarization vector of the
initial-state gluon with four-momentum kμ ¼ ðk0;kT; kzÞ
is usually taken to be
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εμðkÞ ¼ kμT
jkT j

; ð3Þ

wherekμT ¼ ð0;kT; 0Þ, in analogywith the equivalent-photon
approximation in QED [12]. However, this prescription
does not lead to gauge-invariant results for hard-scattering
amplitudes with gluons in the final state because of their
involved non-Abelian color structure. Furthermore, the usual
KFA does not provide a generally accepted prescription for
the treatment of off-shell initial-state quarks.
A rigorous way to solve this gauge-dependence problem

is to observe that the small-x regime, with x ∼ μF=
ffiffiffi
S

p
≪ 1,

implies that particles produced in the hard interaction are
strongly separated in rapidity from the particles produced at
the unPDF evolution stage. The regime where the produced
particles are grouped in a few clusters which are strongly
separated in rapidity is characterized by what is called
quasi-multi-Regge kinematics (QMRK). It was shown
[17,18] that, in the QMRK, the gauge-invariance conditions
hold for each cluster separately and that the fields carrying
four-momentum between these clusters are new gauge-
invariant degrees of freedom accompanying the usual
Yang-Mills gluons and quarks in the effective field theory
for the Regge limit of QCD [19], the Reggeized gluons [19]
and quarks [20]. The implementation of the KFA charac-
terized by Eq. (1) with partonic cross sections obtained
using the Feynman rules of the effective field theory for the
Regge limit of QCD [20,21] is referred to as the PRA.
The hard-scattering amplitudes in the PRA coincide with

those obtained using the prescription in Eq. (3) whenever
the application of the latter is safe, as was explicitly shown,
e.g., for heavy-quark [22] and heavy-quarkonium produc-
tion [23,24]. Recent examples of nontrivial applications of
the PRA to high-energy phenomenology include the
description of dijet azimuthal decorrelations [25] as well
as the production of bottom-flavored jets [26], Drell-Yan
lepton pairs [27], single jets, and prompt photons [28] at the
Tevatron and the LHC.
We now turn from the general discussion of the relation-

ship between the PRA and the KFA to the application of the
PRA to prompt-photon plus jet associated photoproduc-
tion. The LO QMRK approximation for this process
corresponds to only including 2 → 2 subprocesses yielding
potentially sizable contributions. These partonic subpro-
cesses may be classified into direct-photoproduction ones,
where the photon directly takes part in the hard scattering,
and resolved-photoproduction ones, in which the photon
interacts as a composite object containing quarks and
gluons. The LO direct-photoproduction subprocesses are

Qðq1Þ þ γðq2Þ → qðq3Þ þ γðq4Þ; ð4Þ
Rðq1Þ þ γðq2Þ → gðq3Þ þ γðq4Þ; ð5Þ

whereQ and R are the Reggeized quark and gluon from the
proton and the four-momenta of the partons are given in

parentheses. Here, the charge-conjugated subprocesses
involving the Reggeized antiquark Q̄ are also implied.
The contribution to the cross section of the partonic
subprocess in Eq. (4) is of order Oðα2Þ, where α is
Sommerfeld’s fine-structure constant. The contribution
from the partonic subprocess in Eq. (5) is formally of
order Oðα2α2sÞ. However, due to the large values of the
gluon unPDF at small values of x, this process should be
taken into account already at LO in the PRA. The LO
resolved-photoproduction subprocesses are

Rðq1Þ þ q½γ�ð ~q2Þ → qðq3Þ þ γðq4Þ; ð6Þ

Qðq1Þ þ q̄½γ�ð ~q2Þ → gðq3Þ þ γðq4Þ; ð7Þ

Qðq1Þ þ g½γ�ð ~q2Þ → qðq3Þ þ γðq4Þ; ð8Þ

and their charge-conjugated counterparts. The partonic
subprocess in Eq. (6) is important because of the above-
mentioned amplification by the gluon unPDF of the proton.
By detailed inspection, we find the partonic subprocesses in
Eqs. (7) and (8) to account for less than 5% of the total
cross section and omit their contributions in the following.
In addition, partonic subprocesses in which final-

state partons fragment to photons should be considered.
However, their contribution is strongly suppressed by the
photon-isolation condition applied to the experimental data,
which constrains the hadronic energy within the photon-
isolation cone to be less than 10% of the photon energy.
In other words, more than 90% of the parton energy must be
transmitted to the photon, which rarely happens. We
explicitly verify the strong suppression of the fragmentation
contributions, which was also observed in Ref. [11].
All the 2 → 3 subprocesses contribute at NLO in the

PRA. In order to avoid double counting of contributions to
unPDFs and hard-scattering matrix elements due to the
emission of additional partons, one may impose the con-
dition that there are no rapidity gaps between unobserved
and observed partons, which requires a proper subtraction
procedure, as described in Ref. [29]. Contributions of this
type and from the interference of one-loop and tree-level
2 → 2 scattering amplitudes constitute nonfactorizable
higher-order corrections in our approach, in contrast to
those which can be factorized into unPDFs. In the present
paper, we focus on the LO contributions.
In the remainder of this section, we outline the derivation

of the amplitudes for the tree-level subprocesses in Eqs. (4)
and (6). We start by introducing the basic kinematic
notation to be used throughout this paper. We work in
the laboratory frame and take the z axis to point along the
flight direction of the proton, whose mass we neglect. It is
convenient to introduce the light-cone four-vectors

nμþ ¼ Pμ
2

E2

; nμ− ¼ Pμ
1

E1

; ð9Þ
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where P1 and P2 are the four-momenta of the proton and
the electron, respectively, and E1 and E2 are their energies.
We have n2� ¼ 0 and nþ · n− ¼ 2. Then, any four-vector kμ

may be expressed in terms of its light-cone components,
k� ¼ n� · k ¼ k0 � k3, as

kμ ¼ 1

2
ðkþnμ− þ k−nμþÞ þ kμT; ð10Þ

and we have kT · n� ¼ 0. The four-momentum of the
Reggeized parton from the proton can be written as q1 ¼
x1P1 þ qT1 and has virtuality q21 ¼ q2T1 ¼ −q2

T1 ¼ −t1. The
quasireal photon carries the fraction y of the electron energy
andhas four-momentumq2 ¼ yP2. If the photon is resolved,
then it transfers the fraction x2 of its energy to the offspring
parton, which has four-momentum ~q2 ¼ x2q2 ¼ x2yP2. In
the following, we assume the photon to be direct; the
resolved-photon results are recovered by replacing q2 with
~q2. The square of the proton-photon center-of-mass energy
is S ¼ 2P1 · q2 ¼ 4yE1E2. The partonic Mandelstam
variables are defined as

s¼ðq3þq4Þ2; t¼ðq2−q4Þ2; u¼ðq2−q3Þ2; ð11Þ

where q3 and q4 are the four-momenta of the final-state
particles, which we take to be massless, and we have
sþ tþ u ¼ −t1. They may be expressed in terms of the
final-state light-cone four-momenta as

s ¼ ðqþ3 þ qþ4 Þðq−3 þ q−4 Þ − t1; t ¼ −qþ4 ðq−3 þ q−4 Þ;
u ¼ −qþ3 ðq−3 þ q−4 Þ: ð12Þ

It turns out that the hard-scattering amplitudes may be cast
into a particularly compact form by using the dimensionless
Sudakov variables instead of the light-cone ones. They are
defined as

a3;4 ¼
2q2 · q3;4

S
¼ 2yE2q

þ
3;4

S
;

b3;4 ¼
2P1 · q3;4

S
¼ 2E1q−3;4

S
; ð13Þ

so that a3 þ a4 ¼ x1 and b3 þ b4 ¼ 1, or b3 þ b4 ¼ x2 in
the resolved-photon case.
In addition to the standard Feynman rules of QCD, we

need the couplings of the Reggeized quarks and gluons to
the ordinary quarks, gluons, and photons. The full list of the
latter may be found in Refs. [20,21]. For the reader’s
convenience, we specify the Feynman rules relevant for our
calculation in Fig. 1.
The Feynman diagrams contributing at LO to the

partonic subprocess in Eq. (4) are shown in Fig. 2.
Using the Feynman rules in Fig. 1 and the light-cone
four-vectors defined above, we find the modulus square of
the hard-scattering amplitude averaged over the spins and

colors of the incoming partons and summed over those of
the outgoing ones to be

jMðQγ → qγÞj2 ¼ −32π2α2e4q
Sx1
b4su

ðt1b33 þ sb34 − uÞ;
ð14Þ

where eq is the quark electric charge in the units of the
positron charge. In the limit when the initial-state
Reggeized quark goes on shell, which amounts to sub-
stituting t1 → 0, a3 → −u=S, a4 → −t=S, b3 → −t=ðx1SÞ,
b4 → −u=ðx1SÞ, and x1 → s=S, Eq. (14) reproduces the
well-known LO CPM result for Compton scattering,

jMðqγ → qγÞj2 ¼ −32π2α2e4q
�
s
u
þ u

s

�
: ð15Þ

The Feynman diagrams contributing to the partonic
subprocess in Eq. (6) are depicted in Fig. 3. The modulus
square of the hard-scattering amplitude averaged over the
spins and colors in the initial state and summed over those
in the final state reads

jMðRq → qγÞj2 ¼ 16

3
π2ααse2q

S2x21x2
st2t1

ft½ub3 þ ðtþ uÞb4
− Sa3b23 þ sx2� þ Sa4b3½sb4 − tb3

− ðsþ tÞx2�g: ð16Þ

The CPM limit of Eq. (16) is defined as

lim
t1→0

Z
2π

0

dϕ1

2π
jMðRq → qγÞj2 ¼ jMðgq → qγÞj2; ð17Þ

where ϕ1 is the azimuthal angle enclosed between the
three-vectors qT1 and qT3. Note that the order of integrating

FIG. 1. Feynman rules for the Reggeized quark and gluon in the
initial state (left panel) and for the Qγq and Qγγq vertices
(right panel).

FIG. 2. Feynman diagrams contributing at LO to the partonic
subprocess in Eq. (4).

B. A. KNIEHL, M. A. NEFEDOV, AND V. A. SALEEV PHYSICAL REVIEW D 89, 114016 (2014)

114016-4



and taking the limit may be safely reversed in Eq. (17). The
limit t1 → 0 may be taken in Eq. (16) by substituting
a3→−u=ðSx2Þ, a4→−t=ðSx2Þ, b3 → ð−tþ B

ffiffiffiffi
t1

p Þ=ðSx1Þ,
b4 → ð−u − B

ffiffiffiffi
t1

p Þ=ðSx1Þ, and Sx1x2 → sþ t1, where
B¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2ut=s
p

cosϕ1. We thus recover the well-known LO
CPM result

jMðgq → qγÞj2 ¼ −
16

3
π2ααse2q

�
s
t
þ t
s

�
: ð18Þ

Recently, an alternative method, which is equivalent to
the PRA involving Reggeized quarks and gluons adopted
here, was proposed in Ref. [30]. It amounts to embedding
the 2 → n scattering processes under consideration here
into auxiliary 2 → nþ 2 scattering processes and to
extracting from them the gauge-invariant 2 → n amplitudes
with off-shell initial-state partons by using the spinor-
helicity representation with complex momenta. This is
more suitable for the implementation in automatic
matrix-element generators, but the use of Reggeized quarks
and gluons is by far simpler for the purposes of the
present study.

III. BOX CONTRIBUTION

In this section, we discuss the hard-scattering amplitude
of the one-loop subprocess in Eq. (5) within the PRA.
Specifically, we derive the helicity amplitudes and verify
that they reproduce the well-known expressions for photon-
by-photon scattering [31] in the CPM limit.
The contributing Feynman diagrams are shown in Fig. 4.

Using the Feynman rules in Fig. 1, we may write the
helicity amplitudes as

MðRλ2; λ3λ4Þ ¼ −
qþ1
2

ffiffiffiffi
t1

p ðn−Þμ1εμ2ð1;−λ2Þε�μ3ð2; λ3Þ

× ε�μ4ð2;−λ4ÞMμ1μ2μ3μ4 ; ð19Þ

where λi ¼ �1 are the helicities of the massless vector
bosons and the overall factor

ð4πÞ2ααs
ð2πÞ4

δab
2

�X
q

e2q

�
ð20Þ

has been omitted on the right-hand side of Eq. (19) for the
ease of notation. The fourth-rank vacuum polarization
tensor Mμ1μ2μ3μ4 in Eq. (19) reads

Mμ1μ2μ3μ4

¼2

Z
d4q

�
tr½ðq̂− q̂1Þγμ3ðq̂þ q̂2− q̂4Þγμ4ðq̂þ q̂2Þγμ2 q̂γμ1 �

ðq−q1Þ2ðqþq2−q4Þ2ðqþq2Þ2q2

þðq3↔q4;μ3↔μ4Þþðq4↔−q2;μ4↔μ2Þ
�
; ð21Þ

where the overall factor of 2 accounts for the Feynman
diagram with the fermion-number flow reversed. The
polarization four-vectors in Eq. (19) read

εðj; λÞ ¼ 1ffiffiffi
2

p ðnðjÞx þ iλnðjÞy Þ; ð22Þ

where

nð1Þx ¼ 1

Δ
½ðq2 · q3Þq − ðq · q3Þq2 − ðq · q2Þq3�;

nð2Þx ¼ 1

Δ
½ðq3 · q4Þq − ðq · q4Þq3 − ðq · q3Þq4�;

ðnð1Þy Þμ ¼ −ðnð2Þy Þμ ¼ 1

Δ
ϵμq2q3q4 ≡ nμy;

with Δ ¼ ffiffiffiffiffiffiffi
stu

p
=2 and q ¼ q2 þ q3. The handling of the

four-vector ny may be facilitated by observing that it has
the scalar products

q2 · ny ¼ q3 · ny ¼ q4 · ny ¼ nþ · ny ¼ 0; n2y ¼ −1;
ð23Þ

and that the four-vector n− appearing in Eq. (19) may be
decomposed as

n− ¼ αnþ þ β1q3 þ β2q4 þ γny; ð24Þ

with the coefficients

α ¼ sþ − s
2qþ3 q

þ
4

; β1 ¼
sþ s−
sqþ3

; β2 ¼
s − s−
sqþ4

;

γ ¼ 2yE2

Δ
jqT3jjqT4j sinðΔϕÞ; ð25Þ

FIG. 3. Feynman diagrams contributing at LO to the partonic
subprocess in Eq. (6).

FIG. 4. Feynman diagrams contributing at LO to the partonic
subprocess in Eq. (5). The diagrams with reversed fermion-
number flow are not shown.
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where s� ¼ q−4 q
þ
3 � qþ4 q

−
3 and Δϕ is the azimuthal

angle enclosed between qT3 and qT4. Exploiting the fact
that n2− ¼ 0, we may express γ2 through light-cone com-
ponents as

γ2 ¼ 2ssþ − s2 − s2−
sqþ3 q

þ
4

: ð26Þ

In the CPM limit, the four-vectors nþ, n−, q3, and q4
become linearly dependent, and γ → 0. For the sake of a
compact expression for Eq. (19), we introduce the variable

γ1 ¼
qþ3 Δffiffiffiffi
t1

p γ ¼ uffiffiffiffi
t1

p jqT3jjqT4j sinðΔϕÞ; ð27Þ

which has a nonvanishing CPM limit,

γ1 → 2
u
s
Δ sinϕ1: ð28Þ

A similar variable γ2 is related to the product

q−3 q
þ
3 ¼ u

ðtþ uÞ2 ½ðu − tÞðt1 − tÞ − 2t2 þ γ2
ffiffiffiffi
t1

p �: ð29Þ

It may be expressed through γ1 using Eqs. (12), (26), and
(27) as

γ2 ¼ 2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
stu −

ðtþ uÞ2
u2

γ21

s
; ð30Þ

where the sign factor ζ ¼ �1 is to be determined so that the
product of Eq. (29) with t always coincides with uq−3 q

þ
4 in

compliance with Eq. (12). In the CPM limit, we have

γ2 → 4Δ cosϕ1: ð31Þ
These new variables allow us to express Eq. (19) in a simple
form that is manifestly finite in the CPM limit. All the
dependences on the light-cone components reside in γ1,
while the residual parts of the expression depend only on
the Mandelstam variables. The exact analytical expressions
for all helicity amplitudes and the squared amplitude are
presented in the Appendix in terms of the dimensionally
regularized one-loop scalar integrals B0, C0, and D0

defined as in Ref. [32]. The cancellations of the ultraviolet
and infrared divergences are explicit in these expressions
and are also checked in the numerical calculations.
Another important consistency check is to recover the

well-known result in the CPM limit [31]. The relationship
analogous to Eq. (17) may be written as

Z
2π

0

dϕ1

2π
lim
t1→0

jMðRλ2; λ3λ4Þj2 ¼
jNj2
2

X
λ1¼�

jMðλ1λ2; λ3λ4Þj2;

ð32Þ

where the normalization factor N ¼ 8π2i has been pulled
out of the CPM amplitudes, so that

Mðþþ;þ−Þ ¼ Mðþþ;−þÞ ¼ Mðþ−;þþÞ
¼ Mð−þ;þþÞ ¼ Mðþþ;−−Þ ¼ −1:

ð33Þ
In the following, we set λ2 ¼ þ1 without loss of generality.
For λ3 ¼ λ4 ¼ −1, Eq. (32) may be immediately verified
using Eqs. (28) and (A4). The other three combinations of
λ3 and λ4 are slightly more involved.
Let us consider the case λ3 ¼ λ4 ¼ þ1 as an example.

We first recall that [31]

Mðþþ;þþÞ ¼ 1þ u − t
s

½B0ðtÞ − B0ðuÞ� þ
t2 þ u2

s2

×

�
tC0ðtÞ þ uC0ðuÞ −

tu
2
D0ðt; uÞ

�
; ð34Þ

where the shorthand notation for the scalar one-loop
integrals B0, C0, and D0 is explained in the Appendix.
On the other hand, substituting Eqs. (28) and (31) in
Eq. (A1) and using sþ tþ u ¼ 0, we find

lim
t1→0

MðRþ;þþÞ ¼ 4
ffiffiffi
2

p
π2if½1 −Mðþþ;þþÞ�e−iϕ1

− 2 cosϕ1g: ð35Þ

Taking the modulus squared of Eq. (35) and averaging over
ϕ1, we recover Eq. (32) with λ2 ¼ λ3 ¼ λ4 ¼ þ1. The
residual two cases λ3 ¼ −λ4 ¼ �1 may be treated
similarly.
We also check the CPM limit numerically by temporarily

adopting the following simple ansatz for the gluon unPDF:

Φgðx; t; μFÞ ¼ xfgðx; μFÞ
2

μ2Fσ
ffiffiffi
π

p exp

�
−

t2

μ4Fσ
2

�
; ð36Þ

with a sufficiently small value of σ. In fact, σ → 0
corresponds to the CPM limit, in which the normalization
condition of Eq. (2) is satisfied.
Finally, we recover our result for Eq. (19), including its

full t1 dependence, from the vector parts of the helicity
amplitudes of the partonic subprocess gg → Zg presented
in Ref. [33]. To this end, we represent the projector ðn−Þμ1
in Eq. (19) as a linear combination of the transverse and
longitudinal polarization four-vectors of the Z boson and
perform a boost to the center-of-mass frame used
in Ref. [33].

IV. NUMERICAL ANALYSIS

We are now in a position to present our numerical results
for the cross section of prompt-photon plus jet associated
photoproduction in the PRA and to compare them with
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HERA II data [1,2,4,5]. We work in the laboratory frame,
where the proton and electron have energiesEp ¼ 920 GeV
and Ee ¼ 27.6 GeV, respectively, and count rapidity pos-
itive in the proton flight direction. We call the transverse

energies of the prompt photon and jet Eγ
T and Ejet

T , their
pseudorapidities ηγ and ηjet, and their azimuthal angles ϕγ

and ϕjet, respectively. For the reader’s convenience, we list
ourmaster formula for the hadronic cross section differential

TABLE I. Kinematic conditions of the HERA II data sets [1,2,4,5].

H1-2005 [1] H1-2010 [2] ZEUS-2007 I [4] ZEUS-2007 II [4] ZEUS-2013 [5]

5.0 GeV < Eγ
T

< 10.0 GeV
6.0 GeV < Eγ

T
< 15.0 GeV

5.0 GeV < Eγ
T

< 16.0 GeV
7.0 GeV < Eγ

T
< 16.0 GeV

6.0 GeV < Eγ
T

< 15.0 GeV
−1.0 < ηγ < 0.9 −1.0 < ηγ < 2.4 −0.74 < ηγ < 1.1 −0.74 < ηγ < 1.1 −0.7 < ηγ < 0.9
Ejet
T > 4.5 GeV Ejet

T > 4.5 GeV 6.0 GeV < Ejet
T < 17.0 GeV 6.0 GeV < Ejet

T < 17.0 GeV 4.0 GeV < Ejet
T < 35.0 GeV

−1.0 < ηjet < 2.3 −1.3 < ηjet < 2.3 −1.6 < ηjet < 2.4 −1.6 < ηjet < 2.4 −1.5 < ηjet < 1.8
0.2 < y < 0.7 0.1 < y < 0.7 0.2 < y < 0.8 0.2 < y < 0.8 0.2 < y < 0.7

FIG. 5 (color online). Contributions due to the loop-induced subprocess in Eq. (5) to the ηjet (left panel) and Ejet
T (right panel)

distributions of pe → γ þ jþ X under H1-2005 [1] kinematic conditions. The exact PRA results (solid red lines) are compared with the
approximate results obtained by using the CPM box amplitude in the KFA (dashed green lines) and with the CPM results (dot-dashed
blue lines).

FIG. 6 (color online). Eγ
T distributions of pe → γ þ jþ X under H1-2005 [1] (left panel), H1-2010 [2] (central panel), and

ZEUS-2007 I [4] (right panel) kinematic conditions. The experimental data are compared with LO PRA (boldfaced solid blue lines) and
LO CPM (boldfaced dotted blue lines) predictions. The theoretical errors in the LO PRA predictions due to the freedom in the choice of
ξ are indicated by the grey bands. The LO PRA predictions are decomposed into the contributions due to the partonic subprocesses in
Eqs. (4) (solid green lines), (5) (dashed red lines), and (6) (dot-dashed blue lines).
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in Eγ
T , η

γ, Ejet
T , ηjet, Δϕ ¼ ϕjet − ϕγ , and y defined above

Eq. (11),

dσðpe → γ þ jþ XÞ
dEγ

Tdη
γdEjet

T dηjetdðΔϕÞdy
¼

X
i;j¼q;q̄;g

Φiðx1; t1; μFÞGγ=eðyÞx2fj=γðx2; μFÞ

×
Eγ
TE

jet
T

8π2ðyx1x2SpeÞ2
jMijj2; ð37Þ

where Spe ¼ 4EpEe,

x1 ¼
Eγ
Te

ηγ þ Ejet
T eη

jet

2Ep
; x2 ¼

Eγ
Te

−ηγ þ Ejet
T e−η

jet

2yEe
;

t1 ¼ ðEγ
TÞ2 þ ðEjet

T Þ2 þ 2Eγ
TE

jet
T cosðΔϕÞ: ð38Þ

In the Weizsäcker-Williams approximation [34], the flux of
quasireal photons is

Gγ=eðyÞ¼
α

2π

�
1þð1−yÞ2

y
ln
Q2

max

Q2
min

þ2m2
ey

�
1

Q2
min

−
1

Q2
max

��
;

ð39Þ

where me is the electron mass, Q2
min ¼ m2

ey2=ð1 − yÞ is the
minimum value of the photon virtuality allowed by kin-
ematics, and its maximum value Q2

min is determined by
the experimental conditions to be Q2

min ¼ 1 GeV2 in
Refs. [1,2,4,5]. In the case of resolved photoproduction,
fj=γðx2; μFÞ is the CPM PDF of parton j inside the photon.
The case of direct photoproduction is recovered from
Eq. (37) by setting fj=γðx2; μFÞ ¼ δγjδð1 − x2Þ and integrat-
ing over x2 using dy ¼ −y=x2dx2, which follows from the
second equality of Eq. (38).

FIG. 7 (color online). ηγ distributions of pe → γ þ jþ X under H1-2005 [1] (upper left panel), H1-2010 [2] (upper right panel),
ZEUS-2007 I [4] (lower left panel), and ZEUS-2007 II [4] (lower right panel) kinematic conditions. Same notation as in Fig. 6.
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Besides the cross section distributions in Eγ
T , η

γ , Ejet
T , ηjet,

Δϕ, and y given by Eq. (37), also other distributions are
measured experimentally. Specifically, the H1 Collaboration
also consider the magnitude of the photon’s transverse
momentum component orthogonal to the direction of the
jet transverse momentum p⊥ ¼ Eγ

T j sinðΔϕÞj. The respec-
tive distribution may be obtained from Eq. (37) via the
replacement dEγ

T ¼ dp⊥=j sinðΔϕÞj. They also employ the
variables

xLOp ¼ Eγ
T

2Ep
ðeηγ þeη

jetÞ; xLOγ ¼ Eγ
T

2yEe
ðe−ηγ þe−η

jetÞ; ð40Þ

which, at LO in the CPM, coincide with the fractions of the
proton and photon momentum transferred to the initial-state
partons. The respective distributions follow from
Eq. (37) via the substitutions dEγ

T ¼ Eγ
T=x

LO
p dxLOp and

dEγ
T ¼ Eγ

T=x
LO
γ dxLOγ , respectively. The ZEUS

Collaboration uses an alternative variable to probe the
longitudinal-momentum fraction of the parton in the resolved
photon, namely xobsγ ¼ x2, where x2 is given by the second
equality in Eq. (38). The respective distribution emerges from
Eq. (37) via the replacement dEγ

T ¼ 2yEeeη
γ
dxobsγ . Direct-

photoproduction subprocesses at LO in the PRA yield
contributions proportional to δð1 − xobsγ Þ, which are smeared
out only by nonfactorizable NLO corrections.
As inputs we use α ¼ 1=137.036, the LO formula for

α
ðnfÞ
s ðμRÞ with Λ

ðnfÞ
LO ¼ 220 MeV for nf ¼ 4 active quark

flavors [35], the proton unPDF set derived from the LO
proton PDF set by Martin et al. [35] with nf ¼ 4 as
explained in Ref. [15], and the LO photon PDF set by
Glück et al. [36] unless otherwise stated. To estimate the
uncertainty related to the photon PDFs, we also use the sets

FIG. 8 (color online). Ejet
T distributions of pe → γ þ jþ X under H1-2005 [1] (upper left panel), H1-2010 [2] (upper right panel),

ZEUS-2007 I [4] (lower left panel), and ZEUS-2007 II [4] (lower right panel) kinematic conditions. Same notation as in Fig. 6.
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of Refs. [37–40] as implemented in the PDF library
LHAPDF [41]. For our LO CPM predictions, we use the
LO proton PDF set [35] mentioned above. We choose the
factorization and renormalization scales to be μF ¼ μR ¼
ξmaxðEγ

T; E
jet
T Þ and vary the parameter ξ in the range 1=2 ≤

ξ ≤ 2 about its default value ξ ¼ 1.
We compare our results with five experimental data sets

collected by the H1 and ZEUS collaborations at HERA II,
which we refer to as H1-2005 [1], H1-2010 [2], ZEUS-
2007 I [4], ZEUS-2007 II [4], and ZEUS-2013 [5]. The
respective kinematic conditions are summarized in Table I.
Prior to comparing with experimental data, we assess the

significance of rigorously evaluating the loop-induced
subprocess in Eq. (5) in the PRA, from Eqs. (37) and
(A11), rather than using the CPM box amplitude in the
context of the KFA as was done in Ref. [10]. We do this in
Fig. 5 for the ηjet and Ejet

T distributions under H1-2005 [1]

kinematic conditions. We observe that, except for small

values of Ejet
T , the approximation of Ref. [10] (dashed green

lines) is very close the pure CPM result (dot-dashed blue
lines) and significantly overshoots the genuine PRA result
(solid red lines), by as much as 50% at the peak of the ηjet

distribution.
We now turn to the comparisons with the HERA II data

[1,2,4,5]. Specifically, we consider the Eγ
T , η

γ , Ejet
T , and ηjet

distributions of Refs. [1,2,4] in Figs. 6, 7, 8, and 9,
respectively, the same distributions of Ref. [5] in Fig. 10,
the xLOp distributions of Refs. [1,2] in Fig. 11, the xLOγ
distributions of Refs. [1,2] and the xobsγ distributions of
Ref. [4] in Fig. 12, the xobsγ distribution of Ref. [5] in Fig. 13,
the normalized Δϕ distributions of Ref. [2] in Fig. 14, and
the normalized p⊥ distributions of Refs. [1,2] in Fig. 15. In
each figure, the LO PRA (boldfaced solid blue lines)

FIG. 9 (color online). ηjet distributions of pe → γ þ jþ X under H1-2005 [1] (upper left panel), H1-2010 [2] (upper right panel),
ZEUS-2007 I [4] (lower left panel), and ZEUS-2007 II [4] (lower right panel) kinematic conditions. Same notation as in Fig. 6.
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FIG. 10 (color online). Eγ
T (upper left panel), ηγ (upper right panel), Ejet

T (lower left panel), and ηjet (lower right panel) distributions of
pe → γ þ jþ X under ZEUS-2013 [5] kinematic conditions. Same notation as in Fig. 6.

FIG. 11 (color online). xLOp distributions of pe → γ þ jþ X under H1-2005 [1] (left panel) and H1-2010 [2] (right panel) kinematic
conditions. Same notation as in Fig. 6.
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predictions are decomposed into the contributions due to the
partonic subprocesses in Eqs. (4) (solid green lines), (5)
(dashed red lines), and (6) (dot-dashed blue lines) and
compared with the LO CPM predictions (boldfaced dotted
blue lines). The theoretical errors in the LO PRApredictions
due to the freedom in the choice of ξ are indicated by the grey
bands. The normalization factors σ in Figs. 14 and 15 are
evaluated using the corresponding xLOγ cuts. Comparisons of
the experimental data [1,2,4,5] with NLO CPM predictions
[6,7] may be found for the Eγ

T distribution in Fig. 4(c) of
Ref. [1], in Fig. 7(a) ofRef. [2], in Fig. 5(a) (ZEUS-2007 I) of
Ref. [4], and in Fig. 5(a) of Ref. [5]; for the ηγ distribution in
Fig. 4(d) of Ref. [1], in Fig. 7(b) of Ref. [2], in Figs. 5(b)
(ZEUS-2007 I) and 8(a) (ZEUS-2007 II) of Ref. [4], and in
Fig. 5(b) of Ref. [5]; for the Ejet

T distribution in Fig. 5(a) of
Ref. [1], in Fig. 7(c) of Ref. [2], in Figs. 6(a) (ZEUS-2007 I)

and 8(b) (ZEUS-2007 II) of Ref. [4], and in Fig. 6(a) of
Ref. [5]; for the ηjet distribution in Fig. 5(b) of Ref. [1], in
Fig. 7(d) of Ref. [2], in Figs. 6(b) (ZEUS-2007 I) and 8(c)
(ZEUS-2007 II) of Ref. [4], and in Fig. 6(b) of Ref. [5]; for
the xLOp distribution in Fig. 5(d) of Ref. [1] and in Fig. 8(b) of
Ref. [2]; for the xLOγ or xobsγ distributions in Fig. 5(c) of
Ref. [1], in Fig. 8(a) of Ref. [2], in Figs. 7 (ZEUS-2007 I) and
9 (ZEUS-2007 II) of Ref. [4], and in Fig. 7 of Ref. [5]; for the
Δϕ distribution in Figs. 9(a) (xLOγ > 0.8) and 9(c) (xLOγ <0.8)
of Ref. [2], and for the p⊥ distribution in Figs. 6(c)
(xLOγ < 0.85) and 6(d) (xLOγ > 0.85) of Ref. [1] and in
Figs. 9(b) (xLOγ > 0.8) and 9(d) (xLOγ < 0.8) in Ref. [2].
We first assess the relative importance of the LO PRA

contributions due to the partonic subprocesses in
Eqs. (4)–(6). When xLOγ or xobsγ are not constrained, as in
Figs. 6–11, then the partonic subprocesses in Eqs. (4) and

FIG. 12 (color online). xLOγ distributions of pe → γ þ jþ X under H1-2005 [1] (upper left panel) and H1-2010 [2] (lower left panel)
kinematic conditions and xobsγ distributions of pe → γ þ jþ X under ZEUS-2007 I [4] (upper right panel) and ZEUS-2007 II [4] (lower
right panel) kinematic conditions. Same notation as in the Fig. 6.
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(6) compete with each other, while the one in Eq. (5) is of
minor importance. Obviously, the loop suppression of the
latter is insufficiently compensated by the dominance of
the gluon unPDF over the quark unPDFs. This feature is
more pronounced in the PRA than in the CPM or in the
approximation of Ref. [10], as we have seen in Fig. 5.
Looking at Figs. 12 and 13, we observe that resolved
photoproduction, which essentially proceeds via the par-
tonic subprocess in Eq. (6), dominates for xLOγ < 0.9 after
H1-2005 [1] or H1-2010 [2] cuts, for xobsγ < 0.75 after
ZEUS-2007 I [4] and ZEUS-2007 II [4] cuts, and for

xobsγ < 0.9 after ZEUS-2013 [5] cuts. This is also reflected
in Figs. 14 and 15, where the LO PRA predictions for
xLOγ < 0.85 [1] and xLOγ < 0.8 [2] are almost exhausted by
the contribution due the partonic subprocess in Eq. (6). By
contrast, the partonic subprocesses of direct photoproduc-
tion in Eqs. (4) and (5) only contribute to the utmost xobsγ

bins in Figs. 12 and 13. In order for this peak to be smeared
out, one needs to include 2 → 3 subprocesses of direct
photoproduction at NLO giving rise to an additional jet in
the central region of rapidity. From the lower left panel in
Fig. 12, we observe that the LO PRA prediction typically
undershoots the H1-2010 [2] data by a factor of 2 in the
range xLOγ < 0.9. The same undershoot would show up in
the left panel of Fig. 14 and in the lower left panel of Fig. 15
if it were not for the normalizations of the Δϕ and p⊥
distributions shown there.
Next we compare the LO PRA predictions with the LO

CPM ones. From Figs. 6, 8, and 10, we observe that the Eγ
T

and Ejet
T distributions generally fall off more steeply in the

CPM and significantly overshoot the PRA distributions at
small values of Eγ

T and Ejet
T . This may be attributed to the

fact that the singular behavior of the partonic cross sections
for Eγ

T → 0 or Ejet
T → 0 in the CPM is washed out by

the PRA dynamics and the kT smearing via the unPDFs.
From Fig. 6, we also learn that the LO CPM predictions
for the H1-2005 [1] or H1-2010 [2] experimental con-
ditions undershoot the LO PRA ones for Eγ

T > 6 GeV.
Consequently, the same is true for the H1-2010 [2] ηγ and
ηjet distributions in Figs. 7 and 9, respectively, because of
the very cut Eγ

T > 6 GeV. A similar observation can be
made in Fig. 10 for the ZEUS-2013 [5] situation: The LO
CPM Eγ

T distribution undershoots the LO PRA one for
Eγ
T > 6 GeV, which carries over the ηγ and ηjet distributions

being subject to this very cut. Since the prompt photon and

FIG. 13 (color online). xobsγ distribution of pe → γ þ jþ X
under ZEUS-2013 [5] kinematic conditions. Same notation as in
the Fig. 6.

FIG. 14 (color online). Normalized Δϕ distributions of pe → γ þ jþ X under H1-2010 [2] kinematic conditions for xLOγ < 0.8 (left
panel) and xLOγ > 0.8 (right panel). Same notation as in the Fig. 6.
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the jet are strictly back to back at LO in the CPM, the
respective contributions to the Δϕ and p⊥ distributions are
zero, as may be seen from Figs. 14 and 15.
At this point, we estimate the theoretical uncertainty due

to the imperfect knowledge of the photon PDFs. We do this
by recalculating the xLOγ distributions in Fig. 12, which are
particularly sensitive probes of this, using four alternative
photon PDF sets [37–40] as implemented in the PDF library
LHAPDF [41]. We find the variation to be �ð10–20Þ% in
the interval 0.2 < xLOγ < 0.9 and below �10% in the
utmost bin.
Finally, we compare the predictions at LO in the PRA

and at NLO in the CPM [6,7] with respect to their abilities
to describe the experimental data [1,2,4,5]. We find their
overall performances to be comparable, except that, at LO
in the PRA, the peak positions of the ηjet distributions are
generally too small and the xLOp distributions tend to be too

small in the utmost bins. On the other hand, the CPM at
NLO significantly undershoots the measured Δϕ distribu-
tion for xLOγ < 0.8 in the utmost bin, where the PRA at LO
does an excellent job. However, these comparisons have to
be taken with a grain of salt because the NLO CPM
predictions presented in Refs. [1,2,4,5] include corrections
due to hadronization and multiple interactions, which are
beyond the scope of our present analysis.

V. CONCLUSIONS

We studied prompt-photon plus jet associated photo-
production at LO in the PRA, treating the quarks and
gluons inside the proton as Reggeized particles and
allowing for the incoming photon to be resolved. We also
included the loop-induced subprocess in Eq. (5), which was
treated in the PRA accounting for the off-shellness of the

FIG. 15 (color online). Normalized p⊥ distributions of pe → γ þ jþ X under H1-2005 [1] kinematic conditions for xLOγ < 0.85
(upper left panel) and xLOγ > 0.85 (upper right panel) and under H1-2010 [2] kinematic conditions for xLOγ < 0.8 (lower left panel) and
xLOγ > 0.8 (lower right panel). Same notation as in the Fig. 6.
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Reggeon in a manifestly gauge-invariant way for the first
time. We performed detailed comparisons with experimen-
tal data taken by the H1 [1,2] and ZEUS [4,5] collabora-
tions at HERA II, which come as cross section distributions
in Eγ

T , ηγ , Ejet
T , ηjet, xLOp , xLOγ , xobsγ , Δϕ, and p⊥. We

generally found good agreement, which indicates that
factorizable higher-order corrections are significant here.
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APPENDIX: BOX AMPLITUDE

In this appendix, we present the independent helicity
amplitudes in Eq. (19) of the partonic subprocess in Eq. (5).
They may be written as

MðRþ;þþÞ ¼ Mðt; u; t1; ffð1Þi g;R1Þ; ðA1Þ

MðRþ;þ−Þ ¼ Mðs; t; t1; ffð2Þi g;R2Þ; ðA2Þ

MðRþ;−þÞ ¼ Mðs; u; t1; ffð3Þi g;R3Þ; ðA3Þ

MðRþ;−−Þ ¼ iπ24
ffiffiffi
2

p

uΔ
ðtþ uÞγ1; ðA4Þ

where

Mðt; u; t1; ffig;RÞ ¼ iπ2ffiffiffi
2

p
Δ3ðtþ uÞ ff1½B0ðtÞ − B0ð−t1Þ�

þ f2½B0ðuÞ − B0ð−t1Þ�

þ f3Eðt1; t; uÞ þRg; ðA5Þ

with

Eðt1; t; uÞ ¼ tC0ðtÞ þ uC0ðuÞ þ ðtþ t1ÞC0ð−t1; tÞ
þ ðuþ t1ÞC0ð−t1; uÞ − tuD0ð−t1; t; uÞ:

ðA6Þ
In the notation of Ref. [32], the scalar one-loop integrals are
defined as

B0ðp2
1Þ ¼ ID2 ðp2

1; 0; 0Þ;
C0ðp2

3Þ ¼ ID3 ð0; 0; p2
3; 0; 0; 0Þ;

C0ðp2
2; p

2
3Þ ¼ ID3 ð0; p2

2; p
2
3; 0; 0; 0Þ;

D0ðs12; s23Þ ¼ ID4 ð0; 0; 0; 0; s12; s23; 0; 0; 0; 0Þ;
D0ðp2

4; s12; s23Þ ¼ ID4 ð0; 0; 0; p2
4; s12; s23; 0; 0; 0; 0Þ: ðA7Þ

The coefficients pertaining to Eq. (A1) read

fð1Þ1 ¼ −it2

2ðtþ t1Þ2
f2ðsþ 2uÞðtþ t1ÞðtþuÞ2γ1þ 4isu2½2tðtþ t1Þ−ut1�

ffiffiffiffi
t1

p þu½s2ðsþ t1Þþ 3suðs− t1Þþ 2u2ðs− t1Þ�iγ2g;

fð1Þ2 ¼ −itu
2ðuþ t1Þ2

f2ðsþ 2tÞðuþ t1ÞðtþuÞ2γ1þ 4istu½tt1− 2uðuþ t1Þ�
ffiffiffiffi
t1

p þu½s3þ s2ð3tþ t1Þþ stð2t− 3t1Þ− 2t2t1�iγ2g;

fð1Þ3 ¼−it
4s

f2ðtþuÞ2½t2þ t1tþuðuþ t1Þ�γ1þ 4istu2ðu− tÞ ffiffiffiffi
t1

p þu½t3þ t2ðuþ t1Þþ tuðu− 2t1Þþu2ðuþ t1Þ�iγ2g;

R1 ¼
st2u2

ðtþ t1Þðuþ t1Þ
½ðt1− sÞγ2þ 2sðt−uÞ ffiffiffiffi

t1
p �; ðA8Þ

where γ1 and γ2 are defined in Eqs. (27) and (30), respectively. The coefficients pertaining to Eq. (A2) read

fð2Þ1 ¼−is2t
2u

½2ðtþuÞð2tþuÞγ1− 4itu2
ffiffiffiffi
t1

p
−uð2tþuÞiγ2�;

fð2Þ2 ¼ ist2

2uðtþ t1Þ2
f2ð2sþuÞðtþ t1ÞðtþuÞ2γ1− 4isu2½ut1þ tðtþ t1Þ�

ffiffiffiffi
t1

p
−u½2ðsþ t1Þs2þ 3suðsþ t1Þþu2ðs− t1Þ�iγ2g;

fð2Þ3 ¼ ist
4u2

f2½s2þ t1sþ tðtþ t1Þ�ðtþuÞ2γ1þ 4ist2u2
ffiffiffiffi
t1

p
−u½u3þu2ð3tþ t1Þþ tuð4tþ t1Þþ 2t2ðtþ t1Þ�iγ2g;

R2 ¼−
s2t2u
tþ t1

ð2u ffiffiffiffi
t1

p þ γ2Þ: ðA9Þ
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The coefficients pertaining to Eq. (A3) emerge from Eq. (A9) via the substitutions

t ↔ u;
ffiffiffiffi
t1

p
→ −

ffiffiffiffi
t1

p
; γ1 → γ1

t
u
; ðA10Þ

which amounts to permutating the final-state partons.
The modulus square of the hard-scattering amplitude of the partonic subprocess in Eq. (5) averaged over the spins

and colors in the initial state and summed over those in the final state is then obtained from the helicity amplitudes in
Eqs. (A1)–(A4) as

jMðRþ γ → gþ γÞj2 ¼ α2α2s
4π4

�X
q

e2q

�
2 X
λ3;λ4¼�1

jMðRþ; λ3λ4Þj2: ðA11Þ

For completeness, we also present the corresponding CPM result [31],

jMðgγ → gγÞj2 ¼ 8α2α2s

�X
q

e2q

�
2

fjMðþþ;þþÞj2 þ jMð−þ;−þÞj2 þ jMð−þ;þ−Þj2 þ jMðþþ;−−Þj2

þ 4jMðþþ;þ−Þj2g; ðA12Þ

where

Mðþþ;−−Þ ¼ Mðþþ;þ−Þ ¼ −1;

Mðþþ;þþÞ ¼ 1þ ð2x − 1ÞL2 þ
1

2
½x2 þ ð1 − xÞ2�ðL2 þ π2Þ;

Mð−þ;−þÞ ¼ 1þ
�
1 −

2

x

�
ðL1 − πiÞ þ 1

2x2
½1þ ð1 − xÞ2�L1ðL1 − 2πiÞ;

Mð−þ;þ−Þ ¼ Mð−þ;−þÞjx→1−x; ðA13Þ

with L1 ¼ log½1=ð1 − xÞ�, L2 ¼ log½ð1 − xÞ=x�, and x ¼ −t=sþ i0.
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