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The hyperon vector form factors at zero momentum transfer, f1ð0Þ, play an important role in a precise
determination of the Cabibbo-Kobayashi-Maskawa matrix element Vus. Recent studies based on lattice
chromodynamics (LQCD) simulations and covariant baryon chiral perturbation theory yield contradicting
results. In this work, we study chiral extrapolation of and finite-volume corrections to the latest nf ¼ 2þ 1

LQCD simulations. Our results show that finite-volume corrections are relatively small and can be safely
ignored at the present LQCD setup of mπL ¼ 4.6, but chiral extrapolation needs to be performed more
carefully. Nevertheless, the discrepancy remains, and further studies are needed to fully understand it.
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I. INTRODUCTION

The experimental determination of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements is of utmost
importance for testing the flavor structure in the quark
sector of the standard model [1]. In particular, the elements
of its first row provide a stringent test of the CKM unitarity
[2], namely, jVudj2 þ jVusj2 þ jVubj2 ¼ 1. With jVubj in
the ballpark of 10−3 [3] and jVudj ¼ 0.97425ð22Þ [4]
precisely extracted from superallowed 0þ → 0þ nuclear
β decays, the jVusj needs to be determined with subper-
centage precision in order to test the unitarity constraint.
The most precise value to date is provided by the analysis

of (semi)leptonic kaon decays, which crucially depends on
the accuracy at which fK=fπ and fþð0Þ are known [5]. The
latest and remarkably precise lattice QCD (LQCD) com-
putations of these quantities [6–8] yield jVusj ¼ 0.2252ð9Þ.
With this value, the first-row CKM unitarity turns out to be
fulfilled at the permillage level [3,6].
Inclusive τ decays offer a completely independent extrac-

tion of this matrix element, yielding jVusj ¼ 0.2207ð25Þ
[9,10], which is in slight tension with the kaon-decay
determination and the CKM unitarity.
A third method to obtain jVusj is by studying semi-

leptonic hyperon decays (for reviews see Refs. [11,12]).
These are phenomenologically richer than their analogous
kaon modes, in terms of multiple channels and polarization
observables. However, they are also considerably more
complicated, and up to six form factors can contribute per
decay channel. At leading order in SU(3) breaking, only two
of these form factors evaluated at q2 ¼ 0 contribute, which
are denoted as the vector and the axial hyperon couplings,
f1ð0Þ and g1ð0Þ. Furthermore, f1ð0Þ is determined by

conservation of the vector current up to Oðms −mudÞ2
corrections due to the Ademollo-Gatto theorem (AGT)
[13],1 while the ratio g1ð0Þ=f1ð0Þ can be obtained from an
analysis of the angular dependence of the decay rates [11].
Reasoning along these lines and including only leading-
order SU(3)-breaking corrections, Cabibbo and collabora-
tors studied the hyperon semileptonic decay data and
obtained jVusj ¼ 0.2250ð27Þ [12,14], which is in perfect
agreement with those determined from the kaon decays
and the CKM unitarity.
However, this result does not include any estimate of

the uncertainty produced by subleading SU(3)-breaking
effects. In particular, it has been shown that an accurate
knowledge of second-order breaking corrections to f1ð0Þ
is crucial to obtain a precise value of jVusj [15]. Over the
years, various methods have been explored to calculate
f1ð0Þ, including different quark models [16–18], the MIT
bag model [19], the large Nc approach [20,21], baryon
chiral perturbation theory (BChPT) [22–27], and quenched
[28–31] or nf ¼ 2þ 1 LQCD [32,33] simulations. As
summarized in Refs. [27,32], a puzzling outcome of these
theoretical or numerical calculations is that the sign of the
SU(3)-breaking corrections to f1ð0Þ predicted in BChPT
is opposite to those found in most of the quark models
and in LQCD.2

1The ms and mud generically denote the strange and the
average u and d quark masses throughout this paper.

2For a quark model calculation predicting corrections to f1ð0Þ
of the same sign as BChPT, see Ref. [18]. Fits to the semileptonic
hyperon decay data using the large Nc parametrizations of the
form factors [20,21] report the same sign too, but the capacity
of this approach to disentangle Vus from the SU(3)-breaking
corrections to f1ð0Þ has been questioned [15].
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The tension between the predictions of BChPT and
those of the LQCD simulations is particularly intriguing.
On one hand, chiral perturbation theory is an effective field
theory of QCD which relies on a perturbative expansion
of its Green functions about p=Λ ∼ 0, where p is a small
momentum or a light-quark mass and Λ ∼ 1 GeV [34] (for
a recent pedagogical review, see Ref. [35]). Its extension to
the one-baryon sector is afflicted by the so-called power-
counting-breaking (PCB) problem [36]. This can be solved
by either implementing a nonrelativistic expansion of the
baryon fields, like in heavy-baryon ChPT [37,38], or
keeping the theory relativistic while exploiting the fact
that all PCBs are analytical; therefore, they just affect the
renormalization of low-energy constants (LECs) and not
the physical results. Two renormalization prescriptions
stand out among the manifestly covariant formalisms—
the infrared (IR) ChPT [39] and the extended-on-mass-shell
(EOMS) ChPT [40,41]. Although these approaches only
differ in the organization of terms which are putatively of
higher order, it has been shown in various phenomeno-
logical applications that EOMS ChPT tends to provide a
faster convergence of the chiral series, especially in the
three-flavor sector [42–44] (see Ref. [45] for a recent and
comprehensive review).
On the other hand, LQCDsimulations provide an ab initio

numerical solution of QCD from first principles in a
finite hypercube, which can determine any nonperturbative
matrix elements, such as f1ð0Þ, in a model-independent
way. However, their very nature implies that simulations
are performed at finite volume TL3, with T and L the
temporal and spatial extensions of the hypercube, and finite
lattice spacing a. Furthermore, because of limitations in
computing resources, most present LQCD simulations are
performed at larger-than-physical light-quark masses (for
a review see Ref. [46]). Therefore, to obtain the physical
quantities, extrapolations in terms of light-quark masses,
often termed chiral extrapolation, lattice volume and lattice
spacing are necessary. In fact, a precise quark-mass dep-
endence and finite-volume effects are known to play an
important role in many physical observables simulated on
the lattice, such as baryon masses [44,47–53], magnetic
moments and charge radii [54–61], the nucleon axial charge
[62–64], and the electromagnetic or vector current of the
nucleon [55,56,59,65]. In particular, finite-volume correc-
tions (FVCs) are believed to be responsible for the discrep-
ancy between the LQCD simulated g1 and its experimental
counterpart [66].
Given the fact that a precise f1ð0Þ is of ultimate

importance to the extraction of Vus from hyperon decays,
in this work we study the chiral extrapolation of and finite-
volume corrections to the hyperon vector couplings in
BChPT. In particular, we investigate whether these effects
can explain the discrepancies between the BChPT and
LQCD predictions. This article is organized as follows.
In Sec. II, we recall the computation of f1ð0Þ up to Oðp4Þ

in the continuum, the implication of the AGTand its caveat.
We then explain how the light-quark-mass dependence of
f1ð0Þ is determined and present for the first time the forma-
lism to calculate finite-volume corrections. In Sec. III, we
formulate ChPT in finite volume and calculate numerically
the FVCs to the LQCD simulations of Ref. [32]. A short
summary is given in Sec. IV.

II. THE HYPERON VECTOR COUPLING
IN BChPT

The baryon vector form factors, as probed by the charged
ΔS ¼ 1 weak current Vμ ¼ Vusūγμs, are defined by

hB2jVμjB1i ¼ Vusūðp0Þ
�
γμf1ðq2Þ þ

iσμνqν
M1 þM2

f2ðq2Þ

þ qμ

M1 þM2

f3ðq2Þ
�
uðpÞ; ð1Þ

where q ¼ p2 − p1. The properties of the three form
factors, f1, f2, and f3, can be found in Ref. [12]. The
chiral corrections to the hyperon vector coupling, f1ð0Þ,
can be parametrized order by order as

f1ð0Þ ¼ gVð1þ δf1Þ;
δf1 ¼ δð2Þ þ δð3Þ þ � � � ; ð2Þ

where, consistent with previous calculations [25–27], we
have denoted theOðp3Þ andOðp4Þ chiral corrections by δð2Þ
and δð3Þ, respectively. The vector couplings are fixed in
the SU(3)-symmetric limit by gV ¼ −

ffiffiffiffiffiffiffiffi
3=2

p
, −

ffiffiffiffiffiffiffiffi
1=2

p
, −1,ffiffiffiffiffiffiffiffi

3=2
p

,
ffiffiffiffiffiffiffiffi
1=2

p
, and 1 forΛ → p,Σ0 → p,Σ− → n,Ξ− → Λ,

Ξ− → Σ0, and Ξ0 → Σþ. In the isospin-symmetric limit,
only four channels provide independent information; they
are ΛN, ΣN, ΞΛ, and ΞΣ.
The chiral expansion of f1ð0Þ has some features worth

remembering here. The first one is an important caveat
concerning the AGT in the context of spontaneous chiral
symmetry breaking [67]. It is well known that the leading
chiral loop corrections to the hyperon (and kaon) vector
couplings scale as ∼ðms −mudÞ2=ðms þmudÞ [23,68],
which literally fulfills the suppression predicted by the
AGT as long as ðms −mudÞ ≪ ðms þmudÞ. However, in
the physical world mud ≪ ms, and the chiral loops with
virtual octet baryons are expected to scale as δð2Þ ∼OðmsÞ
and δð3Þ ∼Oðm3=2

s Þ [23]. The contributions of virtual
decuplets to f1ð0Þ are more complicated due to the
inclusion of the octet-decuplet mass splitting Δ, which is
a small parameter in the approach that does not vanish in
the chiral or the SU(3)-symmetric limit. The chiral loops
with decuplet baryons also fulfill the AGT explicitly [25],
but their actual behavior at mud ≪ ms turns out to be
OðΔ ×m1=2

s Þmodulo a nonanalytical function ofms andΔ.
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The first analytical corrections to f1ð0Þ start at Oðp5Þ in
the chiral expansion, and they would scale as Oðm2

sÞ. An
important consequence of this is that there are no unknown
LECs contributing to the chiral expansion of δf1ð0Þ until
this order [22,23]. Thus, up toOðp4Þ, BChPT is completely
predictive in the determination of the SU(3)-breaking
corrections to f1ð0Þ. There are no PCB terms, and a study
in the original covariant formulation of BChPT happens
to be equivalent to the EOMS one [27]. In the following
we summarize this calculation in the covariant formalism,
including the decuplet baryons, placing special emphasis
on the quark-mass dependence of the results.

A. Quark-mass dependence of f 1ð0Þ
In Fig. 1 we show all the relevant Feynman diagrams

that contribute to the chiral expansion up to Oðp4Þ and
with the explicit inclusion of decuplet baryons. Note that
wave-function renormalization must also be included. As
discussed above, no unknown LECs contribute to the
calculation up to this order, and the BChPT prediction
only depends on the values of the meson semileptonic
decay constant F0, the baryon axial couplings D, F and C,
and the pseudoscalar meson and baryon masses (details can
be found in Ref. [27]). Up to Oðp4Þ it remains a good
approximation to treat F0 and the axial couplings as
quark-mass independent parameters that we fix at their
SU(3)-averaged physical values: F0 ¼ 1.17Fπ , D ¼ 0.80,
F ¼ 0.46 [12], and C ¼ 0.85ð5Þ [69]. The latter value is
obtained by using an average of the different hadronic
decuplet decays, while in our previous analysis [27] we
used C ¼ 1.0, which is obtained only from the Δ → πN
decay rate. The pion and kaon masses ultimately provide
the source of SU(3) breaking in the theory, and they are

adjusted to their physical values or to the ones obtained
at the unphysical quark masses employed in the LQCD
simulations. We obtain the η mass using the Gell-Mann-
Okubo mass formula, m2

η ¼ ð4m2
K −m2

πÞ=3, which also
holds in the η contributions to f1ð0Þ up to Oðp4Þ.
In the calculation of δð2Þ one can work with the physical

averages of the baryon-octet and -decuplet masses, MB0 ¼
1.151 GeV and MD0 ¼ 1.382 GeV. The only corrections
at Oðp4Þ actually stem from the baryon mass splittings
entering the loop diagrams, contributions which are deno-
ted by the dots in the diagrams of Fig. 1 [25,27]. Although
these insertions could be performed at the perturbative
level, in the present calculation they are implemented to
all orders by including the SU(3)-symmetry broken masses
in the propagators and in the on-shell conditions p2

1 ¼ M2
1

and p2
2 ¼ M2

2 [27].
Up to Oðp4Þ in f1ð0Þ, or δð3Þ, it suffices to work with

the Oðp2Þ chiral formulas of the baryon masses, which
depend on the four LECs MB0, b0, bD and bF for the octet
baryons and the three LECs MD0, g0, gD for the decuplet
baryons (we follow the notation and conventions of
Ref. [44]). These formulas accurately reproduce the
experimental data and describe the quark-mass depend-
ence of the baryon masses quite well. As we discuss in
the next section, we will make use of them to complete
information on the baryon masses that is not provided by
the LQCD analyses.
Finally, the results at Oðp4Þ contain higher-order diver-

gences that are renormalized in the MS scheme. By setting
the corresponding LECs to zero but studying the residual
renormalization-scale dependence, 0.7 GeV ≤ μ ≤ 1.3, we
obtain an estimate of the systematic uncertainty of ∼Oðm2

sÞ
due to the truncation of the chiral series at Oðp4Þ [27].

(b)

(a)

FIG. 1. Virtual octet (a) and decuplet contributions (b) to f1ð0Þ up toOðp4Þ. The solid lines correspond to octet baryons, double lines
to decuplet baryons, and dashed lines indicate mesons; crosses indicate the coupling of the external current; black dots denote mass
splitting insertions. We have not shown explicitly those diagrams corresponding to wave function renormalization, which have been
taken into account in the calculation.
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B. Finite-volume correction to f 1ð0Þ
In this section, we present the calculation of the FVCs

to f1ð0Þ. The temporal extension in LQCD simulations is
much larger than the spatial ones, and we treat it as a
continuous and infinite variable. The spatial components are
contained within a three-dimensional box with periodic
boundary conditions, and we assume that we work in
the p regime, L ·mπ ≫ 1 [70]. These corrections can be
calculated in BChPT by using the same set of diagrams
as in the continuum theory, Fig. 1, and discretizing the
spatial components of the four-momentum loop integrals,Rþ∞
−∞ dk0

P∞
~n¼−∞ ð2πL Þ3~n. Since one is now treating the

temporal and spatial components of a loop diagram differ-
ently, one breaks Lorentz invariance, and the decomposition
of the matrix element in Eq. (1) does not hold in this case.
A way to circumvent this problem in the determination

of f1ð0Þ is to calculate a scalar quantity that results from
taking the divergence upon this matrix element [28,29]:

qμhB0jVμjBi ¼ VusðM2 −M1Þūðp0ÞfSðq2ÞuðpÞ; ð3Þ

where we have introduced the so-called scalar form factor,

fSðq2Þ ¼ f1ðq2Þ þ
q2

M2
2 −M2

1

f3ðq2Þ: ð4Þ

Therefore, the calculation of the hyperon vector coupling
in finite volume can be simplified by computing fSðq2Þ
and setting q2 ¼ 0. Furthermore, the calculation of the
scalar form factor at (Euclidean) maximum recoil q2E;max ¼
−ðM1 −M2Þ2 presents many numerical advantages in a
LQCD computation, and it can be obtained with high
precision in the simulations [28]. On the other hand, doing
so requires an additional interpolation to q2 ¼ 0, aided
by less precise results at (Euclidean) q2E > 0, which are
obtained by calculating the customary three-point functions.
In principle, one could investigate FVCs to fSðq2Þ at

the (Minkowskian) maximum recoil q2max ¼ ðM1 −M2Þ2
in BChPT and then use the resulting corrected results to
interpolate to q2 ¼ 0. However, this method has drawbacks
since new terms beyond those shown in Fig. 1, with
unknown LECs, can contribute to fSðq2Þ at Oðp4Þ.
Therefore, we choose to study the FVCs of the quantity
fSð0Þ ¼ f1ð0Þ by putting the initial baryon at rest, i.e.,

p ¼ ðM1; ~0Þ. The condition of q2 ¼ 0 indicates the four-
momentum of the final baryon is p0 ¼ ðEF; pF; 0; 0Þ3 with
EF ¼ðM2

2þM2
1Þ=ð2M1Þ and PF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
F −M2

2

p
. Following

the procedures outlined in Ref. [51], one can now easily
calculate all the relevant loop diagrams in finite volume.
As recognized in Ref. [27], the Oðp4Þ results are rather

lengthy, and we refrain from writing them down explicitly.

The Oðp3Þ results are quite compact and, for the sake of
completeness, we present them in the Appendix.

III. RESULTS

A. Results at the physical point revisited

In Table I we list the results for the chiral corrections to
f1ð0Þ up to Oðp4Þ in covariant BChPT and including the
decuplet resonances as explicit degrees of freedom. These
values are an update with respect to those presented in
Ref. [27], and the differences originate from the slightly
smaller C used in the current analysis. As already pointed
out in Ref. [27], the corrections atOðp4Þ are generally larger
than those atOðp3Þ, and this seems to suggest that the chiral
convergence for f1ð0Þ is broken. Limiting ourselves to
the octet contributions, a naive power-counting estimate
of the potential size of these SU(3)-breaking corrections

indicates that δð2Þ ∼ m2
K

Λ2 ∼ 20% and δð3Þ ∼ mKΔ12

Λ2 ∼ 10%, with
Δ12 ¼ M1 −M2.

4 Therefore, it is difficult to judge the
convergence of the chiral series of f1ð0Þ by comparing
the third and fourth orders in the expansion since, as shown
in Table I, the leading terms are suppressed by small coeffi-
cients and δð2Þ turns out to be roughly a factor of 10 smaller
than the power-counting estimate [23]. A similar phenome-
non is observed in the leading contributions to the kaon
vector form factor [68]. Nonetheless, the BChPT results
already contain an estimate of the higher-order uncertainty
which comes fromvaryingOðp5Þ analytical pieces (renorm-
alization scale dependence), and one sees that these can be
sizable and as large as a few percent.

B. Chiral extrapolation at ms ≃ms;phys

In the following, we study the light-quark-mass depend-
ence of f1ð0Þ by analyzing the only nf ¼ 2þ 1 LQCD
results reported at the moment for the hyperon charges and
in the channels ΞΣ and ΣN [32]. These simulations are
performed using RBC and UKQCD ensembles generated
in a 243 × 64 grid with periodic boundary conditions in

TABLE I. Results for the chiral corrections to δf1ð0Þ (in
percentage) up to Oðp4Þ in covariant BChPT and including
the decuplet resonances as explicit degrees of freedom [27]. We
separate the results in Oðp3Þ and Oðp4Þ, δð2Þ and δð3Þ, respec-
tively, and in the contributions given by virtual octets (O) or
decuplets (D) in the loops.

δð2Þ (O) δð2Þ (D) δð3Þ (O) δð3Þ (D) Total

ΛN −3.8 þ0.5 þ0.2þ1.2
−0.9 þ2.2þ0.1

−0.1 −0.9þ1.3
−1.0

ΣN −0.8 −1.0 þ4.7þ3.8
−2.8 þ4.5þ0.3

−0.2 þ7.4þ4.1
−3.0

ΞΛ −2.9 −0.01 þ1.7þ2.4
−1.8 þ3.8þ0.3

−0.2 þ2.6þ2.7
−2.0

ΞΣ −3.7 þ0.5 −1.3þ0.3
−0.2 þ4.3þ1.4

−1.0 −0.2þ1.7
−1.2

3Any other choice for the spatial three-momenta will yield the
same results because of the remaining cubic symmetry.

4Note that a similar argument can be made for the decuplet
contributions by taking the limit Δ → 0.
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spatial dimensions [71]. The quarks are described by a
domain wall fermion action (known to have improved
chiral symmetry properties) and with the strange quark
mass tuned to be approximately equal to the physical
one. The lattice spacing is determined using the Ω− mass,
a ¼ 0.114ð2Þ fm, making the full length of the spatial
extensions L ∼ 2.736 fm.
In Table II we show the values of the meson and baryon

masses for the different quark masses reported in Ref. [32].
Errors are omitted because they have a negligible impact
on the f1ð0Þ results. The π, K, N, Σ and Ξ masses are
determined and given in Ref. [32]. For theΛ baryonmass the
Oðp2Þ formulas for the baryon masses are equivalent to the
Gell-Mann-Okubo formula,MΛ ¼ ð2MN þ 2MΞ −MΣÞ=3,
which is fulfilled experimentally very accurately, and it
seems to also hold for unphysical quarkmasses such as those
discussed here [72]. For the quark-mass dependence of the
decuplet-baryon masses, we have little information from
the actual ensembles used in Refs. [32,71], and in this
case we use the Oðp2Þ mass formulas, with the LECs
determined from LQCD data [73], MD0 ¼ 1.135 GeV,
γM ¼ 0.167 GeV−1, and γM ¼ 0.322 GeV−1.
In Tables III and IV we tabulate the SU(3)-breaking

corrections to f1ð0Þ predicted by covariant BChPT at the
simulated light-quark masses without and with decuplet
degrees of freedom, respectively. In each of these two
tables, we include the Oðp3Þ and Oðp4Þ results, whereas
the respective FVCs are given in the parentheses. In the last
column we show the results extracted from the simulations
[32]. In Fig. 2 we show the pion mass dependence of our
results in the four channels and for the different cases
compared against the LQCD points.5 It is important to note
that the chiral corrections diminish as we approach the
SU(3)-symmetric point at larger pion masses. However,
the actual values at the two heavier masses should be
interpreted with caution since these points are at the border
of or beyond the range of applicability of BChPT.
The first thing worth noticing is that the BChPT results

for the quark-mass dependence of f1ð0Þ depend very much

on the order of the calculation or on the inclusion of
the decuplet degrees of freedom. For instance, in the ΣN
channel our results at Oðp3Þ remain negative and small,
even after accounting for the virtual decuplet contributions.
The size predicted is smaller than that obtained in LQCD at
this order. However, the corrections at Oðp4Þ are large and
positive, making the net effect up to this order of ∼þ5%,
in stark contrast with LQCD, whose result is sizable but
negative. For the ΞΣ channel the agreement with LQCD
is better, and it even improves at Oðp4Þ if the decuplet
contributions at this order are not included. However, their
inclusion pushes the total contribution to be positive in this
channel also. One might hope that finite-volume correc-
tions would account for the differences between BChPT
and LQCD, but this is not the case. As shown by the values
in parentheses in Tables III and IV, these are very small
and negligible at the quark masses simulated in the
ð2.736Þ3 fm3 lattices. Overall, an agreement between
BChPT up to Oðp4Þ and the LQCD results for the ΣN
and ΞΣ channels [32] is not apparent.
As explained above, one cannot deduce the breakdown

of the chiral expansion from the comparison between δð2Þ
and δð3Þ, although enforcing an agreement between the
BChPT results and the current LQCD results would require
largeOðp5Þ contributions. In order to quantify this, we add
an analytical piece of Oðp5Þ to the chiral loops,

TABLE II. Masses of the pseudoscalar mesons and the octet
and decuplet baryons in units of GeV, determined as explained
in the main text for the different ensembles employed in the
nf ¼ 2þ 1 LQCD simulations of Ref. [32].

mπ mK MN MΛ MΣ MΞ MΔ MΣ� MΞ� MΩ−

0.330 0.576 1.140 1.271 1.330 1.431 1.369 1.513 1.656 1.800
0.420 0.606 1.237 1.339 1.386 1.465 1.458 1.580 1.703 1.826
0.558 0.665 1.412 1.470 1.501 1.544 1.635 1.720 1.804 1.888

TABLE III. Virtual octet contributions to the SU(3)-breaking
corrections to f1ð0Þ in covariant BChPT (in percentage). The
uncertainties are obtained by varying μ from 0.7 to 1.3 GeV.
Finite-volume corrections are given in the parentheses.

δð2Þ δð3Þ δð2Þ þ δð3Þ LQCD [32]

ΣN −0.57ð−0.11Þ 3.7þ2.3
−1.7 ð−0.08Þ 3.1þ2.3

−1.7 ð−0.19Þ −3.44� 1.4

−0.37ð−0.03Þ 2.5þ1.4
−1.0 ð−0.03Þ 2.1þ1.4

−1.0 ð−0.06Þ −1.84� 0.84

−0.14ð0.00Þ 1.0þ0.6
−0.3 ð0.00Þ 0.8þ0.6

−0.3 ð0.00Þ −0.81� 0.33

ΞΣ −1.58ð0.09Þ −0.5þ0.1
−0.1ð0.00Þ −2.1þ0.1

−0.2ð0.09Þ −1.92� 0.79

−0.85ð0.03Þ −0.3þ0.1
−0.1ð0.00Þ −1.2þ0.1

−0.1ð0.03Þ −2.58� 0.58

−0.25ð0.00Þ −0.0þ0.1
−0.1ð0.00Þ −0.3þ0.1

−0.1ð0.00Þ −0.86� 0.19

TABLE IV. Virtual octet plus virtual decuplet contributions
to the SU(3)-breaking corrections to f1ð0Þ in covariant BChPT
(in percentage). The uncertainties are obtained by varying μ from
0.7 to 1.3 GeV. Finite-volume corrections are given in the
parentheses.

δð2Þ δð3Þ δð2Þ þ δð3Þ LQCD [32]

ΣN −1.14ð−0.07Þ 7.0þ2.3
−1.7 ð−0.09Þ 5.9þ2.3

−1.7 ð−0.16Þ −3.44� 1.4

−0.70ð−0.02Þ 4.7þ1.4
−1.0 ð−0.03Þ 4.0þ1.4

−1.0 ð−0.05Þ −1.84� 0.84

−0.25ð0.00Þ 1.8þ0.6
−0.2 ð−0.01Þ 1.5þ0.6

−0.2 ð−0.01Þ −0.81� 0.33

ΞΣ −1.26ð0.06Þ 3.8þ1.8
−1.4 ð0.00Þ 2.5þ1.8

−1.4 ð0.06Þ −1.92� 0.79

−0.66ð0.02Þ 2.9þ1.2
−0.9 ð0.00Þ 2.2þ1.2

−0.9 ð0.02Þ −2.58� 0.58

−0.19ð0.00Þ 1.5þ0.6
−0.5 ð0.00Þ 1.3þ0.6

−0.5 ð0.00Þ −0.86� 0.19

5In order to describe the quark-mass dependence of f1ð0Þ in
the plots, we use phenomenological interpolators to accurately
reproduce the pion-mass dependence of the kaon and baryon
octet masses obtained from the LQCD configurations. In the case
ofMΛ, we always use the GMO relation, whereas for the decuplet
we use the LO BChPT formulas.
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δð4Þ ¼ c12ðm2
K −m2

πÞ2; ð5Þ

and fit the constant to the LQCD data in each of the two
channels. The results are shown in Table V, where we
also list the resulting values of δf1ð0Þ at the physical point
and where we compare with the AGT-based fits done in
Ref. [32]. As we can see, the corrections to f1ð0Þ at Oðp5Þ
needed to fit the LQCD data of Ref. [32] would be ∼−7%
and ∼−6% for the ΣN and the ΞΣ channels, respectively.
These corrections are larger than those one would expect
from Oðm2

sÞ terms, and in this scenario one will certainly
conclude that the chiral expansion for f1ð0Þ is very slow or
nonconverging. Further LQCD simulations at lighter quark
masses and with full control of systematic uncertainties
will be very helpful to clarify this issue.
This exercise is also illustrative in highlighting the role

that chiral dynamics can play in the SU(3) breaking of
f1ð0Þ. As shown in Table V, the results of the BChPT-
inspired fits are quite different from those based on the
AGT, where one fits a term like in Eq. (5), ignoring the
effects of the chiral loops. The differences are just a
consequence of the structure of the chiral expansion of
f1ð0Þ discussed in Sec. II. Indeed, the loop corrections do
not scale quadratically in ms, but instead as Oðm1=2

s Þ,

OðmsÞ, etc., as soon as ms becomes much larger than mud
approaching the physical point. To better study the impact
these effects can have on the chiral extrapolation of f1ð0Þ,
we define the following function [28,29,32]:

R ¼ δf1ð0Þ
ðm2

K −m2
πÞ2

; ð6Þ

where we have factored out a dependence ∼m2
s from

δf1ð0Þ. In Fig. 3 we show the results of our BChPT-
inspired fits compared to the LQCD results. As one can see,
the chiral behavior predicted by BChPT is very different
from the constant dependence expected by the AGT, and
terms which are clearly nonanalytical in mq dominate the

FIG. 2 (color online). SU(3)-breaking corrections to f1ð0Þ in infinite volume as functions of the pion mass mπ in the different
approaches of covariant BChPT discussed in the text. The (red) solid lines are the Oðp4Þ results including octet and decuplet
contributions, the (blue) dotted lines are Oðp4Þ results including only the octet corrections, the (red) dashed lines are Oðp3Þ results
including octet and decuplet contributions, and the (blue) dashed-dotted lines are Oðp3Þ results including only the octet corrections.

TABLE V. Results for f1ð0Þ (in percentage) at the physical
point using fits to LQCD points with covariant BChPT up to
Oðp4Þ plus an analytical piece ofOðp5Þ. The first error is statistic
and the second theoretical, stemming from unknown Oðp5Þ
pieces. We compare these with the results obtained using the
AGT inspired fits done in Ref. [32].

c12 Chiral one-loopþ LEC½Oðp5Þ� AGT [32]

ΣN −1.40ð12Þ −0.6ð0.7Þð3.5Þ −2.66ð63Þ
ΞΣ −1.16ð8Þ −6.6ð0.4Þð1.4Þ −2.63ð39Þ
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extrapolation around the physical point. In fact the results
in the extrapolation can be very different if one account
for these effects using the BChPT calculation discussed
in this work.

C. A close-up onto the volume dependence

Although FVCs are small in the current LQCD setup of
Ref. [32], they can become large with decreasing mπ .
In Fig. 4, we show the ratio of the FVCs, Δf1ð0Þ, to the
corresponding SU(3)-breaking corrections, δf1ð0Þ, as a
function of the box size L for different mπ and with the
strange quark-mass set at its physical value. The Oðp2Þ
octet baryon masses appearing in the calculation are
determined using the LECs obtained in Ref. [52] by fitting

to the available LQCD data, and theOðp2Þ decuplet baryon
masses are determined using the LECs given in the text.
Because at mπ ¼ 0.14 GeV, δfΞΣ1 ¼ 0.2% is accidentally
small, we have multiplied the corresponding δf1 by a factor
of 3 to calculate the ratio.
One can clearly see that at mπ ¼ 0.14 GeV, with

L ≈ 3 fm as in Ref. [32], FVCs can be as large as 30%.
In addition, in the ΞΣ and ΛN channels, a nonmonotonous
change of FVCs with L is observed. It seems that for
LQCD simulations with light-quark masses close to
their physical values, a box size of 5 to 6 fm would be
necessary to keep FVCs smaller than 10%. The calculations
presented in this work could be used in the future for
testing and correcting the finite volume effects in LQCD
calculations.

FIG. 3 (color online). SU(3)-breaking corrections to f1ð0Þ in infinite volume as functions of the pion mass, mπ , in covariant BChPT.
An analytical Oðp5Þ term has been added to the full Oðp4Þ BChPT results.
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FIG. 4 (color online). Ratio of finite-volume corrections to SU(3)-breaking corrections to f1ð0Þ as a function of L and mπ (see text
for details).
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IV. SUMMARY

We have studied the discrepancy between the latest
nf ¼ 2þ 1 LQCD simulation results on the hyperon vector
couplings, f1ð0Þ, and the corresponding predictions of
covariant baryon chiral perturbation up to Oðp4Þ. In
particular, we studied the chiral extrapolation of and
finite-volume corrections to the LQCD data. Our studies
showed that at the present LQCD setup, finite-volume
corrections are small and can be safely neglected.
Furthermore, nonanalytical chiral contributions can become
important in extrapolating LQCD results to the physical
point, while a naive application of the Ademollo Gatto
theorem could be inappropriate. Nevertheless, our studies
showed that neither of the above two effects can explain
the discrepancy between current fully dynamical LQCD
simulations and the BChPT predictions without sizable
Oðp5Þ contributions. Clearly, further studies, particularly
LQCD simulations with smaller light-quark masses and
larger volumes, are needed to clarify the situation.
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APPENDIX: FINITE-VOLUME CORRECTIONS
TO f 1ð0Þ AT Oðp3Þ

We introduce the following notations for FVCs:

ΔGL ¼ GL −G∞; ðA1Þ

where G denotes a generic loop integral and Lð∞Þ
denotes the corresponding result in finite volume (infinite
space-time).
The Oðp3Þ results introduced by virtual octet baryons

have the following structure for the transition i → j:

Δδð2ÞB ði → jÞ ¼
X

M¼π;η;K

βBPM ΔHBPðmMÞ þ
X
M¼π;η

βMP
M ΔHMPðmM;mKÞ þ

X
M¼π;η;K

βKRM ΔHKRðmMÞ −
3

8

X
M¼π;η

ΔHTD1ðmM;mKÞ

þ 3

8

X
M¼π;η

ΔHTD2ðmMÞ þ
3

4
ΔHTD2ðmKÞ þ

1

2

X
M¼π;η;K

ðβWF
M ðiÞ þ βWF

M ðjÞÞΔHWFðmMÞ; ðA2Þ

where βBP, βMP, βKR, and βWF are given in the Appendix of Ref. [27], and the FVCs ΔHBP, ΔHMP, ΔHKR, ΔHTD1,ΔHTD2,
and ΔHWF are, respectively,

ΔHBP ¼
−1
F2
0

Z
1

0

dxð1 − xÞ
�
δ1=2ðM2

BPÞ þ
1

8
ð−12ð−2þ xÞxm2

0 − 8M2
BPÞδ3=2ðM2

BPÞ

þ 1

8
ð3ð−1þ xÞ4m4

0 − 6ð1þ 2x − x2Þm2
0M

2
BP þ 3M4

BPÞδ5=2ðM2
BPÞ

�
; ðA3Þ

ΔHMP ¼
−1
F2
0

Z
1

0

dx
Z

1−x

0

dy

�
δ1=2ðM2

MPÞ þ
1

4
ð−3xð2þ 3xÞm2

0 −M2
MPÞδ3=2ðM2

BPÞ

þ 1

4
ð3x4m4

0 þ 3xð2þ xÞm2
0M

2
MPÞδ5=2ðM2

MPÞ
�
; ðA4Þ

ΔHKR ¼ −1
F2
0

Z
1

0

dx
1

2

�
δ1=2ðM2

KRÞ −
1

2
ððx − 1Þ2m2

0 þM2
KRÞδ3=2ðM2

KRÞ
�
; ðA5Þ

ΔHTD1 ¼
−1
F2
0

Z
1

0

dxδ1=2ðM2
TD1Þ; ðA6Þ

ΔHTD1 ¼
−1
F2
0

Z
1

0

dx
1

2
δ1=2ðM2

TD2Þ; ðA7Þ
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ΔHWF ¼
−1
F2
0

Z
1

0

dx

�
xδ1=2ðM2

WFÞ þ
1

4
ðxð6þ x − 9x2Þm2

0 þ ð−1 − xÞM2
WFÞδ3=2ðM2

WFÞ þ
1

4
ð3ð−1þ xÞ2x3m4

0

þ 3ð−1þ xÞxm2
0ðm2

Mð−1þ xÞ þ ð3þ xÞM2
WFÞÞδ5=2ðM2

WFÞ
�
; ðA8Þ

where m0 is the chiral limit octet baryon mass, mM is the relevant meson mass, and M’s are defined in Eqs. (A15)–(A24).
The Oðp3Þ results induced by virtual decuplet baryons are

Δδð2ÞD ði → jÞ ¼
X

M¼π;η;K

γBPM ΔDBPðmMÞ þ
X
M¼π;η

γMP
M ΔDMPðmM;mKÞ þ

X
M¼π;η;K

γKRM ΔDKRðmMÞ

þ 1

2

X
M¼π;η;K

ðγWF
M ðiÞ þ γWF

M ðjÞÞΔDWFðmMÞ; ðA9Þ

where γBP, γMP, γKR, and γWF are given in the Appendix of Ref. [27], and the FVCs ΔDBP, ΔDMP, ΔDKR, and ΔDWF are,
respectively,

ΔDBP ¼
C2

F2
0m

2
D

Z
1

0

dx

�
1

2
ð3ð1þ xÞ2m2

0 − 5 ~M2
BP þ 6ð1þ xÞm0ΔD þ 3Δ2

DÞδ3=2ð ~M2
BPÞ

þ 1

2
ð−3ð1þ xÞ2m2

0 þ 3 ~M2
BP − 6ð1þ xÞm0ΔD − 3Δ2

DÞ ~M2
BPδ5=2ð ~M2

BPÞ þ δ1=2ð ~M2
BPÞ

�
−m2

0

6
ð1 − xÞ; ðA10Þ

ΔDMP ¼
C2

F2
0m

2
D

Z
1

0

dx
Z

1−x

0

dyfð3ð−2þ xÞxm2
0 þ ~M2

MP − 3xm0ΔDÞδ3=2ð ~M2
MPÞ

þ ð−3ð−2þ xÞxm2
0 þ 3xm0ΔDÞ ~M2

MPδ5=2ð ~M2
MPÞ − δ1=2ð ~M2

MPÞg
m2

0

6
; ðA11Þ

ΔDKR ¼ C2

F2
0m

2
D

Z
1

0

dx
m0

6
fðð1þ xÞm0 þ ΔDÞðδ1=2ð ~M2

KRÞ − ~M2
KRδ3=2ð ~M2

KRÞÞg; ðA12Þ

ΔDWF ¼
C2

F2
0m

2
D

Z
1

0

dx
m0

6
fð3m2

0ðx − 1ÞxmD − 3m3
0ðx − 1Þ2xÞ ~M2

WFδ5=2ð ~M2
WFÞ þ ð−2 ~M2

WFmD − 3m2
0ðx − 1ÞxmD

þ 3m0
~M2

WFðx − 1Þ þ 3m3
0ðx − 1Þ2xÞδ3=2ð ~M2

WFÞ þ ð2mD − 3m0ðx − 1ÞÞδ1=2ð ~M2
WFÞg; ðA13Þ

where mD is the chiral limit decuptet baryon mass, and ΔD ¼ mD −m0.
In the above equations, the master formulas δrðM2Þ are defined as

δrðM2Þ ¼
2−1=2−r

� ffiffiffiffiffiffiffiffi
M2

p �
3−2r

π3=2ΓðrÞ
X
~n≠0

�
L

ffiffiffiffiffiffiffiffi
M2

p
j~nj

�
−3=2þr

K3=2−r

�
L

ffiffiffiffiffiffiffiffi
M2

p
j~nj

�
; ðA14Þ

where KnðzÞ is the modified Bessel function of the second kind, and
P

~n≠0 ≡Pþ∞
nx¼−∞

Pþ∞
ny¼−∞

Pþ∞
nz¼−∞ð1 − δðj~nj; 0ÞÞ.

The M2 for different diagrams are defined as

M2
BP ¼ m2

0ð1 − xÞ2 þm2
Mx − iϵ; ðA15Þ

M2
MP ¼ m2

0x
2 þm2

1y −m2
2ðxþ y − 1Þ − iϵ; ðA16Þ

M2
KR ¼ m2

0ð1 − xÞ2 þm2
Mx − iϵ; ðA17Þ

M2
TD1 ¼ m2

1xþm2
2ð1 − xÞ − iϵ; ðA18Þ
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M2
TD2 ¼ m2

M − iϵ; ðA19Þ

M2
WF ¼ m2

0x
2 þm2

Mð1 − xÞ − iϵ; ðA20Þ
~MBP ¼ m2

Dð1 − xÞ þ xm2
M þm2

0xðx − 1Þ − iϵ; ðA21Þ

~MMP ¼ m2
Dxþm2

0xðx − 1Þ þm2
1y −m2

2ðxþ y − 1Þ − iϵ;

ðA22Þ

~MKR ¼ m2
Dð1 − xÞ þ xm2

M þm2
0xðx − 1Þ − iϵ; ðA23Þ

~MWF ¼ m2
Dxþm2

Mð1 − xÞ þm2
0xðx − 1Þ − iϵ; ðA24Þ

where m1 and m2 are the masses of the relevant mesons
appearing in the corresponding Feynman diagrams.
In evaluating the FVCs, the integrations over the

Feynman parameters x and y are performed numerically.
The sum over ~n is taken up to the maximal value allowed by
the lattice setup, i.e., j~nj ≤ L=a, with L the spatial lattice
size and a the lattice spacing, and it is performed using
spherical coordinates by taking into account the degeneracy
of j~nj2 ¼ n2x þ n2y þ n2z explicitly (see, e.g., Ref. [74]).
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