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We study the thermalization process in highly occupied non-Abelian plasmas at weak coupling. The
nonequilibrium dynamics of such systems is classical in nature and can be simulated with real-time lattice
gauge theory techniques. We provide a detailed discussion of this framework and elaborate on the results
reported in J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Phys. Rev. D 89, 074011 (2014)
along with novel findings. We demonstrate the emergence of universal attractor solutions, which govern the
nonequilibrium evolution on large time scales both for nonexpanding and expanding non-Abelian plasmas.
The turbulent attractor for a nonexpanding plasma drives the system close to thermal equilibrium on a time
scale t ∼Q−1α−7=4s . The attractor solution for an expanding non-Abelian plasma leads to a strongly
interacting albeit highly anisotropic system at the transition to the low-occupancy or quantum regime. This
evolution in the classical regime is, within the uncertainties of our simulations, consistent with the “bottom
up” thermalization scenario [R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys. Lett. B 502, 51
(2001)]. While the focus of this paper is to understand the nonequilibrium dynamics in weak coupling
asymptotics, we also discuss the relevance of our results for larger couplings in the early time dynamics of
heavy ion collision experiments.
DOI: 10.1103/PhysRevD.89.114007 PACS numbers: 12.38.Mh, 11.15.Ha, 98.80.Cq

I. INTRODUCTION

An ab initio understanding of how a non-Abelian plasma
thermalizes in heavy ion collisions even at asymptotically
high energies remains elusive and is an outstanding
problem in theoretical physics [1]. In recent years, signifi-
cant progress in a first principles understanding of non-
Abelian plasmas out of equilibrium has been achieved in
two limiting cases. One of these is the study of the strong
coupling limit using gauge-string dualities in supersym-
metric Yang-Mills theories. The other case that is amenable
to ab initio calculations is quantum chromodynamics
(QCD) in the weak coupling limit αs ≪ 1.
In the case of strongly coupled supersymmetric Yang-

Mills theory, the gauge-string dualities provide a valuable
tool for studying nonequilibrium phenomena. This holo-
graphic thermalization process has been studied extensively
in the literature [2–9] and generally leads to fast thermal-
ization of the plasma. Here the results for the longitudinally
expanding system—relevant to heavy ion collisions—
indicate the important role of anisotropies even at the
transition to the hydrodynamic regime [8,9].
In the weak coupling limit, the colliding nuclei may be

described as color glass condensates (CGC) in an effective
field theory description of high energy QCD [10–13].
Models constructed within this framework describe rather
well the bulk properties of phenomena observed in high

energy heavy ion collisions at RHIC and the LHC [14–17].
The dynamics of the nonequilibrium “Glasma” created in
such a collision is that of highly occupied gluon fields with
typical momentum Q [18–29]. Since the characteristic
occupancies ∼1=αsðQÞ are large, the gauge fields are
strongly correlated even for small gauge coupling.
The dynamics of highly occupied gauge fields is

classical in nature and can be studied from first principles
using real-time lattice techniques. For a nonexpanding
ensemble of such initial conditions, classical-statistical
lattice simulations of weakly coupled non-Abelian plasmas
are well understood. The results obtained in independent
computations are unambiguous [30–33] and in line with
analytical expectations. In contrast, the dynamics of aniso-
tropically expanding non-Abelian plasmas is much less
understood. Even in the theoretically “clean” limit of
asymptotically high collision energies, where the character-
istic coupling is very weak, no consensus has been reached
concerning the dynamics of the thermalization process [1].
A key objective of this paper is to address the thermal-
ization process, and its sensitivity to the initial conditions,
using classical-statistical lattice simulations.
In the weak coupling limit, the CGC framework provides

the initial conditions of the evolution at time scales τ ≲Q−1

after the collisions. They are expressed in terms of strong
classical fields and small quantum fluctuations around
them. Both of these can be computed from first principles
[34,35]. At these early times, the expectation value of the
classical field, averaged over a statistical ensemble of*soeren@kaiden.de
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quantum fluctuations, is large Acl ∼Oð1= ffiffiffi
α

p
sÞ. In contrast,

the quantum fluctuations are initially of order unity.
While classical-statistical methods can already be

applied at the earliest times after the collision, our interest
is primarily in later times τ ≳Q−1 ln2ðα−1s Þ where plasma
instabilities have caused quantum fluctuations in the initial
conditions to become of the order of the classical fields
[36–40]. At these time scales, the system may be expected
to experience phase decoherence leading to fluctuation
dominated dynamics. In such a regime, the ensemble
average of the classical field is zero. However the statistical
fluctuations in this ensemble are large; field amplitudes of
each element of the ensemble can be as large asOð1= ffiffiffi

α
p

sÞ.
This situation can also be described in the framework of
kinetic theory [41,42] as an overoccupied plasma with
occupation numbers 1 ≪ f ≪ 1=αs and is a common
starting point for weak coupling thermalization scenarios.
Depending on the value of the gauge coupling for the

expanding non-Abelian theory, it is an open question
whether the classical field dominated initial conditions at
τ ≲Q−1 [35,43] evolves into fluctuation dominated initial
conditions at τ ≳Q−1 ln2ðα−1s Þ. This issue will not be
addressed in the present work. Our focus here will be to
study a wide class of fluctuation dominated initial con-
ditions to differentiate between several thermalization
scenarios in the weak coupling limit [44–49].
The available parametric estimates in different thermal-

ization scenarios allow for different types of solutions of
the underlying kinetic equations. Since classical-statistical
lattice gauge theory and kinetic theory have an overlapping
range of validity when the occupation numbers are in the
range 1 ≪ f ≪ 1=αs [41,42,50] the former can be used to
determine the correct kinetic equations that describe the
complex non-Abelian dynamics in the classical regime.
A principal result of classical-statistical simulations of

expanding non-Abelian plasmas was the discovery of a
nonthermal attractor solution [51]. For a wide class of
fluctuation dominated initial conditions, the system exhib-
its the same self-similar scaling behavior at later times
before thermal equilibrium is achieved. In particular,
the single particle gluon distribution function satisfies
the self-similarity relation

fðpT; pz; τÞ ¼ ðQτÞαfSððQτÞβpT; ðQτÞγpzÞ; (1)

where fS denotes a stationary distribution function inde-
pendent of time. The scaling exponent α describes the
temporal evolution of the amplitude of the stationary
scaling function, while β and γ respectively describe the
temporal evolution of the hard transverse and longitudinal
momentum scales. These exponents are universal numbers:
as we shall show, their extraction only relies on conserva-
tion laws and the dominance of small angle scattering
processes. They do not depend on any other features of the
underlying theory. Interestingly, such universal behavior far

from equilibrium has also been predicted for systems
ranging from early-universe inflaton dynamics [52–56]
to table-top experiments with cold atoms [57–63]. In these
examples, attractor solutions are characterized by a self-
similar scaling behavior associated with the phenomenon
of wave turbulence.
The scaling exponents we obtained in [51] are, within the

numerical accuracy of the lattice simulations, consistent
with those obtained in the “bottom up” kinetic thermal-
ization scenario of Baier, Mueller, Schiff, and Son (BMSS)
[49]. In the BMSS implementation of the kinetic equations,
the dynamics of the classical regime is dominated by small
angle elastic scattering of hard modes. Since each of the
collisions is soft, the transverse momenta pT of hard modes
remain unchanged in the classical regime. The longitudinal
momenta pz however are redshifted due to the rapid
expansion of the system. After early free streaming where
the longitudinal momenta decrease as 1=τ, the classical
scattering dynamics slows the redshift of the longitudinal
momenta to fall as 1=τ1=3 instead. The relative anisotropy
of longitudinal to transverse momenta increases at this rate
for the rest of the classical regime where f ≳ 1. As we shall
discuss further later, the outlined dynamics is a conse-
quence of the universal attractor solution leading to the
phenomenon of wave turbulence.
In the quantum regime of f ≲ 1, the classical-statistical

approach is no longer applicable. In the bottom up scenario,
for f ≲ 1, the onset of inelastic number changing processes
becomes significant. It is this dynamics that eventually
leads to isotropization and thermalization of the system.
While this is a plausible scenario, we are unable to follow
the evolution of the system in the quantum regime within
our framework.
The paper is organized as follows. In Sec. II, we begin

with a brief introduction to the classical-statistical frame-
work for an expanding non-Abelian plasma. We discuss our
choice of initial conditions as well as the range of validity
of the classical-statistical framework. We provide details of
the numerical solution of the SUð2Þ Yang-Mills equations
in 3þ 1 dimensions in Sec. III along with suitable gauge-
invariant and gauge-dependent observables measured in
our simulations. In Sec. IV, we briefly review the thermal-
ization process in a nonexpanding plasma. Numerical
results for the classical-statistical evolution are presented
and the turbulent thermalization mechanism is discussed in
kinetic theory. In Sec. V, we study the dynamics of an
expanding non-Abelian plasma. We elaborate significantly
on the results presented in [51]. Several new results are
presented that corroborate and strengthen the conclusions
in this earlier work. We discuss the discretization depend-
ence and show that our results interpolate smoothly
between results for nonexpanding and expanding non-
Abelian plasmas. We conclude in Sec. VI, where we
discuss the implications of our results and outline future
work. The appendices contain additional information
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essential for a detailed understanding of the quantitative
results in this paper.

II. HEAVY ION COLLISIONS AND
CLASSICAL-STATISTICAL DYNAMICS

While QCD provides a fundamental framework to treat
nucleus-nucleus collisions, an ab initio theoretical descrip-
tion remains a challenge. At high energies, the nuclear
wave function represents a complex many-body system of
quark and gluon fields. One might therefore expect
collisions of nuclei to be significantly more complicated
than elementary proton-proton collisions. Nevertheless,
effective descriptions of the dynamics of nucleus-nucleus
collisions have been developed in different contexts.
One such effective description is based on the holo-

graphic principle relating classical gravity in higher dimen-
sions to strongly coupled (supersymmetric) gauge theories.
Holography has been used recently to understand thermal-
ization in nucleus-nucleus collisions [2–9]. The study of
thermalization is accomplished either by following the
collision of gravitational shock waves which carry the
energy content of the colliding nuclei [4,5] or by a matching
of boundary conditions immediately after the collision
[6–9]. While the holographic approach provides unique
insights into the dynamics of strongly coupled (super-
symmetric) gauge theories, the fundamental degrees of
freedom of the underlying field theory can be very different
from actual QCD. The results of such studies are therefore
difficult to incorporate in quantitative frameworks.
The other effective description of the dynamics of

nucleus-nucleus collisions is the color glass condensate
(CGC) framework. In this weak coupling framework, gluon
states of very high occupancy are generated in the collision
of large nuclei. For the rest of this paper, we will discuss the
subsequent time evolution of such highly overoccupied but
weakly coupled states in nucleus-nucleus collisions at very
high energies.
Before we discuss the weak coupling approach in more

detail, we will briefly introduce the coordinates best suited to
describe the geometry of nucleus-nucleus collisions. These
are the lightcone coordinates x� ¼ ðt� zÞ= ffiffiffi

2
p

. At suffi-
ciently high collider energies, the incoming nuclei travel
close to the lightcone (denoted by x� ¼ 0). The collision
takes place around the time when xþ ¼ x− ¼ 0, where an
approximately boost invariant plasma is created at mid-
rapidity. The dynamics of the plasma in the forward light-
cone (x� > 0) is subject to longitudinal expansion and is
conveniently described in terms of the comoving coordinates

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; η ¼ atanhðz=tÞ: (2)

Here τ is the proper time in the longitudinal direction, η is
the longitudinal rapidity and the transverse coordinates, to
be denoted by x⊥, are unaffected by this transformation.

The metric in xμ ¼ ðτ;x⊥; ηÞ coordinates takes the form
gμνðxÞ ¼ diagð1;−1;−1;−τ2Þ and we will denote the
metric determinant as gðxÞ ¼ det gμνðxÞ ¼ −τ2. The
explicit dependence on the proper time coordinate charac-
terizes the longitudinal expansion of the system with an
expansion rate of 1=τ. The corresponding spacetime
evolution of the collision as well as the geometry of the
coordinates are illustrated in Fig. 1. The different colors in
the forward lightcone represent the different stages of the
nonequilibrium evolution after the collision. We will
discuss these further below.

A. The color glass condensate

In the CGC framework, the colliding nuclei are repre-
sented in terms of fast moving hard “valence” partons (with
large parton momentum fraction x ∼ 1) and an abundance
of soft “wee" partons (with x ≪ 1). A consistent dynamical
separation of the hard and soft degrees of freedom is
described by a renormalization group procedure [10–13].
The wee parton dynamics is governed by the classical
Yang-Mills action

S½A� ¼ −
1

4

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
F a

μνðxÞgμαðxÞgνβðxÞF a
αβðxÞ; (3)

where

F a
μνðxÞ ¼ ∂μAa

νðxÞ − ∂νAa
μðxÞ þ gfabcAb

μðxÞAc
νðxÞ; (4)

denotes the non-Abelian field strength tensor and g denotes
the gauge coupling with g2 ¼ 4παs.
These wee gluon fields are coupled to the large x hard

partons via an eikonal current JμaðxÞ—they “see” static

FIG. 1 (color online). Illustration of the spacetime evolution of
a high energy heavy ion collision. The (approximately) boost
invariant plasma formed after the collision is subject to a
longitudinal expansion in the beam direction. The nonequili-
brium dynamics of the plasma can be described in terms of
ðτ;x⊥; ηÞ coordinates.
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sources of color charge. In the high energy limit, the hard
partons inside the nuclei move along the xþ and x−

directions respectively at the speed of light. The associated
current takes the generic form [11–13]

Jμaðt;x⊥; zÞ ¼ δμþϱð1Þa ðx⊥Þδðx−Þ þ δμ−ϱð2Þa ðx⊥ÞδðxþÞ;
(5)

where δμ� is the Kronecker delta in lightcone coordinates
and the superscript labels the two different nuclei. The
color charge density of hard partons ϱð1=2Þa ðx⊥Þ varies from
event to event according to a statistical distribution which
contains detailed nonperturbative information about the
nuclear species and impact parameter dependence of the
collision. As we shall discuss in a little more detail shortly,
the color charge densities ϱð1=2Þa ðx⊥Þ evolve with the value
of x separating the hard valence partons from the soft wee
partons. They become of order Oð1=gÞ in the high energy
limit. This nonperturbatively large color charge density is
also realized in heavy nuclei because these naturally
contain a large number of ðx ∼ 1Þ color sources.

B. Classical dynamics and power counting

The dynamics of nucleus-nucleus collisions within the
CGC framework is described as the time evolution of the
initial vacuum state in the presence of the eikonal currents
in Eq. (5). Self-consistency also requires a nontrivial
constraint imposed by the covariant conservation of the
current. Since the initial conditions of the time evolution are
formulated in the remote past t → −∞, this constitutes a
(retarded) boundary value problem, which can be studied in
nonequilibrium quantum field theory.1

The formalism to compute inclusive observables in a
series expansion in powers of the coupling constant was
developed in [64–68]. In this formalism, the leading order
(LO) contribution is computed from the solution of the
classical Yang-Mills equations with vanishing boundary
conditions in the remote past. The classical field configu-
rations Acl

μ , which describe the state of the system immedi-
ately after the collision, are known analytically at leading
order [18,19]. Their contribution to the energy momentum
tensor Tμν is Tμν

LO ∼ 1=g2. The (LO) classical dynamics after
the collision can be studied by numerically solving the
classical Yang-Mills equations [20–29]. Though the lead-
ing order description is robust, it proves essential to
consider higher order contributions. This is because at
leading order, thermalization and isotropization of the
system are not accessible since the underlying approxima-
tions lead to an effectively 2þ 1-dimensional dynamics.

At next-to-leading (NLO) order, one needs to consider
how quantum fluctuations of the initial vacuum state
propagate immediately after the nuclear collision. The
strategy to properly include quantum fluctuations was
developed in [66–68] and can be summarized as follows.
In the remote past (t → −∞), the initial state is the
perturbative vacuum. The classical field Acl vanishes and
quantum fluctuations can be represented as plane waves. As
the fluctuations develop in the nuclei, they are time dilated
due to the rapid motion of the nucleus. A coherent cascade
of such fluctuations develops, with the longer lived (large
x) gluons acting as sources of color charge for the shorter
lived (small x) fields. This is a dynamical process which
depends on the x value (or equivalently, the rapidity) of
interest. Consequently, the corresponding source density
ϱð1=2Þa ðx⊥Þ is implicitly dependent on x.2

The requirement that physical observables do not depend
on the separation between static sources and dynamical
fields inside the incoming nuclei leads to a renormalization
group description of these quantum fluctuations before the
collision. In practice, all quantum fluctuations (from either
nucleus) with x values above those that populate the central
rapidity region of the collision, can be factorized into
distributions of the color source densities of each nucleus.
The renormalization group equation that describes how the
color source distributions in each of the nuclei evolves with
x (to leading logarithmic accuracy) is called the JIMWLK
equation [69–73].
This factorization of the quantum fluctuations at larger x

is essential to treat the subsequent evolution of the smaller x
quantum fluctuations at central rapidity in the forward
lightcone of the collision. The linearized Yang-Mills
equations (around the classical background induced by
the color sources) that propagate the quantum fluctuations
into the forward lightcone at central rapidities have been
solved and the spectrum of fluctuations has been computed
analytically [35]. However, the quantum fluctuations that
are propagated into the forward lightcone are unstable and
will grow rapidly [36–40]. The linearized evolution equa-
tions thus no longer provide a good approximation of their
dynamics and shows pathological behavior at late times
[74–76]. One therefore needs to partially resum higher
order corrections to obtain an improved description. This
can be efficiently achieved within a classical-statistical field
theory. Here one keeps track of nonlinearities by consid-
ering the classical evolution of a composite field
A ¼ Acl þ a, where different realizations of the NLO

1This formulation as an initial value problem is only valid for
“inclusive” observables—ones that have no kinematic restrictions
of the final state.

2The very large density of color sources that arise from this
process, and couple coherently to the small x modes, is para-
metrically of order Oð1=gÞ—the largest value possible in QCD.
Such large values for the source densities are also generated for
large nuclei, where valence currents from different nucleons
couple coherently with the small x fields. The large density of
sources thus explains why Acl in the effective theory is also of
order 1=g.
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quantum fluctuations a are added to the LO classical field
Acl. Averaging over the statistical distribution of quantum
fluctuations3 then allows one to compute observables in a
single event to NLO accuracy, while partially including
higher order (classical) corrections to ensure conver-
gence [34,35].
In summary, the nonequilibrium dynamics after the

nuclear collision is classical in Nature at leading and
next-to-leading order. This is convenient because classical
dynamics can be studied numerically with well-established
real-time lattice simulation techniques (cf. Sec. III).
Genuine quantum evolution effects only contribute starting
at next-to-next-to-leading order (N2LO) [77].
Unfortunately, there is no satisfactory framework at present
to implement such higher order corrections in non-Abelian
gauge theories.
Based on the classical-statistical approach outlined

above, we shall now discuss the initial conditions immedi-
ately after the collision as well as the LO and NLO
dynamics at early times. We will then formulate initial
conditions for the evolution at later times. These are
employed in Sec. V to study the thermalization process
at weak coupling.

C. Initial conditions at early times ðτ ≲ Q−1Þ:
The “Glasma”

The leading order classical fields Acl as well as the
spectrum of next-to-leading order vacuum fluctuations a
are known analytically at τ ¼ 0þ immediately after the
collision of heavy nuclei. Adopting the Fock-Schwinger
gauge condition (Aτ ¼ 0), the leading order classical fields
are given by [18,19]

Acl
i ðx⊥Þ ¼ αð1Þi ðx⊥Þ þ αð2Þi ðx⊥Þ; Acl

η ¼ 0;

Ecl
i ¼ 0; Ecl

η ðx⊥Þ ¼ ig½αð1Þi ðx⊥Þ; αð2Þi ðx⊥Þ�; (6)

where i ¼ 1; 2 denotes Lorentz indices of transverse
coordinates. The pure gauge configurations αð1=2Þi ðx⊥Þ in
Eq. (6) describe the Yang-Mills field outside the lightcone.
They are related to the nuclear color charge densities by
[18,19]

αðNÞ
i ðx⊥Þ ¼

−i
g
eigΛ

ðNÞðx⊥Þ∂ie−igΛ
ðNÞðx⊥Þ;

∂i∂iΛðNÞðx⊥Þ ¼ ϱðNÞðx⊥Þ; (7)

and depend on the transverse coordinates x⊥ only.
While the collision is instantaneous in the high-energy

limit (at τ ¼ 0), the boost invariant chromoelectric ðEcl
η Þ

and chromomagnetic ðBcl
η Þ color fields in Eq. (6) mediate

the color flux between the two nuclei as soon as they
establish causal contact with each other (τ ¼ 0þ).
Subsequently the two nuclei separate from each other at
nearly the speed of light, and the large x partons quickly
escape from the midrapidity region. The initial small x
color fields that interact at midrapidity decay on a time
scale τ ∼Q−1, when a description in terms of on-shell
gluons becomes applicable.
The (LO) classical dynamics of the decaying Glasma

fields has been studied extensively in the literature [20–29].
Initially, the longitudinal chromoelectric and chromomag-
netic fields give rise to a negative pressure. This relaxes
towards zero rapidly on a time scale τ ∼Q−1 when the
transverse pressure begins to decrease according to a ∝ τ−1

free streaming behavior. The basic properties of the system
at this time ðτ ∼Q−1Þ are reminiscent of a highly occupied
and highly anisotropic quasiparticle system. The corre-
sponding single particle gluon spectrum was computed in
[23–25,28,29].
While the transition from the initial state of strong color

fields to a strongly correlated quasiparticle system already
occurs at the leading order classical level, the longitudinal
boost invariance of the (LO) classical fields in Eq. (6) is
preserved throughout the (LO) classical evolution. This
leads to an effectively 2þ 1-dimensional dynamics [20,25]
making thermalization and isotropization inaccessible at
this order. The next-to-leading order CGC result includes
quantum fluctuations of the initial state. These fluctuations
depend on the longitudinal rapidity and therefore expli-
citly break the longitudinal boost invariance of the leading
order classical solution. The structure of the solution
changes qualitatively requiring one to study the full
3þ 1-dimensional Yang Mills dynamics.
In the NLO resummed prescription, the initial conditions

for the classical evolution at τ ¼ 0þ are given by [34,35]

Ainit
μ ðxÞ ¼ Acl

μ ðxÞ þ
Z

dμK½cKaKμ ðxÞ þ c�Ka
K�
μ ðxÞ�; (8)

and similarly for the canonical conjugate momenta. Here
the initial gauge field Ainit

μ receives a contribution from the
leading order classical solution Acl and the next-to-leading
order vacuum fluctuations aK , with K collectively denoting
the quantum numbers labeling the basis of solutions.
The average over the coefficients cK defines a classical-
statistical field theory, namely, a classical field theory with
a statistical distribution of initial field configurations. In
practice this average can be evaluated by a Monte Carlo
procedure, where cK are Gaussian-distributed complex
random numbers [34,35].
The ab initio results in Eq. (8) are of great significance

for understanding nonequilibrium features of the Glasma at
very early times τ ≲Q−1. In heavy ion collisions, they play
an important role in understanding the structure of long

3The interpretation in terms of a classical-statistical ensemble
of course requires the statistical distribution of vacuum fluctua-
tions to be positive semidefinite. This property holds for the
Wigner function of the perturbative vacuum.
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range rapidity correlations [78,79] and topological effects
such as the chiral magnetic effect [80–83]. With regard to
thermalization which occurs at relatively late times, the role
of these initial conditions is unclear and may depend
crucially on the coupling constant.4

Specifically, in the weak coupling limit, quantum fluc-
tuations grow rapidly as expð ffiffiffiffiffiffi

Qτ
p Þ due to plasma insta-

bilities [36–40]. They become of the order of the (LO)
classical fields on time scales τ ∼Q−1 ln2ðα−1s Þ [40]. In the
weak coupling limit, the logarithm becomes large and there
is a “clean” separation of the time scales τ ∼Q−1 and
τ ∼Q−1 ln2ðα−1s Þ. During this time, the exponential
growth of instabilities can readily be observed, while
the dynamics of the leading order classical fields
remains largely unchanged [36–40].5 However, at times
τ ∼Q−1 ln2ðα−1s Þ, the impact of unstable fluctuations on the
dynamics of the background field is no longer negligible
and the system enters a regime with much slower dynamics
[36–40]. The longitudinal pressure of the system also
becomes manifestly nonzero at times τ ∼Q−1 ln2ðα−1s Þ.
The detailed properties of the system and the amount of
pressure generated at these early times may depend on the
value of the coupling constant.

D. Initial conditions at late times
ðτ ≳ Q−1 ln2ðα−1

s ÞÞ: Overoccupied plasma

The extremely rapid action of instabilities suggests that
the initial conditions at times τ ≲Q−1 will lead to a state of
the system that looks quite different on a time scale that is
parametrically only ln2ðα−1s Þ later. In particular, for each
element of the ensemble of initial conditions in Eq. (8), the
quantum fluctuations have grown to be of the order of the
classical field by the time τ ∼Q−1 ln2ðα−1s Þ. Because
the initial seed for the quantum fluctuations is statistically
distributed, these fluctuations add to the classical field with
comparable amplitude and arbitrary phase by the time
τ ∼Q−1 ln2ðα−1s Þ.6 It has been shown for scalar theories,
that adding such quantum fluctuations will lead to phase
decoherence of the system on relatively short time scales
[74]. It is therefore a reasonable expectation that the
dynamics will become fluctuation dominated at these later
times. Specifically, phase decoherence will mean that the
ensemble average of the classical field will no longer be
hAi ∼ 1=g. However, one can expect hAAi ∼ 1=g2.

The ensuing overpopulated plasma provides the starting
point for different weak coupling thermalization scenarios
in kinetic theory.7 Since the occupation numbers are
1 ≪ f ≪ 1=αs, a dual description of the overoccupied
non-Abelian plasma in terms of either the classical-
statistical framework or the language of kinetic theory
applies [41,42]. Implicit to this correspondence is the
assumption that the plasma consists of strongly correlated
quasiparticle excitations (with hAi ∼ 0 and hAAi ∼ 1=g2) as
opposed to a system with the genuinely fieldlike properties
of the Glasma at early times. In the CGC picture, the
existence of quasiparticle dynamics requires that the
initially strong Glasma fields decay into quasiparticle
excitations. Based on the previous discussion, we expect
that a kinetic description of hard excitations becomes
applicable at times τ ∼Q−1 ln2ðα−1s Þ when the growth of
plasma instabilities saturates.
Thus to understand the dynamics of weakly coupled

plasmas at later times [τ ≳Q−1 ln2ðα−1s Þ], it may be
sufficient to formulate initial conditions which capture
the quasiparticle dynamics that possibly leads to isotrop-
ization and thermalization of the system. These initial
conditions are sensitive to the value of the coupling
constant and uncertainties from higher order contributions
in the way they affect the properties of the system at times
τ0 ∼Q−1 lnðα−1s Þ. Most importantly, the resulting uncer-
tainties will affect the degree of initial anisotropy ξ0 of the
single particle distribution in momentum space, and the
magnitude of the initial overoccupancy n0 of the plasma. To
capture a wide range of different initial conditions, the
single particle distribution characterizing the initial con-
ditions for the evolution of the strongly correlated plasma
can be modeled as8

fðpT; pz; τ0Þ ¼
n0
2g2

Θ
�
Q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2T þ ðξ0pzÞ2

q �
: (9)

This describes the overpopulation of gluon modes, aver-
aged over spin and color degrees of freedom up to the
momentum Q—at the initial time Qτ0 ∼ ln2ðα−1s Þ—after
the unstable decay of the initial Glasma fields.9

The initial conditions in Eq. (9) provide a rather simple
model of the evolving Glasma. However a precise matching
to the Glasma is inessential if the nonequilibrium evolution
at late times shows a universal attractor, with different
initial conditions belonging to the same basin of attraction.

4This point is discussed further in Sec. V I.
5Note that Refs. [36–40] employed a different spectrum of

fluctuations at initial time. However, in the limit of very weak
coupling, one may argue that the details of the spectrum of
fluctuations become less relevant as long as a sufficiently large
range of modes is covered. The instability then naturally selects
the most unstable modes to exhibit the fastest growth and thus
dominate the dynamics at later times.

6Note that both the classical field and the quantum fluctuations
will be redshifted by the expansion over this time scale.

7Note that the logarithmic factor ln2ðα−1s Þ is frequently
neglected in the literature on thermalization, where convention-
ally only powers of the coupling constant are considered in
parametric estimates.

8The factor two in the denominator is from our choice of
convention for normalizing the initial conditions.

9The momentum scale Q is of comparable magnitude, albeit
nontrivially related, to the saturation scale Qs in the nuclear wave
functions.
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The existence of such an attractor solution is implicit to all
weak coupling kinetic thermalization scenarios where a
certain characteristic behavior is predicted without precise
knowledge of the underlying initial conditions. Here we
will explicitly verify the existence of a universal attractor
by use of classical-statistical lattice simulations for different
initial conditions. The wider the set of initial conditions
studied, the greater one’s confidence that this universal
attractor is a unique one relevant for the dynamics of the
overpopulated strongly correlated plasma. This will then
a posteriori justify the use of a simplified model for the
initial conditions.
The initial conditions in Eq. (9) can be implemented in a

straightforward way to initialize the gauge field configu-
rations in classical-statistical Yang-Mills simulations.
Because the equal-time correlation functions of the (gauge
fixed) gauge fields Aa

μ and their canonical conjugate
momenta Eμ

a can be related to the occupation number
defined in a suitable quasiparticle picture (cf. Sec. III C 3),
we simply choose the configurations to reproduce the
single particle distribution at initial time. Since the inter-
pretation of quasiparticle excitations requires an additional
gauge fixing, we impose the Coulomb type gauge condition
∂iAi þ τ−2∂ηAη ¼ 0 at initial time τ0. The field configu-
rations are then initialized as a superposition of transversely
polarized quasiparticle modes. The gauge fields at initial
time τ0 take the form

Aa
μðτ0;x⊥; ηÞ ¼

X
λ¼1;2

Z
d2k⊥
ð2πÞ2

dν
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðk⊥; ν; τ0Þ

p

× ½ck⊥ν
λ;a ξðλÞk⊥νþ

μ ðτ0Þeik⊥x⊥eiνη þ c:c:�; (10)

and similarly one finds

Eμ
aðτ0;x⊥; ηÞ ¼ −τ0gμν

X
λ¼1;2

Z
d2k⊥
ð2πÞ2

dν
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðk⊥; ν; τ0Þ

p

× ½ck⊥ν
λ;a

_ξðλÞk⊥νþ
ν ðτ0Þeik⊥x⊥eiνη þ c:c:� (11)

for the conjugate momenta. Here ξðλÞk⊥μþ
μ ðτÞ denotes the

(time-dependent) transverse polarization vectors in the
noninteracting theory (given in Appendix A) and c:c.
denotes complex conjugation. The statistical ensemble is
defined by the distribution of the coefficients ck⊥ν

λ;a , which
satisfy the relations

hck⊥ν
λ;a c�k⊥ 0ν0

λ0;b i ¼ δλλ0δabð2πÞ3δð2Þðk⊥ − k⊥0Þδðν − ν0Þ; (12)

whereas hck⊥ν
λ;a ck⊥0ν0

λ0;b i ¼ hc�k⊥ν
λ;a c�k⊥0ν0

λ0;b i ¼ 0. This can be
implemented by choosing the coefficients ck⊥ν

λ;a as complex
Gaussian random numbers in every simulation.
Before we proceed to a discussion of the numerical

solution of the Yang-Mills equations, we will briefly
digress to comment on the range of validity of the

classical-statistical method. Specifically, we will address
the limitations of this method in studying the approach to
thermal equilibrium at weak coupling.

E. Breakdown of classical-statistical dynamics

There is a restricted class of problems where the
dynamics of bosonic quantum fields can be accurately
mapped onto a classical-statistical problem. The most
intuitive criteria for this can be formulated in situations
where a kinetic description in terms of quasiparticle
excitations is applicable [41,42]. As noted previously,
the system exhibits classical dynamics whenever the typical
occupation numbers are much larger than unity. If occu-
pation numbers fall below unity, quantum mechanical
processes will dominate the dynamics. This is clearly seen
in a Boltzmann transport framework where classical
scattering processes are subleading to quantum mechanical
ones for occupation numbers smaller than unity [41,42].
It is also possible to formulate more general criteria

(which do not rely on a quasiparticle picture) in the
Schwinger-Keldysh formalism of nonequilibrium quantum
field theory [50,77,84,85]. This “classicality condition” is
met whenever anticommutator expectation values for typ-
ical bosonic field modes are much larger than the corre-
sponding commutators [84,85]. Stated differently, this
concerns the large field or large occupancy limit, which
is relevant for important phenomena such as nonequili-
brium instabilities or wave turbulence encountered in our
study. The classicality condition has been discussed in
detail in the context of scalar quantum field dynamics
[53,84–86]. The coupling to fermions [87,88] and exten-
sions to non-Abelian gauge theories follow along the
same lines.
We emphasize that the condition for a system to exhibit

classical dynamics is in general time dependent. In par-
ticular, the approach to complete thermal equilibrium is not
accessible within the classical-statistical framework. As a
consequence of the Rayleigh-Jeans divergence, the
classical thermal state is only well defined in conjunction
with an ultraviolet cutoff.10 In contrast, thermal equilibrium
is a genuine quantum state which cannot be reached
within classical-statistical field theory. Nevertheless, the
classical-statistical regime may extend over large times
(even parametrically large times) such that interesting
features of the nonequilibrium evolution are observable
with classical-statistical dynamics.
The time scale tQuantum for entering the quantum regime

depends on the properties of the initial state as well as
the dynamics in the classical regime. In weak coupling
frameworks, this time scale is typically inversely propor-
tional to a power of the coupling constant
tQuantum ∼Q−1α−qs , for initially overoccupied systems.

10This cutoff can, for instance, be implemented by lattice
regularization.
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For instance, in the bottom up thermalization scenario [49]
one finds tQuantum ∼Q−1α−3=2s . The range of validity of
classical-statistical techniques is thus naturally confined to
weak coupling. As the coupling is increased, its range of
validity shrinks rapidly. The use of classical-statistical
methods at large couplings therefore requires great care
since genuine quantum effects may dominate the dynamics
already at rather early times.
In our view, the appropriate strategy from aweak coupling

perspective is to perform classical-statistical simulations at
very weak coupling where the framework is robust.
Specifically, the strategy will be to extract the parametric
dependence of observables on the coupling, and then
extrapolate results to the larger couplings of interest.
Conversely, performing simulations at large couplings is
bedeviled on two fronts. First, the classical-statistical simu-
lation is breaking down early and uncontrollably. Further, the
contamination of observables by ultraviolet quantum modes
is large. It is an interesting open question whether weak
coupling results extrapolated to large couplings can be
matched to results from strong coupling frameworks.

III. CLASSICAL-STATISTICAL LATTICE
GAUGE THEORY

We shall nowdescribe the framework to perform classical-
statistical real-time simulations of SUð2Þ Yang-Mills equa-
tions.11 For the longitudinally expanding plasma, we employ
the Kogut-Susskind lattice Hamiltonian in Fock-Schwinger
(Aτ ¼ 0) gauge to solve Hamilton’s equations for the fields
and their momentum conjugate variables as a function of
proper time on a spatial lattice. The lattice discretization
proceeds along similar lines as in standardvacuumor thermal
equilibrium lattice QCD. The spatial points (x⊥; η) are
defined on a grid of size N⊥ × N⊥ × Nη, with the lattice
spacing a⊥ in the transverse direction and aη in the
longitudinal direction. We employ periodic boundary con-
ditions in the three spatial directions and wewill collectively
label the spatial and temporal coordinates as x ¼ ðτ;x⊥; ηÞ.

A. Discretization

In the lattice formulation, the continuum gauge fields
Aa
μðxÞ are represented in terms of the gauge link variables

UiðxÞ ¼ exp½iga⊥Aa
i ðxþ ι̂=2ÞΓa�;

UηðxÞ ¼ exp½igaηAa
ηðxþ η̂=2ÞΓa�; (13)

where Γa ¼ σa=2 are the generators of the SUð2Þ Lie
algebra in the fundamental representation and the symbol
μ̂ ¼ x̂1; x̂2; η̂ denotes the neighboring lattice site in the μ

direction. The gauge link variables can be intuitively
understood as approximating the path-ordered Wilson line
P exp½ig R y

x A�, connecting adjacent lattice sites x and y
along a straight line path. In particular, the gauge link
variables transform as the Wilson lines according to

UðGÞ
μ ðxÞ ¼ GðxÞUμðxÞG†ðxþ μ̂Þ;

U†ðGÞ
μ ðxÞ ¼ Gðxþ μ̂ÞUμðxÞG†ðxÞ; (14)

under time-independent local gauge transformations
GðxÞ ∈ SUð2Þ. The classical evolution equations for the
gauge link variables can be formulated in terms of the
spatial plaquette variables VμνðxÞ and WμνðxÞ, convention-
ally defined as

VμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ;
WμνðxÞ ¼ UμðxÞU†

νðxþ μ̂ − ν̂ÞU†
μðx − ν̂ÞUνðx − ν̂Þ; (15)

where WμνðxÞ ¼ U†
νðx − ν̂ÞV†

μνðx − ν̂ÞUνðx − ν̂Þ. The pla-
quette variables can be related to the continuum expression
of the non-Abelian field strength tensor F a

μνðxÞ by virtue of
the expansion

VμνðxÞ ¼ exp½igaμaνF a
μνðxþ μ̂=2þ ν̂=2ÞΓa þOðga3Þ�;

(16)

WμνðxÞ ¼ exp½−igaμaνF a
μνðxþ μ̂=2 − ν̂=2ÞΓa þOðga3Þ�;

(17)

for sufficiently small lattice spacings a⊥; aη. We note that
the plaquette variables are defined in the center of the
respective Wilson loop as indicated in Fig. 2. In this sense,
the phase of the plaquette VμνðxÞ and WμνðxÞ corresponds
to the magnetic flux through the area spanned by the
Wilson loop to leading order in the lattice spacing.
In order to construct the lattice equations of motion, we

also discretize the time direction while keeping the

FIG. 2 (color online). Illustration of the lattice link and
plaquette variables.

11The extension to SU(3) is straightforward if cumbersome.
Previous studies have shown that there is no qualitative difference
in the dynamics if the gauge group is changed from SU(2) to
SU(3) (see e.g. [89]).
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temporal lattice spacing aτ ≪ ða⊥; τ; τaηÞ sufficiently close
to the continuum limit. We can then introduce the timelike
plaquette variables UτμðxÞ

UτμðxÞ ¼ UτðxÞUμðxþ τ̂ÞU†
τðxþ μ̂ÞU†

μðxÞ; (18)

where τ̂ denotes the neighboring lattice site in the temporal
direction. In Fock-Schwinger ðAτ ¼ 0Þ gauge, where the
temporal links are trivial ðUτ ¼ 1Þ, the timelike plaquette
variables have the simple structure

UτμðxÞ ¼ Uμðxþ τ̂ÞU†
μðxÞ: (19)

Similarly to Eqs. (16) and (17), the temporal plaquette
variables can be related to the (dimensionless) electric field
variables ~Eμ

aðxÞ on the lattice as

~Ei
aðxÞ ¼ −2

τ

aτ
tr½iΓaUτiðyÞÞ�;

~Eη
aðxÞ ¼ −2

a2⊥
τaτaη

tr½iΓaUτηðyÞÞ�; (20)

for the transverse components UτiðxÞ and longitudinal
components UτηðxÞ respectively. In the limit of small
temporal lattice spacing ðaτ → 0Þ, they are then related
to the corresponding continuum fields Ei

aðxÞ by

~Ei
aðxÞ ¼ ga⊥Ei

aðxþ ι̂=2þ τ̂=2Þ;
~Eη
aðxÞ ¼ ga2⊥E

η
aðxþ η̂=2þ τ̂=2Þ: (21)

Similarly, Eq. (20) can be inverted to express the timelike
plaquette variables in terms of the electric field variables
as12

UτiðxÞ ¼ exp

�
i
aτ
τ
~Ei
aðxÞΓa

�
;

UτηðxÞ ¼ exp

�
i
aττaη
a2⊥

~Eη
aðxÞΓa

�
: (22)

In analogy to the spatial plaquette variables VμνðxÞ and
Wμνðx), the timelike plaquettevariablesUτμðxÞ are defined at
half-integer time-steps xþ μ̂=2þ τ̂=2, as indicated by blue
arrows in Fig. 2. We will see shortly that this choice
corresponds to the leap-frog discretization scheme employed
in the discretized version of the evolution equations.
An important feature of the plaquette variables is the

fact that these objects transform covariantly under
time-independent gauge transformations,

VðGÞ
μν ðxÞ ¼ GðxÞVμνðxÞG†ðxÞ;

WðGÞ
μν ðxÞ ¼ GðxÞWμνðxÞG†ðxÞ;

UðGÞ
τμ ðxÞ ¼ GðxÞUτμðxÞG†ðxÞ: (23)

This property implies that the trace of a plaquette variable
or in general any closed Wilson loop is gauge invariant. It
can be used to construct gauge-invariant observables as we
will discuss below.

B. Evolution equations

The lattice evolution equations can be derived from the
lattice Hamiltonian. The evolution equations for the electric
field variables can be expressed as

~Ei
aðxÞ − ~Ei

aðx − τ̂Þ ¼ 2
aττ
a2⊥

X
j≠i

tr½iΓaðVijðxÞ þWijðxÞÞ�

þ 2
aτ
τa2η

tr½iΓaðViηðxÞ þWiηðxÞÞ�;

~Eη
aðxÞ − ~Eη

aðx − τ̂Þ ¼ 2
aτ
τaη

X
i

tr½iΓaðVηiðxÞ þWηiðxÞÞ�:

(24)

Similarly Eqs. (19) and (22) can be used to construct the
evolution equation for the link variables as

Uiðxþ τ̂Þ ¼ exp

�
i
aτ
τ
~Ei
aðxÞΓa

�
UiðxÞ;

Uηðxþ τ̂Þ ¼ exp

�
i
aττaη
a2⊥

~Eη
aðxÞΓa

�
UηðxÞ: (25)

We note that the electric field variables are defined at half-
integer time steps according to Eq. (21), such that the gauge
force on the right-hand side of Eq. (24) is effectively
calculated at the midpoint of the considered time interval.
Similarly, the timelike plaquettes UτμðxÞ on the right-hand
side of Eq. (25) are defined at the midpoint xþ μ̂=2þ τ̂=2
of the considered time interval. This realization of the
evolution equation corresponds to the leap frog discretiza-
tion scheme.
The discretized version of the Gauss law constraint takes

the form�
a2⊥

aττaη

�
tr½iΓaðUτηðxÞ −Dτηðx − η̂ÞÞ�

þ
�
τaη
aτ

�X
i

tr½iΓaðUτiðxÞ −Dτiðx − ι̂ÞÞ� ¼ 0; (26)

and needs to be satisfied separately for all color compo-
nents a at each position x in spacetime. Here we denote

Dτμðx − μ̂Þ ¼ U†
μðx − μ̂ÞUτμðx − μ̂ÞUμðx − μ̂Þ: (27)

Since the current on the left-hand side of Eq. (26) is
conserved by the equations of motion in the continuum

12Strictly speaking, this expression is only accurate to next-to-
leading order in the temporal lattice spacing Oða2τ Þ. However the
stability of the numerical solution typically requires very small
values of aτ ≪ ða⊥; τ; τaηÞ such that in practice the inversion is
exact to machine accuracy.
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limit, the Gauss law constraint is a nondynamical constraint
that physically meaningful initial conditions have to satisfy.
However, during the course of numerical lattice simula-
tions, Eq. (26) will be violated due to rounding and
discretization errors. In practice, the Gauss law constraint
is implemented at the initial time and then monitored
throughout the subsequent time evolution to ensure that
discretization errors are sufficiently small.

1. Minkowski coordinates

In addition to simulations for a longitudinally expanding
plasma, we will also discuss in Sec. IV classical-statistical
simulations for a “static box” [30,89,90]. In this case, it is
convenient to employ the Minkowski metric. The lattice
setup is similar to that for the expanding plasma. We
perform a similar discretization of the spatial coordinates
ði ¼ 1; 2; 3Þ with lattice spacing a and periodic boundary
conditions and we employ the temporal axial gauge ðAt ¼
0Þ instead of Fock-Schwinger gauge ðAτ ¼ 0Þ. The gauge
links are related to the continuum fields as

UiðxÞ ¼ exp½igaAa
i ðxþ ι̂=2ÞΓa�; (28)

while for electric field variables on the lattice one finds

~Ei
aðxÞ ¼ ga2Ei

aðxþ ι̂=2þ t̂=2Þ; (29)

and

UtiðxÞ ¼ exp

�
i
at
a

~Ei
aðxÞΓa

�
; (30)

for all spatial Lorentz indices ði ¼ 1; 2; 3Þ.
The lattice evolution equations in Minkowski coordi-

nates can be obtained in analogy to the longitudinally
expanding case and take the form

~Ei
aðxÞ− ~Ei

aðx− t̂Þ¼2
at
a

X
j≠i

tr½iΓaðVijðxÞþWijðxÞÞ�; (31)

and

Uiðxþ t̂Þ ¼ exp

�
i
at
a

~Ei
aðxÞΓa

�
UiðxÞ; (32)

while the Gauss law constraint in Minkowski coordinates
reads

�
a
at

�X
i

tr½iΓaðUtiðxÞ −Dtiðx − ı̂ÞÞ� ¼ 0; (33)

with

Dtiðx − ι̂Þ ¼ U†
i ðx − ι̂ÞUtiðx − ι̂ÞUiðx − ι̂Þ; (34)

in analogy to the discussion of the longitudinally expand-
ing case.

We note that these results can easily be recovered by
the replacement a⊥ → a; τ → a; aη → 1; aτ → at in the
evolution equations (24) and (25) in ðτ; ηÞ coordinates.13

This is particularly convenient for tests of the numerical
implementation.

C. Observables

The nonequilibrium time evolution of the expectation
values of suitable observables OðxÞ are evaluated as an
ensemble average over a statistical distribution of initial
values formally expressed as

hOðxÞi ¼
Z

DA0DE0W0½A0; E0�O½A0
cl; E

0
cl; x�: (35)

Here W0½A0; E0� denotes the phase-space density of initial
conditions. The functional integral extends over all possible
field configurations at initial time τ0. The notation
O½A0

cl; E
0
cl; x� implies that the observable of interest is to

be evaluated as a functional of the classical field solutions
A0
cl and E0

cl at the point x in spacetime.
While the discretization on a spacetime lattice renders

the integration in Eq. (35) finite dimensional, the remaining
high dimensional integral is evaluated by the following
Monte Carlo procedure. We first generate an ensemble of
initial conditions according to the initial phase space
density W0½A0; E0�. In practice, this corresponds to gen-
erating different sets of Gaussian random numbers which
enter the initial field configurations in Eqs. (10) and (11).
For each configuration, the evolution equations (24) and
(25) are then solved numerically by a stepwise update. The
electric field variables at the next time step are calculated
from the previous ones by use of Eq. (24). Subsequently,
the gauge links at the next point in time are computed by
solving Eq. (25).14 By iterating this update procedure
multiple times, one obtains the solution of the classical
field equations at any time of interest. The classical-
statistical expectation value of any observable can then
be calculated by evaluating the observable separately for
each configuration and subsequently averaging over the
ensemble of initial conditions.

1. Energy-momentum tensor

A central gauge-invariant quantity that can be computed
using the classical-statistical method outlined above is the
energy-momentum tensor [37]

13A reinterpretation of the longitudinal rapidity coordinate η as
the Minkowski coordinate z and the proper time coordinate τ as
the Minkowski time t is implied. Note also that the relation
between continuum and lattice variables in Eqs. (13) and (21)
changes to the expressions in Eqs. (28) and (29).

14The matrix valued exponential in Eq. (25) can be
calculated explicitly for the SUð2Þ gauge group according to
exp½iαaΓa� ¼ cosða=2Þ1þ 2i sinða=2Þa αaΓa, where a ¼ ffiffiffiffiffiffiffiffiffiffi

αaα
ap
.
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TμνðxÞ ¼ −gναðxÞF μδ
a ðxÞF a

αδðxÞ

þ 1

4
gμνðxÞF γδ

a ðxÞF a
γδðxÞ: (36)

In particular, we will be interested in the diagonal compo-
nents of the energy-momentum tensor. These can be
associated with the energy density ϵ and the longitudinal
and transverse pressure densities PL and PT . In comoving
coordinates, they are expressed as [37]

ϵðxÞ ¼ hTτ
τðxÞi; PLðxÞ ¼ −hTη

ηðxÞi;

PTðxÞ ¼ −
1

2
hTx

xðxÞ þ Ty
yðxÞi: (37)

The above definitions are normalized such that for locally
isotropic systems one obtains the relation PL ¼ PT ¼ ϵ=3,
whereas for anisotropic systems the ratio PL=PT can be
used to quantify the bulk anisotropy of the plasma. The
corresponding lattice expressions are written compactly in
terms of the electric and magnetic components as15

ðg2a4⊥ÞϵðxÞ ¼
1

2
½B2

ηðxÞ þ E2
ηðxÞ þ B2

TðxÞ þ E2
TðxÞ�;

ðg2a4⊥ÞPTðxÞ ¼
1

2
½B2

ηðxÞ þ E2
ηðxÞ�;

ðg2a4⊥ÞPLðxÞ ¼
1

2
½B2

TðxÞ þ E2
TðxÞ − B2

ηðxÞ − E2
ηðxÞ�; (38)

where the individual electric and magnetic components can
be obtained as

B2
ηðxÞ ¼ 4htr½1 − VxyðxÞ�i; E2

ηðxÞ ¼
XN2
c−1

a¼1

h½ ~Eη
aðxÞ�2i;

B2
TðxÞ ¼ 4

�
a2⊥
τ2a2η

�X
i

htr½1 − ViηðxÞ�i;

E2
TðxÞ ¼

�
a2⊥
τ2

�X
i

XN2
c−1

a¼1

h½ ~Ei
aðxÞ�2i: (39)

Since the different plaquette variables are formally defined
at different half-integer positions on the spacetime lattice, a
higher order accurate expression can be obtained by an
interpolation of the result with the neighboring plaquette
variables. However, since we will primarily be interested in
volume averages of the energy density ϵðτÞ according to

ϵðτÞ ¼ 1

N2⊥Nη

X
x⊥;η

ϵðxÞ; (40)

and similarly for the longitudinal and transverse pressures
PL=T , there is no need to apply this procedure for the
purposes of this study.

2. Hard scales

Besides the energy-momentum tensor, additional gauge-
invariant observables can be constructed by considering
higher dimensional operators such as the covariant deriv-
atives of the field strength tensor [33]

Hμ
μðτÞ ¼ 4

Z
d2x⊥
V⊥

dη
Lη

Dab
α ðxÞF αμ

b ðxÞDβ
acðxÞF c

βμðxÞ; (41)

(no summation over μ) where summation over spatial
Lorentz indices α; β ¼ x; y; η and color indices a; b; c ¼
1;…; N2

c − 1 is implied.16 The corresponding expressions
on the lattice are

ðg2a6⊥ÞHx
xðτÞ ¼

16

N2⊥Nη

X
x⊥;η

XN2
c−1

a¼1

½tr½iΓaðVxyðxÞ þWxyðxÞÞ�

þ a2⊥
τ2a2η

tr½iΓaðVxηðxÞ þWxηðxÞÞ��2; (42)

ðg2a6⊥ÞHy
yðτÞ ¼

16

N2⊥Nη

X
x⊥;η

XN2
c−1

a¼1

½tr½iΓaðVyxðxÞ þWyxðxÞÞ�

þ a2⊥
τ2a2η

tr½iΓaðVyηðxÞ þWyηðxÞÞ��2; (43)

ðg2a6⊥ÞHη
ηðτÞ

¼ 16

N2⊥Nη

X
x⊥;η

a2⊥
τ2a2η

XN2
c−1

a¼1

½tr½iΓaðVηxðxÞ þWηxðxÞÞ�

þ tr½iΓaðVηyðxÞ þWηyðxÞÞ��2: (44)

We will be interested in the quantity

Λ2ðτÞ ¼ hHx
xðτÞi þ hHy

yðτÞi þ hHη
ηðτÞi

ϵðτÞ ; (45)

as well as Λ2
L and Λ2

T , which are defined as the longitudinal
and transverse projections of Hμ

μ according to

Λ2
TðτÞ ¼

hHη
ηðτÞi

ϵðτÞ ;

Λ2
LðτÞ ¼

hHx
xðτÞi þ hHy

yðτÞi − hHη
ηðτÞi

ϵðτÞ ; (46)

such that Λ2 ¼ 2Λ2
T þ Λ2

L.15Note that all expressions are given in lattice units. The
conversion to physical units is achieved by multiplication with
appropriate powers of the dimensionless factor Qa⊥ and sub-
sequently relating the momentum scaleQ to the relevant physical
momentum scale.

16By virtue of the equations of motion one can equivalently
express the right-hand side of Eq. (41) in terms of time derivatives
of the electric fields.
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The observables ΛL and ΛT are the characteristic
longitudinal and transverse momentum scales of hard
excitations. They contain additional information about
the evolution of the system beyond what is contained in
the energy-momentum tensor. While this interpretation
follows immediately from dimensional analysis, it is
nevertheless insightful to evaluate the perturbative expres-
sions for Λ2

T and Λ2
L. Considering only the Abelian part of

the field strength tensor, one obtains

Λ2
TðτÞ≃

R
d2p⊥dpz2p2Tωpfðp⊥; pz; τÞR
d2p⊥dpzωpfðp⊥; pz; τÞ

;

Λ2
LðτÞ≃

R
d2p⊥dpz4p2zωpfðp⊥; pz; τÞR
d2p⊥dpzωpfðp⊥; pz; τÞ

; (47)

where fðp⊥; pz; τÞ denotes the single particle gluon dis-
tribution as a function of longitudinal and transverse
momenta, and ωp ≃ pT is the relativistic quasiparticle
energy in the limit pT ≫ pz. The details of this calculation
are presented in Appendix B.

3. Occupation numbers

It is also useful to consider a specific set of gauge-
dependent quantities in studying the nonequilibrium
dynamics of weakly coupled plasmas. However, to extract
meaningful quantities, we need to fix the residual gauge
freedom (in Aτ ¼ 0 gauge) to perform time-independent
gauge transformations. We do so by implementing the
Coulomb type gauge condition

τ−2∂ηAηðxÞ þ
X
i

∂iAiðxÞ ¼ 0 (48)

independently at each time τ, where we extract gauge-
dependent observables. This can be achieved by use of
standard lattice gauge-fixing techniques (see e.g. [91]), as
discussed in Appendix C.
Since the gluon distribution function fðp⊥; pz; τÞ, has a

direct analog in kinetic theory, it is particularly useful to
establish a direct comparison between the different meth-
ods. It can be extracted from equal time (two point)
correlation functions in Coulomb gauge and different
definitions have been employed in the literature [31–33].
Here we use the Fock state projection,

fðp⊥; pz; τÞ ¼
τ2

NgV⊥Lη

XN2
c−1

a¼1

X
λ¼1;2

hjgμν½ðξðλÞp⊥νþ
μ ðτÞÞ�∂τ

⟷
Aa
νðτ;p⊥; νÞ�j2iCoul gauge; (49)

where the index λ ¼ 1; 2 counts the two transverse polar-
izations and Ng ¼ 2ðN2

c − 1Þ is the number of transversely
polarized gluon degrees of freedom. The symbol ξðλÞp⊥νþ

μ ðτÞ
denotes the two time-dependent transverse polarization

vectors in the free theory. The explicit form for the
expanding system in Fock-Schwinger gauge is derived in
Appendix A. To evaluate Eq. (49) the gauge field
Aa
νðτ;p⊥; νÞ is computed from the plaquette variables by

inversion of Eq. (13) and a subsequent fast Fourier trans-
formation to obtain the result in momentum space.
Similarly, we obtain the time derivative of the gauge field
from the fast Fourier transform of the electric field variables.
For the longitudinally expanding system, the longi-

tudinal momentum pz in Eq. (49) is identified as pz ¼
ν=τ from the kinetic term in the field equations. The
definition in Eq. (49) is such that, in the absence of
interactions, fðp⊥; pz; τÞ is (up to this redshift of longi-
tudinal momenta) exactly conserved by the equations of
motion. We also verified this explicitly by performing
simulations of the noninteracting theory.17

IV. NONEXPANDING NON-ABELIAN PLASMA

We will first address the problem of thermalization from
a more general perspective by looking at a class of systems
that are simpler than those in heavy ion collisions, but
nevertheless share important features. The simplest such
system is a non-Abelian plasma in a “static box”—a
nonexpanding system which is isotropic at all times and
initially overoccupied. The discussion in this section will
set the stage for further analysis of the similarities and
differences to the longitudinally expanding case, where an
anisotropy between longitudinal and transverse pressures is
naturally generated. This will be discussed in Sec. V.
The single particle gluon distribution in a homogeneous,

isotropic system in weak coupling can be parametrized in a
simple way as

fðpÞ ∼ α−cs for jpj < Q; fðjpj > QÞ ≪ 1; (50)

where Q is the scale separating the region of high
occupancy from the low occupancy region beyond.
Since the coupling constant is small, αsðQÞ ≪ 1, the
exponent 0 < c < 1 quantifies the degree to which the
system is initially overoccupied. For these values of c, at
sufficiently small coupling, the occupancy is fðjpj≃QÞ ≫
1 for typical momenta. The plasma exhibits classical-
statistical dynamics as long as this condition holds
for the occupation numbers of hard excitations. In this
classical regime, one can employ the classical-statistical
lattice gauge-theory techniques introduced in Sec. III to
study nonequilibrium dynamics. If in addition fðjpj≃
QÞ ≪ α−1s , an equivalent description of the thermalization
process may also be achieved within the framework of
kinetic theory.

17This can be achieved by initializing a single nonvanishing
color component ða ¼ 1Þ in our simulations, whereas all other
components vanish identically. In this case one recovers the
dynamics of a (compact) Uð1Þ gauge theory.
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The kinetic evolution of systems with the distribution in
Eq. (50) has been studied previously in Refs. [46,48] and
classical-statistical lattice studies of non-Abelian plasmas
in a static box have been performed previously in
Refs. [30–33]. Here we will discuss the results of numerical
studies on larger lattices than previously studied. Before we
present these results, we shall first discuss general features
of an overoccupied non-Abelian plasma in a static box and
subsequently, the microscopic kinetic theory analysis. We
will emphasize striking features of the lattice results and
show that these indeed have a kinetic description. We will
end this section with a discussion of classicality and
thermalization for nonexpanding non-Abelian plasmas.

A. General considerations

Since the energy density ϵ≃ R
d3pωpfðpÞ is conserved

for a closed system in a static box, one can immediately
determine the final state temperature of the system as

Tfinal ∼ ϵ1=4 ∼ α−c=4s Q: (51)

While in the initially overoccupied state ð0 < c < 1Þ, the
energy density is concentrated at the characteristic momen-
tum scale Q, the energy density of the final state is
dominated by modes with much higher momenta of the
order of the temperature Tfinal ≳Q. This is illustrated in the
left panel of Fig. 3, where we show the initial state
(overoccupied up to Q) in comparison to the thermal final
state indicated by the red dashed line. During the thermal-
ization process the typical momentum of hard excitations
ΛðtÞ increases as energy is transported towards the ultra-
violet to reach the thermal equilibrium state. This is
illustrated in the central panel of Fig. 3.
Energy conservation also requires that the increase of

ΛðtÞ in time is accompanied by a decrease in the typical
occupancy of hard excitations. For instance, for modes with
momenta ∼Q one finds that fðjpj≃Q; tÞ decreases during
the thermalization process from the initial value
finitialðjpj≃Q; tÞ ∼ α−cs to the final equilibrium value
ffinalðjpj≃Q; tÞ ∼ Tfinal=Q ∼ α−c=4s . Interestingly, this
decrease in occupancy is accompanied by a change of
the overall particle number density NðtÞ ∼ R

d3pfðp; tÞ.
Since the particle number density in the final state is
parametrically smaller than initially,

Nfinal ∼ T3
final ∼ α−3c=4s Q3 ≲ Ninitial ∼ α−cs Q3; (52)

ultimately number changing inelastic interactions will
reduce the total number of excitations. Of course the latter,
in contrast to the energy density, is not a conserved
quantity.
From these general considerations, the central questions

with regard to the thermalization process are the following:
(i) How does energy transport towards the ultravio-

let occur?

(ii) How do inelastic interactions reduce the overall
particle number during the thermalization process?

These questions were first discussed in Refs. [46,48] based
on a kinetic theory analysis of elastic and inelastic
scattering processes. Here we will provide a slightly
different perspective on the kinetic theory discussion.
This perspective is influenced by results from the
classical-statistical lattice simulations in Refs. [30–33]
and those we shall discuss shortly.

B. Kinetic theory of turbulent thermalization

To analyze the thermalization process in kinetic theory,
one needs to include the effects of elastic and inelastic
scattering. We begin with a discussion of elastic scattering.
While previous works assumed elastic interactions to be
dominated by scattering of hard particles with small
momentum transfer [46,48], we shall employ a different
approach. Our strategy will be to directly investigate the
possibility of self-similar scaling solutions. Such solutions
were shown in [32] to characterize the evolution at late times
t ≫ Q−1. As we will discuss in Sec. IVD, these solutions
emerge as nonthermal fixed points of the evolution such that
after a short transient regime very different initial conditions
show the same characteristic scaling behavior at late times.18

The kinetic theory analysis is then analogous to the
discussion of turbulent thermalization in scalar field

FIG. 3 (color online). Sketch of the thermalization process for a
nonexpanding isotropic system in kinetic theory. The different
plots represent the different stages of the evolution. The red
dashed line indicates the final thermal state. Once hard excitations
are affected by interactions, a dynamical scale ΛðtÞ develops. The
time evolution of the hard scale ΛðtÞ then characterizes the
transport of energy towards higher momenta.

18More precisely, one finds that characteristic quantities such
as the hard scale ΛðtÞ exhibit a power-law dependence [46]. The
associated scaling exponents are universal and take identical
values for different initial conditions. The amplitudes of the
power-law solutions are nonuniversal and reflect the properties of
the initial state, such as the value of c in Eq. (50), as well as the
dynamics of the transient regime. The parametric dependence of
these nonuniversal amplitudes has been studied analytically in
[46] and numerically in [32]. However this will be of little
relevance to our discussion since we will focus on the universal
dynamics of the scaling regime.
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theories, previously investigated in Ref. [52] in the context
of early universe cosmology. We shall follow the same
procedure as Ref. [52] and search for self-similar fixed-
point solutions for the gluon distribution function of the
form

fðp; tÞ ¼ ðQtÞαfSððQtÞβpÞ; (53)

where fSðxÞ is a stationary distribution. The functional
form of fS characterizes the time-independent shape of the
attractor. The prefactor ðQtÞα in Eq. (53) characterizes the
overall decrease of the amplitude of the distribution in time.
The factor ðQtÞβ in the argument describes the evolution
of the hard momentum scale ΛðtÞ ∝ QðQtÞ−β. The

parametrization on the right-hand side of Eq. (53) thus
amounts to measuring momenta p in units of the hard
momentum scale ΛðtÞ at a given time t of the evolution.
The kinetic evolution is described in terms of a

Boltzmann equation of the generic form

∂tfðp; tÞ ¼ C½f�ðp; tÞ; (54)

whereC½f�ðp; tÞ denotes the collision integral including the
relevant n⟷m scattering processes. As noted, we shall
focus on elastic 2⟷2 and inelastic 2⟷3 scattering
processes that are expected to drive the evolution in the
self-similar regime [46]. The collision integral for elastic
scattering takes the form

C½f�ðp; tÞ ¼ 1

2

Z
q;k;l

jMðp;q;k; lÞj2
2ωp2ωq2ωk2ωl

ð2πÞ4δð4Þðqþ k − l − pÞ½ð1þ fpÞð1þ flÞfqfk − fpflð1þ fqÞð1þ fkÞ�; (55)

where δð4Þðqþ k − l − pÞ ¼ δðωq þ ωk − ωl − ωpÞδð3Þ ×
ðqþ k − l − pÞ and the scattering matrix element in the
nonrelativistic normalization is given by (see e.g. [92])

jMðp;q;k; lÞj2 ¼ 128π2α2sN2
c

�
3 −

tu
s2

−
su
t2

−
ts
u2

�
(56)

for non-Abelian SUðNcÞ gauge theories.
Strictly speaking the above expression is only mean-

ingful for scatterings with large momentum transfer. In
contrast, for small momentum transfers the vacuum matrix
element in Eq. (56) diverges and one needs to consider in
medium screening effects which regulate the divergence.
However, as we will discuss shortly, these medium mod-
ifications do not change the scaling properties of the
scattering process in time which is the essential ingredient

in our scaling analysis. Wewill therefore first focus on large
angle scatterings, where the above matrix element can be
used, and subsequently discuss the effect of small angle
elastic scatterings.
We now follow the turbulence analysis of Ref. [52] and

insert the scaling ansatz in Eq. (53) into the Boltzmann
equation (54). Adopting the notation tQ ¼ Qt, the left-hand
side of the Boltzmann equation is then given by

∂tfðp; tÞ≡Qtα−1Q ½αfSð ~pÞ þ β ~p∇ ~pfSð ~pÞ� ~p¼tβQp
: (57)

To analyze the scaling properties of the right-hand side, we
first note that the differential cross section obeys the
following transformation properties:

Z
dΩ2⟷2ðp;q;k; lÞ ¼

Z
q;k;l

jMðp;q;k; lÞj2
2ωp2ωq2ωk2ωl

ð2πÞ4δð4Þðqþ k − l − pÞ;

ðSubstitute∶ ~q ¼ tβQq; ~k ¼ tβQk; ~l ¼ tβQl jExpress∶p ¼ t−βQ ðtβQpÞÞ;

¼ t−9βQ

Z
~q; ~k;~l

jMðt−βQ ðtβQpÞ; t−βQ ~q; t−βQ ~k; t−βQ ~lÞj2
2ωp2ωt−βQ ~q2ωt−βQ

~k2ωt−βQ
~l

ð2πÞ4δð4Þðt−βQ ð ~qþ ~k − ~l − tβQpÞÞ;

ðUse∶ωsp ¼ jsjωp; δðsxÞ ¼ jsj−1δðxÞ; jMðsp; sq; sk; slÞj2 ¼ jMðp; q; k; lÞj2Þ

¼ t−βQ

Z
~q; ~k;~l

jMðtβQp; ~q; ~k; ~lÞj2
2ωtβQp

2ω ~q2ω~k2ω~l

ð2πÞ4δð4Þð ~qþ ~k − ~l − tβQpÞ;

ðRename∶ ~q → tβQq; ~k → tβQk; ~l → tβQl j Identify with the first lineÞ

¼ t−βQ

Z
dΩ2⟷2ðtβQp; tβQq; tβQk; tβQlÞ: (58)

In the classical regime [fðp; tÞ ≫ 1], the collision integral in Eq. (55) can then be expressed as
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C½f�ðp; tÞ ¼ 1

2

Z
dΩ2⟷2ðp;q;k; lÞfpflfqfk½f−1p þ f−1l − f−1q − f−1k �:

½use Eq: ð53Þ to express fðp; tÞ in terms of fSðtβQpÞ�

¼ t3αQ
1

2

Z
dΩ2⟷2ðp;q;k; lÞfSðtβQpÞfSðtβQlÞfSðtβQqÞfSðtβQkÞ½f−1S ðtβQpÞ þ f−1S ðtβQlÞ − f−1S ðtβQqÞ − f−1S ðtβQkÞ�;

½use Eq: ð58Þ to transformdΩ2⟷2ðp;q;k; lÞ�

¼ t3α−βQ
1

2

Z
dΩ2⟷2ðtβQp; tβQq; tβQk; tβQlÞfSðtβQpÞfSðtβQlÞfSðtβQqÞfSðtβQkÞ½f−1S ðtβQpÞ þ f−1S ðtβQlÞ

− f−1S ðtβQqÞ − f−1S ðtβQkÞ�; ðidentify with the first lineÞ
¼ t3α−βQ C½fS�ðtβQpÞ: (59)

By use of Eqs. (57) and (59), the Boltzmann equation (54)
can be decomposed into a condition for the fixed-point
solution fSðpÞ

αfSðpÞ þ βp▽pfSðpÞ ¼ Q−1C½fS�ðpÞ; (60)

and the scaling relation

α − 1 ¼ 3α − β: (61)

The nontrivial solutions of Eq. (60) characterize the func-
tional form of the fixed-point solutions fSðpÞ, whereas the
scaling relation (61) constraints the evolution of the system
on the fixed-point trajectory.
While thepreviousderivationwascarriedout in the limitof

large angle scatterings, where screening effects can be
ignored, the scaling relation in Eq. (61) turns out to be much
moregeneral. Basedon the results in [46,48], it is straightfor-
ward to show that the scaling relation (61) also holds (up to
logarithmic corrections) in the limit of (screened) small angle
scatterings, where medium modifications of the scattering
matrix element need to be considered.While the rate of these
processes is parametrically enhanced, the changes in the
distribution functions due to individual collisions are para-
metrically small. Consequently, large cancellations between
gain and loss terms occur which finally lead to the same
overall scaling behavior in time as for large angle scattering
processes [46,48].
Similarly, it was shown in Refs. [46,48] that, for non-

Abelian SUðNcÞ gauge theories, inelastic processes also
exhibit the same parametric dependence as elastic scatter-
ing [46,48,93]. In this case the reduced probability for
additional gluon emissions/absorptions is compensated for
by the large rate of accompanying small angle scatterings
[46,48]. Thus taking inelastic processes into account also
does not affect the overall scaling properties of the collision
integral in time that lead to Eq. (61). Consequently, the
scaling relation in Eq. (61) applies for particle number
conserving large and small angle scatterings as well as
particle number changing inelastic interactions [33,46].

While Eq. (61) does not uniquely determine the scaling
exponents, further constraints on the evolution can be
derived from conservation laws. Energy conservation in
the static box implies that the left-hand side of

ϵ≃
Z
p
ωpfðp; tÞ ¼ tαQ

Z
p
ωpfSðtβQpÞ

¼ tα−3βQ

Z
~p
ωt−βQ ~pfSð ~pÞ≃ ðQtÞα−4βϵ0 (62)

should be identical to the right-hand side. One therefore
obtains the additional scaling relation

α − 4β ¼ 0: (63)

While particle number is also conserved for elastic scatter-
ing processes, this is clearly no longer the case when
inelastic interactions are taken into account. The fact that
particle number changing processes exhibit the same
scaling behavior in time is therefore essential to adjust
the overall occupation numbers during the turbulent ther-
malization process.19

Combining the scaling relations obtained from the
analysis of the Boltzmann equation in (61) and the energy
conservation constraint in (63) yields the scaling exponents

α ¼ −4=7; β ¼ −1=7: (64)

This scaling behavior for a nonexpanding non-Abelian
plasma was previously predicted in [46] and [48]. However
in these discussions the concepts of self-similarity and

19In situations where inelastic processes are highly suppressed
as compared to elastic scattering, a possible excess of particles
may be absorbed into the soft momentum sector. This relaxes the
constraint of particle conservation in the hard sector, where
energy remains the only relevant conserved quantity [48].
Interestingly, it has been shown in scalar field theories that this
interplay of the dynamics of hard and soft modes leads to the
formation of a (transient) Bose-Einstein condensate which also
modifies the dynamics of the hard sector [56,94].
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turbulent thermalization were not discussed. The fact that
[46] and [48] obtained the same correct scaling behavior
based on a small angle approximation is a consequence of
the universality of the scaling exponents and not unique to
the particular assumptions employed.

C. Universality and turbulence

It is important to note that details of the underlying field
theory such as the number of colors, the coupling constant,
or other details of the scattering matrix element, do not enter
the above scaling analysis. Instead the dynamical scaling
exponents α and β are only sensitive to the conserved
quantities of the system and the canonical scaling dimen-
sions of the collision integral with respect to powers of the
distribution function and momenta. Since these are identical
for many different implementations of the interactions, the
scaling behavior in Eq. (64) provides a particularly robust
prediction of the kinetic theory analysis. Indeed, the above
scaling relations were previously derived as part of a more
general analysis for scalar field theories in the context of
cosmology [52]. Since the physical conditions that lead to
the scaling relations in Eqs. (61) and (63) can be realized in
many different ways, one may well expect to observe such a
self-similar scaling behavior at yet very different energy
scales. The scaling exponents α; β are therefore universal in
the classical sense that they can be shared by a large variety
of strongly correlated many-body systems.
Our derivation also clearly shows the nature of the

self-similar scaling solution as a nonthermal fixed point
of the classical evolution. Specifically, there is a striking
analogy between the self-similar scaling solution in
Eq. (53) and the ubiquitous phenomenon of turbulence.
While we considered the thermalization process as the
transport of a conserved quantity (energy) towards the
ultraviolet, the phenomenon of stationary turbulence
describes the stationary transport of conserved quantities
in systems coupled to a source and a sink. The most
prominent example is hydrodynamic turbulence. Constant
energy injection on large scales results in a stationary
turbulent spectrum within an inertial range. In this region,
according to Kolmogorov’s theory, energy is conserved and
transported to smaller and smaller scales until viscous
dissipation occurs at microscopic scales [95].
Similar phenomena occur in a wide class of systems such

as waves on a fluid surface, where the turbulent dynamics
can often be described in terms of a wave kinetic descrip-
tion [96]. This phenomenon is called weak wave turbulence
and is even more reminiscent of the physical situation
encountered during the thermalization process studied here.
The crucial difference between the thermalization process
in a closed system far from equilibrium and the phenome-
non of stationary wave turbulence is the fact that in our case
neither a source nor a sink are present to inject/deposit
energy. In contrast to a stationary turbulent solution, one
therefore observes a quasistationary self-similar evolution.

The latter is additionally characterized by the dynamical
exponents α and β which describe energy transport towards
the ultraviolet, thereby driving the evolution towards
thermal equilibrium. In distinction to the driven case where
an active source and sink exist, this situation is also referred
to as free turbulence [52].
Despite this important difference, it was observed

previously [52,55,61] that the functional form of the
stationary distribution fS may still share the universal
scaling properties—described by the scaling exponent
κ—of the Kolmogorov-Zakharov spectra associated with
stationary (weak) wave turbulence in a driven system. The
heuristic argument in this context relies on the existence of
an inertial range of momenta where the transport of
conserved quantities locally remains “close to turbulent”
even for the free turbulence in a closed system. Since the
value of the spectral exponent κ depends on the nature of
the underlying interaction, different proposals have been
put forward with regard to non-Abelian gauge theories
[30,31,97–99].
Following the proposal of Bose-Einstein condensation in

Ref. [48], and similar observations in scalar field theories
[52,56], it was shown in Ref. [31] that (in the presence of a
large number of very soft excitations) stationary turbulent
solutions with the exponent κ ¼ 3=2 could also be obtained
in non-Abelian gauge theories. However, when applied to
closed systems, classical-statistical lattice simulations
revealed that such behavior persists only for a transient
time of the evolution. At later times, the excess of soft
excitations decays and a different exponent ðκ ¼ 4=3Þ was
found to be realized [31]. The question of whether an initial
overoccupation may lead to Bose-Einstein condensation
was also studied in the classical-statistical lattice simula-
tions of Ref. [33]. The authors concluded that the presence
of condensates is unlikely because these configurations
decay on short time scales.
The spectral exponents κ ¼ 4=3 and κ ¼ 5=3 associated

with a stationary particle and energy cascade respectively
were originally proposed in Ref. [30], based on an analysis of
ordinary elastic scattering processes within 2PI effective
action techniques. The authors ofRef. [30] also demonstrated
the appearance of a κ ¼ 4=3 spectrum in classical-statistical
lattice simulations of closed systems.While this behaviorwas
confirmed independently by simulations in Refs. [32,33], it
remains an interesting open question how the observation of
κ ¼ 4=3 is compatible with inelastic interactions playing a
central role in the thermalization process.

D. Lattice results

We will now present results from classical-statistical
lattice simulations that confirm the above scenario of
turbulent thermalization for a nonexpanding non-Abelian
plasma. We shall focus on the results relevant to the
thermalization process at late times and frequently refer
to previous studies [31–33], where further aspects of the
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evolution have been discussed in more detail. As noted, the
results presented here are for significantly larger lattices
than those considered previously.

1. Initial conditions

We employ Gaussian initial conditions based on the
single particle distribution

fðp; t0Þ ¼
1

g2
ΘðQ − jpjÞ; (65)

which corresponds to the c ¼ 1 case in Eq. (50). Similarly
to the longitudinally expanding case (discussed in Sec. II D),
the field configurations at initial time are constructed to be

Aa
μðt0;xÞ ¼

X
λ¼1;2

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðk; t0Þ

p

× ½ckλ;aξðλÞkþμ ðt0Þeikx þ c:c:�; (66)

Eμ
aðt0;xÞ ¼ −ημν

X
λ¼1;2

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðk; t0Þ

p

× ½ckλ;a _ξðλÞkþν ðt0Þeikx þ c:c:�: (67)

Here ημν ¼ ημν ¼ diagð1;−1;−1;−1Þ denotes the

Minkowski metric and ξðλÞkþνa ðt0Þ denotes the transverse
polarization vectors in temporal axial gauge (At ¼ 0), where
the Coulomb gauge condition ð∇ ·A ¼ 0Þ is satisfied at
initial time t0. The coefficients ckλ;a are taken as uncorrelated
Gaussian random numbers, similar to those defined in
Sec. II D.

2. Scaling

We shall first study the evolution of the hard scale ΛðtÞ
which characterizes the typical momentum of hard exci-
tations. In the classical-statistical lattice simulations, this
quantity is directly accessible in terms of the gauge-
invariant observable Λ2 introduced in Sec. III C 2. To
facilitate the comparison with the kinetic description, it
is useful to consider first the perturbative expression

Λ2ðtÞ≃
R
p 4p

2ωpfðp; tÞR
p ωpfðp; tÞ

: (68)

By use of the self-similarity assumption in Eq. (53), one
can then directly obtain the expected scaling behavior as

Λ2ðtÞ ∝ Q2ðQtÞ−2β: (69)

To investigate whether this scaling behavior is realized
within classical-statistical simulations, we follow Ref. [33]
and study the time evolution of the characteristic momen-
tum scale. The results for Λ2ðtÞ are shown in Fig. 4, for
different lattice discretizations. After a transient regime
characterized by a rapid increase of the hard scale, the time
evolution of Λ2ðtÞ approaches a clear ∝ ðQtÞ2=7 power-law

dependence as indicated by the (gray) dashed line. One
observes identical behavior for different lattice discretiza-
tions indicating the convergence of our results. The inset of
Fig. 4 shows the (double) logarithmic derivative

−2βðtÞ ¼ d logðΛ2ðtÞÞ
d logðtÞ (70)

as a function of time. In the scaling regime one observes
good agreement with the value β ¼ −1=7 obtained from the
kinetic theory analysis.
The time scale tscaling for the transition to the scaling

regime depends on the initial conditions of the evolution
and occurs around Qtscaling ≈ 500 for our initial conditions.
These numbers may seem very large because typically in a
“real world” heavy ion collision, one anticipates the life-
time of the plasma to be Qt ≈ 50. In this context, there are
two important points to consider. First, as we shall soon
discuss, αs in our simulations has to be extremely small for
classical dynamics to be cleanly realized. The values of Q
associated with these couplings are orders of magnitude
larger than those realized in heavy ion experiments. Hence
even time scales corresponding to several hundreds of Q−1

are much smaller than the typical lifetimes of heavy ion
collisions (controlled by the sizes of the colliding nuclei) at
very high energies. The other important point is that for
these values of αs, time scales of the order Qtscaling ≈ 500
are much shorter when compared to the lifetime of the
classical regime, which is orders of magnitude larger.
Indeed, it is this clean separation of time scales in weak
coupling asymptotics that enables one to isolate universal
from transient dynamics in these systems. How to

Λ

β

FIG. 4 (color online). Time evolution of the characteristic
momentum of hard excitations. After a transient regime, one
observes a clear scaling behavior Λ2ðtÞ ∝ Q2ðQtÞ2=7. The asso-
ciated scaling exponent −2β can be extracted from the loga-
rithmic derivative shown in the inset. One observes good
agreement with −2β ¼ 2=7 as predicted by the kinetic theory
analysis. See text for a discussion of the characteristic time scales
on the x axis.
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extrapolate the weak coupling asymptotics to realistic
collider energies will be discussed in Sec. V I.
The dynamics of the transient regime has been inves-

tigated in more detail in Ref. [31] for a similar class of
initial conditions. The onset of scaling behavior for a larger
class of initial conditions was shown explicitly in Ref. [33],
while Ref. [32] investigated the dependence of tscaling on the
initial overoccupancy. These results add to the observation
that the scaling behavior at late times is a generic feature of
the thermalization process, independent of the underlying
initial conditions.

3. Turbulent spectra

Before we demonstrate the emergence of self-similarity
in our simulations, we will now discuss the properties of the
single particle spectra. Our focus will be on the question
whether scale invariant power-law distributions character-
istic of wave turbulence can be observed. We follow
previous works [30–33] and compute the single particle
distribution. In analogy to the discussion of the longitudi-
nally expanding case (cf. Sec. III C 3), we define the single
particle distribution as a projection on Fock states

fðp; tÞ ¼ 1

NgðNaÞ3
XN2
c−1

a¼1

X
λ¼1;2

ðp; λ; ajAÞ; (71)

where

ðp; λ; ajAÞ ¼ hjðξðλÞpþμ ðtÞÞ� ∂t

⟷
Aμ
aðt;pÞj2iCoul gauge; (72)

denotes the projection of the gauge field evaluated with the
Coulomb gauge condition ∇ ·A ¼ 0 satisfied at the time t
when the spectrum is calculated.20

In Fig. 5, we present the single particle spectrum
g2fðjpj; tÞ at different timesQt of the evolution. The results
shown in Fig. 5 were obtained on 2563 lattices with
Qa ¼ 0.25. Starting from an overoccupied initial
condition—indicated by the gray dashed line—one observes
how the spectrum quickly extends towards higher momenta.
At later times, the spectrum is well described by a power law
for momenta jpj ≲ Λ and a rapid falloff for momenta
jpj≳ Λ. One also observes how the dynamical scale Λ
evolves towards higher momenta, while the amplitude
fðjpj≃Q; tÞ of the distribution decreases with time.21

To analyze the emergent power-law behavior in more
detail, we follow previous works [30–32] and perform a
series of fits to extract the associated scaling exponent κ at
different times of the evolution. The scaling exponent κðtÞ
as a function of time Qt is shown in the inset of Fig. 5 and
compared to different values proposed in the literature. The
classical thermal value κ ¼ 1 is clearly ruled out. Instead
one observes a good overall agreement with κ ¼ 4=3 in the
scaling regime.22 From this analysis, and the discussion in
Sec. IV B, we conclude that this scaling is a clear
manifestation of turbulent behavior.

4. Self-similarity

Thus far we confirmed the scaling behavior of the
characteristic momentum scale in time and the emergence
of a turbulent spectrum. However the most striking prop-
erty of the kinetic theory solution is the self-similar
behavior characterizing turbulent energy transport.
To demonstrate the emergence of self-similarity in our

simulations, we follow Ref. [32] and study the time
evolution of moments of the single particle distribution.
We consider the third moment of the distribution function

κ

κ

FIG. 5 (color online). Single particle spectrum at different times
Qt of the evolution. The initial distribution is indicated by a gray
dashed line. At later times, one clearly observes the emergence of
a turbulent power-law spectrum fðpÞ ∼ p−4=3 for a large range of
momenta. The spectral exponent κ can be extracted from a fit to
the spectra at different times of the evolution as shown in the
inset. The observed exponent is consistent with the value
κ ¼ 4=3, characteristic for wave turbulence induced by elastic
interactions [30].

20Our definition only includes transversely polarized excita-
tions and does not account for in-medium modifications of the
dispersion of low momentum modes. This choice is primarily
motivated by the longitudinally expanding case where the
structure of transverse excitations already becomes rather in-
volved. We note that a variety of different definitions has been
used in the literature [30–33] and we refer to Ref. [33] for a
detailed study of equal-time two-point correlation functions.

21As seen in Fig. 5, we would, in this particular case, require
g2 ≲ 10−4 for the occupancy fðjpj≃ ΛðtÞ; tÞ to be much larger
than unity over the entire evolution.

22The small systematic deviation from below may be attributed
to the modification of the in-medium dispersion of quasiparticle
excitations. Since this is not captured by our definition of the
single particle spectra, deviations from the above scaling behavior
occur for low momentum modes. The structure of these soft
excitations and their effect on the single particle spectra is
discussed in more detail in Ref. [33].
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fð3Þðjpj; tÞ ¼ jpj3fðjpj; tÞ; (73)

which according to the perturbative expression for the
energy density

ϵ≃
Z

djpjp2ωpfðp; tÞ≃
Z

djpjjpj3fðjpj; tÞ; (74)

canbe interpreted as the energydensity permomentummode.
The distributionfð3Þðjpj; tÞ is shown in the left panel of Fig. 6
as a function of momentum at different times Qt of the
evolution. The peak of the distribution corresponds to the
momentum scale which dominates the energy density of
the system at a given time. One clearly observes how the
position of the peak moves towards higher momenta char-
acterizing the transport of energy towards the ultraviolet.
The self-similar behavior of energy transport can be

observed in the right panel of Fig. 6, where we show a
rescaled version of the distribution. According to the self-
similarity condition in Eq. (53) one finds that

�
~p
Q

�
3

fSð ~pÞ ¼ ðQtÞ−αþ3β

�jpj
Q

�
3

fðjpj; tÞ (75)

yields a stationary distribution when plotted as a function of
the rescaled momentum ~p ¼ ðQtÞβjpj. This is shown in the
right panel of Fig. 6, where we show the right-hand side of
Eq. (75) as a function of the rescaled momentum. Indeed
one observes that with α ¼ −4=7 and β ¼ −1=7 as in
Eq. (64) the data obtained at different times of the evolution
collapses onto a single curve. This is a striking manifes-
tation of the self-similarity of the evolution.

E. Classicality and complete thermalization

Following our observation of self-similarity, one can
extrapolate the result to understand the dynamics of
thermalization at later times. Indeed, since the theory is
scale invariant on the classical level, one expects no
deviations to occur within the realm of classical dynam-
ics.23 This is of course different in the quantum theory
where scale invariance is explicitly broken. Since the
system becomes more and more dilute as the evolution
proceeds, the quantum evolution effects can be efficiently
discussed at the level of the Boltzmann equation.
The first point to note is that to obtain the self-similar

scaling solution in Eq. (53) we considered the classical
limit of the Boltzmann equation. This is of course well
justified as long as the competing quantum processes are

highly suppressed. However, as the turbulent cascade
proceeds, the occupation number of hard excitations

nhard ¼ fðjpj≃ ΛðtÞ; tÞ (76)

becomes smaller and smaller and quantum effects become
increasingly important. When at the time tquantum the
occupation number nhard becomes of order unity, quantum
effects become of the same order of magnitude as the
classical dynamics and can no longer be neglected.
From an extrapolation of the scaling behavior in

Eq. (53), it is straightforward to estimate

tquantum ∼Q−1α−7=4s : (77)

Beyond this point, classical-statistical simulations no
longer provide a reliable approximation—even on a quali-
tative level. Instead one expects quantum effects to drive
the system to the unique thermal fixed point.
Since the energy transport towards the ultraviolet is

accomplished on the same time scale, one may expect a
short time scale for the subsequent approach to complete
thermal equilibrium. The estimate in Eq. (77) then also
provides a lower bound on the estimate of the thermal-
ization time.

V. EXPANDING NON-ABELIAN PLASMA

We will now discuss the dynamics of the longitudinally
expanding non-Abelian plasma relevant to heavy ion
collisions at ultrarelativistic energies. As discussed in
Sec. II, we expect such a weakly coupled plasma to be

β

α
β

FIG. 6 (color online). Left: third moment jpj3fðjpj; tÞ of the
single particle distribution at different times Qt of the evolution.
The position of the peak indicates the momentum scale, which
dominates the energy density of the system. One clearly observes
how energy is transported towards higher momenta. Right:
rescaled moments according to Eq. (75) show a stationary
distribution for α ¼ −4=7 and β ¼ −1=7 as in Eq. (64). The
fact that all data collapses on a single curve is a striking
manifestation of self-similarity.

23In practice, the energy transport towards the ultraviolet is
limited by the lattice UV cutoff. Indeed previous studies have
shown that (classical) thermalization occurs as a cutoff effect
[100]. However in the classical continuum theory—which is a
well-defined theory in the absence of vacuum fluctuations—scale
invariance is preserved at all scales. Thus one expects the
turbulent cascade to continue for all times.
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described as a strongly correlated system of quasiparticles
at times τ0 ∼Q−1 ln2ðα−1s Þ after the collision. The proper-
ties of this initial state can then be modeled in terms of a
single particle distribution as in Eq. (9), which we employ
as initial conditions for our simulations.
To investigate a preferably large range of different initial

conditions, wewill vary the occupancy parameter n0 and the
anisotropy parameter ξ0 and study their effect on the
evolution. In our previous publication [51], the initial time
was chosen as24Qτ0 ¼ 100 tominimize discretization errors
(cf. Sec. V D), while accessing sufficiently late times τ ≫ τ0
in order to observe universal aspects of the evolution. Here
we will also verify that varying the initial time in a range
Qτ0 ¼ 100—1000 only affects the transient evolution but
does not change the universal properties at later times.

A. General considerations

Before we discuss the nonequilibrium dynamics based
on classical-statistical lattice simulations of this system, we
shall briefly note some aspects specific to the dynamics of
the longitudinally expanding plasma.
A major complication in this context is the fact that the

energy density of the system is no longer a conserved
quantity due to the longitudinal expansion. Instead the time
evolution of the energy density is described by Bjorken’s
law,

∂τϵ ¼ −
ϵþ PL

τ
; (78)

and depends on the expansion rate 1=τ as well as the
dynamical equation of state PLðτÞ=ϵðτÞ of the system.
Because the time evolution of PLðτÞ=ϵðτÞ is in general
nontrivial, it is thus (in contrast to the nonexpanding case)
not possible to determine the final temperature of the
system without further assumptions about the evolution.
Moreover, the one-dimensional expansion of the plasma

also leads to a redshift of longitudinal momentum modes
such that the plasma will be anisotropic on large time
scales. Even though interactions naturally compete with
this process, it is a nontrivial question whether they are
sufficiently strong to maintain a close to isotropic system at
all times of the evolution. Indeed several studies within
kinetic theory indicate that the momentum broadening due
to classical scattering dynamics may not be sufficiently
strong to completely counter the redshift [46,47,49]. As a
consequence, most kinetic thermalization scenarios predict
an increase of the anisotropy in the classical regime, while
isotropy is restored only during the final stages of the
quantum equilibration process.25 Nevertheless, the effect of

classical interactions competes with the expansion of the
system at all times; the induced momentum broadening
then leads to a characteristic time evolution very different
from simple free streaming behavior. The time evolution of
the momentum space anisotropy can thus be used as an
observable to distinguish between different thermalization
scenarios.
In view of the discussion of turbulent thermalization in

Sec. IV, it is also an interesting question whether the
dynamics of the expanding non-Abelian plasma exhibits
the universal features associated with a nonthermal fixed
point. However, since the longitudinal expansion leads to a
dilution of the system and renders the plasma anisotropic
on large time scales, it is by no means obvious how the
concepts developed in Sec. IV apply in this situation.
The central questions concerning the evolution of the

expanding plasma are the following:
(i) How efficient is momentum broadening compared to

the expansion? How does the anisotropy of the
system evolve?

(ii) Is there a universal attractor? What are its universal
properties? How is this related to different thermal-
ization scenarios?

We will now address these questions using the machinery
of real-time classical-statistical lattice simulations. The
various discretization parameters used in our studies are
listed in Table I. We note that the sizes of the lattices are the
largest thus far employed in the study of expanding non-
Abelian plasmas. As will become clear, lattices of com-
parable size are essential to resolving key aspects of the
dynamics over the lifetime of the evolution.
The discussion in this section is organized as follows. In

Sec. V B, we study the evolution of the anisotropy and
demonstrate the emergence of a universal scaling behavior.
We analyze the spectral properties of the attractor in
Sec. V C and show the emergence of a self-similar
behavior characteristic of “free” wave turbulence. The
discretization dependence of our results is discussed in
Sec. V D and we determine the dynamical scaling
exponents in Sec. V E. We also consider variations of
the initial time Qτ0 in Sec. V F and illustrate different
routes to reach the universal attractor. A kinetic theory
analysis of the turbulent thermalization process is pre-
sented in Sec. VG. We close this section with a
comparison of our results to different weak coupling
thermalization scenarios in Sec. V H and a discussion of
possible implications for heavy ion experiments in
Sec. V I.

B. Universal scaling

We first study the time evolution of the bulk anisotropy
of the system. In Fig. 7 we show the ratio of longitudinal to
transverse pressure of the system PL=PT as a function of
time. The curves in the main plot are for different initial
anisotropies ξ0 and fixed initial occupancy n0 ¼ 1. The

24In view of the parametric estimate Qτ0 ∼ ln2ðα−1s Þ, this
choice corresponds to gauge couplings on the order of αs ∼ 10−5.

25A noteworthy exception is the scenario discussed in [48]
which we shall discuss further later.
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curve for ξ0 ¼ 1 corresponds to an initially isotropic
system, whereas for ξ0 ¼ 2; 4; 6 the plasma is already
anisotropic at initial time Qτ0 ¼ 100. The inset shows
the results for different initial occupancies n0 ¼
2; 1; 1=

ffiffiffi
8

p
; 1=4 and an initially isotropic system ðξ0 ¼ 1Þ.

When starting from an isotropic initial distribution
(ξ0 ¼ 1), the system is seen in Fig. 7 to become more
and more anisotropic with time as a consequence of the
longitudinal expansion. Indeed the early time behavior is
governed by free streaming whereas at later times the
anisotropy of the system increases more slowly as a
consequence of interactions. This transition is further
elaborated on in the inset where the free streaming (dashed)
curve is shown for comparison. One observes that systems
that are initially more dilute (n0 < 1) exhibit a longer
period of free streaming behavior before the transition to
the scaling behavior occurs. The results for strong initial
anisotropies, such as for ξ0 ¼ 4 and 6, show a different
behavior at early times. More specifically, one observes a
short transient regime where the ratio PL=PT increases. On
a qualitative level, this behavior resembles previous studies
of the Glasma evolution in Refs. [36–40] and may be

attributed to plasma instabilities. However the choice of
initial conditions and different dynamics at early times does
not affect the evolution at later times. Most remarkably, all
curves show the same characteristic scaling behavior after
the transient regime.
To analyze this behavior in greater detail, we study the

time evolution of the transverse and longitudinal hard
momentum scales ΛT and ΛL. As stated previously in
Sec. III C 2, these gauge-invariant observables characterize
respectively the typical transverse and longitudinal
momenta of hard excitations. The advantage of the hard
scale observables, relative to components of the stress
energy tensor, is that they probe harder excitations of the
system. This is particularly the case for the longitudinal
components: while the longitudinal pressure PL is domi-
nated by excitations with relatively small transverse
momenta, the longitudinal and transverse hard scales ΛL
and ΛT probe the system at the same characteristic
momentum scale. This allows for a more straightforward
interpretation in terms of a kinetic description.
The time evolution of the longitudinal hard scale Λ2

L is
shown in Fig. 8 for different initial anisotropies ξ0 and
initial occupancy n0 ¼ 1. In Fig. 9, we show the result for
different initial occupancies n0 for an initially isotropic
system ðξ0 ¼ 1Þ. Again the dynamics at early times is very
sensitive to the initial conditions and ranges from an

TABLE I. Discretization parameters for different initial conditions. Unless stated otherwise, these parameters are
employed for all classical-statistical lattice simulations.

Configuration Lattice parameters
ξ0 n0 Qτ0 N⊥ Nη Qa⊥ aη

1, 2 1 100 256 2048 1.0 1.25 × 10−3

4, 6 1 100 512 1024 1.0 2.5 × 10−3

1 2, 1, 1=
ffiffiffi
2

p
, 1/2 100 256 2048 1.0 1.25 × 10−3

1 1=
ffiffiffi
8

p
, 1/4 100 512 1024 1.0 2.5 × 10−3

1 1 1000 256 2048 0.5 6.25 × 10−5

τ

ξ

ξ

ξ

ξ ξ
3/2

FIG. 7 (color online). Ratio of longitudinal to transverse
pressure as a function of time for different initial anisotropies
ξ0 and fixed initial occupancy n0 ¼ 1. The inset shows the same
quantity for initially isotropic systems (ξ0 ¼ 1) and different
initial occupancies n0 along with the free streaming (dashed)
curve. See text for a discussion of the time scales on the x axis in
this and subsequent figures.

τ

Λ

τ

ξ
ξ
ξ
ξ

FIG. 8 (color online). Time evolution of the characteristic
longitudinal momentum scale for different initial anisotropies
ξ0. At late times all curves exhibit the same scaling behavior.

UNIVERSAL ATTRACTOR IN A HIGHLY OCCUPIED NON- … PHYSICAL REVIEW D 89, 114007 (2014)

114007-21



approximate free streaming behavior observed for very
dilute systems ðn0 ¼ 1=4Þ to a rapid increase of the hard
scale observed for very anisotropic systems ðξ0 ¼ 6Þ.
However, after the transient regime, one clearly observes
the emergence of a universal power-law dependence.
This universal behavior of the hard scales can be

characterized in terms of the scaling exponents γ and β as

Λ2
LðτÞ ∝ Q2ðQτÞ−2γ; Λ2

TðτÞ ∝ Q2ðQτÞ−2β: (79)

The comparison to the dashed curves ∝ ðQτÞ−2=3 in Figs. 8
and 9 indicates an approximate value of γ ≃ 1=3. The
quantitative extraction of the scaling exponents is discussed
in more detail in Sec. V E.
The observed value of γ ≃ 1=3 should be contrasted to a

free streaming system where one obtains γ ¼ 1. As also
shown in Fig. 9, the redshift due to free streaming would
lead to a much faster decrease of longitudinal momenta.26

Therefore the comparatively slow increase of anisotropy
associated with the value of γ ≃ 1=3 can only be explained
due to the persistence of strong interactions in the system
which continuously increase the longitudinal momenta of
excitations relative to the free streaming behavior. The
observed behavior thus provides a direct verification of a
strongly interacting system throughout the entire evolution.
The transition to the scaling regime occurs around Qτ ≳

650 for an initially isotropic system with ξ0 ¼ n0 ¼ 1.
While at first sight this time scale may appear to be very
large, the dynamics takes place on a much longer time scale
in the limit of weak coupling. Consequently, the above time
scale is actually very small compared to the overall extent of
the classical regime and even smaller compared to the time
scale when thermalization occurs at weak coupling. We also
note that the time scale for the transition to the scaling

regime depends on the initial conditions. For instance the
results in Fig. 9 suggest that the higher the occupancy factor
n0, the shorter the free streaming regime, and the more rapid
the approach to universal behavior. Conversely, the depend-
ence on the initial anisotropy ξ0 observed in Fig. 8 appears
to be more complicated. The relevance of these time scales
for heavy ion collisions was discussed in Sec. IVD 3 and is
discussed further in Sec. V I.
The time evolution of the characteristic transverse

momentum scale ΛT is shown in Fig. 10 for different
initial occupancies n0 and fixed initial anisotropy ξ0 ¼ 1.
At very early times one observes a rapid hardening which is
more pronounced for higher occupancies. This is a con-
sequence of the large overpopulation and can be under-
stood as a redistribution of the energy into higher
momentum modes. Once this is accomplished, one
observes that the characteristic transverse momentum scale
ΛT stays approximately constant in time. In particular for
the scaling regime ðQτ ≳ 650Þ one finds that the typical
transverse momenta of hard excitations do not change
appreciably. This corresponds to β≃ 0 in Eq. (79).

C. Spectral properties and self-similarity

While the gauge-invariant observables clearly point to a
universal scaling behavior of the different momentum
scales in the problem, a microscopic understanding of
these phenomena can be obtained from the single particle
spectra. More specifically, we will now study the time
evolution of the gluon distribution function fðpT; pz; τÞ,
which we extract from gauge-fixed equal-time correlation
functions as discussed in Sec. III C 3.
In the top panel of Fig. 11, we show the zeroth and

second moment of the single particle gluon distribution as a
function of longitudinal momentum. The spectra are
evaluated at hard transverse momenta pT ≃Q and the
different curves (top to bottom) correspond to different

τ

Λ

τ

FIG. 9 (color online). Time evolution of the characteristic
longitudinal momentum scale for different initial occupancies
n0. The curves for small initial occupancies show a transition from
initial free streaming behavior to universal scaling at late times.

τ

Λ 3/2

FIG. 10 (color online). Time evolution of the characteristic
transverse momentum scale for different initial occupancies n0.
The curves show an approximately constant behavior in the
scaling regime.

26In the free streaming case, the scaling behavior arises not due
to universality but simply due to the absence of interactions.
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times Qτ ¼ 750 to 3000 (early to late) in the scaling
regime. As a consequence of the longitudinal expansion,
the system becomes more and more dilute and the ampli-
tude of the distribution decreases in time. Similarly the
typical longitudinal momenta of hard excitations become
smaller and smaller, and the width of the maximum
decreases in time. Interestingly, the spectral shape of the
distribution can be characterized by a (nearly) Gaussian
peak structure.
As we discussed in Sec. IV, a striking property of a

turbulent thermalization process is the self-similar temporal
evolution of the system. In terms of the gluon distribution
function, a self-similar evolution for an expanding system
has to fulfill the condition

fðpT; pz; τÞ ¼ ðQτÞαfSððQτÞβpT; ðQτÞγpzÞ; (80)

where fS denotes a stationary distribution independent of
time. In analogy to our prior discussion, the dynamical
scaling exponents α; β; γ are universal and describe the
evolution of the system. Since—unlike the static box
case—longitudinal and transverse momenta can evolve
independently in the expanding system, they are charac-
terized by two separate scaling exponents β and γ in
Eq. (80). The scaling exponents β and γ agree with the
previous definition in Eq. (79), as can be verified by
evaluating the perturbative expression for the hard scales
in Eq. (47). The parametrization in Eq. (80) thus effectively
amounts to measuring transverse and longitudinal momenta
at a given time in units of the characteristic momentum
scales ΛTðτÞ and ΛLðτÞ respectively. As previously, the
scaling exponent α describes the overall decrease of the
amplitude of the distribution in time.
To investigate the emergence of self-similarity in our

simulations, we follow the same strategy as in Sec. IV and
study rescaled moments of the single particle distribution at
different times. By use of the self-similarity relation (80)
with β≃ 0 one finds that rescaled moments of the
distribution function,

�
~pz
Q

�
m
fSðpT ≃Q; ~pzÞ

¼ ðQτÞ−αþmγ

�
pz
Q

�
m
fðpT ≃Q; pz; τÞ; (81)

yield a stationary distribution when plotted as a function of
the rescaled longitudinal momentum ~pz ¼ ðQτÞγpz. This is
shown in the lower panel of Fig. 11 where we plot the
rescaled moments of the distribution as a function of the
rescaled longitudinal momenta. Here we employ the scal-
ing exponents α ¼ −0.8 and γ ¼ 0.28 to achieve optimal
matching.27 Indeed, the rescaled data for different times is
seen to collapse onto a single curve. As for the static box
case, this result is a striking manifestation of self-similarity.
Figure 12 displays the distribution, now as a function of

transverse momentum pT for vanishing longitudinal
momentum (pz ¼ 0) at different times. Similarly to the
nonexpanding case, the spectrum can be characterized as a
power law over a large range of transverse momenta pT ≲
ΛT and a rapid falloff for higher momenta pT ≳ ΛT . In the
expanding case, the spectral index of the power law is close
to the classical thermal value κ ¼ 1 as indicated by the gray
dashed line in Fig. 12. We also verified explicitly that

τ
τ

α
γ

τ

τ γ

FIG. 11 (color online). Top: moments of the single particle
distribution function as a function of longitudinal momenta.
Note that the longitudinal spectra are evaluated at transverse
momentum pT ≃Q. Here we usedN⊥ ¼ 256; Nη ¼ 4096 lattices
with spacings Qa⊥ ¼ 1.0 and aη ¼ 6.25 × 10−4. The different
curves correspond to different times Qτ ¼ 750, 1000, 1500,
2000, 3000 (top to bottom) of the evolution. Bottom: rescaled
moments of the distribution function are found to collapse onto a
single curve when plotted as a function of the rescaled longi-
tudinal momentum variable.

27The alert reader may wonder about the comparatively large
value of α ¼ −0.8, which we employed in Fig. 11. As we will
discuss in Sec. V E, the values of α and β are strongly correlated.
Consequently, small deviations from β ¼ 0, which is implicitly
assumed in the analysis of Fig. 11, already have a significant
impact on the observed values of α. The combined analysis of all
scaling exponents is discussed in more detail in Sec. V E.

UNIVERSAL ATTRACTOR IN A HIGHLY OCCUPIED NON- … PHYSICAL REVIEW D 89, 114007 (2014)

114007-23



simulations for different initial conditions lead to the same
spectral shape of the attractor.
The spectrum in Fig. 12 clearly shows a self-similar

evolution with a decreasing amplitude

nHardðτÞ ¼ fðpT ≃Q; pz ¼ 0; τÞ; (82)

while the position of the hard “cutoff scale” ΛT remains
approximately constant in time.28 This result is further
elaborated on in the inset of Fig. 12, where we show the
rescaled second moment of the transverse distribution,
ðQτÞ−αp2TfðpT; pz ¼ 0; τÞ on a linear scale. Indeed, the
position of the peak is seen to remain at the same position
without further rescaling of the momentum axis applied.
Taking into account the rescaling of the overall amplitude
with α ¼ −0.8, the results at different times again collapse
onto a single curve to good accuracy.

D. Discretization errors

Wewill now discuss the discretization dependence of our
results and demonstrate the level of convergence of our
simulations. The major challenge arises from the fact that
the characteristic momentum scales are time dependent and
need to be properly resolved on the spatial lattice at all
times of the simulation. If this was not the case, simulations
will show lattice artifacts, which can accumulate in time.
The classical dynamics on the lattice can then become very
different from that of the underlying continuum field theory
and a reliable extraction of continuum physics becomes
impossible.

In general, discretization errors appear due to the infrared
cutoff set by the (inverse) size of the lattice

ΩIR⊥ ¼ π

N⊥a⊥
; ΩIR

z ¼ π

Nητaη
; (83)

and/or the ultraviolet cutoff set by the (inverse) lattice
spacing

ΩUV⊥ ¼ π

a⊥
; ΩUV

z ¼ π

τaη
: (84)

They are more severe for longitudinally expanding non-
Abelian plasmas since

(i) the longitudinal ultraviolet cutoff scale ΩUV
z ∼ τ−1 is

explicitly time dependent; and
(ii) the time evolution of the physical scales is much

faster in the longitudinally expanding case.
With regard to the latter point, the physical scales of the
system are given by the transverse and longitudinal hard
momentum scales ΛT=L, and a soft scale of the order of the
Debye screening scale mD. In kinetic theory, the soft scale
can be estimated to be

m2
DðτÞ ¼ 4g2Nc

Z
d2p⊥
ð2πÞ2

dpz
ð2πÞ

fðpT; pz; τÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2T þ p2z

p : (85)

Based on the discussion in Secs. V C and V E, we can
estimate the time evolution in the scaling regime, where one
finds that

ΛT ∼const; ΛL∼ ðQτÞ−1=3; nHard∼ ðQτÞ−2=3; (86)

and the hard contribution to the screening scale behaves as

mD ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛLΛTnHard

p
∼ ðQτÞ−1=2: (87)

This temporal behavior of the physical scales is problem-
atic to resolve on the lattice. First, the longitudinal UV
cutoff ΩUV

z decreases faster than the physical momentum
scale ΛL. This will ensure that, at sufficiently late times, the
physical scale ΛL will no longer be resolved properly on the
finite size lattice. One therefore has to have a sufficiently
large lattice in the longitudinal direction to guarantee that
this happens beyond all times of interest. Secondly, the soft
scale mD decreases quickly in time while the transverse IR
cutoff ΩIR⊥ remains constant. Thus in this case as well soft
modes ∼mD will no longer be resolved on a given trans-
verse lattice at late times. If the soft scale were not resolved,
processes that may play a key role in thermalization (such
as soft splittings and plasma instabilities) will be affected.
Fortunately, it is possible to overcome these challenges

on realistic (computer simulation) time scales by perform-
ing numerical simulations with sufficiently large transverse
volumes and small longitudinal lattice spacings which

τ

τ
τ
τ
τ

τ
α

FIG. 12 (color online). Dependence of the gluon distribution
function on transverse momentum pT for pz ¼ 0 at different
times. The inset shows the self-similar evolution for the rescaled
second moment of the distribution as a function of transverse
momentum pT for vanishing longitudinal momentum pz ¼ 0.

28Note that since ΛT ≃Q is approximately constant, the
definition of the hard scale occupancy is analogous to the one
in Eq. (76) for the nonexpanding system.
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ensure that physical observables become independent of
the size of the system and the lattice spacing at all times of
the simulation. To achieve this goal, we monitor the
convergence of our results under variation of the lattice
spacing and the number of lattice sites.
In Fig. 13, we show the time evolution of the character-

istic longitudinal and transverse momentum scales ΛT=L for
fixed initial conditions ðξ0 ¼ n0 ¼ 1Þ and different lattice
discretizations. The upper curves for Λ2

T clearly show a
residual dependence of the amplitude on the transverse
lattice spacing a⊥. However, the late time behavior of the
curves for different a⊥ is identical with ΛT ∼ const. and the
results are independent of the transverse size of the system
N⊥a⊥ as well as the longitudinal discretization. By inves-
tigating the (transverse) single particle spectra (as in
Fig. 12) for different a⊥, we found that the difference in
amplitude can be attributed to modifications of the high
momentum falloff. Most importantly, we found that this
residual dependence does not change the scaling behavior
as has also been observed in previous simulations of
nonexpanding non-Abelian plasmas [33].
The lower curves in Fig. 13 show the time evolution of

the longitudinal hard scale Λ2
L. The results for times Qτ ≲

1000 (where data is available from all simulations) appear
to have converged well with respect to all discretization
parameters. At late times Qτ ≳ 2000, one notices a
deviation of the purple curve, which corresponds to the
results for Qa⊥ ¼ 0.5; aη ¼ 6.25 × 10−4; N⊥ ¼ 256, and
Nη ¼ 2048 with the smallest transverse lattice volume.
This is also characteristic for the behavior we observed for
even smaller transverse volumes not shown in Fig. 13. We
found that they follow the universal scaling behavior for a
limited amount of time—controlled by the transverse lattice
size—before they start to show significant deviations from
the large volume behavior. However the fact that Λ2

L shows
a consistent scaling behavior over a large time scale, and for

all curves in Fig. 13, leads us to conclude that there is no
significant discretization dependence of the results for the
largest lattices examined.
We also verified explicitly that the soft Debye scale is

resolved on the lattice at all times of the simulation. For this
purpose, we evaluate the perturbative expression in Eq. (85)
in two different ways. The first method is to extract the
single particle distribution and subsequently evaluate the
momentum integral in Eq. (85) by numerical integration
using the continuum formula. The second method is to
replace the momentum integral on the right-hand side of
Eq. (85) by a sum over all momentum modes on the lattice
according to

Z
d3p
ð2πÞ3 →

τ−1

V⊥Lη

X
p⊥;pz

: (88)

The results for the first method for ξ0 ¼ n0 ¼ 1 correspond
to the red lines in Fig. 14; the results of the second method
are shown as blue lines. Since the definition of quasipar-
ticles is not unambiguous for soft modes, we also evaluated
Eq. (85) excluding all modes with momenta jpj < 0.1Q.
This corresponds to the lower curves of each color while
the upper curves show the contribution from all modes.
The five smallest lattice momenta in the longitudinal
and transverse directions for a N⊥ ¼ 256; Nη ¼ 2048
lattice with spacings Qa⊥ ¼ 1; aη ¼ 1.25 × 10−3 are also
indicated in Fig. 14 by gray dashed lines. One clearly
observes that the Debye scale is resolved at all times of
interest, in particular in the regime where scaling is
manifest.

E. Extraction of scaling exponents

Wewill now discuss the quantitative procedure to extract
the scaling exponents α; β; γ from our simulations. This
analysis is complicated by the fact that

(i) scaling only sets in at later times after the transient
regime, and

(ii) at very late times one is always facing discretization
errors.

One can therefore extract the scaling exponents only for a
particular range of times which need to be both large
enough that one is past the transient regime and small
enough that the lattice discretization is sufficiently good.
Our strategy to identify this regime is to investigate
(a) the scaling behavior of different initial conditions to

see at what time a common scaling behavior is realized,
(b) different lattice discretizations to ensure that the

results are independent of the discretization for all
times of interest.

Based on the results presented in the previous sections, we
found these conditions to be realized for times
800≲Qτ ≲ 2000. While problems (i) and (ii) can be
properly addressed with the above procedure, an additional
complication arises when comparing our results to different

τ

Λ
Λ

η η

η η

η η

η η

η η

η η

FIG. 13 (color online). Time evolution of the characteristic
longitudinal and transverse momentum scales for different lattice
discretizations.
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weak coupling thermalization scenarios in the literature.
While the weak coupling thermalization scenarios in
[44–47,49] are strictly realized only in the limit of very
large anisotropy at very late times, our simulations at finite
times and finite anisotropy will always show systematic
corrections to the predicted scaling behavior. Since differ-
ent quantities are sensitive to finite time corrections in
different ways, a comparison between different extraction
methods can be used to estimate these systematic
uncertainties.

1. Gauge-invariant analysis

We will first discuss the extraction of the scaling
exponents from the hard scales and the energy momentum
tensor. To determine the scaling exponent γ, we investigate
the scaling behavior of the longitudinal hard scale Λ2

L. We
first divide the data in Fig. 8 in logarithmically equidistant
time bins and then locally extract the scaling exponent from
the logarithmic derivative

2γðτÞ ¼ −
d logðΛ2

LðτÞÞ
d logðτÞ : (89)

The result is shown in the top panel of Fig. 15, where we
present the extracted scaling exponent 2γðτÞ as a function
of time for a set of four different initial conditions in the
range ξ0 ¼ 1–6 and n0 ¼ 0.25–1. After the transient
regime, where the local exponents are quite different for
different initial conditions and subject to large error bars,
one observes a clear convergence towards a single value at
later times. We also display results from the evolution for
ξ0 ¼ n0 ¼ 1 using four different lattices in the range
N⊥ ¼ 256–512, Nη ¼ 1024—4096 with Qa⊥ ¼ 0.5–1
and aη ¼ ð0.625–2.5Þ × 10−3 to take into account possible
discretization dependencies. By averaging over all data
points for 800≲Qτ ≲ 2000 we obtain the estimate

2γ ¼ 0.67� 0.07ðstatÞ; (90)

as indicated by the gray band in Fig. 15. The values of γ in
the original bottom up thermalization scenario (BMSS)
[49] (γ ¼ 1=3) and the instability modified bottom up
scenario by Boedeker (BD) [44] (γ ¼ 1=4) are also
indicated in Fig. 15 as horizontal gray dashed lines.
Similarly, we extract the scaling exponent β from the

scaling behavior of the transverse hard scale

2βðτÞ ¼ −
d logðΛ2

TðτÞÞ
d logðτÞ : (91)

The result is shown in the middle panel of Fig. 15, where
we plot 2βðτÞ as a function of time. One observes that this
local scaling exponent, extracted from the lattice data,
approaches zero monotonically at late times. The residual
deviation from zero is a clear manifestation of the finite
time scaling corrections mentioned above. We find that this
deviation is

τ

τ

FIG. 14 (color online). Time evolution of the Debye scale,
extracted from the perturbative expression in Eq. (85). The
smallest lattice momenta in the longitudinal and transverse
directions are also indicated by gray dashed lines.

FIG. 15 (color online). Local scaling exponents β; γ
and α − 3β − γ as functions of time. The results are extracted
from the logarithmic derivatives of gauge-invariant observables
for different initial conditions and lattice discretization. In the
scaling regime the results for the scaling exponent γ for
different initial conditions converge to a common scaling
exponent. The exponents β and α − 3β − γ are subject to
systematic scaling corrections which decrease monotonically
in time. The gray bands indicate the extracted values in the
scaling regime along with their errors. The scaling exponents
in the original bottom up scenario [49] (BMSS: γ ¼ 1=3;
β ¼ 0; α − 3β − γ ¼ −1) and an instability modified version
[44] (BD: γ ¼ 1=4; β ¼ 0; α − 3β − γ ¼ −1) are shown for com-
parison as gray dashed lines.
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jβðτÞj < 0.06; (92)

for 800≲Qτ ≲ 2000 as indicated by the gray band
in Fig. 15.
Finally, we extract the linear combination of scaling

exponents α − 3β − γ from the scaling behavior of the
energy density

αðτÞ − 3βðτÞ − γðτÞ ¼ d logðϵðτÞÞ
d logðτÞ : (93)

According to Bjorken’s law in Eq. (78) one can directly
extract this quantity as

d logðϵðτÞÞ
d logðτÞ ¼ −

�
1þ PLðτÞ

ϵðτÞ
�
: (94)

In Fig. 15, the right-hand side of Eq. (94) is shown as
function of time. One observes that the scaling exponent
approaches the anisotropic scaling limit α − 3β − γ ¼ −1
monotonically from below. The residual deviation is

jαðτÞ − 3βðτÞ − γðτÞ þ 1j < 0.05; (95)

for 800≲Qτ ≲ 2000 as indicated by the gray band.

2. Self-similarity analysis

We also performed an alternative analysis to extract the
scaling exponents ðα; β; γÞ from the self-similar evolution
of the single-particle distribution. In this analysis, we
compare rescaled moments of the distribution at different
times ðQτTest ¼ 1250; 1500; 1750; 2000Þ with those at a
reference time ðQτRef ¼ 1000Þ. While for a perfect scaling
the different curves should all give the same results, one
can attempt to minimize the deviation between the
rescaled curves to determine the most appropriate scaling
exponents.
In practice, deviations from perfect scaling will occur

even for the correct set of scaling exponents due to
statistical uncertainties of the data as well as systematic
deviations from the scaling behavior in Eq. (80). We
quantify these in terms of a likelihood distribution
Wðα; β; γÞ which allows us to distinguish different sets
of scaling exponents. Our method is described in more
detail in Appendix D.
The results of our analysis are summarized in Figs. 16

and 17. In Fig. 16 we show contour plots of the likelihood
distribution W as a function of different combinations of
the scaling exponents ðα; β; γÞ. These two-dimensional
distributions such as Wðα; βÞ are obtained by integration
over the third exponent not shown in each panel, e.g.
Wðα; βÞ ¼ R

dγWðα; β; γÞ. They are normalized in such a
way that the maximum value is unity in each panel. One
observes from Fig. 16 that smaller values of α are more
likely to appear in combination with smaller values of β or γ

respectively. This correlation between the scaling exponent
α and the scaling exponents β and γ gives rise to the tilted
ellipsoids observed in the left panels. However, if one
considers their combination α − 3β − γ as shown in the
central panels of Fig. 16, the correlation with both β and γ is
significantly reduced. Since β and γ are also uncorrelated—
as can be inferred from the top right panel—we conclude
that the exponents α − 3β − γ, β and γ can all be determined
nearly independently.
In Fig. 17, we show the likelihood distributions for the

scaling exponents β and γ as well as for the linear
combination α − 3β − γ. The one-dimensional distributions
are obtained by integration over all other exponents and

FIG. 16 (color online). Contour plots of the likelihood distri-
bution W as a function of different combinations of the scaling
exponents ðα; β; γÞ. One observes that α is strongly correlated
with both β and γ. In contrast the degree of correlation between
α − 3β − γ with β and γ is noticeably smaller. The top right panel
also shows that the scaling exponents β and γ are uncorrelated.

α β γ β γ

FIG. 17 (color online). Likelihood distribution W of the differ-
ent scaling exponents. The gray vertical lines correspond to the
respective values in the bottom up thermalization scenario
(BMSS) [49] and one of its modified versions (BD) [44].
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normalized to yield unity upon integration. The scaling
exponents we obtain from Fig. 17 take the values

α − 3β − γ ¼ −1.05� 0.04ðstatÞ;
β ¼ −0.02� 0.02ðstatÞ;
γ ¼ 0.285� 0.025ðstatÞ: (96)

The corresponding values in the original bottom up
thermalization scenario (BMSS) [49] (γ ¼ 1=3) and the
instability modified bottom up scenario by Boedeker (BD)
[44] (γ ¼ 1=4) are also indicated in Fig. 17 as vertical
gray dashed lines. Since the scaling exponents β ¼ 0 and
α − 3β − γ ¼ −1 are the same in both scenarios we only
show a single line in the left and central panels.

3. Discussion

By extracting the scaling exponents ðα; β; γÞ with two
different methods we can estimate the systematic uncer-
tainties of our analysis. Concerning the scaling exponents β
and α − 3β − γ the results of the different methods show
very good agreement. The scaling corrections due to finite
time and finite anisotropy effects can be estimated from the
gauge-invariant analysis and decrease monotonically in
time. For the considered range of times, these systematic
errors are on the order of 0.06 for β and 0.05 for the scaling
exponent α − 3β − γ of the energy density. Based on the
strictly monotonic behavior we can safely extrapolate the
values of β and α − 3β − γ to the highly anisotropic scaling
limit, where

β ↗ 0; α − 3β − γ ↗ −1: (97)

This result is in agreement with the classical evolution in
most weak coupling thermalization scenarios.
The scaling exponent γ can be used to clearly distinguish

between different weak coupling thermalization scenarios.
As we will discuss in more detail in Sec. V H, the predicted
values range from γ ¼ 1=8 in the instability driven scenario
by Kurkela and Moore [47] over a whole family of possible
solutions by Mueller, Shoshi, and Wong [45] to the value
γ ¼ 1=3 in the original bottom up scenario [49]. While the
result of our gauge-invariant analysis γ ≃ 0.33, shows a
clear preference for the bottom up scenario [49], the self-
similar scaling analysis points to slightly smaller values of
γ ≃ 0.28, between the values γ ¼ 1=3 in the bottom up
scenario [49] and γ ¼ 1=4 in the instability modified
scenario by Boedeker [44]. We believe that the deviation
between the two methods can be attributed to scaling
corrections at finite anisotropy and finite times. While the
gauge-invariant measurement is certainly more rigorous,
these corrections may affect both measurements in a
systematic way. Within these uncertainties of our simu-
lations, we are therefore not able to exclude small mod-
ifications of the bottom up scenario a la Boedeker.

F. Interpolation of results for nonexpanding
and expanding plasmas

We will now also consider variations of the initial time
and study the dynamics for larger values of Qτ0 ≫ 1. In
this case the initial scattering rate ∼Q is much larger than
the initial expansion rate ∼1=τ0 of the system. Thus one
expects to recover the results for nonexpanding systems at
early times ðτ − τ0Þ ∼Q−1. As the system evolves along the
static box attractor, the scattering rate begins to fall more
rapidly than the expansion rate and the system evolves
away from this attractor solution. However, at even later
times ðτ − τ0Þ ∼ τ0, the expansion rate and the scattering
rate become of comparable size. One then expects a
transition to the universal scaling solution for expanding
systems where the two rates evolve at the same speed.
To investigate this behavior in more detail, we chose a

large value of Qτ0 ¼ 1000 to achieve a clear separation
between different time scales. The results are presented in
Figs. 18, 19, and 20. In Fig. 18, we show the evolution of
the longitudinal and transverse hard scales as a function of
time. For ðτ − τ0Þ ≲ τ0 one observes an approximate
scaling of Λ2

T ∝ ðτ − τ0Þ2=7 as previously observed for
nonexpanding systems in the results shown in this paper
(cf. Sec. IV) and previously [32,33]. This is indicated by the
gray dashed line. At later times ðτ − τ0Þ≳ τ0 the transverse
hard scale Λ2

T becomes approximately constant in time,
whereas the longitudinal hard scale Λ2

L exhibits an approxi-
mate ðτ − τ0Þ−2=3 scaling, characteristic of the attractor
solution for longitudinally expanding systems.29

Λ
Λ

τ τ τ

τ τ

τ τ

τ τ

Λ
Λ

FIG. 18 (color online). Time evolution of the transverse and
longitudinal hard scales for slowly expanding systems
(Qτ0 ¼ 1000). One observes a transient regime where the trans-
verse hard scale Λ2

T shows an approximate ðτ − τ0Þ2=7 scaling
indicated by the gray (dashed) line. At later times, Λ2

T becomes
approximately constant whereas Λ2

L exhibits the characteristic
ðτ − τ0Þ−2=3 scaling.

29Note that at late times τ ≫ τ0 this corresponds to scaling in
ðQτÞ−2=3 as observed in Fig. 8.
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The transition between the different attractors is further
demonstrated in Fig. 19 showing the local scaling expo-
nents 2βðτÞ and 2γðτÞ as a function of time. One observes a
transient regime where the universal exponent 2β≃ −2=7
for a nonexpanding system is realized. The behavior at late
times is similar to the one observed in Figs. 8 and 10. The
scaling exponent for the longitudinal hard scale takes the
value 2γ ≃ 2=3 and the exponent for the transverse hard
scale 2β approaches zero monotonically from below.
Interestingly, a similar transition can be observed in the

single particle spectra. This is shown in Fig. 20, where we

show the single gluon distribution as a function of trans-
verse momentum. Starting from an initially overpopulated
system indicated by the black lines, one initially observes
a transition towards n fðpT; pz ¼ 0Þ ∼ p−4=3T power-law
spectrum as discussed in Sec. IV. This takes place on a
time scale on the order of hundreds of Q−1 but less than τ0.
At later times, ðτ − τ0Þ ∼ τ0, one observes the transition to
the attractor solution for longitudinally expanding systems.
As previously observed in Fig. 12, the spectrum at late
times is characterized by a low momentum power law with
spectral index κ ≃ 1 and a rapid falloff at higher momenta.
The transition between different attractors can also be
deduced from the inset, where we show the (local) spectral
index κ as a function of time. Our results for large Qτ0
demonstrate yet another nontrivial route to reach the
universal attractor solution for a longitudinally expanding
plasma. It adds significantly to our claim of the existence
and universality of this attractor solution.

G. Turbulent thermalization of the expanding plasma

We shall now discuss the turbulent thermalization
process in the framework of kinetic theory. For the
longitudinally expanding system, the time evolution of
the gluon distribution is described by a Boltzmann equation
of the form [47–49]�

∂τ −
pz
τ
∂pz

�
fðpT; pz; τÞ ¼ C½f�ðpT; pz; τÞ; (98)

with a generic collision term C½f�ðpT; pz; τÞ for n⟷m
scattering processes. The additional term on the left-hand
side of Eq. (98) represents the redshift of longitudinal
momenta and thus captures the effects of the longitudinal
expansion. We then follow the same steps as in Sec. IVand
perform the standard turbulence analysis of [52], to inves-
tigate possible self-similar evolution of the type given by
Eq. (80). The scaling behavior of the collision integral is
thereby described in terms of the exponent μ ¼ μðα; β; γÞ
such that

C½f�ðpT; pz; τÞ ¼ ðQτÞμC½fS�ððQτÞβpT; ðQτÞγpzÞ: (99)

The precise form depends on the nature of the underlying
interaction. Substituting this form into the Boltzmann
equation (98), one finds that the fixed-point solution
fSðpT; pzÞ satisfies the relation

αfSðpT; pzÞ þ βpT∂pTfSðpT; pzÞ þ ðγ − 1Þpz∂pzfSðpT; pzÞ
¼ Q−1C½pT; pz; fS�; (100)

with the scaling relation

α − 1 ¼ μðα; β; γÞ: (101)

As previously argued by Baier, Mueller, Schiff, and Son
(BMSS) in the bottom up thermalization scenario [49], the

τ τ τ

τ τ

γ
β

FIG. 19 (color online). The local scaling exponents 2β and 2γ
for a slowly expanding plasma (Qτ0 ¼ 1000). One clearly
observes the transition between the different scaling regimes
for a nonexpanding system (2β ¼ 2γ ¼ −2=7—cf. Sec. IV) and
the longitudinally expanding system (β≃ 0, γ ≃ 2=3).

τ

κ

κτ τ0
τ τ0

τ τ0

κ

τ τ

FIG. 20 (color online). Single particle spectrum as a function of
transverse momentum for a slowly expanding plasma
(Qτ0 ¼ 1000). The inset shows the spectral index of the low
momentum power law as a function of time. At early times, the
spectrum resembles the attractor solution for a nonexpanding
system discussed in Sec. IV. At later times, one clearly observes
the transition to the attractor for a longitudinally expanding
system.
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classical interaction of hard excitations is dominated by
elastic scattering with small momentum transfer. This is
valid as long as their occupancies are large ðnHard ≫ 1Þ and
the dominant effect of these collisions on the particle
distribution fðpT; pz; τÞ is to broaden the longitudinal
momentum distribution by multiple incoherent small-angle
scatterings. This broadening of the gluon distribution
in longitudinal momentum may be characterized by a
collision integral of the Fokker-Planck type,

CðelastÞ½f�ðpT; pz; τÞ ¼ q̂∂2
pzfðpT; pz; τÞ; (102)

where the momentum diffusion parameter q̂ in this expres-
sion is parametrically given by [46,48]

q̂ ∼ α2sN2
c

Z
d2pT
ð2πÞ2

Z
dpz
2π

f2ðpT; pz; τÞ (103)

for SUðNcÞ gauge theories in the limit of high occupancies.
This approximation is supposed to describe the dominant
physics relevant for the overall scaling with time which
enters the scaling relation (101) considered in the follow-
ing. However, it does not have to be an accurate approxi-
mation for the solution of the fixed-point equation (100).
This in general requires more detailed information about
the momentum dependence of the collision integral.30

The scaling properties of the collision integral in
Eq. (102) lead to μðα; β; γÞ ¼ 3α − 2β þ γ for the self-
similar distribution as in Eq. (80). The scaling relation in
Eq. (101) obtained from the Boltzmann equation then takes
the form

2α − 2β þ γ þ 1 ¼ 0 ðsmall angle scatteringÞ: (104)

Since the elastic scattering kernel in Eq. (102) is particle
number conserving, a further scaling relation is obtained
from integrating the distribution function over transverse
momenta pT and rapidity wave numbers ν ¼ τpz. By use of
the scaling form in Eq. (80), this constraint leads to the
scaling relation

α − 2β − γ þ 1 ¼ 0 ðnumber conservationÞ: (105)

A further scaling relation can be extracted from energy
conservation. Taking into account that the mode energy
behaves as ωðpT; pzÞ≃ pT in the anisotropic scaling limit,
this yields the condition

α − 3β − γ þ 1 ¼ 0 ðenergy conservationÞ: (106)

The scaling exponents α; β; γ are then completely deter-
mined by the three scaling relations for particle number
conservation, energy conservation, and small-angle elastic
scattering as incorporated in the BMSS kinetic approach.
This yields the set of scaling exponents

α ¼ −2=3; β ¼ 0; γ ¼ 1=3; (107)

as the final result. This result is in excellent agreement with
those extracted from our lattice simulations, within the
stated statistical and systematical uncertainties.
The above scaling solution has the remarkable property

that both energy and particle number are conserved in a
single turbulent cascade. This is particularly so when
contrasted to the nonexpanding system discussed in
Sec. IV. In the latter, enforcing both particle number and
energy conservation for a single cascade leads to the scaling
relations31

α − 3β ¼ 0 ðparticle number conservationÞ;
α − 4β ¼ 0 ðenergy conservationÞ: (108)

Since Eqs. (108) do not allow for nontrivial solutions, there
is no single turbulent cascade conserving both energy and
particle number in an isotropic system. Instead, a dual
cascade emerges in situations where both conservation laws
apply [55]. In contrast, in the longitudinally expanding
case, the anisotropy of the system allows for different
scaling exponents β ≠ γ. These then lead to nontrivial
solutions of the corresponding scaling relations in
Eqs. (105) and (106).
It is also interesting to observe that the exponent β ¼ 0 is

entirely fixed by enforcing both conservation laws without
further knowledge about the underlying dynamics. We
therefore expect the exponent β ¼ 0 to appear also for a
larger class of systems, which are dominated by elastic
interactions and undergo a longitudinal expansion. This
includes in particularOðNÞ symmetric scalar quantum field
theories, where inelastic processes are highly suppressed
compared to elastic scattering. The study of these systems
is in progress and will be reported elsewhere.

H. The attractor

Besides the BMSS scenario, alternative thermalization
scenarios at weak coupling with different attractor solutions
have been proposed in the literature. One such scenario,
which takes into account the role of plasma instabilities in
the classical regime, is the Boedeker (BD) scenario [44]. In
this scenario, it is argued that plasma instabilities lead to an
overpopulation f ∼ 1=αs of modes with jpj ≲mD. The

30This can already be observed from the discussion in Sec. IV
of the nonexpanding plasma. There the small angle approxima-
tion reproduces the correct scaling in time [32,33] but fails to
describe the spectral properties of the fixed point correctly [30].

31The relations in Eq. (108) can be obtained directly from
Eqs. (105) and (106) by setting β ¼ γ for isotropic systems and
dropping the additional summand 1, which appears solely due to
the longitudinal expansion.

BERGES et al. PHYSICAL REVIEW D 89, 114007 (2014)

114007-30



coherent interaction of hard excitations with the soft sector
then causes an additional momentum broadening such that
the longitudinal momenta of hard excitations fall at a
slower rate. This evolution leads to the scaling exponents

α ¼ −3=4; β ¼ 0; γ ¼ 1=4 ðBD scenarioÞ;
(109)

which are numerically close to the BMSS solution.
In the Kurkela and Moore (KM) scenario [47], it is

argued that plasma instabilities play a key role for the entire
evolution. The evolution in the classical regime proceeds in
a similar way as in the BD scenario. However a larger range
of overpopulated modes with jp⊥j≲mD and pz ≲
ðΛT=ΛLÞmD is considered in the KM scenario. This leads
to a highly efficient momentum broadening, causing the
longitudinal momenta of hard excitations to decrease much
slower than in the BMSS evolution. The evolution in the
classical regime of the KM scenario can be characterized by
the scaling exponents

α ¼ −7=8; β ¼ 0; γ ¼ 1=8 ðKM scenarioÞ;
(110)

and the impact of plasma instabilities for the subsequent
quantum evolution has also been discussed in [47].
In the Blaizot, Gelis, Liao, McLerran, and Venugopalan

(BGLMV) scenario [48], elastic scattering is argued to be
highly efficient in reducing the anisotropy of the system.
This generates an attractor with a fixed anisotropy δs which
is treated as a free parameter. The evolution in the BGLMV
scenario proceeds with the scaling exponents

α ¼ −ð3 − δsÞ=7; β ¼ ð1þ 2δsÞ=7;
γ ¼ ð1þ 2δsÞ=7 ðBGLMV scenarioÞ; (111)

such that the momentum space anisotropy of the system
ΛL=ΛT remains constant in time. Since in this scenario the
exponents β and γ coincide, it is not possible to simulta-
neously satisfy the constraints for energy and particle
conservation for elastic scattering. However, the authors
of [48] argued that the excess of particles resulting from the
initial overoccupation may be absorbed in the soft sector.
This would eventually lead to the formation of a transient
Bose-Einstein condensate, which ultimately decays due to
inelastic processes occurring over longer time scales.
In order to clearly distinguish between the different

thermalization scenarios, we investigate the evolution of the
plasma in the occupancy–anisotropy plane, originally
introduced in Refs. [46,47]. Our findings are compactly
summarized in Fig. 21, where we compare the observed
time evolution to the different thermalization scenarios. The
horizontal axis shows the characteristic hard scale occu-
pancy nhardðτÞ ¼ fðpT ≃Q; pz ¼ 0; τÞ as defined in

Eq. (82), in the classical regime of occupancies
nhard ≫ 1. The vertical axis shows the momentum-space
anisotropy, which can be characterized in terms of the ratio
of typical longitudinal momenta ΛL to the typical trans-
verse momenta ΛT . The gray lines in Fig. 21 indicate the
different thermalization scenarios, while the blue lines
show a projection of our simulation results to the
anisotropy-occupancy plane. The different initial condi-
tions are indicated by blue dots. The advantage is that some
of the nonuniversal amplitude normalizations do not appear
in this projection. Instead, one finds that ultimately all
curves exhibit a similar evolution along the diagonal,
clearly illustrating the attractor property. Again, this result
is in excellent agreement with the analytic discussion of the
BMSS kinetic equation in the high-occupancy regime.
By extrapolating our results to later times, we can also

estimate the time scale to enter the quantum regime, where
the characteristic occupancies become of order unity. Since
initially the occupancy is parametrically given by
nhardðτ0Þ ∼ α−1s , and subsequently decreases as
nhardðτÞ ∝ ðQτÞ−2=3, this leads to the estimate

τquantum ∼Q−1α−3=2s (112)

in accordance with the original bottom up thermalization
scenario [49]. In the quantum regime Qτ ≳ α−3=2s , the
classical-statistical framework can no longer be applied
and modifications of the above kinetic equations need to be
considered. While different scenarios of how thermaliza-
tion is completed in the quantum regime have been
developed based on kinetic descriptions [47,49], it is an
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FIG. 21 (color online). Evolution in the occupancy–anisotropy
plane. Indicated are the thermalization scenarios proposed in
(BMSS) [49], (BD) [44], (KM) [47] and (BGLMV) [48]. The
blue lines show the results of classical-statistical lattice simu-
lations for different initial conditions. One clearly observes the
attractor property of the BMSS solution.
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outstanding open question how to address the quantum
dynamics in non-Abelian gauge theories from first princi-
ple simulations.

I. Quo vadis, thermalization?

In the previous subsections, we established the existence
of a nonthermal attractor at weak coupling. We observed
that, for a wide range of initial conditions, the spacetime
evolution of the plasma displays the same scaling behavior.
While the emergence of a universal attractor far from
equilibrium is remarkable, the question
(a) How relevant are details of the initial conditions for the

dynamics of the thermalization process?
—in particular at larger values of the coupling—clearly
requires a more careful assessment and will be addressed
below. The universal scaling solution is consistent with the
bottom up thermalization scenario, where neither isotrop-
ization nor thermalization are realized in the classical
regime. On the contrary, the system becomes increasingly
anisotropic and the obvious conceptual question related to
this behavior is
(b) Does the system isotropize and thermalize at all in a

dynamical regime where the QCD coupling is
still weak?

In view of the standard paradigm that the quark-gluon
plasma can be described in terms of hydrodynamics, it is
also interesting to ask
(c) Can the system still be described by hydrodynamics

even if neither isotropization nor thermalization is
achieved?

From the practical point of view, if the answers to (b) and
(c) are negative, one might be tempted to conclude that
weak coupling is not relevant for an understanding of heavy
ion collisions even at the highest LHC energies.

1. Conceptual issues

Let us first address the conceptual issues and turn
subsequently to their phenomenological consequences. In
the BMSS scenario, inelastic 2⟷3 processes begin to play
a big role beyond the estimated time scale τquantum ∼
Q−1α−3=2s where classical dynamics fails to describe the
evolution. These isotropize the bulk of the system on a
parametric time scale∼Q−1α−5=2s . Complete equilibration is
achieved quite rapidly thereafter—the system thermalizes
on the time scale ∼Q−1α−13=5s [49]. We take this as a “proof
of principle” demonstration that thermalization can indeed
occur in the quantum regime. Similar conclusions have
been reached in different thermalization scenarios, where
isotropization and subsequent thermalization also occur
only in the quantum regime [47].
Concerning the dependence on the initial conditions, a

closer look at the classical-statistical dynamics reveals that
the nonuniversal amplitudes are indeed sensitive to tran-
sient features of the evolution, such as the initial occupancy
n0 and the initial anisotropy ξ0. For instance one finds that

in the BMSS scenario—considering elastic scattering and
free streaming only—the longitudinal hard scale behaves as
Λ2
L ∝ n4=30 Q2=ðQτÞ2=3. Similarly, other dynamical quan-

tities such as the lifetime of the classical regime will also
depend on n0. However, in weak coupling asymptotics
(αs → 0), details of the initial conditions have a negligible
effect. This is because n0 must, by construction, be a
number of order unity and is therefore much smaller than
inverse powers of the coupling constant. Similarly, the
separation of different dynamical regions is “clean” in the
weak coupling limit, where the characteristic time scales
Q−1, Q−1 ln2ðα−1s Þ, Q−1α−3=2s etc. can clearly be distin-
guished. In particular, the time scale to reach the universal
attractor ∼Q−1 ln2ðα−1s Þ is much smaller than the lifetime of
the classical regime Q−1α−3=2s .32 The effect of the transient
evolution then becomes negligible and the weak coupling
late time asymptotics is universal to high accuracy.
However this parametric separation no longer exists for
large values of the coupling constant. Consequently, one
expects transient features of the evolution to be more
pronounced and a detailed knowledge of the initial con-
ditions may be essential.
A similar dependence on details of initial conditions is

also anticipated in the quantum regime. The BMSS
computations (and similarly all weak coupling scenarios)
are valid in weak coupling asymptotics. The prefactors in
the estimates of the thermalization time have not been
computed for any dynamical scenario. This is because one
is dealing with a complicated multiscale problem which is
very difficult to solve even in such asymptotics.
One such first principles approach to the problem,

starting from the CGC dynamics of the incoming nuclear
wave functions, was advocated in [12,34,35,74]. How the
classical fields and small quantum fluctuations around
these evolve through the nuclear collision until times τ ≲
Q−1 was identified. Because the quantum fluctuations grow
exponentially after the collision, a method to resum the
leading instabilities to all orders was devised. This stabil-
izes the perturbative series on a time scale ∼Q−1 ln2ð1=αsÞ.
However, there are further subleading OðαsÞ corrections,33
that also grow and become of the order of the classical
fields on a time scale ∼Q−1 ln2ð1=α2sÞ, which is parametri-
cally of the same order. Because this is true to all orders in
perturbation theory, straightforward weak coupling
approaches become increasingly problematic on times that
are only ∼Q−1 ln2ð1=αsÞ. This is particularly so for the
problem of thermalization, since the above time scale is
parametrically much shorter than 1=α3=2s , the lifetime of the
classical regime. While this problem is generic to all
approaches that have “secularlike” divergences, as is well

32In our simulations we employ αs ∼ 10−5 − 10−6 such that
Q−1 ln2ðα−1s Þ ∼Oð100Þ whereas Q−1α−3=2s ∼Oð108Þ.

33These are also very relevant for observables that are sensitive
to the early time dynamics such as long range rapidity correla-
tions [78,79].
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known in the condensed matter theory literature [101], it is
also conceivable that in practice the applicability of the
formalism may be greater than can be deduced from the
simple parametric estimates.
A way forward is to investigate whether the initial

conditions in [35,43] lead to the same attractor solution
at late times. In our view, the attractor solution we have
found is robust. The fact that even solutions constructed to
lie initially in the well of the static box attractor evolve to
those of the expanding non-Abelian plasma is striking.
Nevertheless, the broadest array of initial conditions should
(and will) be explored. It is interesting in any case to see
whether, and on what time scales, the results of [35,43]
evolve to the universal attractor with decreasing αs. How
this transition occurs, if it does, will provide further insight
into the transient dynamics.
The other conceptual issue is whether hydrodynamics is

applicable even if isotropization and thermalization is not
realized in the classical regime. In conventional kinetic
theory derivations of hydrodynamic equations, a gradient
expansion is performed around the thermal stationary point.
Similar kinetic theory inspired hydrodynamic equations
can be derived when the system is far of -equilibrium; this
however requires the existence of a nonthermal attractor as
an expansion point. The effective dissipative coefficients
computed in such a hydrodynamic scenario, and their
interpretation, could in principle be very different from
those in near-equilibrium hydrodynamics.

2. Practical considerations

The heavy ion experiments at RHIC and at the LHC find
large values of Fourier moments of azimuthally anisotropic
particle distributions. Further systematic studies indicate
that these can be reproduced by dissipative relativistic
hydrodynamic equations with very small values of η=s—
the viscosity to entropy density ratio. However, consid-
erable uncertainty surrounds when hydrodynamics needs to
be applied after the collision. A successful model of initial
conditions that incorporates nonequilibrium Yang-Mills
dynamics is the IP-Glasma+MUSIC model [14–16]. In
this model, Yang-Mills dynamics is matched to viscous
hydrodynamics at very early times τh ∼ 0.2–0.6 fm=c.
One should note though that only 2þ 1-D boost-invariant
Yang-Mills evolution is included in this model; thus the
longitudinal dynamics is free streaming dynamics.
Both the transient and universal dynamics in our 3þ 1-

dimensional simulations accommodate considerable rescat-
tering. One anticipates thus that more flow is generated in
this framework allowing one to extend the matching to
hydrodynamics to larger values of τh. Applications of the
BMSS estimates at face value give isotropization/thermal-
ization times ∼2–4 fm=c [102,103]. Since there are a
number of ill-determined prefactors, this time scale can
easily be pushed by a factor of 2 to earlier times.

To the best of our knowledge, few models of initial
conditions account for significant entropy production due
to early time nonequilibrium dynamics. In the BMSS
scenario, the entropy grows by a factor of α−2=5s between
the initial state and thermalization [102,103]. Recent
computations in the Glasma framework, where particle
production is microscopically constrained by HERA data,
require additional entropy production in the final state
[104]. There is now a tremendous wealth of bulk heavy ion
data at a number of different energies and centralities. It is
therefore not too far fetched to imagine that an extension
of the IP-Glasma framework (to include the 3þ 1-D Yang-
Mills dynamics considered here) may provide important
constraints on thermalization—in particular, the Oð1Þ
prefactors in our computations.
Finally, we note that anisotropic hydrodynamic models

fare quite well in comparison to heavy ion collision data
[105,106]. These models, as implemented, are quite differ-
ent from the anisotropic hydrodynamics that could be
constructed from our attractor simulation. Nevertheless,
their success suggests that a consistent matching of our
3þ 1-D Yang-Mills dynamics to anisotropic hydrodynam-
ics may provide a future direction for the quantitative
phenomenology of heavy ion collisions.

VI. SUMMARY AND OUTLOOK

We studied in this paper the thermalization process in
highly occupied non-Abelian plasmas at weak coupling.
We argued that the nonequilibrium dynamics of such
systems is classical in nature and can be studied from first
principles within the framework of real-time lattice
simulations.
We initially used classical-statistical simulations to

explore nonequilibrium dynamics in a nonexpanding
non-Abelian plasma. We presented general arguments that
the thermalization process of an overoccupied plasma can
be viewed as the energy transport towards the ultraviolet.
We observed that—after a short transient regime—this
energy transport is achieved by a turbulent ultraviolet
cascade with a quasistationary evolution in time.
The self-similar dynamics of this process is characterized

by a set of scaling exponents α and β and a stationary
distribution fS. The dynamical scaling exponents α and β
are universal and can be determined from a kinetic theory
analysis of the relevant scattering processes. The spectral
properties are characterized in terms of the stationary
distribution fS, which shows a scale-invariant power-law
distribution at low momenta. The spectral exponent κ of
this power law is nonthermal. Instead the observed value is
consistent with the Kolmogorov-Zakharov spectra of (sta-
tionary) weak wave turbulence (κ ¼ 4=3).
This notion of universality far from equilibrium mani-

fests itself in the fact that similar phenomena can be
observed across very different energy scales, ranging from
early universe cosmology [52] to the dynamics of ultracold
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quantum gases [57,58,61]. From this perspective, the
results may after all not appear very surprising, since they
are shared by a large variety of strongly correlated many-
body systems out of equilibrium.
We also discussed how the turbulent cascade continues

until times tquantum ∼Q−1α−7=4s where the occupation num-
bers of hard modes become of order unity. We argued that
quantum effects are then no longer negligible and the
classical-statistical framework breaks down. However, the
system already appears to be close to thermal equilibrium at
this stage of the evolution. Thus one may use ttherm ∼
tquantum as an estimate for the thermalization time.
The high precision lattice results also provide important

insight into the dynamics of soft excitations. We emphasize
that results from classical-statistical lattice simulations can
and should be compared to solutions of kinetic equa-
tions [107,108]. Since both methods have an overlap in the
range of validity for occupation numbers 1 ≪ f ≪ 1=αs a
quantitative comparison may provide important constraints
on the infrared regularization of scattering matrix elements.
This regularization is an essential ingredient of the kinetic
approach. However, this requires the inclusion of the
classical field/Bose enhanced terms in the Boltzmann
equation, which has proven challenging in present transport
models.
We then studied the nonequilibrium dynamics of longi-

tudinally expanding non-Abelian plasmas, relevant to
relativistic heavy ion collisions in the limit of weak
coupling at very high collider energies. We discussed the
dynamics of such a collision in the CGC framework and
argued that the system becomes fluctuation dominated on a
time scale τ ∼Q−1 ln2ðα−1s Þ. The system in this regime can
then be described as an overoccupied ensemble of quasi-
particle excitations. We characterized this state in terms of
the initial occupancy and anisotropy of the plasma and
employed a large range of different initial conditions to
study the subsequent evolution within classical-statistical
lattice simulations.
We found that—after a short transient regime—the

dynamics at late times becomes independent of the initial
conditions. Similarly to the nonexpanding case, the system
then exhibits the universal self-similar dynamics character-
istic of “free” wave turbulence. We obtained the universal
scaling exponents and scaling functions and compared our
results to different thermalization scenarios proposed in the
literature. We found that, while the physics of plasma
instabilities and free streaming describe the approach to the
universal attractor, the self-similar dynamics of the turbu-
lent regime is, within the accuracy of our simulations,
consistent with the bottom up thermalization scenario [49]
and can be described entirely in terms of elastic scattering
processes.
Most remarkably, the extraction of the scaling exponents

in the kinetic theory framework only relies on conservation
laws and the dominance of small angle scattering

processes. The bottom up scenario only provides one
particular realization of the associated scaling relations.
Similarly to the nonexpanding case, one can therefore
expect to observe similar scaling phenomena also across
very different energy scales. A straightforward test of these
ideas is to apply the framework to the study of a
longitudinally expanding scalar theory. This is work in
progress and will be reported elsewhere.
The universal attractor also has the remarkable property

that it conserves both energy and particle number in a single
turbulent cascade. This can only be achieved in highly
anisotropic systems and is a manifestation of the diverse
nature of turbulent solutions in anisotropic systems [96].
The competition between elastic scattering and the

longitudinal expansion leads to an increase of the momen-
tum space anisotropy of the system ∝ 1=τ1=3 in the classical
regime. Extrapolating our lattice results to later times, we
concluded that this behavior persists up to the time scale
τquantum ∼Q−1α−3=2s , when the system becomes dilute and
quantum corrections can no longer be neglected. Since the
classical-statistical framework can no longer be applied in
this quantum regime, further progress at weak coupling
relies on the ability to include quantum corrections
dynamically in the nonequilibrium evolution. This remains
an outstanding problem.
Interestingly, turbulent scaling phenomena have also

been discussed for the quantum regime. In the context
of jet propagation in a QCDmedium, it was recently argued
that the energy loss of the jet through multiple branchings
can be viewed as a turbulent energy cascade towards lower
momenta [109,110]. Most remarkably, this process is
completely analogous to the final stage of the bottom up
thermalization scenario, where a small fraction of hard
excitations decays into a soft thermal bath [49]. This
intriguing connection between in medium jet propagation
and the thermalization process points to the fact that
universal turbulent phenomena may play a larger role in
the dynamics of the quark gluon plasma than earlier
conceived.
While the universal attractor solution is robust in the

weak coupling limit, one expects transient phenomena to
become increasingly important at larger values of the
coupling. The details of the initial conditions may then
be essential to establishing a quantitative understanding of
heavy ion collisions at RHIC and LHC energies. However
the straightforward application of the weak approach to
realistic values of the coupling constant is not unambiguous
given the conceptual and technical limitations of the
classical-statistical framework. The extrapolation of the
weak coupling results thus requires additional studies and
will be addressed in the near future.
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APPENDIX A: FREE FIELD SOLUTIONS IN
COMOVING COORDINATES

In this appendix we determine the basis of solutions to
the linearized Yang-Mills evolution equations in τ; η
coordinates. Similar computations can also be found in
[34,35,111].34 Since the solutions are labeled in terms of
transverse momentum p⊥ and conjugate rapidity momen-
tum ν, we will denote the set of linearly independent
solutions by

aðλÞp⊥ν�
μ ðxÞ ¼ ξðλÞp⊥ν�

μ ðτÞeiðp⊥x⊥þνηÞ; (A1)

where the index λ ¼ 1; 2; 3 labels the different polariza-
tions, the index � denotes the positive and negative
frequency solutions, and ξðλÞp⊥ν�

μ ðτÞ denote the time-
dependent polarization vectors. Here we suppressed the
color indices, since the free solutions display a diagonal
structure in color space. The starting point for our
discussion is the set of evolution equations, which in
Fock-Schwinger (aτ ¼ 0) gauge take the form [34,111]

∂ττ∂τaiþ τðp2Tþ τ−2ν2Þai− τpipjaj− τ−1νpiaη¼ 0;

∂ττ
−1∂τaηþ τ−1p2Taη− τ−1νpiai¼ 0; (A2)

where p2T ¼ p2
x þ p2

y and summation over the transverse
Lorenz index i ¼ x; y is implied. In addition to the above
evolution equations, the solutions are required to satisfy the
(Abelian) Gauss law constraint, which takes the form

piτ∂τai þ ντ−1∂τaη ¼ 0: (A3)

In general there are five linearly independent solutions to
the set of equations (A2), taking into account the Gauss law
constraint (A3). However the remaining gauge freedom to
perform time-independent gauge transformations allows us
to eliminate one of the solutions, such that we are left with

four linearly independent solutions, which correspond to
the negative and positive frequency solutions of the two
transverse polarizations. Wewill exploit this fact and fix the
remaining gauge freedom by implementing the Coulomb
type gauge condition

½piai þ τ−2νaη�τ¼τ0
¼ 0; (A4)

at arbitrary time τ0. To see how this gauge fixing reduces
the number of solutions, we first consider a solution of
the type

ξð3Þp⊥ν
μ ðτÞ ¼

0
B@

px

py

ν

1
CAξð3Þp⊥νðτÞ: (A5)

The Gauss law constraint and the evolution equations then
imply that ∂τξ

ð3Þp⊥νðτÞ ¼ 0, and hence ξð3Þp⊥νðτÞ ¼ ξð3Þp⊥ν

is a constant in time. However the gauge fixing condition
(A4) implies that ξð3Þp⊥νðτ0Þ ¼ 0 vanishes such that this
solution is eliminated by the choice of the gauge. We are
therefore left with four physical solutions, which corre-
spond to the positive and negative frequency solutions for
the two transverse polarizations.

1. First set of physical solutions

In order to construct the first set of physical solutions, we
chose the ansatz

ξð1Þp⊥ν
μ ðτÞ ¼

0
B@

−py

px

0

1
CAξð1Þp⊥νðτÞ; (A6)

which complies with the Gauss law constraint by con-
struction. The evolution equation for að1Þp⊥νðτÞ follows
from Eq. (A2) and takes the form

�
τ−1∂ττ∂τ þ p2T þ

ν2

τ2

�
ξð1Þp⊥νðτÞ ¼ 0: (A7)

This is the Bessel equation and its general solution can be
expressed in terms of Hankel functions as

ξð1Þp⊥νðτÞ ¼ c1H
ð1Þ
iν ðpTτÞ þ c2H

ð2Þ
iν ðpTτÞ; (A8)

such that there are two linearly independent solutions. For
each solution, the constants c1 and c2 can be fixed to yield
the correct normalization and asymptotic behavior of the
solution in terms of positive and negative frequency
components. This is discussed in more detail below, where
we obtain the final and correctly normalized result.

34The main difference to Makhlin’s work [111] is the different
choice of the residual gauge freedom in Fock-Schwinger ðAτ ¼
0Þ gauge.
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2. Second set of physical solutions

The second set of solutions can be written in the general
form

ξð2Þp⊥ν
μ ðτÞ ¼

0
BB@

νpx=ðp2Tτ20ÞRp⊥ν⊥ ðτÞ
νpy=ðp2Tτ20ÞRp⊥ν⊥ ðτÞ

−Rp⊥ν
η ðτÞ

1
CCA; (A9)

where the residual gauge freedom is fixed at the time τ0
by the gauge condition (A4), which implies Rp⊥ν

η ðτ0Þ ¼
Rp⊥ν⊥ ðτ0Þ. Moreover the Gauss law constraint yields the
relation

ν½ττ−20 ∂τR
p⊥ν⊥ ðτÞ − τ−1∂τR

p⊥ν
η ðτÞ� ¼ 0; (A10)

such that

∂τR
p⊥ν
η ðτÞ ¼ τ2

τ20
∂τR

p⊥ν⊥ ðτÞ; (A11)

which can be used to eliminate Rp⊥ν
η ðτÞ in favor of Rp⊥ν⊥ ðτÞ.

The dynamic equations for Rp⊥ν
η ðτÞ and Rp⊥ν⊥ ðτÞ follow

from the evolution equations (A2) and take the form

∂ττ∂τR
p⊥ν⊥ ðτÞþν2

τ
Rp⊥ν⊥ ðτÞþðp2Tτ20Þ

τ
Rp⊥ν
η ðτÞ¼ 0;

∂ττ
−1∂τR

p⊥ν
η ðτÞþ τ−1p2TR

p⊥ν
η ðτÞþ τ−1

ν2

τ20
Rp⊥ν⊥ ðτÞ¼ 0:

(A12)

In order to decouple the evolution equations, it is conven-
ient to multiply the equations by appropriate factors of τ
and subsequently differentiate with respect to τ. By use of
the relation (A11), this yields the set of equations

�
τ−1∂ττ∂τ þ p2T þ

ν2

τ2

�
τ∂τR

p⊥ν⊥ ðτÞ ¼ 0;

�
τ−1∂ττ∂τ þ p2T þ

ν2

τ2

�
τ−1∂τR

p⊥ν
η ðτÞ ¼ 0; (A13)

which are equivalent after the Gauss constraint (A11) is
taken into account. It is important to note that by trans-
forming the set of second order differential equations (A12)
into the third order differential equation (A13), we have
introduced an additional free parameter to the general
solution. We will fix this parameter by requiring the
solutions of (A13) to satisfy the original evolution equa-
tions (A12). In analogy to Eq. (A8), the general solution of
the above equations takes the form

Rp⊥ν⊥ ðτÞ¼Rp⊥ν
τ0 þ

Z
τ

τ0

dτ0τ0−1½c1Hð1Þ
iν ðpTτ0Þþc2H

ð2Þ
iν ðpTτ0Þ�;

(A14)

Rp⊥ν
η ðτÞ ¼ Rp⊥ν

τ0 þ
Z

τ

τ0

dτ0
τ0

τ20
½c1Hð1Þ

iν ðpTτ0Þ þ c2H
ð2Þ
iν ðpTτ0Þ�;

(A15)

where we have taken into account the Gauss law constraint
to ensure that the constants c1 and c2 are the same for
Rp⊥ν⊥ ðτÞ and Rp⊥ν

η ðτÞ and the gauge condition which ensures
that the integration constant Rp⊥ν

τ0 takes the same value. The
value of the constant Rp⊥ν

τ0 is fixed by requiring the solution
to satisfy the original coupled set of second order differ-
ential equations. By inserting the solutions (A14) and
(A15) in the evolution equations (A12), we obtain the
condition

∂τ½c1Hð1Þ
iν ðpTτÞþc2H

ð2Þ
iν ðpTτÞ�þ τ−1½ν2þp2Tτ

2
0�Rp⊥ν

τ0

þ τ−1
Z

τ

τ0

dτ0τ0
�
ν2

τ02
þp2T

�
½c1Hð1Þ

iν ðpTτ0Þþc2H
ð2Þ
iν ðpTτ0Þ� ¼ 0;

(A16)

and by use of the Bessel equation (A7), we can rewrite the
integrand as

�
ν2

τ2
þ p2T

�
Hð1=2Þ

iν ðpTτÞ ¼ − τ−1∂ττ∂τH
ð1=2Þ
iν ðpTτÞ; (A17)

such that the powers of time under the integral cancel
and we are left with the integration of a total derivative.
We can then perform the time integration and find that
the term from the upper bound of the integral cancels the
first derivative term in Eq. (A16). In this way Eq. (A16)
reduces to

½ν2þp2Tτ
2
0�Rp⊥ν

τ0 þτ0∂τ½c1Hð1Þ
iν ðpTτÞþc2H

ð2Þ
iν ðpTτÞ�jτ¼τ0

¼0;

(A18)

which fixes the constant to be

Rp⊥ν
τ0 ¼ −

pTτ0½c1H0ð1Þ
iν ðpTτ0Þ þ c2H0ð2Þ

iν ðpTτ0Þ�
ν2 þ p2Tτ

2
0

; (A19)

where H0ð1=2Þ
iν ðxÞ ¼ ∂xH

ð1=2Þ
iν ðxÞ denotes the first derivative

of the function evaluated at the respective argument. The
first and second set of solutions are then both characterized
by two free parameters, which we will fix in the following
to obtain the correctly normalized positive and negative
frequency solutions.
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3. Normalization and asymptotic behavior

In the previous section, we determined the orthogonal
solutions to the free evolution equations in τ; η coordinates.
In order to determine the normalization of the solutions it is
important to realize that all solutions to the evolution
equations (A2) conserve the scalar product [34]

ðajbÞ ¼ −i
Z

d2x⊥dητgμν½a�μðxÞ∂τbνðxÞ − bνðxÞ∂τa�μðxÞ�:

(A20)

This can be checked explicitly by use of the equations of
motion (A2) and the relation can be used to properly
normalize the solutions [34].

4. Normalization of the first set of solutions

The first set of physical solutions takes the general form

ξð1Þp⊥ν
μ ðxÞ¼

0
@
−py

px

0

1
A½c1Hð1Þ

iν ðpTτÞþc2H
ð2Þ
iν ðpTτÞ�; (A21)

and according to Ref. [34] the positive and negative
frequency solution corresponds to the parts involving only
the Hankel functions of the second and first kind respec-
tively. If we focus on the positive and negative frequency
parts að1Þp⊥ν�, with cþ1 ¼ 0 and c−2 ¼ 0, the scalar products
between the solutions take the form

ðað1Þp⊥νþjað1Þp0⊥ν0þÞ ¼ iτð2πÞ3δ2ðp⊥ − p0⊥Þδðν − ν0Þp2Tjcþ2 j2Hð2Þ�
iν ðpTτÞ∂τ

⟷
Hð2Þ

iν ðpTτÞ; (A22)

ðað1Þp⊥ν−jað1Þp0⊥ν0−Þ ¼ iτð2πÞ3δ2ðp⊥ − p0⊥Þδðν − ν0Þp2Tjc−1 j2Hð1Þ�
iν ðpTτÞ∂τ

⟷
Hð1Þ

iν ðpTτÞ; (A23)

ðað1Þp⊥νþjað1Þp0⊥ν0−Þ ¼ iτð2πÞ3δ2ðp⊥ − p0⊥Þδðν − ν0Þp2Tðcþ2 Þ�c−1Hð2Þ�
iν ðpTτÞ∂τ

⟷
Hð1Þ

iν ðpTτÞ; (A24)

and by use of the identities

Hð2Þ�
iν ðxÞ∂x

⟷
Hð2Þ

iν ðxÞ ¼ −
4ie−πν

πx
;

Hð1Þ�
iν ðxÞ∂x

⟷
Hð1Þ

iν ðxÞ ¼
4ieþπν

πx
; (A25)

and

Hð2Þ�
iν ðxÞ∂x

⟷
Hð1Þ

iν ðxÞ ¼ 0;

Hð1Þ�
iν ðxÞ∂x

⟷
Hð2Þ

iν ðxÞ ¼ 0; (A26)

for the Hankel functions and their derivatives, we can
evaluate the above expressions explicitly. With the choice
of parameters

cþ2 ¼
ffiffiffi
π

p
e
πν
2

2pT
; c−1 ¼

ffiffiffi
π

p
e−

πν
2

2pT
; (A27)

we obtain the usual normalization properties

ðað1Þp⊥νþjað1Þp0⊥ν0þÞ ¼ð2πÞ3δ2ðp⊥ − p0⊥Þδðν − ν0Þ; (A28)

ðað1Þp⊥ν−jað1Þp0⊥ν0−Þ ¼− ð2πÞ3δ2ðp⊥ −p0⊥Þδðν− ν0Þ; (A29)

ðað1Þp⊥νþjað1Þp0⊥ν0−Þ ¼ 0; (A30)

and the first set of final solutions takes the final form

ξð1Þp⊥ν�
μ ðxÞ ¼

ffiffiffi
π

p
e�πν=2

2pT

0
@

−py

px

0

1
AHð2=1Þ

iν ðpTτÞ: (A31)

5. Normalization of the second set of solutions

The second set of solutions can be normalized in a
similar way, by considering again the scalar product (A20),
between the different solutions. In Ref. [34] it is argued that
the positive and negative frequency solutions are again the
ones which involve only Hankel functions of the second
and first kind respectively. The positive and negative
frequency solutions then take the form

ξð2Þp⊥ν�
μ ðxÞ ¼

0
BB@

νpx=ðp2Tτ20ÞRp⊥ν�⊥ ðτÞ
νpy=ðp2Tτ20ÞRp⊥ν�⊥ ðτÞ

−Rp⊥ν�
η ðτÞ

1
CCA; (A32)

where the time dependence is given by

Rp⊥ν�⊥ ðτÞ ¼ −
pTτ0

ν2 þ p2Tτ
2
0

c�2=1H
0ð2=1Þ
iν ðpTτ0Þ þ

Z
τ

τ0

dτ0τ0−1c�2=1H
ð2=1Þ
iν ðpTτ0Þ; (A33)
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Rp⊥ν�
η ðτÞ ¼ −

pTτ0
ν2 þ p2Tτ

2
0

c�2=1H
0ð2=1Þ
iν ðpTτ0Þ þ

Z
τ

τ0

dτ0
τ0

τ20
c�2=1H

ð2=1Þ
iν ðpTτ0Þ: (A34)

Since the scalar product is constant in time, we can without loss of generality evaluate it at the time τ ¼ τ0, when the gauge
condition (A4) applies. The scalar products between the different solutions then take the form

ðað2Þp⊥νþjað2Þp0⊥ν0þÞ ¼ iτ0ð2πÞ3δ2ðp⊥ − p0⊥Þδðν − ν0Þ jcþ2 j2
τ30ðpTτ0Þ

½Hð2Þ�
iν ðxÞ∂x

⟷
Hð2Þ

iν ðxÞ�jx¼pTτ0
; (A35)

ðað2Þp⊥ν−jað2Þp0⊥ν0−Þ ¼ iτ0ð2πÞ3δ2ðp⊥ − p0⊥Þδðν − ν0Þ jc−1 j2
τ30ðpTτ0Þ

½Hð1Þ�
iν ðxÞ∂x

⟷
Hð1Þ

iν ðxÞ�jx¼pTτ0
; (A36)

ðað2Þp⊥νþjað2Þp0⊥ν0−Þ ¼ iτ0ð2πÞ3δ2ðp⊥ − p0⊥Þδðν − ν0Þ ðc
þ
2 Þ�c−1

τ30ðpTτ0Þ
½Hð2Þ�

iν ðxÞ∂x

⟷
Hð1Þ

iν ðxÞ�jx¼pTτ0
; (A37)

where again we can evaluate the terms involving Hankel
functions and their derivatives by use of the relations (A25)
and (A26). With the choice of parameters

cþ2 ¼ τ0

ffiffiffi
π

p
e
πν
2

2
pTτ0; (A38)

c−2 ¼ τ0

ffiffiffi
π

p
e−

πν
2

2
pTτ0; (A39)

the solutions then satisfy the usual relations for the scalar
product

ðað2Þp⊥νþjað2Þp0⊥ν0þÞ ¼ð2πÞ3δ2ðp⊥ − p0⊥Þδðν − ν0Þ; (A40)

ðað2Þp⊥ν−jað2Þp0⊥ν0−Þ ¼− ð2πÞ3δ2ðp⊥ −p0⊥Þδðν− ν0Þ; (A41)

ðað2Þp⊥νþjað2Þp0⊥ν0−Þ ¼ 0: (A42)

The orthogonality of the solutions að2Þp⊥ν� and að1Þp⊥ν�,
in the sense that the scalar product of any combination of
the two vanishes, follows directly from the structure
of the polarization vectors. To complete the construction
of the orthonormal basis of free modes in generalized
Coulomb gauge, we have to consider also the cases where
either ν or pT vanishes. We find that the previous set of
solutions is well behaved in the limit ν → 0, whereas in the
case pT → 0 it is more convenient to consider a different
parametrization.

6. Special case: Zero transverse momentum

In the case of vanishing transverse momentum, the
Coulomb gauge condition (A4) along with the Gauss
constraint (A3) imply that the physical solutions may be
taken of the form

ξð1Þν;p⊥¼0
μ ðτÞ ¼

0
BB@
1

0

0

1
CCAξνðτÞ; ξð2Þν;p⊥¼0

μ ðτÞ ¼

0
BB@
0

1

0

1
CCAξνðτÞ:

(A43)

The time dependence of the function ξνðτÞ is governed by
the evolution equation (A2), which in this case takes the
form

�
τ−1∂ττ∂τ þ

ν2

τ2

�
ξνðτÞ ¼ 0: (A44)

This equation has the general solution

ξνðτÞ ¼ c1

�
τ

τ0

�
iν
þ c2

�
τ

τ0

�
−iν

; (A45)

and the positive and negative frequency solutions are given
by cþ1 ¼ c−2 ¼ 0. With the appropriate normalization the
solutions take the final form

ξνþðτÞ ¼ 1ffiffiffiffiffi
2ν

p
�
τ

τ0

�
−iν

; ξν−ðτÞ ¼ 1ffiffiffiffiffi
2ν

p
�
τ

τ0

�
iν
; (A46)

and the scalar product between the solutions satisfies the
usual relations

ðað1=2Þν;p⊥¼0þjað1=2Þν;p0⊥þÞ ¼ð2πÞ3δ2ðp0⊥Þδðν − ν0Þ; (A47)

ðað1=2Þν;p⊥¼0−jað1=2Þν;p0⊥−Þ¼− ð2πÞ3δ2ðp0⊥Þδðν−ν0Þ; (A48)

ðað1=2Þν;p⊥¼0þjað1=2Þν;p0⊥−Þ ¼ 0; (A49)

while the two sets of solutions að1Þν;p⊥¼0� and að2Þν;p⊥¼0�
are orthogonal as can directly be observed from the
polarization structure.
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APPENDIX B: PERTURBATIVE CALCULATION
OF HARD SCALES

In this appendix we compute the perturbative expres-
sions for the gauge-invariant hard scale observables Λ2

T and
Λ2
L, which we introduced in Sec. III. We will frequently

encounter the expectation values of equal-time correlation
functions of the gauge fields at intermediate steps of the

calculation. Since ultimately we are interested only in
gauge-invariant quantities, we can evaluate all expressions
in Fock-Schwinger gauge with the residual gauge freedom
fixed by the generalized Coulomb gauge condition (cf.
Appendix A). In order to evaluate equal-time correlation
functions in this gauge, we first expand the gauge fields in
terms of creation and annihilation operators according to

hAa
μðτ;x⊥; ηÞAa

νðτ;x0⊥; η0Þi ¼
Z

d2p⊥
ð2πÞ2

dν
2π

Z
d2q⊥
ð2πÞ2

dν0

2π

X
λ;λ0

h½ξðλÞp⊥νþ
μ ap⊥ν

λ;a e
iðp⊥x⊥þνηÞ þ H:c:�

× ½ξðλ0Þq⊥ν0þν aq⊥νλ0;a e
iðq⊥x0⊥þν0η0Þ þ H:c:�i; (B1)

where H.c. denotes the Hermitian conjugate. In order to evaluate the above expectation values, we make use of the relations

hap⊥ν
λ;a a†q⊥ν

0
λ0;b i ¼ δabδλλ0 ðfðp⊥; ν; τÞ þ 1Þð2πÞ3δð2Þðp⊥ − q⊥Þδðν − ν0Þ;

ha†p⊥ν
λ;a aq⊥ν

0
λ0;b i ¼ δabδλλ0fðp⊥; ν; τÞð2πÞ3δð2Þðp⊥ − q⊥Þδðν − ν0Þ; (B2)

whereas all other terms appearing in Eq. (B1) vanish identically. The expression in Eq. (B1) can then be expressed as

hAa
μðτ;x⊥; ηÞAa

νðτ;x0⊥; η0Þi ¼ ðN2
c − 1Þ

Z
d2p⊥
ð2πÞ2

dν
2π

½ðfðp⊥; ν; τÞ þ 1Þeiðp⊥ðx⊥−x0⊥Þþνðη−η0ÞÞ

þfðp⊥; νÞe−iðp⊥ðx⊥−x0⊥Þþνðη−η0ÞÞ�Πp⊥ν
μν ðτÞ; (B3)

where we defined the Lorentz tensor Πp⊥ν
μν ðτÞ according to

Πp⊥ν
μν ðτÞ ¼

X
λ

ξðλÞp⊥ν�
μ ðτÞξðλÞp⊥ν∓

ν ðτÞ: (B4)

In order to evaluate this tensor, we consider the Coulomb
gauge condition to be fixed at the time τ when the
observables are calculated. We recall that the polarization
vectors in this gauge take the form (cf. Appendix A)

ξð1Þp⊥ν;�
μ ðτÞ ¼

ffiffiffi
π

p
e�πν=2

2pT

0
B@

−py

px

0

1
CAHð2=1Þ

iν ðpTτÞ;

ξð2Þp⊥ν;�
μ ðτÞ ¼

ffiffiffi
π

p
e�πν=2

2τp2

0
B@

νpx

νpy

−ðpTτÞ2

1
CAH0ð2=1Þ

iν ðpTτÞ; (B5)

where pT ¼ jp⊥j is the transverse momentum and p2 ¼
p2T þ ν2=τ2 denotes the spatial momentum squared. The
Lorentz tensor Πp⊥ν

μν ðτÞ can then be evaluated explicitly. In

order to simplify the resulting tensor structure, we will
approximate the behavior of the Hankel functions and their
derivatives by the expansion for large time arguments

�
1þ ν2

x2

�−1
H0ð2Þ

iν ðxÞH0ð1Þ
iν ðxÞ≃Hð2Þ

iν ðxÞHð1Þ
iν ðxÞ≃ 2

πx
; (B6)

which effectively amounts to considering highly aniso-
tropic systems, where the characteristic transverse mo-
menta are much larger than the longitudinal momenta
ðpT ≫ ν=τÞ. Within this approximation the Lorentz tensor
can then be expressed as

Πp⊥ν
μν ðτÞ ¼ 1

2pTτ

�
−gμν −

pμpν

p2

�
; (B7)

where gμν ¼ diagð−1;−1;−τ2Þ denotes the spatial compo-
nents of the metric tensor and the spatial momentum vector
is denoted as pμ ¼ ðp⊥; νÞ. In summary the equal-time
correlation functions in Eq. (B1) can then be expressed as

hAa
μðτ;x⊥; ηÞAa

νðτ;x0⊥; η0Þi ¼ ðN2
c − 1Þ

Z
d2p⊥
ð2πÞ2

dν
2π

�
1

2pTτ

�
½ðfðp⊥; ν; τÞ þ 1Þeiðp⊥ðx⊥−x0⊥Þþνðη−η0ÞÞ

þ fðp⊥; ν; τÞe−iðp⊥ðx⊥−x0⊥Þþνðη−η0ÞÞ�
�
−gμν −

pμpν

p2

�
; (B8)
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which we will use in the following in order to evaluate the
perturbative expressions for gauge-invariant quantities. We
will also need the expectation value of equal-time corre-
lation functions of time derivatives of the gauge
fields, which can be calculated in a similar fashion. Here
we will only present the result of this computation, which is
given by

h∂τAa
μðτ;x⊥; ηÞ∂τAa

νðτ;x0⊥; η0Þi

¼ ðN2
c − 1Þ

Z
d2p⊥
ð2πÞ2

dν
2π

�
1

2pTτ

�
½ðfðp⊥; ν; τÞ þ 1Þ

× eiðp⊥ðx⊥−x0⊥Þþνðη−η0ÞÞ þ fðp⊥; ν; τÞ
× e−iðp⊥ðx⊥−x0⊥Þþνðη−η0ÞÞ�½−p2gμν − pμpν�: (B9)

In order to evaluate the perturbative expressions for the hard
scale observables, we will first evaluate the perturbative

expression for the energy density. Here we will consider
separately the electric and magnetic components of the
energy density, which can be calculated from Eqs. (B8) and
(B9) in a straightforwardway. The individual components of
the magnetic energy density are given by

hB2
xðτÞi ¼

1

V⊥Lη

Z
d2x⊥dηhF a

yηðxÞF yη
a ðxÞi;

hB2
yðτÞi ¼

1

V⊥Lη

Z
d2x⊥dηhF a

xηðxÞF xη
a ðxÞi;

hB2
ηðτÞi ¼

1

V⊥Lη

Z
d2x⊥dηhF a

xyðxÞF xy
a ðxÞi; (B10)

where in the following we will consider only the Abelian
part of the field strength tensor. The expressions in Eq. (B10)
then reduce to

hB2
xðτÞi ¼

1

V⊥Lη

Z
d2x⊥dηΔμν

yηðx1; x2ÞhAa
μðx1ÞAa

νðx2Þijx1¼x2¼x;

hB2
yðτÞi ¼

1

V⊥Lη

Z
d2x⊥dηΔμν

xηðx1; x2ÞhAa
μðx1ÞAa

νðx2Þijx1¼x2¼x;

hB2
ηðτÞi ¼

1

V⊥Lη

Z
d2x⊥dηΔμν

xyðx1; x2ÞhAa
μðx1ÞAa

νðx2Þijx1¼x2¼x; (B11)

where the differential operator Δμν
αβðx1; x2Þ is given by

Δμν
αβðx1; x2Þ ¼ ∂x1

α ∂α
x2g

μβδνβ þ ∂x1
β ∂β

x2g
μαδνα − 2∂x1

α ∂x2
β g

μβgνα;

(B12)

(no summation over α; β) where δαβ denote the Kronecker
symbol. By use of Eq. (B8) for the equal time correlation
functions in Coulomb gauge, one then obtains the final
result

hB2
xðτÞi ¼ Ng

Z
d2p⊥
ð2πÞ2

dν
2π

p2
y þ ν2=τ2

2pTτ
½fðp⊥; ν; τÞ þ 1=2�;

hB2
yðτÞi ¼ Ng

Z
d2p⊥
ð2πÞ2

dν
2π

p2
x þ ν2=τ2

2pTτ
½fðp⊥; ν; τÞ þ 1=2�;

hB2
ηðτÞi ¼ Ng

Z
d2p⊥
ð2πÞ2

dν
2π

p2T
2pTτ

½fðp⊥; ν; τÞ þ 1=2�;

(B13)

where Ng ¼ 2ðN2
c − 1Þ is the number of transverse gluons.

Similarly, one can evaluate the electric components of the
energy density according to

hE2
xðτÞi ¼

1

V⊥Lη

Z
d2x⊥dη

½Ex
aðxÞ�2
τ2

¼ Ng

Z
d2p⊥
ð2πÞ2

dν
2π

p2
y þ ν2=τ2

2pTτ
½fðp⊥; ν; τÞ þ 1=2�;

hE2
yðτÞi ¼

1

V⊥Lη

Z
d2x⊥dη

½Ey
aðxÞ�2
τ2

¼ Ng

Z
d2p⊥
ð2πÞ2

dν
2π

p2
x þ ν2=τ2

2pTτ
½fðp⊥; ν; τÞ þ 1=2�;

hE2
ηðτÞi ¼

1

V⊥Lη

Z
d2x⊥dη½Eη

aðxÞ�2

¼ Ng

Z
d2p⊥
ð2πÞ2

dν
2π

p2T
2pTτ

½fðp⊥; ν; τÞ þ 1=2�; (B14)

such that the overall energy density ϵðτÞ is given by
[cf. Eqs. (38) and (40)]

ϵðτÞ ¼ 2Ng

Z
d2p⊥
ð2πÞ2

dν
2π

p2

2pTτ
½fðp⊥; ν; τÞ þ 1=2�: (B15)

We note that the factor in the denominator has the
interpretation of the mode energy ωp ≃ pT in the limit
of highly anisotropic systems, where the characteri-
stic transverse momenta are much larger than the character-
istic longitudinal momenta. Since this limit enters the
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approximation in Eq. (B6), we can also replace this factor
to obtain the usual relativistic normalization. By absorbing
the additional factor of τ into the integration over the
longitudinal momentum pz ¼ ν=τ, one then recovers the
standard textbook relations.
In order to evaluate the perturbative expressions for the

gauge-invariant hard scale observables Λ2
T and Λ2

L, we also
have to consider covariant derivatives of the field strength
tensor according to [cf. Eq. (41)]

hHμ
μðτÞi¼ 4

V⊥Lη

Z
d2~x⊥dηhDab

α ðxÞF αμ
b ðxÞDβ

acðxÞF c
βμðxÞi;

(B16)

(no summation over μ) where summation over spatial
Lorentz indices α; β ¼ x; y; η is implied. We proceed as
previously and consider only the Abelian part of the
covariant derivative and the field strength tensor, such that
the expression in Eq. (B16) reduces to

hHμ
μðτÞi ¼

4

V⊥Lη

Z
d2x⊥dηΓμ;γδ

μðx1; x2Þ

× hAa
γ ðx1ÞAa

δðx2Þijx1¼x2¼x (B17)

where we introduced the derivative operator

Γμ;γδ
μ ðx1; x2Þ ¼ ½∂α∂αgμγ − ∂αgμν∂νgαγ�x1

× ½∂β∂βδδμ − gβδ∂β∂μ�x2 : (B18)

Since the second parts of the derivatives are of the form
∂γAγðxÞ, they do not contribute in the generalized Coulomb
gauge. With this simplification, the above expression can
then be evaluated explicitly according to

hHx
xðτÞi ¼ 4Ng

Z
d2p⊥
ð2πÞ2

dν
2π

p2½p2
y þ ν2=τ2�
2pTτ

× ½fðp⊥; ν; τÞ þ 1=2�;

hHy
yðτÞi ¼ 4Ng

Z
d2p⊥
ð2πÞ2

dν
2π

p2½p2
x þ ν2=τ2�
2pTτ

× ½fðp⊥; ν; τÞ þ 1=2�;

hHη
ηðτÞi ¼ 4Ng

Z
d2p⊥
ð2πÞ2

dν
2π

p2p2T
2pTτ

× ½fðp⊥; ν; τÞ þ 1=2�: (B19)

Combining the results in Eqs. (B15) and (B19), we obtain
the final result [cf. Eqs. (46) and (47)]

Λ2
TðτÞ≃

R
d2p⊥dpz2p2Tωpfðp⊥; pz; τÞR
d2p⊥dpzωpfðp⊥; pz; τÞ

;

Λ2
LðτÞ≃

R
d2p⊥dpz4p2zωpfðp⊥; pz; τÞR
d2p⊥dpzωpfðp⊥; pz; τÞ

; (B20)

where in the last step, we explicitly used ωp ≃ pT as the
relativistic quasiparticle energy in the limit pT ≫ ν=τ and
identified pz ¼ ν=τ as the longitudinal momentum.

APPENDIX C: OCCUPATION NUMBERS
AND GENERALIZED COULOMB GAUGE

ON THE LATTICE

In this appendix, we will discuss the procedure to
compute gauge-dependent quantities within the framework
of classical-statistical lattice simulations. Since for practical
purposes the Fock-Schwinger gauge ðAτ ¼ 0Þ needs to be
employed throughout the entire time evolution, we focus
here on fixing the residual gauge freedom to perform time-
independent gauge transformations. In this context it is of
great advantage to choose the residual gauge freedom such
that there is a clear interpretation of the physical degrees of
freedom. We employ the generalized Coulomb gauge
condition, which in the continuum takes the form

τ−2∂ηAηðxÞ þ
X
i

∂iAiðxÞ ¼ 0: (C1)

Weemphasize that thegaugecondition inEq. (C1)canonlybe
fixed once at an arbitrary time τ ¼ τ0 and does in general not
hold for times τ ≠ τ0.

35 This is different in actual Coulomb
gauge, where the gauge condition in Eq. (C1) is employed at
all timesattheexpenseofanonvanishingtemporalcomponent
Aτ of the gauge field. However, it can easily be shown that
equal-time correlation functions of the spatial components
of the gauge fields are the same as in actual Coulomb gauge.
In particular, since this gauge provides a clear interpretation
of the physical degrees of freedom of the system
(cf. Appendix A), we can safely use this prescription to
develop a quasiparticle picture. The advantage of this pro-
cedure is that thegaugeconditioninEq. (C1)canbeemployed
at any time τ0, using only time-independent gauge trans-
formations. In practice, this implies that gauge-dependent
quantities at different times τ0; τ1;…. are effectively calcu-
lated in different gauges; however, the physical interpretation
of the quantities manifestly remains the same.
After these preliminary remarks, we will now discuss

how the gauge condition can be employed in classical-
statistical lattice simulations. The general procedure turns

35Due to the explicit time dependence of Eq. (C1) this is
already not the case for the free theory. However, even in
Minkowski spacetime, where the corresponding Coulomb type
gauge condition is time independent, Eq. (C1) will in general not
be satisfied at times t ≠ t0 due to the interactions of different
momentum modes.
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out to be very similar to Landau gauge fixing in standard
vacuum or thermal equilibrium lattice QCD and can be
formulated as a minimization procedure of the gauge fixing
potential [91]

EU½G� ¼
1

6N2⊥Nη

X
~xT ;η

�
a2⊥
τ2a2η

tr½1 − GðxÞUηðxÞG†ðxþ η̂Þ�

þ
X
i

tr½1 − GðxÞUiðxÞG†ðxþ ι̂Þ�
�
; (C2)

with respect to time-independent gauge transformations
GðxÞ ∈ SUð2Þ. By variation of the gauge fixing potential in
Eq. (C2) with respect to infinitesimal gauge transforma-
tions around a local minimum GðxÞ according to
GðxÞ → ½1þ iαaðxÞΓa�GðxÞ, it is straightforward to verify
that the local minima36

δEU½G�
δαaðxÞ

����
α¼0

¼ 0; (C3)

satisfy the relation

a2⊥
τ2a2η

tr½iΓaðUðGÞ
η ðxÞ −UðGÞ

η ðx − η̂ÞÞ�

þ
X
i

tr½iΓaðUðGÞ
i ðxÞ −UðGÞ

i ðx − ι̂ÞÞ� ¼ 0; (C4)

where UðGÞ
μ ðxÞ denotes the gauge transformed link varia-

bles UðGÞ
μ ðxÞ ¼ GðxÞUμðxÞG†ðxþ μ̂Þ as discussed in

Sec. III. Since the expressions of the form tr½iΓaUμðxÞ�
can be related to the gauge fields to leading order in lattice
spacing, Eq. (C4) is the lattice analogue of the Coulomb
gauge condition in Eq. (C1) in the continuum theory.
In practice, the minimization of the gauge fixing potential

in Eq. (C2), with respect to time-independent gauge trans-
formations GðxÞ ∈ SUð2Þ can be achieved by a variety of
different algorithms (see e.g. Ref. [91] for a review).Herewe
use the Fourier acceleration technique, where the gauge
transformations GðxÞ are iteratively updated according to

GNewðxÞ ¼ exp½iRaðxÞΓa�GOldðxÞ; (C5)

with

RaðxÞ¼ α

�
F−1

�
p2
max

p2

�
F
��

a2⊥
τ2a2η

tr½iΓaðUðGÞ
η ðxÞ

−UðGÞ
η ðx− η̂ÞÞ�

X
i

tr½iΓaðUðGÞ
i ðxÞ−UðGÞ

i ðx− ι̂ÞÞ�
�

(C6)

until the gauge condition in Eq. (C4) is globally satisfied to a
given accuracy. Here F and F−1 denote the fast Fourier
transform and the inverse fast Fourier transform respectively
and the factor p2

max=p2 corresponds to the ratio of the
maximal lattice momentum to the lattice momentum. The
parameter α can be tuned to optimize the convergence
of the algorithm and we typically use on the order of
thousand iterations with α ¼ 0.005–0.025 depending on
the spatial lattice size.
We then perform the gauge transformation of the link

variables to extract the lattice gauge fields according to

ðga⊥ÞAa
i ðxþ ι̂=2Þ ¼ logaSUð2Þ½GðxÞUiðxÞG†ðxþ ι̂Þ�;

ðgaηÞAa
ηðxþ η̂=2Þ ¼ logaSUð2Þ½GðxÞUηðxÞG†ðxþ η̂Þ�: (C7)

Similarly, one can extract the electric fields from the
timelike plaquette variables according to

ðga⊥ÞEi
aðxþ ι̂=2þ τ̂=2Þ

¼
�
τ

aτ

�
logaSUð2Þ½GðxÞUτiðxÞG†ðxÞ�;

ðga2⊥ÞEη
aðxþ η̂=2þ τ̂=2Þ

¼
�

a2⊥
aττaη

�
logaSUð2Þ½GðxÞUτηðxÞG†ðxÞ�: (C8)

Finally, we perform a fast Fourier transformation of the
fields in Eqs. (C7) and (C8) and evaluate the gluon
distribution function fðp⊥; pz; τÞ according to Eq. (49),
where we identify the longitudinal momentum at midra-
pidity as pz ¼ ν=τ in the final step.

APPENDIX D: DETAILED ANALYSIS
OF SELF-SIMILARITY

In this appendix, we will provide a more detailed
explanation of our method used in Sec. V E to extract
the scaling exponents ðα; β; γÞ from the self-similar evo-
lution of the single-particle distribution. Our strategy is to
compare the rescaled moments of the distribution at
different times ðQτtest ¼ 1250; 1500; 1750; 2000Þ

fðn;mÞ
test ðpT; pzÞ ¼ pnTp

m
z s−αfðs−βpT; s−γpz; τtestÞ; (D1)

where s ¼ ðτtest=τrefÞ denotes the scale factor, with the
reference values

36We will only consider local minima of the gauge fixing
potential. The issue of identifying the global minimum of the
gauge fixing potential in Eq. (C2), usually referred to as “minimal
Coulomb gauge,” is related to the presence of Gribov copies and
primarily affects the infrared sector (see e.g. Ref. [112]). Since we
expect the naive interpretation in terms of quasiparticle excita-
tions to break down in the infrared, this does not affect our
discussion.
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fðn;mÞ
ref ðpT; pzÞ ¼ pnTp

m
z fðpT; pz; τRefÞ; (D2)

at the reference time Qτref ¼ 1000. By use of the self-
similarity relation (80), one finds that fðn;mÞ

test ¼ fðn;mÞ
ref holds

for the correct set of scaling exponents ðα; β; γÞ. Since this
equality is in general violated for different values of the
scaling exponents, one can then attempt to minimize the
deviation in order to determine the correct scaling expo-
nents. However, the above equality will be violated even for
the correct set of scaling exponents due to statistical
uncertainties of the data as well as systematic deviations
from the scaling behavior in Eq. (80). We quantify these
deviations in terms of

χ2ðn;mÞðα; β; γÞ ¼
1

Ntest

X
τtest

R
dpT

R
dpzðfðn;mÞ

test − fðn;mÞ
ref Þ2R

dpT
R
dpzðfðn;mÞ

ref Þ2
:

(D3)

In practice, we first divide all data into equidistant bins of
size pbinT =Q ¼ 0.02 and pbinz =Q ¼ 12:0=ðQτÞ respectively
for transverse and longitudinal momenta to reduce stat-
istical uncertainties. The integral is then evaluated as the
sum over momentum bins. Since in general the rescaled
momenta of the (binned) test data do not coincide with the
center of any reference momentum bin, we use bicubic
Bezier patches to perform additional interpolations and
smoothing of the reference data.
As we are primarily interested in the behavior for hard

excitations, we employ the moments n ¼ 1; 2; 3 and

m ¼ 0; 1; 2 and impose a lower transverse momentum
cutoff 0.7Q ≤ pT on the integration in Eq. (D3). In
addition, we also impose a higher momentum cutoff pT ≤
1.7Q and pz < 0.8Q to restrict the comparison to the
regime of high occupancies.
The combined deviation for all moments is then evalu-

ated as the sum

χ2ðα; β; γÞ ¼ 1

9

X3
n¼1

X2
m¼0

χ2ðn;mÞðα; β; γÞ; (D4)

which we calculate for different values of the scaling
exponents. Clearly, a smaller overall deviation χ2ðα; β; γÞ
for a given set of exponents shows a better realization of the
scaling relation in Eq. (80) and thus points to higher
likelihood for that set of exponents. To quantify this
behavior, we define the likelihood for a given set of scaling
exponents ðα; β; γÞ as

Wðα; β; γÞ ¼ 1

N
exp

�
−
χ2ðα; β; γÞ
2χ2min

�
: (D5)

Here χ2min denotes the smallest value of χ2ðα; β; γÞ obtained
in the analysis and quantifies statistical fluctuations of the
data set as well as systematic deviations from the scaling
behavior in Eq. (80). The smallest deviation χ2min ¼
0.00033 is obtained for the set of scaling exponents
α − 3β − γ ¼ −1.05, β ¼ −0.02, γ ¼ 0.285.
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