
Constraining the violation of the equivalence principle with IceCube
atmospheric neutrino data

A. Esmaili,1,2,* D. R. Gratieri,1,3,† M.M. Guzzo,1,‡ P. C. de Holanda,1,§ O. L. G. Peres,1,4,∥ and G. A. Valdiviesso5,¶
1Instituto de Física Gleb Wataghin—UNICAMP, 13083-859 Campinas, São Paulo, Brazil

2Institute of Convergence Fundamental Studies, Seoul National University of Science and Technology,
Gongreung-ro 232, Nowon-gu, Seoul 139-743, Korea

3High and Medium Energy Group, Instituto de Física e Matemática, Universidade Federal de Pelotas,
Caixa Postal 354, CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil

4Abdus Salam International Centre for Theoretical Physics, ICTP, I-34010 Trieste, Italy
5Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, Unifal-MG, Rod. José Aurélio Vilela,

11999, 37715-400 Poços de Caldas, Minas Gerais, Brazil
(Received 26 April 2014; published 11 June 2014)

The recent high-statistics high-energy atmospheric neutrino data collected by IceCube open a new
window to probe new physics scenarios that are suppressed in lower-energy neutrino experiments. In this
paper we analyze the IceCube atmospheric neutrino data to constrain the violation of equivalence principle
(VEP) in the framework of three neutrinos with nonuniversal gravitational couplings. In this scenario the
effect of the VEP on neutrino oscillation probabilities can be parametrized by two parameters, Δγ21 ≡
γ2 − γ1 and Δγ31 ≡ γ3 − γ1, where γi’s denote the coupling of neutrino mass eigenstates to the gravitational
field. By analyzing the latest muon-tracks data sets of IceCube-40 and IceCube-79, besides providing the
two-dimensional allowed regions in the ðϕΔγ21;ϕΔγ31Þ plane, we obtain the upper limits jϕΔγ21j <
9.1 × 10−27 (at 90% C.L.), which improves the previous limit by ∼4 orders of magnitude, and jϕΔγ31j ≲
6 × 10−27 (at 90% C.L.), which improves the current limit by ∼1 order of magnitude. Also we discuss in
detail and analytically the effect of the VEP on neutrino oscillation probabilities.
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I. INTRODUCTION

The equivalence principle is the cornerstone of classical
gravitational theories, fromNewtoniangravitation togeneral
relativity. The weak equivalence principle (WEP) states that
the geodesic paths followed by free-falling bodies are the
same, regardless of their energy content. In the other words,
the motion of a falling body is determined only by the
surrounding geometry and not by the body’s own properties
[1]. In the weak field limit, this principle leads to a universal
acceleration of the falling bodies, a fact that is rooted in two
principles of the Newtonian gravitation: the equivalence of
inertial and gravitational masses and universality of the
Newton’s gravitational constant GN . Since the proposal of
the WEP, this hypothesis has been extensively tested by a
large diversity of experiments, including torsion-balance
experiments [2]; motion of solar system bodies [3]; spec-
troscopy of atomic levels [4]; and pulsars [5–7], which
always lead to strong limits onpossible deviations.However,
recent developments in theoretical physics are systemati-
cally indicating that many modern attempts to obtain a

quantum version of the gravitational theory lead to the
prediction that the equivalence principle will be violated in
some scale (see, for example, Refs. [8–14]). In this sense,
improving the current limits on the violation of equivalence
principle (VEP) provides a diagnostic tool in probing very
high-energy theories of quantum gravity, which are almost
inaccessible to conventional experiments.
One of the methods to probe the VEP is through the

neutrino oscillation phenomena. The effect of the VEP on
neutrino oscillation was first studied by Gasperini [15] and
later developed by others in Refs. [16,17]. The original
model was intended to solve the solar neutrino problem
[18–26], which is now in excellent agreement with the
framework of massive neutrinos with the Mikheyev-
Smirnov-Wolfenstein effect [27,28]. However, despite its
failure to explain the solar neutrino problem, the VEP can
contribute to flavor oscillation as a subdominant effect and
so can be probed by solar [29,30], atmospheric [31–39],
supernova [40,41], cosmic [42], and accelerator [43,44]
neutrinos.
Essentially, the sensitivity of neutrino oscillation to the

VEP originates from the fact that the flavor states of
neutrinos are a coherent superposition of mass eigenstates
and so act as interferometers that are sensitive to differences
in the coupling of mass states to a gravitational field. The
bottom line is that the VEP effectively changes the mass-
squared differences by adding a term proportional to the
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square of neutrino energy (∝ E2
ν). Thus, by the increase of

neutrino energy, the VEP effects become stronger, and so
the potential to discover/constrain the VEP increases.
Among the known perpetual sources of neutrinos, atmos-
pheric neutrino energies extend up to very high energy and
so provide a unique opportunity to probe the VEP. The
construction of huge (km3 scale) neutrino telescopes, with
the completed IceCube detector at the South Pole as an
example, fulfills the detection of these high-energy atmos-
pheric neutrinos. Currently, two sets of high-energy atmos-
pheric neutrino data are available from the IceCube
experiment: the “IC-40” data set in the energy range
(100 GeV–400 TeV) [45] and “IC-79” data set in the
range (20 GeV–10 TeV) [46], with the total number of
events ∼18; 000 and ∼40; 000, respectively. In this paper,
we use these data in the search of the VEP in the most
general phenomenological model accommodating it. By
analyzing these data, we obtain the most stringent upper
limit of VEP parameters; some of them are ∼4 orders of
magnitude stronger than the current limits.
This paper is organized in the following way. In Sec. II

we review the phenomenology of the oscillation of massive
neutrinos in the presence of the VEP and current upper
limits on VEP parameters. In Sec. III we study in detail the
effect of the VEP on neutrino oscillation. Also, we show the
numerical calculation of oscillation probabilities and their
interpretation in terms of analytical approximations. Our
analysis of the atmospheric neutrino data of IceCube is
presented in Sec. IV. A conclusion is provided in Sec. V.

II. PHENOMENOLOGY OF MASSIVE NEUTRINOS
IN THE PRESENCE OF THE VEP

Different approaches for the implementation of the VEP
in the neutrino sector of the standard model exist.
Originally, the VEP was introduced as a mechanism that
induces flavor oscillation even for massless neutrinos. For
massless neutrinos, although the neutrino states do not
couple directly to the gravitational field, during the propa-
gation the gravitational redshift develops a phase difference
between the components of the superposition of gravita-
tional eigenstates, which leads to flavor oscillation [15]. In
this case, the gravitational and flavor eigenstates do not
coincide and are related to each other by a unitary mixing
matrix. However, as it is confirmed by the data of more than
two decades of neutrino oscillation experiments, neutrinos
are massive with at least two different nonzero masses for
the three mass eigenstates. Global analysis of oscillation
data strongly verified that these mass differences are
responsible for the observed oscillation phenomena, and
the VEP (if exists) can contribute only subdominantly.
Within this framework of massive neutrinos, three sets of
eigenstates can be defined: mass eigenstates (which are
defined by the diagonalization of the charged lepton mass
matrix), gravitational eigenstates (which diagonalize the
coupling matrix of neutrinos to the gravitational field; the

diagonalizing matrix is not proportional to the unit matrix
in the presence of the VEP), and flavor eigenstates (which
enter the charged current interaction). In general, these
three sets of eigenstates are not equal, and so choosing one
of them to write the Schrödinger-like equation of evolution
demands introducing two 3 × 3 mixing matrices for which
one of them is almost the conventional Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix and the other parametr-
izes the VEP (see Refs. [16,21]). In this approach, the
number of VEP parameters is equal to the number of
parameters required to parametrize the 3 × 3 unitary
matrix, which is five, including the possible phases.
However, since probing this multidimensional parameter
space is cumbersome, we adopt a different approach that
reduces the number of VEP parameters to two. The
approach we adopt in this paper (which was introduced
first in Ref. [17]) is based on the assumption that the weak
equivalence principle is violated via the dependence of
Newton’s constant on the mass of the neutrino state; i.e.,
G0

N ¼ γiGN , where γi depends on the mass mi (so, γi → 1
means restoration of the equivalence principle). So, in our
approach, the VEP is induced by the nonuniversality of
gravitational coupling among the neutrino states, which is
effectively taken into account by modifying the metric in
the weak field approximation. It is worth mentioning that,
since currently strong limits exist on the VEP and no self-
consistent quantum theory of gravity is envisaged, adopting
this minimalistic and phenomenological approach is quite
justifiable and robust.
In the weak field approximation, the space-time metric

can be expressed as gμν ¼ ημν þ hμνðxÞ, where the
Minkowski metric ημν ¼ diagð1;−1;−1;−1Þ and hμν ¼
−2γiϕðxÞδμν [47]. Here, ϕ is the Newtonian gravitational
potential, and the constant GN is implicit. As we men-
tioned, the VEP will be accommodated by introducing the
multiplicative species-dependent factor γi such that
ϕVEP ¼ γiϕ. Incorporating this metric in the Klein–
Gordon equation (and thus neglecting the spin-flip effects),
we obtain the relation for the Hamiltonian eigenvalues [30],

Ei ¼ pνð1þ 2γiϕÞ þ
m2

i

2pν
ð1þ 4γiϕÞ; ð1Þ

where pν denotes the neutrino momentum. The usual
relativisticdispersionrelationEi ¼ pν þm2

i =ð2pνÞ is recov-
eredforϕ ≪ 1.Changingtotheflavorbasis, theSchrödinger-
like equation of neutrino evolution takes the form

i
dνα
dr

¼
�

1

2pν
UðM2 þ ΔGÞU† þ VðrÞ

�
αβ

νβ; ð2Þ

whereU ¼ U23U13U12 is thePMNSmixingmatrix(Uij’sare
rotation matrices with angle θij, i < j ≤ 3) and the mass
matrix M2¼diagð0;Δm2

21;Δm2
31Þ, where Δm2

ij≡m2
i −m2

j .

In this equation, VðrÞ ¼ ffiffiffi
2

p
GFNeðrÞdiagð1; 0; 0Þ is the
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effective matter potential of the Earth, where GF is the
Fermi’s constant and NeðrÞ is the electron number density
profile of the Earth. Finally, the ΔG in Eq. (2) contains all
the VEP contributions to neutrino oscillation and is
given by

ΔG ¼ diagð0;�4p2
νjϕðrÞΔγ21j;�4p2

νjϕðrÞΔγ31jÞ; ð3Þ

where the two VEP parameters Δγ21 ≡ γ2 − γ1 and Δγ31 ≡
γ3 − γ1 represent the differences betweenGN for the respec-
tive mass eigenstates. As can be seen, the observable VEP
parameters are ϕΔγ21 and ϕΔγ31. With our current knowl-
edge of the large scale structure of Universe, the dominant
contribution to ϕ is from the great attractor with the value
∼10−5; though ambiguities exist on this value and also on
other possible sources. However, since the VEP effect
appears just as the multiplication of ϕ and Δγij, these
ambiguities can be avoided by reporting the limits on
ϕΔγij instead of Δγij. Also, dominant contribution from
largescaledistant sourcesmeans thatwecansafely ignore the
position dependence of ϕðrÞ over the propagation path of
atmospheric neutrinos and assume that the potential is
constant. InEq. (3), the� signs take intoaccount thedifferent
possible hierarchies forVEPparameters γi, such that the plus
signmeans thehierarchyofVEPparameters is thesameas the
one exhibited by themasses, while theminus sign represents
the case in which the hierarchies do not match. Since there is
no reason a priori to restrict these possibilities, we consider
both the plus and minus signs in our analysis. The evolution
equation of antineutrinos can be obtained from Eq. (2) by
replacing V → −V and U → U�.
In Table I, we list the existing upper limits on VEP

parameters ϕΔγij from various sources of neutrinos.1 As
can be seen from this table, the current upper limits on VEP
parameters are ϕΔγ32 ≲ few × 10−26 and ϕΔγ21 ≲ 10−22.
The sensitivity of the ANTARES and IceCube experiments
were studied in Refs. [38] and [36], respectively, with the
result ϕΔγ32 ≲ 3 × 10−24 for ANTARES and ≲2 × 10−28

for IceCube. In this paper, we derive the upper limits on
ϕΔγij by analyzing the collected data by the IceCube
experiment.
Probabilities of flavor oscillation for atmospheric neu-

trinos propagating through the Earth can be obtained by the
numerical solution of Eq. (2), with the matter density taken
from the PREM model of Earth [48]. For our analysis in
Sec. IV, we calculated these probabilities by scanning the
parameter space of ϕΔγ21 and ϕΔγ31 and confronted it with
the published IC-40 and IC-79 data sets from the IceCube
neutrino telescope. However, before describing the analysis

method, in the next section, we discuss the signature of the
VEP in oscillation probabilities, especially in the high-
energy range (Eν ≳ 100 GeV) where IceCube collects data.

III. OSCILLATION PROBABILITIES IN THE
PRESENCE OF THE VEP

As can be seen from Eq. (2), the VEP effectively
modifies the standard neutrino oscillation picture by adding
the termΔG to the mass-squared matrix of neutrinos. Thus,
basically, the VEP in neutrino oscillation is equivalent to
replacing the standard mass-squared differences Δm2

ij by

Δm2;eff
ij ¼ Δm2

ij � 4E2
νjϕΔγijj: ð4Þ

Substituting this effective mass-squared difference in the
evolution equation in Eq. (2), the first term in Eq. (4) that
induces the standard oscillation is inversely proportional to
Eν. It is well known that the oscillation induced by this term
diminishes in the high-energy range (≳100 GeV), which is
our interest in this paper; the νe mixing is suppressed in
high energy due to Earth’s matter effect, while the νμ=τ
oscillation length 4πEν=Δm2

31 ∼ 105 km ðEν=100 GeVÞ
becomes larger than the diameter of Earth 2R⊕ ∼
12;000 km, and so νμ − ντ oscillation will be suppressed.
However, the second term in Eq. (4) that characterizes the
VEP contribution to neutrino oscillation appears in
the evolution equation as 2EνϕΔγij, and so the effect of
the VEP dominates with the increase of energy. This
dominant contribution of the VEP to neutrino oscillation
in the high-energy range is the reason that neutrino tele-
scopes, such as IceCube, are perfect detectors in probing
the VEP.
In the absence of the VEP, since the matter effect

suppresses νe oscillation, the oscillation of νμ=τ can be
described by 2ν approximation. In this approximation, we
can write the survival probability of muon neutrinos for the
standard oscillation scenario as2

TABLE I. Current upper limits on VEP parameters ϕΔγij from
different analyses.

Neutrino source ϕΔγ32 ϕΔγ21 Reference

SN1987A 0 ≲10−22 [41]
Atmospheric (SK) ≲4 × 10−25 0 [35]
Atmosphericþ K2K ≲6 × 10−26 0 [35]
Atmospheric (MACRO) ≲3 × 10−24 0 [37]
Atmospheric (AMANDA) ≲3 × 10−25 0 [39]
Solar 0 ≲10−19 [30]

1It should be noticed that some of the limits on ϕΔγij in Table I
have been obtained with the assumption that mass eigenstates and
gravitational eigenstates are not equal and are related by a unitary
transformation, which in the 2ν system can be parametrized by a
rotation angle θG ∈ ½0; π�. The reported limits are either for
θG ¼ 0 or marginalized over θG.

2Since we are interested in the high-energy range (≳10 GeV),
here we neglect the parametric resonance and effect of θ13.
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Pstdðνμ → νμÞ ¼ 1 − sin22θ23sin2
�
Δm2

31

4Eν
L

�
; ð5Þ

where L ¼ −2R⊕ cos θz, with R⊕ and θz denoting, respec-
tively, Earth’s radius and the zenith angle of the incoming
neutrino (for up-going neutrinos with −1 ≤ cos θz ≤ 0).
The minima of the νμ survival probability are at energies

Emin;n
ν;std , derived from the condition (n ¼ 0; 1;…)

Δm2
31L

4Emin;n
ν;std

¼
�
nþ1

2

�
π⟶Emin;n

ν;std

¼24.8GeV

�
1

2nþ1

��
Δm2

31

2.41×10−3 eV2

��
cosθz
−1

�
;

ð6Þ

and the maxima are at Emax;k
ν;std , given by (k ¼ 1; 2;…)

Δm2
31L

4Emax;k
ν;std

¼ kπ ⟶ Emax;k
ν;std

¼ 12.4 GeV

�
1

k

��
Δm2

31

2.41 × 10−3 eV2

��
cos θz
−1

�
:

ð7Þ

Although the matter effect modifies this pattern, the first
few maxima and minima can be read from Eqs. (6) and (7)
fairly.
In the next subsections, we extend this discussion to the

case of the VEP. We consider three cases: case i (Δγ21 ¼ 0
and Δγ31 ≠ 0), case ii (Δγ21 ≠ 0 and Δγ31 ¼ 0), and
case iii (Δγ21 ¼ Δγ31 ≠ 0).

A. Case i : ϕΔγ21 ¼ 0 and ϕΔγ31 ≠ 0

Starting with the case in which ϕΔγ21 ¼ 0, the VEP
will modify only the Δm2

31 as described by Eq. (4),
such that3

Δm2;eff
31 ¼ Δm2

31 þ 4E2
νϕΔγ31; Δm2;eff

21 ¼ 0: ð8Þ

In the analytical discussions of this section, we assume
Δγ31 > 0, unless mentioned otherwise. Generalization to
Δγ31 < 0 is straightforward. In the propagation basis
defined by jν0i ¼ U†

23jνi, the evolution equation can be
written as (since Δm2;eff

21 ¼ 0, the θ12 angle can be
neglected)

i
d
dt

0
B@
ν0e
ν0μ
ν0τ

1
CA¼

0
BBB@
s213

�
Δm2;eff

31

2Eν

�
þV 0 s13c13

�
Δm2;eff

31

2Eν

�
0 0 0

s13c13
�
Δm2;eff

31

2Eν

�
0 c213

�
Δm2;eff

31

2Eν

�
1
CCCA
0
B@
ν0e
ν0μ
ν0τ

1
CA;

ð9Þ
where cij ¼ cos θij and sij ¼ sin θij. In the above evolution
equation, ν0μ decouples from the rest of the states. For
constant density, the flavor states ðν0e; ν0μ; ν0τÞ at distance L
can be written as

0
B@

ν0e
ν0μ
ν0τ

1
CA

t¼L

¼

0
B@

T ee 0 T eτ

0 T μμ 0

T τe 0 T ττ

1
CA
0
B@

ν0e
ν0μ
ν0τ

1
CA

t¼0

; ð10Þ

with the T αβ given by

T ee;ττ ¼ cos

�
Δ ~m2

31

4Eν
L

�
∓i cos 2~θ13 sin

�
Δ ~m2

31

4Eν
L

�
;

T eτ ¼ T τe ¼ −i sin 2~θ13 sin
�
Δ ~m2

31

4Eν
L

�
; ð11Þ

T μμ ¼ exp
�
i
ðΔm2;eff

31 þ 2EνVÞ
4Eν

L
�
; ð12Þ

where

Δ ~m2
31¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos2θ13Δm2;eff

31 −2EνVÞ2þðsin2θ13Δm2;eff
31 Þ2

q
;

sin2~θ13¼sin2θ13
Δm2;eff

31

Δ ~m2
31

: ð13Þ

Obviously, a resonance can be identified in Eq. (13) when
cos 2θ13Δm2;eff

31 ¼ 2EνV, which occurs in the neutrino
(antineutrino) channel for ϕΔγ31 > 0 (ϕΔγ31 < 0). The
resonance energy is

Eres;31
ν ¼ V

2ϕΔγ31 cos 2θ12

≃ 18 TeV

�
10−26

ϕΔγ31

��
0.9

cos 2θ13

�� hρYei
4.5 gcm−3

�
; ð14Þ

where hρYei is the average density of Earth. The resonance is
induced by the θ13 angle, and so it is absent when θ13 ¼ 0. In
the resonance region, the ~θ13 is maximal (≃π=4), andΔ ~m2

31

has the minimum value (≃ sin 2θ13Δm2;eff
31 ).

Rotating back to να flavor states, the νμ survival
probability from Eq. (10) is

3Since Δm2
21L=ð4EνÞ ≪ 1 in the high-energy range, we

neglect this term and set Δm2
21 ¼ 0.
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Pðνμ → νμÞ ¼ jðU23T U†
23Þμμj2 ¼ s423jT ττj2 þ c423jT μμj2 þ 2c223s

2
23ℜfT �

μμT ττg

¼ s423

�
1 − sin22~θ13sin2

�
Δ ~m2

31

4Eν
L

��
þ c423

þ 2c223s
2
23

�
cos

�
Δ ~m2

31

4Eν
L

�
cos

�
Δm2;eff

31 þ 2EνV
4Eν

L

�
þ cos 2~θ13 sin

�
Δ ~m2

31

4Eν
L

�
sin

�
Δm2;eff

31 þ 2EνV
4Eν

L

��
;

ð15Þ

where T is the matrix in Eq. (10). Below the resonance
energy, Eres;31

ν , the sin 2~θ13 is suppressed, and the following
simple relation recovers

Pðνμ → νμÞ ¼ 1 − sin22θ23sin2
�
Δm2;eff

31

4Eν
L

�
: ð16Þ

At the resonance, ~θ13 is maximal, and the first term in
Eq. (15) leads to νμ → νe conversion in the resonance

region. Above the resonance region, ~θ13 → θ13. However,
since θ13 is small (s213 ≃ 0.02), the νμ → νe oscillation in
the high-energy range is quite small. Thus, in summary, the
oscillation probability in Eq. (16) is a good approximation
of the νμ survival probability for ϕΔγ31 ≠ 0, except for the
very narrow resonance region where νμ → νe oscillation
exists.
The same condition applied in Eqs. (6) and (7) to find the

minima and maxima of the νμ survival probability can be
applied to Eq. (16), which leads to a quadratic equation for
Eν. The minima of the νμ survival probability in Eq. (16)
are at Emin;n

ν;VEP, which stems from the condition

Δm2;eff
31 L

4Emin;n
ν;VEP

¼
�
nþ 1

2

�
π ⟶ aðEmin;n

ν;VEPÞ2 þ bEmin;n
ν;VEP þ c ¼ 0;

ð17Þ

where the coefficients of the quadratic equation are

a¼ LϕΔγ31
ðnþ 1=2Þπ ; b¼−1; c¼ Δm2

31L
4ðnþ 1=2Þπ : ð18Þ

Solutions of the quadratic equation in Eq. (17) give the
minima of the νμ survival probability E

min;n
ν;VEP in the presence

the VEP as (n ¼ 0; 1;…)

Emin;n
ν;VEP ¼

ðnþ 1=2Þπ
2LϕΔγ31

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Δm2
31L

2ϕΔγ31
½ðnþ 1=2Þπ�2

s #
: ð19Þ

For ϕΔγ31 ≲ 10−25, the second term inside the square root
in Eq. (19) is small even for the largest propagation length
(L ¼ 2R⊕) and n ¼ 0. Thus, using the approximationffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ¼ 1 − x=2, two sets of the solution for Emin;n
ν;VEP

can be obtained: the first set is equal to the minima in
standard oscillation, Emin;n

ν;std in Eq. (6), and the second set is

Emin;n
ν;VEP ¼

ðnþ 1=2Þπ
LϕΔγ31

− Emin;n
ν;std : ð20Þ

The first set of solutions gives the conventional minima in
the low-energy range (≲20 GeV), while the second set of
solutions introduces new minima in the high-energy range.
Since the maximum value of the second term in Eq. (20) is
∼25 GeV, the minima in the high-energy range are
(n ¼ 0; 1;…)

Emin;n
ν;VEP ≃ ðnþ 1=2Þπ

LϕΔγ31

¼ 2.43 TeV

�
2nþ 1

1

��
−1

cos θz

��
10−26

ϕΔγ31

�
: ð21Þ

In the same way, the maxima of the νμ survival probability
can be obtained by the conditionΔm2;eff

31 L=ð4Emax;k
ν;VEPÞ ¼ kπ,

which again leads to two sets of solutions: one set equal to
Emax;k
ν;std in Eq. (7) and the second set given by (k ¼ 1; 2;…)

Emax;k
ν;VEP ≃ kπ

LϕΔγ31
¼ 4.86 TeV

�
k
1

��
−1

cos θz

��
10−26

ϕΔγ31

�
:

ð22Þ

Thus, in summary, in the presence of the VEP with
ϕΔγ31 ≠ 0 in addition to the conventional minima and
maxima in the νμ survival probability in the low-energy
range (≲30 GeV), a new set of maxima and minima exists,
which, for ϕΔγ31 ≲ 10−25, appear in the high-energy range
(≳100 GeV). So, in the presence of the VEP with
ϕΔγ31 ≲ 10−25, although the phenomenology of low-
energy atmospheric neutrinos does not change, the high-
energy range drastically modifies by the new minima and
maxima. A feature of minima and maxima energies, in
Eqs. (21) and (22), respectively, is worth mentioning:
although for the standard oscillation the energies of the
minima and maxima decrease with the increase of cos θz
[see Eqs. (6) and (7)], in the presence of the VEP, the
minima and maxima energies in Eqs. (21) and (22) increase
with the increase of cos θz.

CONSTRAINING THE VIOLATION OF THE EQUIVALENCE … PHYSICAL REVIEW D 89, 113003 (2014)

113003-5



In Fig. 1 we show the numerical calculation of the νμ
survival probability in the presence of the VEP with
ϕΔγ31 ¼ 10−25, 10−26, and 10−27, by blue dotted, red
dashed, and green dotted-dashed curves, respectively.
Also, the black solid line shows the standard νμ survival
probability. All the curves in Fig. 1 are for cos θz ¼ −1. For
the blue dotted curve, where ϕΔγ31 ¼ 10−25, the resonance
at ∼1.8 TeV can be identified. For smaller values of ϕΔγ31,
resonance is out of the range of Fig. 1. As it can be seen, the
pattern of minima of maxima is in agreement with Eqs. (21)
and (22). For example, for ϕΔγ31 ¼ 10−26, in addition to
conventional minima and maxima in Eν ≲ 30 GeV, we
expect the first minimum and maximum at Emin;0

ν;VEP ¼
2.43 TeV and Emax;1

ν;VEP ¼ 4.86 TeV, respectively, which
are clearly visible in the red dashed curve of Fig. 1. For
larger values of ϕΔγ31, the minima/maxima push to lower
energies. For ϕΔγ31 ¼ 10−25, the first minimum and
maximum would be at Emin;0

ν;VEP ≃ 220 GeV [from

Eq. (20)] and Emax;1
ν;VEP ≃ 486 GeV, respectively, which are

in agreement with the blue dotted curve. On the other hand,
for smaller values of ϕΔγ31, the substantial deviation of
theνμ survival probability from the standard pattern occurs
at higher energies. For ϕΔγ31 ¼ 10−27, the first minimum is
at Emin;0

ν;VEP ≃ 24 TeV (which is out of the plotted range in
Fig. 1; see the green dotted-dashed curve). Although this
deviation is in the energy range of the IC-40 data set, due to
small statistics at high energy, sensitivity to these small
values of ϕΔγ31 will be quite challenging.

B. Case ii : ϕΔγ21 ≠ 0 and ϕΔγ31 ¼ 0

When ϕΔγ31 ¼ 0, the VEP does not change the 13-
mass-squared difference, while 12-mass-squared
differences will be modified. However, as we pointed

out already, in the energy range we are considering, the
contribution from Δm2

21 can be neglected, and so Eq. (4)
contains only the contribution from the VEP. Thus, the
effective mass-squared differences are

Δm2;eff
21 ¼ 4E2

νϕΔγ21; Δm2;eff
31 ¼ Δm2

31: ð23Þ

In the analytical discussions of this section, we assume
Δγ21 > 0, unless mentioned otherwise. Generalization to
Δγ21 < 0 is straightforward. Since Δm2;eff

21 increases with
energy, there is no decoupling of νe from νμ=τ anymore, and
the full 3ν system would be considered. In the basis
jν00i ¼ U†

13U
†
23jνi, the evolution equation, Eq. (2), can

be written as

i
d
dt

0
B@

ν00e
ν00μ
ν00τ

1
CA ¼

0
B@

2s212EνϕΔγ21 þ c213V 2s12c12EνϕΔγ21 c13s13V

2s12c12EνϕΔγ21 2c212EνϕΔγ21 0

c13s13V 0
Δm2

31

2Eν
þ s213V

1
CA
0
B@

ν00e
ν00μ
ν00τ

1
CA: ð24Þ

Notice that, by neglecting the terms proportional to s13, the matrix in Eq. (24) is block diagonal, and so jν00τ i decouple from
the rest of states. In this case, the evolution matrix for constant density is0

B@
ν00e
ν00μ
ν00τ

1
CA
t¼L

¼

0
B@

See Seμ 0

Sμe Sμμ 0

0 0 Sττ

1
CA
0
B@

ν00e
ν00μ
ν00τ

1
CA
t¼0

; ð25Þ

where Sαβ are

See;μμ ¼ cos

�
Δ ~m2

21

4Eν
L

�
∓i cos 2~θ12 sin

�
Δ ~m2

21

4Eν
L

�
; Seμ ¼ Sμe ¼ −i sin 2~θ12 sin

�
Δ ~m2

21

4Eν
L

�
ð26Þ

std. oscillation

31 10 25

31 10 26

31 10 27
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FIG. 1 (color online). The νμ survival probability as a function
of neutrino energy for the standard oscillations (solid line) and for
the VEP scenario (case i) with different values of ϕΔγ31. All the
curves are for cos θz ¼ −1. The mixing parameters are fixed at
best-fit values from Ref. [49].
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and

Δ ~m2
21 ¼ 4Eν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ12EνϕΔγ21 − V=2Þ2 þ ðsin 2θ12EνϕΔγ21Þ2

q
; sin 2~θ12 ¼ sin 2θ12

4E2
νϕΔγ21
Δ ~m2

21

ð27Þ

are the effective mass-squared difference and 12-mixing angle in matter in the jν00αi basis. Also,

Sττ ¼ exp

�
−i

Δη
2Eν

L

�
; ð28Þ

where Δη≡ Δm2
31 − EνV − 2E2

νϕΔγ21 is the vacuum amplitude for the decoupled jν00τ i state. The νμ survival probability is
given by (neglecting terms proportional to s13)

Pðνμ → νμÞ ¼ jðU23SU
†
23Þμμj2 ¼ c423jSμμj2 þ s423jSττj2 þ 2c223s

2
23ℜfS�

μμSττg þOðs13Þ

¼ c423

�
1 − sin22~θ12sin2

�
Δ ~m2

21

4Eν
L

��
þ s423

þ 2c223s
2
23

�
cos

�
Δ ~m2

21

4Eν
L

�
cos

�
Δη
2Eν

L

�
− cos 2~θ12 sin

�
Δ ~m2

21

4Eν
L

�
sin

�
Δη
2Eν

L

��
; ð29Þ

where S is the matrix in Eq. (25). For ϕΔγ21 → 0, the
oscillation probability in the standard scenario will be
recovered.
The following comments about the oscillation proba-

bility in Eq. (29) are in order. The first term in Eq. (29),
inside the bracket proportional to c423, is the contribution of
νμ → νe to the νμ survival probability, and in the limit
ϕΔγ21 → 0, it goes to 1; i.e., Pðνμ → νeÞ ¼ 0. But, for
ϕΔγ21 ≠ 0, this term leads to νμ ↔ νe oscillation in the
high-energy range. This term is regulated by the νμ − ντ
mixing. The last term in Eq. (29) is the interference of the
VEP and Δm2

31-induced oscillations. From Eq. (27), for
ϕΔγ21 > 0, obviously there is a resonance in the neutrino
channel at the energy

Eres;21
ν ¼ V

2ϕΔγ21 cos 2θ12

≃ 42 TeV

�
10−26

ϕΔγ21

��
0.4

cos 2θ12

�� hρYei
4.5 gcm−3

�
: ð30Þ

The resonance is in the antineutrino channel for ϕΔγ21 < 0.
In the left and right plots of Fig. 2, we show sin 2~θ12 and
Δ ~m2

21, respectively, as functions of energy for various
values of ϕΔγ21. The resonance at Eres;21

ν can be clearly
identified as maximum in sin 2~θ12 and minimum in Δ ~m2

21

values. At the resonance, Eν ∼ Eres;21
ν , the effective angle

~θ12 is maximal, and a complete conversion of νμ → νe=τ
occurs. At energies higher than resonance energy,
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FIG. 2 (color online). The dependence of sin 2~θ12 and Δ ~m2
21 on energy for different values of VEP parameter ϕΔγ21, in the left and

right panels, respectively. The mixing parameters are set to the best-fit values in Ref. [49].
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Eν ≳ Eres;21
ν , vacuum oscillation recovers; the effective

mixing angle approaches the vacuum value, ~θ12 → θ12,
and oscillation is governed by the effective 21-mass-
squared difference Δ ~m2

21 ¼ 4E2
νϕΔγ21, which induces

νμ → νe=τ oscillation. However, since Δ ~m2
21 ∝ E2

ν, the
mass-squared difference is large, which leads to fast
oscillatory behavior at Eν ≳ Eres

ν . Below the resonance
energy, Eν ≲ Eres;21

ν , the effective mixing ~θ12 is suppressed,
and so Pðνμ → νeÞ≃ 0. So, for Eν ≲ Eres;21

ν where

sin 2~θ12 ≃ 0, the νμ survival probability in Eq. (29)
reduces to

Pðνμ → νμÞ≃ 1 − sin22θ23sin2
�ðΔm2

31 − 2E2
νϕΔγ21Þ

4Eν
L

�
:

ð31Þ

The minima and maxima of Eq. (31) can be obtained in the
same way as case i discussed in Sec. III A. With a
straightforward calculation, it can be shown that, neglecting
the contribution of Δm2

31, the minima and maxima of
Eq. (31) are at 2Emin;n

ν;VEP and 2Emax;k
ν;VEP, respectively [see

Eqs. (21) and (22)]. However, these minima (maxima) with
depth (height) controlled by sin2 2θ23 exist when 2E

min;n
ν;VEP ≲

Eres;21
ν (2Emax;k

ν;VEP ≲ Eres;21
ν ). At higher energies, the oscilla-

tion is induced by Δ ~m2
21 and sin2 2θ12.

In Fig. 3, we show the numerical calculation of the νμ
survival probability for different values ϕΔγ21, for
cos θz ¼ −1. The features discussed above are manifest;
for example, taking ϕΔγ21 ¼ 10−25, which is shown by the
blue dotted curve in Fig. 3, the resonance at ∼4 TeV can be
seen. Above the resonance, oscillation is induced by Δ ~m2

21,
which leads to the fast oscillatory behavior. In lower
energies, oscillation is governed by Δ ~m2

21 and sin2 2θ23,

which leads to minima and maxima with the double
energies with respect to case i in Sec. III A (compare with
the position of minima and maxima in Fig. 1). The
oscillation probability derived in Eq. (31) is in good
agreement with the numerical result shown in Fig. 3.
Comparing the curves in Fig. 3 with standard oscillation

(black solid curve) shows that for ϕΔγ21 ≲ 10−27 the effect
of the VEP shifts to energies higher than ∼10 TeV, where
the flux of atmospheric neutrinos is very small. Thus,
neutrino telescopes are sensitive to ϕΔγ21 ≳ 10−27.

C. Case iii : ϕΔγ21 ¼ ϕΔγ31 ≠ 0

When ϕΔγ21 ¼ ϕΔγ31 ≡ ϕΔγ, after subtracting ϕΔγI
(where I is the unit matrix), the coupling matrix of
neutrinos to the gravitational field is ΔG ¼
diagð−4E4

νϕΔγ; 0; 0Þ. The oscillation probabilities can be
calculated in a similar way as in Sec. III B: by changing the
basis to jν00αi, the Hamiltonian takes a block-diagonal form.
By straightforward calculation, it can be shown that the νμ
survival probability is similar to Eq. (29) with the replace-
ment Δη → Δη0 ¼ Δm2

31 − EνV þ 2E2
νϕΔγ. Thus, all the

discussions of Sec. III B apply here, including the reso-
nance and νμ → νe conversion at high energies, with the
exception that the set of minima and maxima below the
resonance is absent here, mainly since the minima and
maxima of cases i and ii interfere and cancel each other.
This absence of oscillatory behavior below the resonance
energy, which means less deviation from standard oscil-
lation, leads to a weaker limit on the VEP parameters when
ϕΔγ21 ¼ ϕΔγ31, as we show in Sec. IV.

D. Oscillograms

In the previous subsections, we discussed analytically
the main features induced by the VEP on atmospheric
neutrino oscillation in the high-energy range. Also, we
showed the numerical calculation of the νμ survival
probability for up-going neutrinos at IceCube, i.e., neu-
trinos that pass the diameter of Earth and so their incoming
direction has cos θz ¼ −1. In this section, we present the
oscillograms of νμ survival probability, which illustrates,
among the others, also the zenith dependence of
probability.
Figure 4 shows the oscillograms of the νμ survival

probability. The panel 4 is for the standard oscillation;
i.e., ϕΔγ21 ¼ ϕΔγ31 ¼ 0. As we expect, in the shown
energy range Eν > 100 GeV, Pðνμ → νμÞ ¼ 1 except for
percent-level deviation at Eν ∼ 100 GeV and cos θz ≃ −1.
In panel 4b, we show the νμ → νμ oscillation probability for
case i in Sec. III A with ϕΔγ31 ¼ 10−26. The resonance
energy Eres;31

ν ≃ 18 TeV is out of the depicted energy
range in panel 4b, and so, in all the energy range of this
panel, Pðνμ → νeÞ≃ 0. As we discussed in Sec. III A,
below the resonance energy, oscillation is almost vacuum
oscillation dictated by the VEP effective mass difference,

std. oscillation
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FIG. 3 (color online). The νμ survival probability as a function
of neutrino energy for the standard oscillations (solid line) and for
the VEP scenario (case ii) with different values of ϕΔγ21. All the
curves are for cos θz ¼ −1. The mixing parameters are fixed at
best-fit values from Ref. [49].
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Δm2;eff
31 ¼ Δm2

31 þ 2E2
νϕΔγ31 and the amplitude sin2 2θ23.

From Eq. (21), the energy of the first VEP-induced
minimum in Pðνμ→νμÞ at cosθz¼−1 is Emin;0

ν;VEP≃2.4TeV,
which is in agreement with panel 4b. Also, from Eq. (21),
the energy of minimum would increase with the increase of
cos θz, which is manifest by the violet strip in panel 4b.
Panel 4c is for case ii in Sec. III B with ϕΔγ21 ¼ 10−26.

In this case, also the resonance energy Eres;21
ν ≃ 42 TeV is

out of the depicted range. From Eq. (31), the first minimum
would be at 2Emin;0

ν;VEP ≃ 4.8 TeV, which is visible in panel
4c. Finally, panel 4d is for case iii with ϕΔγ21¼
ϕΔγ31¼ 10−26. As can be seen, the pattern of oscillation
is similar to the previous two cases, with the exception that
in the lower energies the maxima and minima are less
profound.

IV. PROBING THE VEP WITH ICECUBE DATA

In this section, we confront the atmospheric neutrino
data collected by IceCube with the expectation in the
presence of the VEP. Generally, IceCube can identify two
types of events: muon tracks and cascades. Muon tracks
originate from the charged current interaction of νμ and ν̄μ,
which produce, respectively, μ− and μþ that their propa-
gation inside the ice emits Cherenkov radiation collectable
by photomultipliers implemented in ice.4 Cascade events

FIG. 4 (color online). The oscillograms for survival probability Pðνμ → νμÞ. The top-left, top-right, bottom-left, and bottom-right
panels are, respectively, for standard oscillation, case i, case ii, and case iii. The values of ϕΔγij are indicated in the captions. The mixing
parameters are fixed to their best-fit values from Ref. [49].

4There is a small contribution to muon tracks through the
charged current interaction of ντ and ν̄τ and the subsequent
leptonic decay of tau particles to muons. This contribution is
quite small in the high-energy range that we are considering in
this paper.
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originate from the other interactions including the neutral
current interaction of all the neutrino flavors and the
charged current interaction of νe, ντ and their antineutrinos.
Each of these two types of events has advantages and
disadvantages. For muon tracks, the benefits are great
resolution in reconstruction of the direction of incoming
neutrinos and high statistics due to the long muon range in
ice and rock, while the drawback is the moderate resolution
in energy reconstruction. On the other hand, for cascades,
the energy reconstruction is good, while the direction
reconstruction of incoming neutrinos is poor.
In this paper, we analyze the atmospheric neutrino data

sets IC-40 [45] and IC-79 [46] containing muon-track
events collected by, respectively, 40 and 79 strings out of
the final 86 strings of the completed IceCube. The energy
ranges of IC-40 ad IC-79 data sets are, respectively,
100 GeV–400 TeV and 100 GeV–10 TeV. To calculate
the expected distribution of events in the presence of the
VEP, we compute numerically the oscillation probabilities
by scanning the whole parameter space of ðϕΔγ21;ϕΔγ31Þ.
In the numerical computation of probabilities, we fix the
mixing parameters to their best-fit values from Ref. [49],
and for the density of Earth, we use the PREM model [48].

Also, we calculate the expected sensitivity of IceCube to
VEP parameters from cascade events. IceCube already
observed atmospheric neutrino induced cascade events
with IC-40 [50] and DeepCore [51]; the latter of which
provided the first measurement of atmospheric νe flux. In
Sec. IV B, we calculate the sensitivity of cascade events to
VEP parameters assuming the full IceCube detector.

A. Constraints on the VEP parameters from
IC-40 and IC-79 muon-track data

The IC-40 and IC-79 data sets are published by the
IceCube collaboration in 10 bins of cos θz (from −1 to 0
with bin width 0.1) and integrated over energy. To analyze
these data, we calculate the expected number of events in
bins of zenith angle and energy, where for the energy bins
we takes widths Δ log10ðEν=GeVÞ ¼ 0.3 and 0.125,
respectively, for the IC-40 and IC-79 configurations.
However, at the end, we confront the total number of
events in zenith bins (integrated over the neutrino energy)
with data. The number of muon-track events in the ith bin
of cos θz and jth bin of Eν is given by

Nμ
i;j ¼ TΔΩ

�X
α¼e;μ

Z
Δi cos θz

Z
ΔjEν

ΦναðEν; cos θzÞPðνα → νμÞðfϕΔγklgÞAνμ
effðEν; cos θzÞdEνd cos θz þ ν → ν̄

�
; ð32Þ

where T is the data-taking time, ΔΩ ¼ 2π is the azimuthal
acceptance of the IceCube detector, Φνα is the atmospheric
neutrino flux of να from Refs. [52,53], and Pðνα → νμÞ is
the oscillation probability with VEP parameters fϕΔγklg.
In Eq. (32), the A

νμðν̄μÞ
eff is the νμðν̄μÞ effective area of

IceCube, which for IC-40 is taken from Ref. [54] and for
IC-79 has been estimated by rescaling the effective area of
IC-40 (the same was used in Refs. [55,56]).
In the analysis of IC-40 and IC-79 data, we perform a

simple χ2 analysis defined by

χ2ðΔγ21;Δγ31; α; βÞ ¼
X
i

�½Ndata
i − αð1þ βð0.5þ cos θzÞÞNμ

i ðϕΔγ21;ϕΔγ31Þ�2
σ2i;stat þ σ2i;sys

�
þ ð1 − αÞ2

σ2α
þ β2

σ2β
; ð33Þ

where σi;stat ¼
ffiffiffiffiffiffiffiffiffiffi
Ndata

i

p
is the statistical error and α and β are

the parameters that take into account, respectively, the
correlated normalization and zenith dependence uncertain-
ties of the atmospheric neutrino flux with the uncertainties
σα ¼ 0.24 and σβ ¼ 0.04 [52]. The σi;stat ¼ fNμ

i is the
uncorrelated systematic error, which for IC-40 and IC-79
we assume ∼4% and 3%, respectively.5 The index i ¼
1;…; 10 runs over zenith bins, and Nμ

i can be obtained
from Eq. (32) by summing over j. After marginalizing with

respect to α and β pull parameters, the upper limit on VEP
parameters ðϕΔγ21;ϕΔγ31Þ can be obtained.
Figure 5 shows the obtained limit (at 90% C.L.) on VEP

parameters from analyzing the IC-40 and IC-79 data. In this
figure, the green solid and red dashed curves are for IC-40
and IC-79 data, respectively. Clearly, the weakening of the
bound at ϕΔγ21 ¼ ϕΔγ31 is visible, which we discussed in
Sec. III C. The one-dimensional limits on VEP parameters
are (at 90% C.L.)

−9.2 × 10−27 < ϕΔγ21 < 9.1 × 10−27;

−6.3 × 10−27 < ϕΔγ31 < 5.6 × 10−27: ð34Þ

Comparing these limits with the current bounds in Table I
shows that the limit on ϕΔγ21 is stronger by ∼4 orders of

5The exact values of uncorrelated systematic errors are not
reported by the IceCube collaboration. We took the mentioned
values by requiring statistically meaningful χ2 values. However,
the obtained bounds are quite smooth with respect to changes in
the value of f.
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magnitude. The limit on ϕΔγ31 from IceCube data is
stronger than the current bound by ∼1 order of magnitude.

B. Cascade analysis

Let us discuss the sensitivity of the atmospheric
induced cascade events to VEP parameters. As we
mentioned, the cascade events originate from neutral
current interaction of all neutrino flavors and charged
current interaction of electron and tau neutrinos. Thus, any
conversion of νμ (ν̄μ) to νe (ν̄e) or ντ (ν̄τ) would lead to a
distortion in the zenith and energy distributions of cascade
events. Especially, as we discussed in Sec. III, the VEP
leads to νμ → νe conversion and so affects the cascade
distributions. Although for cascade events the zenith
resolution is poor, the better energy resolution with
respect to muon-track events makes the cascade analysis
plausible.
We calculate the sensitivity of IceCube (including the

DeepCore part [57], which has higher efficiency in
cascade detection) to VEP parameters. The number of
cascade events can be calculated similarly to Sec. IVA by
taking into account the appropriate effective volume of
IceCube for cascade detection. For the details of the
calculation of the cascade number of events, see Ref. [58].
Again, by performing an χ2 analysis (confronting energy
distribution instead of zenith distribution for muon
tracks), we estimated the sensitivity of cascades to VEP
parameters. We have found a negligible increase in the χ2

value compared to the standard oscillation scenario for
cascades. Thus, the limits on VEP parameters from
cascades are weaker than the limits from muon tracks,
and the strongest limits on VEP parameter are the ones
reported in Sec. IV A.

V. CONCLUSION

One of the essential pillars in the theory of gravitation,
both classical and relativistic, is the equivalence principle,
which has been tested in a variety of experiments. Violation
of the equivalence principle has far-reaching consequences
in the neutrino sector, basically introducing a novel
oscillation pattern that can be measured at neutrino oscil-
lation experiments. Thus, neutrino phenomenology pro-
vides a unique tool to probe the possible violation of the
equivalence principle. The strength of the VEP effect on
neutrino oscillation depends on the neutrino energy: the
VEP effectively introduces mass-squared differences pro-
portional to E2

ν, and so the oscillation phase will be
proportional to Eν. Thus, clearly, the recent collected data
of high-energy (≳100 GeV) atmospheric neutrinos by the
IceCube experiment can discover/constrain the VEP
unprecedentedly.
In this paper, we studied the effect of the VEP on the

oscillation of high-energy atmospheric neutrinos. In the
high-energy range, the conventional standard oscillation
induced by Δm2

ij is absent, and the survival probability of
each neutrino flavor is ∼1. However, the VEP can dras-
tically change this pattern: the effective energy-dependent
mass-squared differences induced by the VEP can lead to
resonance flavor conversions and also oscillatory behavior
in high energy with new maxima and minima in flavor
oscillation probabilities. For the phenomenological model
of the VEP we considered in this paper, with the two VEP
parameters ϕΔγ21 and ϕΔγ31, we studied in detail
the oscillation pattern and provided the analytical descrip-
tions of oscillation probabilities. We justified the numerical
calculation of oscillation probabilities (especially
Pðνμ → νμÞ, which plays the main role in IceCube analysis)
with the obtained analytical expressions and showed that
the analytical approximation explains the oscillation pattern
with impressive accuracy.
Furthermore, we confronted the expected zenith distri-

bution of muon-track events in the presence of the VEP
with the collected data by the IceCube experiments with
two different configurations, namely, IC-40 and IC-79 data
sets. To analyze these data, we performed a simple χ2

analysis, taking into account the statistical and systematic
errors. The oscillation probabilities have been calculated
numerically by scanning the parameter space of VEP
parameters in the full three flavors framework. From these
analyses, we obtained the following bounds on the VEP
parameters at 90% C.L.: −9.2 × 10−27 < ϕΔγ21 < 9.1 ×
10−27 and −6.3×10−27<ϕΔγ31<5.6×10−27. The obtained
limit on ϕΔγ21 is ∼4 orders of magnitude stronger than the
current limit; also, we improved the existing bound on
ϕΔγ31 by ∼1 order of magnitude.
Finally, we investigated the future sensitivity of IceCube

to VEP parameters. We have presented the sensitivity
region in VEP parameter space assuming three times the
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FIG. 5 (color online). The allowed region at 90% C.L. in the
plane ðϕΔγ21;ϕΔγ31Þ. The green solid and red dashed curves are
the limits from IC-40 and IC-79 atmospheric muon-track data,
respectively. The blue dotted-dashed curve shows the sensitivity
of IceCube with three times the IC-79 data.
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IC-79 data set, which improves mildly the obtained limits.
Also, we have studied the effect of the VEP on cascade
events in IceCube, motivated by the fact that the VEP
induces νμ → νe conversion that can distort the energy
distribution of cascade events. However, because of lower
statistics and higher uncertainties for cascade detection, the
sensitivity of IceCube to VEP parameters in the cascade
channel is less than the sensitivity in the muon-track
channel.
At the end, we would like to emphasize that the limits

obtained in this paper can be translated to limits on the
parameters of theories (either effective theories or exten-
sions of Standard Model) that predict/accommodate the
VEP to some level. As an example, in this line, we can
mention the Standard Model extension theories, which
consist of extending the Standard Model action by includ-
ing all the possible terms that violate the Lorentz invariance
[59–61]. One of the consequences of the Standard Model
extension is the violation of the equivalence principle such

that test of the VEP provides a tool for searches of Lorentz
symmetry violation. Further speculations regarding these
connections and possibilities to probe fundamental theories
by VEP tests in the neutrino sector [62–66] will be pursued
in a later work.
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