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I. INTRODUCTION

Relativistic hydrodynamics is a ubiquitous tool to
address long-wavelength phenomena in various areas of
high energy physics such as astrophysics and heavy-ion
physics which reveals physical properties of the quark-
gluon plasma (QGP). In practical applications, hydrody-
namics boils down to a set of nonlinear coupled partial
differential equations of many variables which are almost
always solved numerically. However, under sufficient
symmetry conditions, it is often possible to derive exact
analytical solutions. Classic examples are the Hubble flow
in cosmology [1] and the Bjorken flow [2] in relativistic
heavy-ion collisions. Many other solutions of ideal hydro-
dynamics have been found in the literature, mostly in the
context of studies of quark-gluon plasma/heavy-ion physics
[3–14]. These analytical solutions provide us with good
physical intuition into the problem, and they can also serve
as a test of numerical hydrodynamic codes.
On the other hand, attempts to analytically solve non-

ideal relativistic hydrodynamic equations have been scarce,
if not nonexistent. Even the Navier-Stokes equation, which
includes only the first-order viscous corrections to ideal
hydrodynamics, is significantly more complicated to tackle
analytically beyond perturbation theory. Moreover, finding
solutions of the relativistic Navier-Stokes equation is not
entirely satisfactory because, as is well known, the equation
has serious drawbacks which are only remedied by includ-
ing second-order corrections. The precise complete formu-
lation of second-order hydrodynamics is still under active
debate, but it typically contains Oð10Þ new terms and
transport coefficients, making it a daunting task to obtain

any analytical insights. This seems a bit frustrating in view
of the recent progress in the foundation of second-order
relativistic hydrodynamics [15–24], all the more so because
the experimental data from heavy-ion collisions have
shown indications of nonideal fluid behavior and, thus,
viscous hydrodynamics simulations are increasingly
becoming a standard tool to analyze the data [25].
Conformal symmetry offers powerful methods to solve

difficult problems in field theory which are otherwise
intractable [26], and here again, it proves to be useful.
The hydrodynamic equations are greatly simplified in the
presence of conformal symmetry not only because it puts
constraints on various second-order terms [18,19], but also
because it allows us to use the Weyl rescaling of the metric

gμν → Λ2ĝμν; ð1Þ

where Λ is an arbitrary scalar function of the coordinates, to
work in a convenient space-time where the problem
simplifies. This latter attribute has been recently exploited
in [27,28] to find an exact solution of the relativistic Navier-
Stokes equation. This approach was further extended in
[29] where semianalytical solutions (as well as an approxi-
mate analytic solution) of Israel-Stewart theory [30]
were found.
In a previous paper [31], by using the Weyl equivalence

between Minkowski space and AdS3 × S1, we constructed
some exact solutions in second-order conformal hydro-
dynamics which are valid for rather generic values of the
transport coefficients involved. In this paper we present the
details of this work and derive a number of novel second-
order solutions by conformally mapping Minkowski space
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to various space-times (hyperbolic space, anti–de Sitter
space, etc.). We also find new boost-invariant conformal
fluid solutions which are similar to the Bjorken solution but
possess an unconventional (though natural from the point
of view of conformal invariance) time dependence.
This paper is organized as follows. After introducing the

basics of second-order hydrodynamics in Sec. II, we
describe various exact solutions of ideal conformal hydro-
dynamics in Sec. III. We then include the second-order
corrections to some of these solutions and construct new
solutions in the irrotational case (Sec. IV) and in the
rotating case (Sec. V). In Sec. VI we revisit the boost-
invariant problem and find special solutions for the most
general conformal second-order equation. Section VII is
devoted to conclusions.

II. SECOND-ORDER HYDRODYNAMIC
EQUATIONS

In this section we review the second-order formalism
of relativistic hydrodynamics and set up our notations.
The energy-momentum tensor of a relativistic fluid is
parametrized in the usual way [15]:

Tμν ¼ ϵuμuν þ ðpþ ΠÞΔμν þ πμν: ð2Þ

ϵ is the energy density and p is the (thermodynamic)
pressure. uμ is the flow velocity normalized as uμuμ ¼ −1
and Δμν ¼ gμν þ uμuν is the projection operator transverse
to the flow with gμν ¼ ð−;þ;þ;þÞ. The bulk pressure Π
and the shear-stress tensor πμν characterize the deviation
from local equilibrium. We work in the so-called Landau
frame [15] in which πμν is transverse uμπμν ¼ 0 and
traceless πμμ ¼ 0.
Throughout this paper, we assume that there are no other

macroscopic conserved currents besides energy and
momentum. Therefore, there are 11 unknown variables
ϵ, p, uμ, Π, πμν which should be determined by 11
equations. In the presence of conformal symmetry, this
number becomes 9 because Π ¼ 0 due to the traceless
condition Tμ

μ ¼ 0 and ϵ and p are related by the equation of
state

p ¼ 1

3
ϵ: ð3Þ

Four equations are provided by the energy-momentum
conservation law ∇μTμν ¼ 0 (∇μ is the space-time covar-
iant derivative). This can be decomposed into the compo-
nents parallel and transverse to the flow as

Dϵþ ðϵþ pÞϑþ πμνσμν ¼ 0; ð4Þ

ðϵþ pÞDuμ þ Δμα∇αpþ Δμ
ν∇απ

αν ¼ 0; ð5Þ

where we already set Π ¼ 0 and defined the comoving
derivative D≡ uμ∇μ. ϑ≡∇μuμ is the fluid expansion rate
and

σμν ≡∇hμuνi ≡
�
1

2
ðΔμαΔνβ þΔμβΔναÞ− 1

3
ΔμνΔαβ

�
∇αuβ;

ð6Þ

is the shear tensor. The brackets on greek indices Ahμνi
denote the projection onto the transverse and traceless part
of the tensor Aμν.
The remaining five equations for the five components of

πμν describe the space-time dependence of these dissipative
currents. Since the work of Israel and Stewart [30], there
has been a longstanding controversy regarding the precise
structure of these equations in relativistic systems [15–24].
Here we employ the result of Denicol et al. [23] and
generalize it to curved space-times, taking into account the
constraints from conformal symmetry [18,19]. The most
general equation then reads1

πμν ¼ −2ησμν − τπ

�
Δμ

αΔν
βDπαβ þ 4

3
πμνϑ

�
þ λ2π

hμ
λΩνiλ

þ λ1π
hμ
λπ

νiλ þ λ3Ωhμ
λΩνiλ − τππσ

hμ
λπ

νiλ − ~η3σ
hμ
λσ

νiλ

− ~η4σ
hμ
λΩνiλ þ τσ

�
Δμ

αΔν
βDσαβ þ 1

3
σμνϑ

�
þ κðRhμνi − 2uαRαhμνiβuβÞ; ð7Þ

where Ωμν ≡ 1
2
ΔμαΔνβð∇αuβ −∇βuαÞ is the vorticity ten-

sor. η is the shear viscosity that appears in the first-order
(Navier-Stokes) theory. In kinetic theory approaches valid
at weak coupling, one typically finds the relation τπ ¼ 2λ2
[30]. The linear combinations inside the brackets are
designed to transform homogeneously under the Weyl
transformation (1). The last terms involving the Riemann
and Ricci tensors are relevant to the dynamics only in
curved space-times. In this paper, we do consider hydro-
dynamics in curved space-times but they are all confor-
mally equivalent to flat Minkowski space. In this case the
linear combination proportional to κ vanishes identically
and, therefore, it will not be considered in the following.
In Ref. [23], without assuming conformal symmetry,

Denicol et al. derived the above equation for πμν in flat
space-time via a consistent truncation of the Boltzmann
equation doubly expanded in powers of the Knudsen
number (expansion in the number of space-time gradients)

1The equation derived in [23] includes terms proportional to
the pressure gradient Fμ ¼ Δμν∇νp (or equivalently, the temper-
ature gradient). Eliminating them by using Eq. (5) gives rise to a
new term Dσμν and modifies the coefficient of other terms
accordingly [18]. Thus the various transport coefficients shown
in (7) are in general different from the corresponding ones in
Ref. [23].
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and the inverse Reynolds number (expansion in the ratios of
dissipative to equilibrium quantities) up to second order.
Their method may be viewed as a relativistic generalization
of Grad’s moment method [32], but unlike Grad’s original
theory or Israel-Stewart’s relativistic theory containing only
the first line of Eq. (7), it features a well-defined power
counting scheme which allows one to systematically
improve the approximation involved.
An important concept underlying this (generalized)

moment method is that πμν should be treated as indepen-
dent variables which are determined self-consistently and
nonlinearly from Eq. (7). This is actually crucial to our
work. In the literature, one often treats πμν and −2ησμν
interchangeably in the second-order terms [18]. Then there
is no longer any essential distinction between ππ, σσ, and
πσ terms, or Dσ and Dπ terms so that Eq. (7) reduces to a
gradient expansion. While such an identification may be
justified for certain purposes, such as finding perturbative
asymptotic solutions, throughout this paper we shall
encounter examples in which the approximation πμν ≈
−2ησμν is violated or makes no sense. This is most obvious
when σμν ¼ 0 [note that Eq. (7) is nontrivial and well
defined even in this case], and in Sec. VI we shall see an
explicit violation of this approximation when σμν ≠ 0.2

More generally, Eq. (7) and its variants based on the
gradient expansion admit qualitatively different solutions.
The latter have long been known to be unstable in non-
relativistic theory [33] and acausal [34] in the relativistic
domain (see also [35,36] for recent discussions). Because
of this, the relativistic hydrodynamic equations obtained
from the gradient expansion are not usually implemented in
numerical hydrodynamic studies.

III. SOLUTIONS OF CONFORMAL
IDEAL HYDRODYNAMICS

In this section we describe various exact solutions of the
ideal hydrodynamic equations, namely, (4) and (5) with
πμν ¼ 0. Some of the results in this section are new. All
the solutions are obtained by the following general
strategy: we first consider a coordinate transformation
from the Minkowski coordinates ðt; ~rÞ to some curvilinear
coordinates xμ ¼ xμðt; ~rÞ

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2 ¼ gμνdxμdxν: ð8Þ

If there is conformal symmetry, this may be combined with
the Weyl rescaling of the metric [27]

ds2 ¼ Λ2ĝμνdx̂μdx̂ν ≡ Λ2dŝ2: ð9Þ

We then identify the static, or comoving solution with
respect to the new “time” coordinate x0 or x̂0. When

transformed back to Minkowski space, this becomes a
nontrivial solution which depends on the original space-
time coordinates (t; ~r).
Throughout this paper, we use the notation

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, x⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The spherical coor-

dinates are defined as usual, cos θ ¼ z
r and tanϕ ¼ y

x, with
the line element dΩ2 ¼ dθ2 þ sin2 θdϕ2. Also, as already
done in (9), we use a “hat” (e.g., ϵ̂) for quantities in the
Weyl-transformed coordinates.

A. Bjorken flow

Bjorken’s solution [2] provides a useful approximation
of the complicated dynamics of the matter created in
ultrarelativistic heavy-ion collisions. The flow expands
in the beam direction (along the z axis) and is naturally
described in the coordinate system

ds2 ¼ −dτ2 þ τ2dη2 þ dx2 þ dy2; ð10Þ

where τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
is the “proper time” and η≡ tanh−1 z

t is
the “rapidity” (we use the same letter η for the rapidity and
the shear viscosity, but the distinction should be obvious
from the context).
In this coordinate system, the comoving solution is

characterized by the flow velocity

uτ ¼ −1; uη ¼ ux ¼ uy ¼ 0: ð11Þ

This is a boost-invariant (i.e., independent of η) flow which
has an infinite extent in the transverse ðx; yÞ directions. In
the original coordinates the flow velocity becomes

uμ ¼
�
t
τ
; 0; 0;

z
τ

�
: ð12Þ

The expansion parameter, the shear tensor, and the vorticity
tensor are readily calculated as

ϑ ¼ 1

τ
; σηη ¼ 2

3τ
; σxx ¼ σyy ¼ −

1

3τ
; Ωμν ¼ 0:

ð13Þ

The energy density can be determined by the continuity
equations (4) and (5). The solution is well known:

ϵ ∝
1

τ4=3
: ð14Þ

We note that for more general equations of state of the form
p ¼ wϵ, we have ϵ ∝ 1=τ1þw.

B. Gubser flow

Gubser generalized Bjorken’s solution by including a
nontrivial x⊥ dependence while retaining boost invariance

2The analytical solution obtained in [29] also violates this
approximation.
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[27,28]. Assuming conformal symmetry, Refs. [27,28]
considered the following coordinate and Weyl transforma-
tions of the metric:

dŝ2 ≡ ds2

τ2
¼ −dτ2 þ dx2⊥ þ x2⊥dϕ2

τ2
þ dη2

¼ −dϱ2 þ cosh2ϱðdΘ2 þ sin2Θdϕ2Þ þ dη2;

ð15Þ

where

sinhϱ¼ −
L2 − τ2 þ x2⊥

2Lτ
; tanΘ¼ 2Lx⊥

L2 þ τ2 − x2⊥
: ð16Þ

Equation (15) shows that Minkowski space is conformal
to dS3 × R (dS3 is the three-dimensional de Sitter space)
up to a Weyl rescaling factor Λ2 ¼ τ2. The parameter L has
the dimension of length and is identified with the
“radius” of dS3 (alternatively, [27] defined an energy scale
q≡ 1=L)

−X2
0 þ X2

1 þ X2
2 þ X2

3 ¼ L2; ð17Þ

where

X0 ¼ −
L2 − τ2 þ x2⊥

2τ
; X1;2 ¼

x1;2⊥
τ

L;

X3 ¼
L2 þ τ2 − x2⊥

2τ
: ð18Þ

Similarly to (11), we choose the flow velocity as

ûϱ ¼ −1; ûη ¼ ûΘ ¼ ûϕ ¼ 0: ð19Þ

This has the following properties:

ϑ̂ ¼ 2 tanh ϱ; σ̂ηη ¼ −
2

3
tanh ϱ;

σ̂ΘΘ ¼ σ̂ϕϕ ¼ 1

3
tanh ϱ; Ω̂μν ¼ 0: ð20Þ

In the x̂ coordinates, the continuity equations (4) and (5)
take the form

3ûμ∇̂μϵ̂þ 4ϵ̂ ϑ̂ ¼ 0; ð21Þ

4ϵ̂ûν∇̂νûμ þ Δ̂μα∇̂αϵ̂ ¼ 0: ð22Þ

Substituting ϑ from (20), we can easily find the solution

ϵ̂ ∝
�

1

cosh ϱ

�8
3

: ð23Þ

The solution in Minkowski space is recovered by the
coordinate and Weyl transformations

uμ ¼ Λ
∂x̂ν
∂xμ ûν; ð24Þ

σμν ¼ Λ
∂x̂α
∂xμ

∂x̂β
∂xν σ̂αβ; ð25Þ

ϵ ¼ 1

Λ4
ϵ̂; ð26Þ

where the power of Λ ¼ τ indicates the conformal weight
of the corresponding quantity [26]. In particular, the flow
four-vector is given by

uτ ¼ − cosh

�
tanh−1

2τx⊥
L2 þ τ2 þ x2⊥

�
;

u⊥ ¼ sinh

�
tanh−1

2τx⊥
L2 þ τ2 þ x2⊥

�
; ð27Þ

with uη ¼ uϕ ¼ 0, and the energy density is

ϵ ∝
1

τ4=3
1

ðL4 þ 2ðτ2 þ x2⊥ÞL2 þ ðτ2 − x2⊥Þ2Þ4=3
: ð28Þ

In contrast to Bjorken’s solution, the flow is expanding in
the transverse direction with the velocity

v⊥ ≡ −
u⊥
uτ

¼ 2τx⊥
L2 þ τ2 þ x2⊥

; ð29Þ

which is reminiscent of the “radial flow” observed in actual
heavy-ion experiments [25]. See [28] for phenomenologi-
cal applications of this solution to heavy-ion physics.

C. Hubble flow in Milne universe

The next example is the flat-space analog of the well-
known Hubble flow in cosmology [5,6]. Let us consider the
following transformation:

ds2 ¼ −dt2 þ dr2 þ r2dΩ2

¼ −dτ2r þ τ2rdη2r þ τ2rsinh2ηrdΩ2

¼ τ2rð−dχ2 þ dη2r þ sinh2ηrdΩ2Þ; ð30Þ

where we defined τr ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2

p ≡ eχ and ηr ≡ tanh−1 r
t,

and dΩ denotes the solid angle. These are the three-
dimensional counterparts of the proper time τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and rapidity η ¼ tanh−1 z

t introduced in the
previous subsections.
The second equality of Eq. (30) shows that the metric of

the Milne universe is a special solution of the Friedmann
equation [1] describing an empty universe with negative
spatial curvature. As is well known, and as is manifest in
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Eq. (30), the Milne universe is a simple reparametrization
of Minkowski space. The third equality shows that
Minkowski space is conformal to R ×H3 where H3 is
the three-dimensional hyperbolic space

X2
0 − X2

1 − X2
2 − X2

3 ¼ L2; ð31Þ

which can be parametrized as X0 ¼ L cosh ηr and
~X ¼ L~n sinh ηr, where ~n is the unit vector.
Working in Milne coordinates xμ ¼ ðτr; ηr; θ;ϕÞ, we

consider the “Hubble” flow

uτr ¼ −1; uηr ¼ uθ ¼ uϕ ¼ 0: ð32Þ

In Minkowski space, this corresponds to

uμ ¼
�
t
τr
;
~r
τr

�
; ð33Þ

which has the following properties:

ϑ ¼ 3

τr
; σμν ¼ 0; Ωμν ¼ 0: ð34Þ

The flow is similar to Bjorken flow (12) but now the
expansion is three dimensional. The corresponding energy
density in conformal theories is easily obtained as

ϵ ∝
1

τ4r
: ð35Þ

For more general equations of state p ¼ wϵ, we have

ϵ ∝ 1=τ3ð1þwÞ
r .

1. Rotating Hubble flow and the “hybrid” coordinates

We now show that the above solution can be generalized
to include rotation. Working in the R ×H3 coordinates
x̂μ ¼ ðχ; ηr; θ;ϕÞ, we turn on the ϕ component of the
velocity for a fluid rotating around the z axis:

ûχ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ω2sinh2ηrsin2θ
p ;

ûϕ ¼ ωsinh2ηrsin2θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2sinh2ηrsin2θ

p : ð36Þ

This still satisfies ϑ̂ ¼ σ̂μν ¼ 0 but the vorticity tensor no
longer vanishes Ω̂μν ≠ 0 (see below). The corresponding
flow velocity in Minkowski space is

ut ¼ −
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2r − ω2x2⊥
p ; ~u ¼ ~r − ωð~r × ~ezÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2r − ω2x2⊥
p : ð37Þ

The energy density is determined by Eq. (22). The
μ ¼ ηr; θ components are nontrivial and they are
simultaneously solved by

ϵ̂ ∝
1

ð1 − ω2sinh2ηrsin2θÞ2
; ð38Þ

or in Minkowski space,

ϵ ¼ ϵ̂

τ4r
∝

1

ðτ2r − ω2x2⊥Þ2
¼ 1

ðt2 − r2 − ω2x2⊥Þ2
: ð39Þ

The fluid is confined in the region t2 > r2 þ ω2x2⊥, mean-
ing that it is squeezed in the x⊥ direction by a factor of

1ffiffiffiffiffiffiffiffi
1þω2

p . To our knowledge, this rotating solution is new.

(See, however, a potentially related nonrelativistic solution
recently obtained in [37].)
The flow velocity (36) given in the coordinates

x̂μ ¼ ðχ; ηr; θ;ϕÞ has one deficiency: it depends on two
variables ηr and θ. This will be inconvenient when we
consider second-order solutions with rotation. Let us
consider the following change of variables:

γ ≡ sinh ηr sin θ ¼ x⊥
τr

; tanh η ¼ tanh ηr cos θ ¼ z
t
:

ð40Þ

In terms of these, the metric becomes

dŝ2¼ ds2

τ2r
¼−dχ2þ dγ2

1þ γ2
þð1þ γ2Þdη2þ γ2dϕ2: ð41Þ

This is a “hybrid” coordinate system in that we use the
three-dimensional proper time τr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2

p
¼ eχ together

with the one-dimensional rapidity η ¼ tanh−1 z
t. The flow

velocity in this coordinate system depends only on γ:

ûχ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ω2γ2
p ; ûϕ ¼ ωγ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ω2γ2
p : ð42Þ

The advantage of the hybrid coordinates is that the vorticity
tensor has only two nonvanishing components,

Ω̂γχ ¼ ωγ2Ω̂γϕ ¼ ð1þ γ2Þω2γ

ð1 − ω2γ2Þ3=2 ; ð43Þ

modulo the trivial antisymmetry Ω̂μν ¼ −Ω̂νμ. (Remember
that ûμΩ̂μν ¼ 0.) In comparison, Ω̂μν has twice as many
components in the R ×H3 coordinates x̂μ ¼ ðχ; ηr; θ;ϕÞ.
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D. Conformal soliton flow

Finally, we introduce another spherically expanding flow
first discovered by Friess et al. in Ref. [7] and dubbed
“conformal soliton flow” (see also [38]). This solution was
rediscovered by Nagy [12] and also by us in Ref. [31] using
different methods.

1. Einstein static universe

There are several ways to describe conformal soliton
flow. The original derivation in [7] was based on the
mapping of Minkowski space onto the so-called Einstein
static universe via the coordinate transformation

t ¼ L sin ξ
cos ξþ cos σ

; ~r ¼ L sin σ
cos ξþ cos σ

~n: ð44Þ

Equivalently,

cot ξ ¼ L2 þ r2 − t2

2Lt
;

1

cos ξþ cos σ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ ðrþ tÞ2ÞðL2 þ ðr − tÞ2Þ

p
2L2

: ð45Þ

The metric becomes

ds2 ¼ L2

ðcos ξþ cos σÞ2 ð−dξ
2 þ dσ2 þ sin2σdΩ2Þ: ð46Þ

This shows that Minkowski space is conformal to S1 × S3.
Performing a Weyl transformation, we obtain

dŝ2 ¼ −dξ2 þ dσ2 þ sin2σdΩ2

¼ −dξ2 þ dR2

1 − R2
þ R2dΩ2; ð47Þ

where sin σ ≡ R in the second line. This is a Robertson-
Walker type metric with a constant scale factor and positive
spatial curvature. It is known as Einstein’s static universe
which is another solution of the Friedmann equation with a
cosmological constant.
The hydrostatic solution static in ξ has the flow

velocity ûξ ¼ −1, ûσ ¼ ûθ ¼ ûϕ ¼ 0 which has the pro-
perties σ̂μν ¼ ϑ̂ ¼ Ω̂μν ¼ 0. In Minkowski space, this
corresponds to

ut ¼
L

cos ξþ cos σ
∂ξ
∂t ûξ

¼ −
L2 þ r2 þ t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL2 þ ðrþ tÞ2ÞðL2 þ ðr − tÞ2Þ
p ; ~u

¼ L
cos ξþ cos σ

dξ
d~x

ûξ

¼ 2t~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ ðrþ tÞ2ÞðL2 þ ðr − tÞ2Þ

p : ð48Þ

This is a radially expanding spherically symmetric flow
with the expansion rate

ϑ ¼ 3
ur

r
: ð49Þ

Note that Eq. (49) is not in contradiction with ϑ̂ ¼ 0 (the
flow is static in the x̂μ coordinates) because this quantity
does not transform homogeneously under Weyl rescaling.
The continuity equation (22) is trivially solved by

ϵ̂ ¼ const. and this corresponds in Minkowski space to

ϵ ∝ ðcos ξþ cos σÞ4 ∝ 1

ðL2 þ ðrþ tÞ2Þ2ðL2 þ ðr − tÞ2Þ2 :

ð50Þ

Equations (48) and (50) characterize the conformal soliton
flow derived in Ref. [7]. We note that the particular solution
with L ¼ 0 was found slightly earlier in Ref. [6].

2. AdS3 × S1

In Ref. [31] we arrived at the same solution from a
different route. Consider the following transformation:

dŝ2 ≡ ds2

x2⊥
¼ −dt2 þ dz2 þ dx2⊥

x2⊥
þ dϕ2

¼ −cosh2ρdT2 þ dρ2 þ sinh2ρdΘ̄2 þ dϕ2:

ð51Þ

In the second line we have defined

tanT ¼ L2 þ r2 − t2

2Lt
;

cosh ρ ¼ 1

2Lx⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ ðrþ tÞ2ÞðL2 þ ðr − tÞ2Þ

q
: ð52Þ

The metric in Eq. (51) is that of AdS3 × S1, where AdS3
is the three-dimensional anti–de Sitter space commonly
parametrized as

X2
0 − X2

1 − X2
2 þ X2

3 ¼ L2: ð53Þ

YOSHITAKA HATTA, JORGE NORONHA, AND BO-WEN XIAO PHYSICAL REVIEW D 89, 114011 (2014)

114011-6



The relation to the Poincaré and global coordinates shown
in the first and second line of Eq. (51), respectively, is

X0 ¼ L
t
x⊥

¼ L cosh ρ cosT;

X1 ¼ L
z
x⊥

¼ L sinh ρ sin Θ̄;

X2 ¼
L2 − r2 þ t2

2x⊥
¼ L sinh ρ cos Θ̄;

X3 ¼
L2 þ r2 − t2

2x⊥
¼ L cosh ρ sinT: ð54Þ

The hydrostatic solution static in T has the flow velocity

ûT ¼ − cosh ρ; ûρ ¼ ûΘ̄ ¼ ûϕ ¼ 0; ð55Þ

with the property ϑ̂ ¼ σ̂μν ¼ Ω̂μν ¼ 0. The corresponding
flow velocity in the Minkowski coordinates is obtained by

ut ¼ −x⊥
dT
dt

ûT ¼ −
L2 þ r2 þ t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL2 þ ðrþ tÞ2ÞðL2 þ ðr − tÞ2Þ
p ;

ð56Þ

~u ¼ −x⊥
dT
d~x

ûT ¼ 2t~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ ðrþ tÞ2ÞðL2 þ ðr − tÞ2Þ

p ;

ð57Þ

in agreement with (48). The energy density ϵ̂ is obtained by
solving (22) with ϑ̂ ¼ 0. The result is

ϵ̂ ∝
1

cosh4 ρ
: ð58Þ

The corresponding energy density in Minkowski space
ϵ ¼ ϵ̂=x4⊥ is the same as (50).

3. AdS2 × S2

Instead of transforming to AdS3 × S1 as in (51), let us
now write

ds2 ¼ −dt2 þ dr2 þ r2dΩ2 ¼ r2
�
−dt2 þ dr2

r2
þ dΩ2

�
:

ð59Þ

This shows that Minkowski space is also conformal to
AdS2 × S2. As before, we switch to global coordinates,

dŝ2 ¼ ds2

r2
¼ −cosh2 ~ρdT2 þ d~ρ2 þ dθ2 þ sin2θdϕ2; ð60Þ

where

cosh ~ρ≡ 1

2Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ ðrþ tÞ2ÞðL2 þ ðr − tÞ2Þ

q
; ð61Þ

and T is the same as in Eq. (52). It is easy to check that the
hydrostatic fluid in this space is equivalent to the conformal
soliton flow in Eqs. (48) and (50) in Minkowski space.

4. Rotating conformal soliton flow

As in the case of Hubble flow, it is possible to rotate the
flow velocity in Eq. (48) and find an exact axisymmetric
solution. This has been first done by Nagy [12] without the
use of conformal symmetry techniques. As shown in
Ref. [31], the rotating solution can be easily implemented
in the present framework.
We work in the AdS3 × S1 coordinates as in Eq. (51).

Similarly to Eq. (36), we try

ûT ¼ −cosh2ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ρ − ω2

p ; ûϕ ¼ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ρ − ω2

p ; ð62Þ

which still satisfies ϑ̂ ¼ σ̂μν ¼ 0 but Ω̂μν ≠ 0. Differently
from the Hubble case as shown in Eq. (36), now there is a
constraint 0 ≤ ω ≤ 1. The corresponding flow velocity in
Minkowski space is

ut ¼ −
L2 þ r2 þ t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL2 þ ðtþ rÞ2ÞðL2 þ ðt − rÞ2Þ − 4ω2L2x2⊥
p ;

~u ¼ 2t~rþ 2ωLð~r × ~ezÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ ðtþ rÞ2ÞðL2 þ ðt − rÞ2Þ − 4ω2L2x2⊥

p : ð63Þ

With this flow velocity, we can integrate over Eq. (22) and
obtain

ϵ̂ ∝
1

ðcosh2 ρ − ω2Þ2 ; ð64Þ

or in Minkowski space,

ϵ ∝
1

ððL2 þ ðtþ rÞ2ÞðL2 þ ðt − rÞ2Þ − 4ω2L2x2⊥Þ2
: ð65Þ

IV. EXACT SOLUTIONS OF SECOND-ORDER
CONFORMAL HYDRODYNAMICS

Having described various solutions of ideal hydrodynam-
ics, we now turn to the second-order equations (4), (5), and
(7). These are nonlinear, coupled partial differential equa-
tions involving nine unknown variables ðϵ; uμ; πμνÞ. (The
equations are nonlinear because the various transport coef-
ficients are functions of ϵ; see below.) One thus needs some
ingenious tricks and assumptions to analytically solve them.
In Ref. [27], Gubser included only the first term of Eq. (7)

(i.e., the Navier-Stokes approximation πμν ≈ −2ησμν) and
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obtained an exact analytical solution which generalizes the
ideal solution in Sec. III B. Later, the second-order equations
for the gradient expansion [18] (in which the shear-stress
tensor is not an independent variable, being completely
determined by the gradients of energy density and flow)
were studied in Ref. [28]. In general, the inclusion of even a
single term in Eq. (7) can make the remaining equations
vastly more complex because not only the energy density ϵ
but also the flow velocity uμ are modified from the ideal
ones. However, Refs. [27,28] assumed that uμ remains the
same as in the ideal solution (19), as it is completely fixed by
the symmetries implemented in terms of the geometry of the
associated curved space dS3 × R, and the authors succeeded
in solving the resulting Navier-Stokes equation for ϵ. This
approach was further pursued in [29], where the authors
included the other terms on the first line of Eq. (7) (i.e., the
Israel-Stewart approximation) and found semianalytical
solutions, as well as an analytical solution in a certain limit.
In our previous paper [31], we constructed exact second-

order solutions which generalize the conformal soliton flow
solution in Sec. III D and take into account, in principle, all
the terms in Eq. (7). As a matter of fact, many of the terms
vanish identically thanks to the flow property which gives
σμν ¼ 0. Moreover, in Weyl-transformed coordinates we
also have ϑ̂ ¼ 0, so that Eq. (7) drastically simplifies to

π̂μν ¼ −
τπ
ϵ̂1=4

Δ̂μ
αΔ̂ν

βD̂π̂αβ þ λ1
ϵ̂
π̂hμλπ̂νiλ þ

λ2
ϵ̂1=4

π̂hμλΩ̂νiλ

þ λ3ϵ̂
1=2Ω̂hμ

λΩ̂νiλ: ð66Þ

In Eq. (66), we have redefined the transport coefficients so
that they are dimensionless and their ϵ̂ dependence is
explicitly factored out. This is because these coefficients
are dimensionful in the original Minkowski space and
are proportional to ϵ to some power in a conformal theory
(e.g., λ1 ∝ ϵ−1). After the equations are Weyl transformed,
this is converted to a power of ϵ̂ (e.g., λ1 → λ1=Λ4 ∝ ϵ̂−1).
With these simplifications, (66) is finally amenable to

analytic approaches and this is what has been done in [31].
In this and the next sections, we demonstrate that the
technique developed in [31] can be straightforwardly
applied to obtain a number of new second-order solutions.
We first consider the nonrotating fluids in a Milne universe
(Sec. III C) and in an Einstein static universe (Sec. III D 1).

A. Milne universe

We work in the coordinates xμ ¼ ðτr; ηr; θ;ϕÞ defined in
Eq. (30). Since the flow velocity in Eq. (32) satisfies
σμν ¼ Ωμν ¼ 0, the set of equations (4)–(7) reduce to

∂τrϵþ
4

τr
ϵ ¼ 0; ð67Þ

4ϵ∇τru
μ þ Δμα∇αϵþ 3Δμ

ν∇απ
αν ¼ 0; ð68Þ

πμν ¼ −
τπ
ϵ1=4

�
Δμ

αΔν
β∇τrπ

αβ þ 4

τr
πμν
�
þ λ1

ϵ
πhμλπνiλ; ð69Þ

where we have inserted ϑ ¼ 3
τr
. τπ and λ1 are now redefined

to be dimensionless, as we explained above. The general
solution of Eq. (67) is

ϵ ¼ fðηr; θ;ϕÞ
τ4r

: ð70Þ

Inserting Eq. (70) into Eq. (69) and assuming that πμν is
diagonal, we can solve the resulting nonlinear coupled
differential equation exactly:

ðπηrηr ; πθθ; πϕϕÞ ¼
1

τ4r

ð 1τrÞ
f1=4

τπ

cþ λ1
f ð 1τrÞ

f1=4

τπ

8>><
>>:

ð−1;−1; 2Þ;
ð−1; 2;−1Þ;
ð2;−1;−1Þ;

ð71Þ

where c is independent of τr. On the other hand, by
working out the connection coefficients, we can rewrite
Eq. (68) in components:

1

3
∂ηrϵþ ∂ηrπ

ηr
ηr þ coth ηrð2πηrηr − πθθ − πϕϕÞ ¼ 0;

1

3
∂θϵþ ∂θπ

θ
θ þ cot θðπθθ − πϕϕÞ ¼ 0;

1

3
∂ϕϵþ ∂ϕπ

ϕ
ϕ ¼ 0: ð72Þ

As long as λ1 ≠ 0, Eqs. (71) and (72) are compatible only
when c ¼ 0, in which case the dependence on τπ drops out.
(72) can then be easily integrated,

ϵ ¼ 1

τ4r

8>><
>>:

ðsinh ηr sin θÞ
9

λ1−3;

ðsinh ηrÞ
9

λ1−3ðsin θÞ− 9
λ1þ6;

ðsinh ηrÞ−
18

λ1þ6; ðλ1 ≠ 3Þ;
ð73Þ

for the three cases in Eq. (71). (When λ1 ¼ 3, the first two
solutions do not exist and the third solution can be
multiplied by any function of θ.) We see that, in contrast
to the ideal solution ϵ ∝ 1=τ4r , the second-order solutions
depend on the rapidity sinh ηr ¼ r

τr
, as well as the polar

angle sin θ ¼ x⊥
r . The latter breaks the spherical symmetry

of the ideal solution down to axial symmetry.
Note that depending on the sign and magnitude of λ1,

3

the solutions (73) exhibit singularities at r ¼ 0 and/or
x⊥ ¼ 0. Near singular points, some regularization,

3We are not aware of any argument that fixes the sign of λ1. In a
particular model considered in [39], λ1 (denoted −φ7 in [39]) is
negative, but this may be model dependent. A positive value of λ1
was obtained for N ¼ 4 super Yang-Mills in [18]. However, that
paper did not essentially distinguish the σσ, σπ, and ππ terms.
Thus, it is not clear whether the result of [18] corresponds to our λ1
or some linear combination of ~η3, τππ , and λ1. See, also, Ref. [40].
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presumably attributable to higher-order effects, will be
needed in practice. Away from the singularities, the
solutions are well behaved and locally satisfy the sec-
ond-order hydrodynamic equations. Similar comments
apply to the other solutions to be presented below.
Incidentally, we can also obtain exact solutions of the

Israel-Stewart theory which corresponds to setting λ1 ¼ 0
in Eq. (69). Substituting Eq. (71) with λ1 ¼ 0 into Eq. (72),
we can determine fðηr; θ;ϕÞ and c ¼ cðηr; θ;ϕÞ. The result
is that f is a constant and

ðπηrηr ;πθθ;πϕϕÞ¼
1

τ4r

�
A
τr

�f1=4

τπ 1

sinh3ηr

8>><
>>:

1
sin3θð−1;−1;2Þ;
1

sin
3
2θ
ð−1;2;−1Þ;

ð2;−1;−1Þ;
ð74Þ

where A is an integration constant with the dimension of
length. Therefore, in the Israel-Stewart approximation the
energy density ϵ ¼ f

τ4r
is unmodified and the shear-stress

tensor decays relative to ϵ as

jπμν j
ϵ

∝
�
1

τr

�f1=4

τπ ¼ e−
f1=4

τπ
ln τr : ð75Þ

Note that the decay is not exponential but powerlike in
proper time τr.
In Sec. III C 1, we have introduced the hybrid coordi-

nates as shown in Eq. (41). Although the ideal solution
(Hubble flow) can be equally described in the hybrid and
the Milne coordinates, the second-order solutions con-
structed via the two spaces turn out to be different. By
repeating the same procedure, we find

ϵ ¼ 1

τ4r

8>><
>>:

γ
9

λ1−3;

ð1þ γ2Þ 9
2ðλ1−3Þ;

ðγ2ð1þ γ2ÞÞ− 9
2ðλ1þ6Þ;

ð76Þ

with γ ¼ sinh ηr sin θ ¼ x⊥
τr
. The first solution of (76) agrees

with the first one of Eq. (73), but the other two solutions
are new.

B. Einstein static universe

Next we include the second-order corrections to the
conformal soliton flow in Sec. III D. In fact, this has already

been done in Ref. [31] by mapping the solution onto
AdS3 × S1. However, our point here is to show that, as
already indicated by Eq. (76), starting from the same ideal
solution one can obtain different second-order solutions by
conformally mapping the solution onto different coordinate
systems.
We thus work in the Einstein static universe in Eq. (47).

In the coordinate system x̂ ¼ ðξ; σ; θ;ϕÞ and with the flow
velocity ûμ ¼ δμξ, the hydrodynamic equations read

∂ξϵ̂ ¼ 0; ð77Þ

4ϵ̂∇̂ξûμ þ Δ̂μν∇̂νϵþ 3Δ̂μ
ν∇̂απ̂

να ¼ 0; ð78Þ

π̂μν ¼ −
τπ
ϵ̂1=4

Δ̂μ
αΔ̂ν

β∇̂ξπ̂
αβ þ λ1

ϵ̂
π̂hμλπ̂νiλ: ð79Þ

Since ϵ̂ does not depend on ξ, neither does π̂μν, and this
means that the term proportional to τπ vanishes.
Equation (79) can then be solved as

ðπ̂σσ; π̂θθ; π̂ϕϕÞ ¼
ϵ̂

λ1
×

8>><
>>:

ð−1;−1; 2Þ;
ð−1; 2;−1Þ;
ð2;−1;−1Þ:

ð80Þ

On the other hand, the nontrivial components of Eq. (78)
are

∂σϵ̂þ 3ð∂σπ̂
σ
σ þ cot σð2π̂σσ − π̂θθ − π̂ϕϕÞÞ ¼ 0;

∂θϵ̂þ 3ð∂θπ̂
θ
θ þ cot θðπ̂θθ − π̂ϕϕÞÞ ¼ 0: ð81Þ

Inserting Eq. (80) into the equations above, we can easily
integrate over the resulting differential equations,

ϵ̂ ¼

8>><
>>:

ðsin σ sin θÞ 9
λ1−3;

ðsin σÞ 3
λ1−3ðsin θÞ− 9

λ1þ6;

ðsin σÞ− 18
λ1þ6:

ð82Þ

The corresponding energy density in Minkowski space
reads

ϵ ∝

8>>>>><
>>>>>:

1
ðL2þðrþtÞ2Þ2ðL2þðr−tÞ2Þ2

�
L2x2⊥

ðL2þðrþtÞ2ÞðL2þðr−tÞ2Þ
� 9

2ðλ1−3Þ;

1
ðL2þðrþtÞ2Þ2ðL2þðr−tÞ2Þ2

�
L2r2

ðL2þðrþtÞ2ÞðL2þðr−tÞ2Þ
� 9

2ðλ1−3Þ
�
r2

x2⊥

� 9
2ðλ1þ6Þ;

1
ðL2þðrþtÞ2Þ2ðL2þðr−tÞ2Þ2

�
L2r2

ðL2þðrþtÞ2ÞðL2þðr−tÞ2Þ
�
− 9
λ1þ6:

ð83Þ
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The third solution is spherically symmetric, but when λ1 ¼
3 we can multiply it by any function of sin θ ¼ x⊥=r. We
note that exactly the same set of solutions as Eq. (83)
is obtained by working in the AdS2 × S2 coordinates
introduced in Sec. III D 3.
The first solution of Eq. (83) is identical to the first

solution of Eq. (13) in Ref. [31], obtained via AdS3 × S1.
However, the other two solutions are new. Thus, the lesson
of these analyses is that even if the ideal solution is the
same, the second-order solutions constructed via different
conformal mappings may in general be different.
A characteristic feature common in the solutions dis-

cussed in this section (and also in Ref. [31]) is that they are
nonperturbative in λ1. This is due to the behavior

πμν ∼
1

λ1
ϵ; ð84Þ

which typically arises as a result of solving “self-
consistent” equations of the form π ∼ λ1ππ.
Equation (84) indicates that λ1 essentially plays the role
of the Reynolds number λ1 ∼ Re≡ ϵ=jπμνj. Since the
derivation of the constitutive equation (7) from the
Boltzmann equation [23] is based on the expansion in
inverse powers of the Reynolds number, at least in the
kinetic theory framework, λ1 has to be large for the sake of
consistency. Indeed, as is clearly seen in (83) for example,
the second-order solutions reduce to the ideal one (50) in
the limit jλ1j → ∞ (as we remarked in footnote 3, we do not
know a priori the sign of λ1).
Another striking feature of the solutions in Eq. (83) is

that they are time reversible. A simple look at the energy-
momentum conservation equations (4) and (5) tells us that
time-reversal invariance is broken if πμν is odd under this
operation. In fact, when t → −t, the spatial component of
the flow velocity changes as ~u → −~u, while ϑ → −ϑ and
σμν → −σμν. Thus, in the Navier-Stokes approximation
πμν ∼ −2ησμν, one can clearly see that time-reversal invari-
ance is broken, and this should be associated with the
production of entropy. However, our solutions are dual to a
static fluid in the Weyl-transformed space x̂μ in which the
metric ĝμν does not depend on time x̂0, either. As a result, all

the terms that potentially break time-reversal invariance
vanish: σ̂μν ¼ ϑ̂ ¼ D̂π̂μν ¼ 0. It then follows that πμν must
be even under time reversal, and this is manifest in Eq. (83).
An immediate consequence of time reversibility is that

entropy is not produced in these solutions even though
πμν ≠ 0. This is in contradiction to the pragmatic definition
of the “nonequilibrium entropy” commonly employed in
the literature (e.g., Ref. [15]),

snoneq ≡ s −
τπ
4ηT

πμνπ
μν; ð85Þ

where T here is the temperature and s ¼ ϵþp
T is the

equilibrium entropy. Equation (85) implies that whenever
πμν is nonvanishing, there is an associated entropy production

∂μðsnonequμÞ ¼
1

2ηT
πμνπ

μν þ � � � : ð86Þ

However, our findings suggest a potential flaw in this
argument. For other definitions of snoneq, see for instance
Refs. [41–43].

V. SECOND-ORDER SOLUTIONS
WITH ROTATION

In the previous section, we constructed solutions of
second-order hydrodynamic equations for irrotational
flows, namely, flows with vanishing vorticity Ωμν ¼ 0.
In Ref. [31], we have for the first time found a second-order
solution with Ωμν ≠ 0 by generalizing Nagy’s rotating
solution in Sec. III D 4. Here we construct another rotating
second-order solution starting from the rotating Hubble
flow derived in Sec. III C 1. The calculations turn out to be
very similar to the former case; therefore, the reader may
find the present section as a helpful guide to follow the
exposition in Ref. [31].
We work in the hybrid coordinates in Eq. (41),

x̂μ ¼ ðχ; γ; η;ϕÞ, in which the rotating flow velocity takes
the same form as in Eq. (42). The vorticity tensor in
Eq. (43) induces a new term,

Ω̂hμ
λΩ̂νiλ ¼ ðΩ̂γϕÞ2

3

0
BBBBBBBB@

ω2γ4

1þγ2
0 0 ωγ2

1þγ2

0 γ2ð1 − ω2γ2Þ 0 0

0 0 − 2γ2ð1−ω2γ2Þ
ð1þγ2Þ2 0

ωγ2

1þγ2
0 0 1

1þγ2

1
CCCCCCCCA
; ð87Þ

on the right-hand side of the constitutive equation (66).
In order to solve Eq. (66), let us temporarily assume that τπ ¼ λ2 ¼ 0 (we shall relax this assumption shortly). Unlike the

nonrotating cases, π̂μν cannot be diagonal due to the condition ûμπ̂μν ¼ 0, but one can make the simplest ansatz, which takes
the form
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π̂μν ¼

0
BBBBB@

ω2γ4π̂ϕϕ 0 0 ωγ2π̂ϕϕ

0 π̂γγ 0 0

0 0 π̂ηη 0

ωγ2π̂ϕϕ 0 0 π̂ϕϕ

1
CCCCCA: ð88Þ

Substituting Eqs. (87) and (88) into Eq. (66), we find a set
of equations,

X ¼ λ1
ϵ̂

�
X2 −

X2 þ Y2 þ Z2

3

�
þ λ3

ffiffiffî
ϵ

p

3

ω2ð1þ γ2Þ
ð1 − ω2γ2Þ2 ;

Y ¼ λ1
ϵ̂

�
Y2 −

X2 þ Y2 þ Z2

3

�
−
2λ3

ffiffiffî
ϵ

p

3

ω2ð1þ γ2Þ
ð1 − ω2γ2Þ2 ;

Z ¼ λ1
ϵ̂

�
Z2 −

X2 þ Y2 þ Z2

3

�
þ λ3

ffiffiffî
ϵ

p

3

ω2ð1þ γ2Þ
ð1 − ω2γ2Þ2 ; ð89Þ

where

X ¼ π̂γγ; Y ¼ π̂ηη; Z ¼ ð1 − ω2γ2Þπ̂ϕϕ: ð90Þ

Equation (89) admits four solutions:

X ¼ Z ¼ −
Y
2
¼ ϵ̂

2λ1

 
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4f

3

r !
; ð91Þ

ðX; Y; ZÞ ¼ ϵ̂

λ1

�
1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4f

p
Þ;−1; 1

2
ð1∓ ffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 4f
p

Þ
�
;

ð92Þ

where we defined

f ≡ λ1λ3ω
2ð1þ γ2Þffiffiffî

ϵ
p ð1 − ω2γ2Þ2 : ð93Þ

It turns out that the first two solutions in Eq. (91) satisfy
Δ̂μ

αΔ̂ν
βD̂π̂αβ ¼ π̂hμλΩ̂νiλ ¼ 0, i.e., they are solutions even

when τπ , λ2 ≠ 0. We thus consider only the solutions in
Eq. (91) in the following.4

We now look at the equation for ϵ̂,

4ϵ̂ D̂ ûμ þ Δ̂μν∇̂νϵþ 3Δ̂μ
ν∇̂απ̂

να ¼ 0: ð94Þ

The μ ¼ γ component is nontrivial and reads

ð1þ γ2Þ∂γϵ̂ −
4ω2γð1þ γ2Þ
1 − ω2γ2

ϵ̂

þ 3

�
∂γπ̂

γγ þ π̂γγ

γð1þ γ2Þ − γð1þ γ2Þðπ̂ηη þ π̂ϕϕÞ
�
: ð95Þ

After inserting Eq. (91) into the above equation,
we find

∂γ ϵ̂ −
4γω2

1 − ω2γ2
ϵ̂þ 3

�
∂γX −

4γω2

1 − ω2γ2
X

�

þ 9γð1þ ω2Þ
ð1 − ω2γ2Þð1þ γ2ÞX ¼ 0: ð96Þ

Due to the ϵ̂ dependence in X through Eqs. (93) and (96) is
a complicated nonlinear differential equation for ϵ̂ which is
difficult to solve. We thus employ an ansatz,

ϵ̂ ¼ A2ðγÞð1þ γ2Þ2
ð1 − ω2γ2Þ4 ; ð97Þ

with which we can write X ¼ bðγÞϵ̂ [cf. (91)], where b
is the root of

jAðγÞj ¼ λ3ω
2

3bðγÞðλ1bðγÞ þ 1Þ : ð98Þ

Using Eq. (91), one can check that the ratio λ3=bðλ1bþ 1Þ
is positive. However, a priori we do not know the sign
of λ3.
Let us first assume that A is a constant. In this case,

Eq. (96) reduces to ð1þ ω2Þð4þ 21bÞ ¼ 0, meaning that
b ¼ − 4

21
and

jAj ¼ 7λ3ω
2

4ð 4
21
λ1 − 1Þ : ð99Þ

Since the right-hand side must be positive, this solution
exists only when λ1 >

21
4
if λ3 is positive, and λ1 <

21
4
if λ3 is

negative. If we take the limits ω → 0 and λ1 → 21
4
such that

A remains finite, Eq. (97) reduces to the second solution
in Eq. (76).
When A is not a constant, we find a differential equation

for bðγÞ:

dbðγÞ
dγ

�
9λ1b2 þ 4λ1bþ 3bþ 2

bðλ1bþ 1Þð4þ 21bÞ
�

¼ γð1þ ω2Þ
ð1 − ω2γ2Þð1þ γ2Þ :

ð100Þ

This can be integrated by separation of variables. The
result is

4In fact, if τπ and λ2 are related as τπ ¼ −2λ2, the last two
solutions (92) are also acceptable solutions because the two terms
cancel exactly: −τπΔ̂μ

αΔ̂ν
βD̂π̂αβ þ λ2π̂

hμ
λΩ̂νiλ ¼ 0. However, we

have no reason to believe that this relation generally holds. Note
that it differs from the kinetic theory prediction τπ ¼ 2λ2 by a
minus sign.
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bðλ1bþ 1Þ
����1þ 21

4
b

����e1ðλ1Þj1þ λ1bje2ðλ2Þ

¼ λ3ω
2C

1þ γ2

1 − ω2γ2
; ð101Þ

where e1ðλ1Þ≡ 105−32λ1
7ð4λ1−21Þ, e2ðλ1Þ≡ 9

4λ1−21
, and C > 0 is the

integration constant.5 We thus find the energy density

ϵ¼ ϵ̂

τ4r

¼ 1

9C2ðt2−r2−ω2x2⊥Þ2
���1þ21

4
bðγÞ

���2e1ðλ1Þj1þλ1bðγÞj2e2ðλ1Þ;

ð102Þ

where b is the solution of Eq. (101). It is useful and
convenient to define the quantity

RðγÞ≡
����1þ 21

4
bðγÞ

����2e1ðλ1Þj1þ λ1bðγÞj2e2ðλ1Þ: ð103Þ

The deviation of RðγÞ from unity is a local measure of the
strength of the second-order effects at the corresponding

space-time point γ2 ¼ x2⊥
t2−z2−x2⊥

, since RðγÞ → 1 in the

λ1 → ∞ limit.
For a given value of γ, one can solve Eq. (101) for b

numerically and the energy density at that point
ϵðt; x⊥; zÞ ¼ ϵðγÞ is determined from Eq. (102). Actually,
depending on the signs of λ1 and λ3, Eq. (101) admits
multiple solutions. Not all of them are physically accept-
able because we must ensure that b ¼ π̂γγ=ϵ̂ should be
bounded as γ is varied between 0 and 1=ω. Also, R should
not be much larger or much smaller than unity at least in
some region of γ; otherwise, the second-order effects are
too large to be reliable. This puts constraints on the relative
size of the parameters involved.
Without knowing the signs of λ1 and λ3 (see footnote 3),

we find it necessary to consider three different regions of λ1
separately:

(i) λ1 >
21
4
The left-hand side of Eq. (101) is plotted in

Fig. 1(a) for λ1 ¼ 10. Clearly, λ3 has to be positive
and the roots of Eq. (101) can be found in the regions
b > 0 and b < −1=λ1. The solution at b > 0 should
be discarded because b → þ∞ as γ → 1=ω. We find
an acceptable solution bðγÞ which varies monoto-
nously in the region −1=λ1 > b > −4=21. The
corresponding RðγÞ, namely, Eq. (103), is plotted
in Fig. 2 for λ1 ¼ 10 and λ1 ¼ 100. If C is not too
small, there is a second branch of solutions in which
b starts from the local minimum at b < −4=21
[b ≈ −0.4 in Fig. 1(a)] and asymptotically ap-
proaches b → −4=21 as γ → 1=ω. However, for
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FIG. 1 (Color online) (color online). Plots of the left-hand side of (101) with different values of λ1.

5In order for ϵ in Eq. (102) to have a finite limit as λ3 → 0 or
ω → 0, the integration constant must be proportional to λ3ω

2,
which is explicitly factored out in Eq. (101). We also used the fact
that λ3=bðλ1bþ 1Þ is positive, as already remarked.

YOSHITAKA HATTA, JORGE NORONHA, AND BO-WEN XIAO PHYSICAL REVIEW D 89, 114011 (2014)

114011-12



this solution R becomes larger than unity by several
orders of magnitude, so we discard it as an un-
physical solution.

(ii) 21
4
> λ1 >

105
32

Figure 1(b) shows the left-hand side of
(101) for λ1 ¼ 4. If λ3 is positive and C is not too
small, there is a solution that starts from the local
minimum at b < −1=λ1 and asymptotically ap-
proaches −1=λ1 from below as γ → 1=ω. On the
other hand, if λ3 is negative there is another branch
of solutions in which b varies in the interval
−4=21 > b > −1=λ1. However, for these solutions
RðγÞ tends to become very large towards the
boundary of the fluid γ → 1=ω. The result for
λ1 ¼ 4, λ3 < 0 is plotted in Fig. 2.

(iii) 105
32

> λ1 Figures 1(c) and 1(d) show the left-hand
side of (101) for λ1 ¼ 2 and λ1 ¼ −10, respectively.
For λ3 < 0, we always have an acceptable solution
that starts from b ≈ 0 and asymptotically approaches
b ¼ −4=21. This is plotted in Fig. 2 for λ1 ¼ 2 and
λ1 ¼ −10. Moreover, there could be other branches
of solutions. However, as discussed above, their
values of R are too large to be acceptable.

In all the acceptable solutions, we observe the clear
tendency that R becomes large towards the boundary of the
rotating fluid γ → 1=ω. Actually the ideal solution itself
becomes very large near the boundary, and the vorticity
effect further amplifies the growth there irrespective of the
sign of λ3.

VI. UNORTHODOX BJORKEN FLOW

All the solutions discussed so far have vanishing shear
tensor (σμν ¼ 0), which is rather special. When σμν is
nonzero, the constitutive equation in its most general form
as shown in Eq. (7) is obviously much more difficult to

solve, even with the help of conformal symmetry.
Nevertheless, here we revisit the boost-invariant setup,
which was briefly reviewed in Sec. III A, as the simplest
example with σμν ≠ 0, and demonstrate that one can still
find exact scaling solutions.
As a warm-up, let us consider the effect of shear

viscosity on Bjorken flow in a conformal theory. The
continuity equation (4) takes the form

∂τϵþ
4

3τ
ϵþ 1

3τ
ð2πηη − πxx − πyyÞ ¼ 0; ð104Þ

where we have used Eq. (13). In the Navier-Stokes
approximation, πμν ¼ −2ησμν with σμν given by
Eq. (13). Substituting this into Eq. (104) and noticing that
η ∝ ϵ3=4, we arrive at

∂τϵþ
4

3τ
ϵ −

4η

3τ2
ϵ3=4 ¼ 0; ð105Þ

where we redefined η > 0 to be dimensionless. A common
practice to solve (105) is via a perturbative expansion.
Recalling that the ideal solution (14) scales as ϵ ∝ τ−4=3,
one finds the asymptotic solution at large τ,

ϵ ¼ c

τ4=3
−
2ηc3=4

τ2
þOðτ−8=3Þ; ð106Þ

where c > 0 is arbitrary. However, it is not clear a priori
what the radius of convergence of such a series is [22]. In
fact, a recent study of the large-order behavior of the
hydrodynamic gradient expansion at strong coupling has
found the radius of convergence to be zero [44], which is
characteristic of an asymptotic series. In addition, for
nonlinear differential equations in general, there could be
solutions which can never be reached by doing perturbative
expansions.
Are there other solutions to Eq. (105)? Let us try the

ansatz

ϵ ¼ C
τα

: ð107Þ

Substituting this into (105), we find α ¼ 4 together with the
relation C1=4 ¼ − η

2
, but the latter is not physically accept-

able because the fluid temperature must be positive
T ∼ C1=4

τ > 0. If it were not for this sign mismatch, however,
the rather naive choice (107) would have become an exact
solution. This is due to conformal symmetry. Since the only
dimensionful parameter in Eq. (105) is τ, ϵ ∝ τ−4 is a
natural guess based on the ground of dimensional analysis6
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FIG. 2 (color online). Deviation from the ideal solution defined
in (103) for ω ¼ 0.5 (so that 2 > γ ≥ 0) and λ3ω

2C ¼ �0.01,
depending on the sign of λ3. Solid curves are for positive values
of λ3, while the dashed and dotted curves are for negative values
of λ3. The drawing and color of the curves in this figure are
correlated with the curves shown in Fig. 1.

6In the Bjorken solution ϵ ∝ τ−4=3 of ideal hydrodynamics, an
additional dimensionful parameter is provided by the initial
condition.
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[though the flow expansion looks three dimensional rather
than one dimensional; cf. (35)].
We now include the second-order terms. The conserva-

tion equation (104) is unchanged, but now πμν must be
determined by solving Eq. (7) with Ωμν ¼ 0. Rescaling the
transport coefficients as we have done before, we arrive at
the following equation:

πμν ¼ −2ηϵ3=4σμν −
τπ
ϵ1=4

�
Δμ

αΔν
βDπαβ þ 4

3
ϑπμν

�

þ λ1
ϵ
πhμλπνiλ þ τσϵ

1=2

�
Δμ

αΔν
βDσαβ þ 1

3
σμνϑ

�

− ~η3ϵ
1=2σhμλσνiλ −

τππ
ϵ1=4

σhμλπνiλ: ð108Þ

With the properties as shown in Eq. (13) at hand, we can write down explicitly all the nontrivial components of Eq. (108) as
follows:

πηη ¼ −
4ηϵ3=4

3τ
−

τπ
ϵ1=4

�
∂τπ

η
η þ

4

3τ
πηη

�
þ λ1
3ϵ

ð2ðπηηÞ2 − ðπxxÞ2 − ðπyyÞ2Þ;−2
2τσ þ ~η3

9τ2
ϵ1=2 −

τππ
3τϵ1=4

πηη

πxx ¼
2ηϵ3=4

3τ
−

τπ
ϵ1=4

�
∂τπ

x
x þ

4

3τ
πxx

�
þ λ1
3ϵ

ð2ðπxxÞ2 − ðπηηÞ2 − ðπyyÞ2Þ;þ
2τσ þ ~η3

9τ2
ϵ1=2 −

τππ
3τϵ1=4

πyy

πyy ¼
2ηϵ3=4

3τ
−

τπ
ϵ1=4

�
∂τπ

y
y þ

4

3τ
πyy

�
þ λ1
3ϵ

ð2ðπyyÞ2 − ðπηηÞ2 − ðπxxÞ2Þ þ
2τσ þ ~η3

9τ2
ϵ1=2 −

τππ
3τϵ1=4

πxx: ð109Þ

Equation (109) may be solved perturbatively as in (106).
Here instead, we look for nonperturbative exact solu-
tions. For this purpose, we again try the ansatz as
shown in Eq. (107) with α ¼ 4. Equation (104) then
requires that

2πηη − πxx − πyy ¼ 8ϵ: ð110Þ

Since πηη þ πxx þ πyy ¼ 0, (110) gives

πηη ¼
8

3
ϵ ¼ 8C

3τ4
: ð111Þ

Substituting this into Eq. (109), after some algebra, we find
the following two sets of exact solutions:

πxx ¼ πyy ¼ −
4

3
ϵ;

C1=4 ¼ 3η − 16τπ þ 2τππ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3η − 16τπ þ 2τππÞ2 þ 4ð4λ1 − 3Þð2τσ þ ~η3Þ

p
4ð4λ1 − 3Þ ; ð112Þ

and

�
πxx
ϵ

;
πyy
ϵ

�
¼ −

4

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 −

1

λ1

�
2ð3ηþ 4τππÞ

3C1=4 þ 2τσ þ η3
3C1=2

�s
;

C1=4 ¼ 8τπ þ τππ
8λ1 þ 3

: ð113Þ

These solutions make sense as long as C1=4 is positive (for
the second solution we also need to require that the quantity
in the square root is positive). This was not the case in the
Navier-Stokes approximation, but we now see that there are
regions in the parameter space where this is possible. Note
that in these solutions, there is no integration constant. The
overall normalization is completely fixed due to the non-
linearity of the equation. While this may be an unattractive

feature from a phenomenological viewpoint, the solutions
are still remarkable as they explicitly depend on six
different transport coefficients.
As already remarked in Sec. II, in the literature, one often

treats πμν and −2ησμν interchangeably in the equations of
second-order hydrodynamics, after which there is no
distinction between Dπ and Dσ terms, or among ππ, πσ,
and σσ terms. Therefore, only one term from the
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“degenerate” set of terms is kept. However, we see that the
respective transport coefficients τπ and τσ , or λ1, τππ , and ~η3
enter differently in Eqs. (112) and (113), with the coef-
ficients of the gradient terms (τσ , ~η3, τππ) playing relatively
minor roles. Accordingly, in the above solutions the
relation πμν ≈ −2ησμν is grossly violated.
As a matter of fact, due to the large second-order effects,

πμν is comparable in magnitude to ϵ in the above solutions.
In other words, the Reynolds number is of order unity. This
is clearly at the boundary of the region of validity of
second-order theory (at least in the framework of Ref. [23])
and indicates the necessity of including even higher-order
terms. This also explains why its asymptotic behavior is
different than that found in Navier-Stokes theory—the new
solution found here is in a different regime of validity, and it
does not need to be smoothly connected to Navier-Stokes-
like flow. Nevertheless, the existence of the nonperturbative
scaling solutions of the type ϵ ∼ 1=τ4 demonstrated here
may be preserved in higher-order theories since it follows
from purely dimensional considerations and from the
constraints for the transport coefficients set by conformal
invariance.

VII. CONCLUSIONS

Building on our previous work [31], we have constructed
several new exact solutions of second-order hydrodynamic
equations by conformally mapping Minkowski space to
various curved space-times. A complicated flow in
Minkowski space-time may look much simpler in another
curved space-time, and this makes the systematic inclusion
of second-order corrections possible when the flow has
vanishing shear tensor σμν ¼ 0. We have also learned that,
by studying the same ideal solution in different curved
space-times, one can obtain a different set of second-order
solutions. The case with nonvanishing σμν is more difficult,
but at least in one phenomenologically interesting case
(Sec. VI) we have been able to find special exact solutions
to the most general second-order equations. These solutions
may help to clarify the role played by each transport
coefficient in second-order hydrodynamics.

We emphasize that for our purposes it was crucial to treat
πμν as independent variables rather than as being com-
pletely fixed by the gradient expansion. This seems to be
actually required in a consistent theory of relativistic
hydrodynamics, namely, a theory that is stable and causal.
When the hydrodynamics equations are analyzed non-
perturbatively, either analytically or numerically, this
makes a difference both qualitatively and quantitatively.
In particular, in the examples considered in this paper, it is
not permissible to use the “lowest-order” relation πμν ≈
−2ησμν to treat πμν and σμν interchangeably in the second-
order terms.
There are many directions for further study. Various

other exact solutions may be obtained by considering a
broader class of coordinate and Weyl transformations. For
instance, it would be useful for phenomenological appli-
cations in heavy-ion collisions to find an extension of
Gubser flow that is not radially symmetric in the transverse
plane, which would allow one to investigate the role played
by flow anisotropies in the hydrodynamic expansion of the
quark-gluon plasma in an analytical manner. Finding more
general solutions with σμν ≠ 0 is also particularly chal-
lenging, but nevertheless rather interesting. Moreover, the
extension to nonconformal theories including the bulk
pressure Π is important in view of its potential impact in
heavy-ion physics [45] and cosmology. Finally, it may also
be interesting to explore the phenomenological relevance of
the new boost-invariant solutions in the context of heavy-
ion collisions.
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