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We present next-to-leading order predictions for the production of triphoton final states at the LHC and
the Tevatron. Our results include the effect of photon fragmentation for the first time and we are able to
quantify the impact of different isolation prescriptions. We find that calculations accounting for
fragmentation effects at leading order, and those employing a smooth cone isolation where no
fragmentation contribution is required, are in reasonable agreement with one another. However, larger
differences in the predicted rates arise when higher order corrections to the fragmentation functions are
included. In addition we present full analytic results for the γγγ and γγ þ jet one-loop amplitudes. These
amplitudes, which are particularly compact, may be useful to future higher-order calculations. Our results
are available in the Monte Carlo code MCFM.
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I. INTRODUCTION

The study of multiple photon production at hadron
colliders has a long and rich history. Experimental
analyses of isolated prompt diphotons have been under-
taken for nearly thirty years [1–4]. More recent exper-
imental studies at the Tevatron [5–8] and the LHC [9–12]
have provided a wealth of precision data to compare with
theoretical predictions. At hadron colliders, prompt pho-
tons are primarily produced through the OðαsαÞ direct
photon process, h1 þ h2 → γ þ jet. Experimentally, this
high-rate process plays a special role in the calibration of
jet energies and uncertainties by leveraging the simple
kinematics of this process to relate the well-measured
photon to the less-understood recoiling jet. The produc-
tion of photon pairs, h1 þ h2 → γγ, occurs at a much
smaller rate due to the overall coupling involved, Oðα2Þ.
However, a detailed understanding of this channel is
particularly desirable in light of the recent discovery of a
Higgs boson [13,14] that decays through the loop-
induced process H → γγ. With the accumulation of larger
data sets it should be possible to study more complex
final states that include additional hadronic jets, for
instance the Oðα2sαÞ process h1 þ h2 → γ þ 2 jets or
the Oðαsα2Þ process h1 þ h2 → γγ þ jet. Even the rela-
tively rare triphoton process, h1 þ h2 → γγγ should be
accessible with existing data sets. Since such processes
allow a much wider range of kinematic regions, compared
to simpler 2 → 2 reactions, one might expect their study

to provide a more thorough test of the theoretical
predictions.
Experimentally, photons are identified as isolated—i.e.,

they should be accompanied by little hadronic energy—in
order to distinguish them from photons produced through
other mechanisms, e.g., from neutral pion decays. On the
theoretical side it has become common to treat the issue of
isolation in one of two ways. The traditional approach,
which implements a parton-level equivalent of an exper-
imental isolation cut [15], requires the introduction of
fragmentation functions that describe the splitting of a
parton into a photon. These functions require nonpertur-
bative input in a similar fashion to parton distribution
functions (PDFs) and several sets are available that have
been tuned to data from the LEP experiments [16,17].
An alternative approach [18] has been advocated which
changes the isolation prescription in such a way that
fragmentation functions are not required. This prescription,
which has become known as “smooth cone” isolation, thus
enables a more straightforward calculation of higher-order
theoretical predictions for photon processes.
Theoretical predictions for the production of direct

photons and photon pairs have been available at next-to-
leading order (NLO) for some time [15,19]. More recently
the next-to-next-to leading order (NNLO) corrections to the
diphoton process have been computed using the smooth
cone prescription [20]. Including the NNLO corrections
increases the agreement between theory and data substan-
tially, in particular for observables that are nontrivial for the
first time at NLO, such as the azimuthal angle between the
photons. Results for the production of diphotons plus one
jet were considered in [21], using smooth cone isolation,
and extended to account for fragmentation effects in
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Ref. [22]. Smooth cone results for diphoton production in
association with two jets, an important background for
Higgs boson production through vector boson fusion, have
also been presented recently [23–26].
In this paper we concentrate on the γγγ signature, i.e.

triphoton production, and use it to quantify the differences
between the various isolation prescriptions. Since, even at
lowest order, it contains three particles in the final state, it
has a much richer kinematic structure than the simplest
direct photon and diphoton processes discussed above. As a
result we expect it to provide a clearer comparison of
isolation effects. Since triphoton production is suppressed
by a power of the electromagnetic coupling α compared
to the diphoton process, the rates are much smaller and, to
date, no experimental analysis has observed this signature.
Despite this, with typical LHC cuts, it has the largest cross
section of the triple vector boson processes that are now
beginning to be probed at the LHC [27,28].
Next-to-leading order predictions, implementing smooth

cone isolation, have been presented in Ref. [29]. In this
paper we will present a recalculation of this process, using
compact expressions for the underlying matrix elements,
and extend the previous treatment to allow for the inclusion
of fragmentation effects. For comparison we also present
results for a similar process, γγ þ jet production. Although
this final state is quite similar to triphoton production it
allows us to investigate whether the presence of a parton at
leading order leads to qualitatively different behavior of the
isolation algorithms.
This paper proceeds as follows. A summary of the NLO

calculations performed in order to produce the results in
this paper is given in Sec. II, including compact analytic
results for the γγγ one-loop amplitude. In Sec. III we
discuss the various forms of isolation employed in theo-
retical calculations and experimental analyses. In Sec. IV
we present a comparison between the different isolation
prescriptions, primarily for the case of triphoton produc-
tion, but also for γγ þ jet production. We study triphoton
phenomenology for the LHC and the Tevatron in Sec. V.
Finally, we present our compact results for the γγ þ jet
virtual amplitudes in the Appendix.

II. CALCULATION

In this paper we present NLO calculations of the
processes, pþ p → γγγ and pþ p → γγ þ jet. Although
results for the one-loop virtual corrections to photon
processes have previously been presented in Ref. [30],
in that case they were obtained by forming appropriate

symmetric combinations of multiparton QCD amplitudes
such that gluons are effectively replaced by photons. Using
this procedure one can use the qq̄ggg results presented in
Ref. [31] to obtain photon amplitudes. However, a numeri-
cal application of this procedure is both inefficient and
prone to additional numerical instability. For example,
the singularities associated with non-Abelian diagrams
are not present in multiphoton amplitudes, but this is only
made apparent through large numerical cancellations. For
this reason, we have recomputed the one-loop amplitudes
using analytic unitarity methods [32–35], and the program
S@M [36], in order to produce results that are as compact
as possible. We believe that these analytic formulas may
be useful in the future, for instance to optimize NNLO
calculations of the diphoton process.
In this section we will present the one-loop amplitudes

for the process,

0 → q̄ðp1Þ þ qðp2Þ þ γðp3Þ þ γðp4Þ þ γðp5Þ; ð1Þ

where all momenta are outgoing and the momentum labels
for the particles are given in parentheses. The tree-level
amplitude is written as,

Að0Þð1h1q̄ ; 2h2q ; 3h3γ ; 4h4γ ; 5h5γ Þ
¼ ið

ffiffiffi
2

p
eQiÞ3Að0Þð1h1q̄ ; 2h2q ; 3h3γ ; 4h4γ ; 5h5γ Þ; ð2Þ

where the helicities of the particles are denoted by
h1;…; h5. Amplitudes with identical photon helicities
vanish. As a result there is only one independent amplitude,

Að0Þð1−q̄ ; 2þq ; 3þγ ; 4þγ ; 5−γ Þ ¼
h12ih15i2

h13ih14ih23ih24i ; ð3Þ

which corresponds to the maximally helicity violating
(MHV) case. The remaining helicity amplitudes can be
obtained through conjugation and line-reversal symmetries.
The one-loop amplitude can be decomposed as follows,

Að1Þð1h1q̄ ; 2h2q ; 3h3γ ; 4h4γ ; 5h5γ Þ

¼ αs
2π

�
N2

c − 1

Nc

�
ið

ffiffiffi
2

p
eQiÞ3Að1Þð1h1q̄ ; 2h2q ; 3h3γ ; 4h4γ ; 5h5γ Þ;

ð4Þ

in terms of the virtual MHV primitive amplitude which is
given by,
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Að1Þð1−q ; 2þq̄ ; 3þγ ; 4þγ ; 5−γ Þ ¼
�
−

1

ϵ2

�
μ2

−s12

�
ϵ

−
3

2ϵ

�
μ2

−s25

�
ϵ

− 3

�
Að0Þð1−q ; 2þq̄ ; 3þγ ; 4þγ ; 5−γ Þ

þ h13i3h24ih45i2 − h14i3h23ih35i2
h13ih14ih23ih24ih34i3 Ls−1ðs12; s35; s45Þ −

h12i2h45i2
h13ih24i3h34iLs−1ðs13; s45; s25Þ

þ h12i2h35i2
h14ih23i3h34iLs−1ðs14; s35; s25Þ þ

h15i2
h14ih23ih34iLs−1ðs23; s45; s15Þ

−
h15i2

h13ih24ih34iLs−1ðs24; s35; s15Þ −
h12i2h35i2

h13ih23i2h24ih34iLs−1ðs45; s13; s12Þ

þ h12i2h45i2
h14ih24i2h23ih34iLs−1ðs35; s14; s12Þ −

h15i2
h24ih13ih34iLs−1ðs35; s12; s24Þ

þ h15i2
h23ih14ih34iLs−1ðs45; s12; s23Þ −

h12ih25i2½32�
h23ih24i2

L0ð−s13;−s45Þ
s45

−
h12ih25i2½42�
h24ih23i2

L0ð−s14;−s35Þ
s35

þ h12ih45i2½43�
h24i2h34i

L0ð−s13;−s25Þ
s25

þ h13ih45i2½43�2
2h24ih34i

L1ð−s13;−s25Þ
s225

þ h12ih35i2½43�
h23i2h34i

L0ð−s14;−s25Þ
s25

−
h14ih35i2½43�2
2h23ih34i

L1ð−s14;−s25Þ
s225

−
h12ih15ih25i
h13ih23ih24i2 log

�
s45
s25

�

−
h12ih15ih25i
h14ih24ih23i2 log

�
s35
s25

�
þ ½34�
2½25�

� h15i
h25ih34i

�h35i
h23i þ

h45i
h24i

�
þ 1

½15�
� ½23�
h24i −

½24�
h23i

��
: ð5Þ

The amplitude is written in terms of the integral functions
Ls−1, L0 and L1 that are defined by,

Ls−1ðx; y; zÞ ¼ Li2

�
1 −

y
x

�
þ Li2

�
1 −

z
x

�

þ log
y
x
log

z
x
−
π2

6
ð6Þ

L0ðx; yÞ ¼
logðx=yÞ
1 − x=y

ð7Þ

L1ðx; yÞ ¼
L0ðx; yÞ þ 1

1 − x=y
: ð8Þ

The amplitudes for γγ þ jet production are presented in the
Appendix.
The contribution of real radiation diagrams is straight-

forward and compact results have already been given in
Ref. [30]. The amplitudes have been implemented in the
Monte Carlo program MCFM [37–39], which handles the
cancellation of singularities using Catani-Seymour dipole
subtraction [40]. These calculations will be available in
v6.8 of the MCFM code. For the case of triphoton production
we have checked the validity of our results by finding
excellent agreement with the smooth cone isolation result
that may be obtained from the VBFNLO code [29]. We defer
our discussion of the comparison with existing results for
diphotonþ jet production to Sec. IV.

III. PHOTON ISOLATION
AND FRAGMENTATION

Experimental searches for prompt photons, those which
participate in the hard scattering process, are complicated
by the presence of secondary photons and photons arising
from fragmentation processes. Secondary photons are those
resulting from the decays of unstable particles (for instance
π0 → γγ), whilst fragmentation photons are produced from
the splitting of a QCD parton. Both of these types of
photons are typically accompanied by hadronic energy and
thus can be suppressed by the application of isolation cuts.
For this reason experimental analyses typically apply

fairly strict isolation criteria to photon candidates. The
isolation region is defined by a cone of radius R0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕ2 þ Δη2

p
around the photon, where Δϕ and Δη refer

to the difference in azimuthal angle and pseudorapidity
from the photon, respectively. One definition of the iso-
lation requirement is to demand that the sum of the
hadronic energy in the transverse direction inside this cone
is less than some fixed value Emax

T ,

X
had∈R0

Ehad
T < Emax

T : ð9Þ

Throughout this paper, when such a cut is applied we will
refer to the procedure as “fixed energy” isolation. At the
LHC, typical values for Emax

T range from 5–50 GeV.
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An alternative strategy is to require that the total
hadronic energy is less than some fixed fraction of the
photon transverse momentum ϵγ ,

X
had∈R0

Ehad
T < ϵγp

γ
T: ð10Þ

This will be referred to as “fractional energy” isolation. For
analyses involving energetic photons such a prescription
may be more desirable since high-pT photons can be
accepted even if they are accompanied by hadronic activity
that exceeds a fixed threshold chosen for more typical,
softer photons.
Obtaining theoretical predictions for final states that

include photons also requires particular care. At LO a
process involving a fixed number of photons and jets is
rendered finite by the cuts needed to define the final state
objects, provided, for example, one defines a jet-photon
separation minimum. However, at NLO matters are com-
plicated by the collinear singularity associated with a
quark-photon splitting. The singularity cannot be removed
in a theoretically safe manner by simply applying a parton-
photon separation requirement, since this cut would remove
a slice of soft gluon phase space and spoil the cancellation
of infrared singularities. In order to produce a finite cross
section one must absorb the collinear singularity into a
fragmentation function, in an analogous manner to the mass
factorization of the initial state collinear singularities into
the PDFs. In order to estimate the nonperturbative boun-
dary conditions one must extract the fragmentation function
from a fit to data. We shall use fragmentation functions that
have been obtained by fitting data from the LEP experi-
ments, that correspond to the results of Ref. [16] (“BFG”)
and Ref. [17] (“GdRG”).
An alternative procedure that does not require the

introduction of fragmentation functions is the isolation
prescription of Frixione [18], often referred to as “smooth
cone” isolation. This requires that the hadronic energy in
the vicinity of the photon satisfies the following condition,

X
had

Ehad
T θðR − Rhad;γÞ < ϵγp

γ
T

�
1 − cosR
1 − cosR0

�
n

for all R ≤ R0: ð11Þ

Using this isolation prescription it is clear that the collinear
pole is removed, but that arbitrarily soft emissions are
retained, thus preserving the required cancellation of
singularities. Given its simplicity this type of isolation is
widely used in theoretical calculations. However, due to
the discrete nature of the calorimeter cells in experimental
detectors, this type of isolation is difficult to impose
experimentally. Recently the possibility of combining the
two approaches, by using a series of staggered cones has
been studied in Ref. [41].

IV. COMPARISON BETWEEN
ISOLATION PROCEDURES

A. Isolation effects in γγγ production

In this section we investigate the impact of the isolation
prescription on predictions for triphoton production.
Specifically, we will compare predictions obtained using
the fixed energy, fractional energy and smooth cone
isolation procedures that are defined by Eqs. (9), (10)
and (11), respectively. Throughout this paper we will use
the customary choice n ¼ 1 in Eq. (11). For the sake of this
comparison we compute NLO cross sections for the LHC
operating at 14 TeV, using the default MCFM electroweak
parameters that correspond in particular to α ¼ 1=132.338.
We use the CT10 PDF set [42] and set the renormalization,
factorization and fragmentation scales to be the invariant
mass of the photonic system μ ¼ mγγγ . The final state is
defined by a basic set of cuts on the photons,

pγ
T > 30 GeV; jηγj < 2.5; Rγγ > 0.4: ð12Þ

For the fixed and fractional energy isolation procedures, the
calculation also depends on the choice of fragmentation
functions. We consider three such sets here. The first two
sets, obtained by Gehrmann-de-Ridder and Glover (GdRG)
[17], correspond to strictly fixed-order extractions at OðαÞ
(LO) and OðααsÞ (NLO). The final set (BFG) includes a
resummation of Oðαns lognþ1μ2FÞ corrections and corre-
sponds to set II of Ref. [16].
In Fig. 1 we compare the NLO cross sections for

fractional and smooth cone isolation as a function of the
parameter ϵγ that is common to both algorithms. We
consider two different choices of isolation cone size,
R0 ¼ 0.4 and R0 ¼ 0.7. We first note that the LO prediction
does not depend on the isolation procedure and, using the
appropriate LO PDF set (CTEQ6L1), the LO cross section
is 6.90 fb. Regardless of the form of isolation used in the
NLO calculation, the correction to the LO rate is around a
factor of two or more. However it is clear that the cross
section is quite sensitive to the value of ϵγ . This sensitivity
is easily understood from the nature of the final state. Since
this process proceeds only through quark-antiquark initial
states at tree level, the effect of the NLO corrections is
especially important due to the large gluon flux at the
14 TeV LHC. Contributions of this nature, for example real
radiation channels such as qg → γγγq, are the most
sensitive to the fragmentation functions and isolation
definition due to the presence of a quark in the final state.
It is also clear from Fig. 1 that the predictions are rather

sensitive to the fragmentation functions that are employed.
The results for the LOGdRG set agree reasonably well with
those using the smooth cone isolation. For the smaller cone
choice these two predictions differ by around 5%, while for
R0 ¼ 0.7 some differences at the 10% level are observed
for the largest values of ϵγ. In contrast, the results obtained
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using the NLO set of GdRG and the BFG set II are
consistently 5%–10% smaller than the results for LO
GdRG.1 We note though that the predictions obtained
using these sets are less sensitive to the isolation parameter
ϵγ and the two sets yield very similar predictions for tightly
isolated photons, ϵγ ≲ 0.2.
Since, in our implementation, the QCD matrix elements

which multiply the fragmentation contributions are
Oðα2αsÞ, a consistent Oðα3αsÞ prediction for triphoton
production is only obtained when using the OðαÞ LO
GdRG set. This can be seen by inspecting Fig. 2, which
shows the dependence of the cross section on the frag-
mentation scale for the three different sets of fragmentation
functions using fractional isolation with R0 ¼ ϵγ ¼ 0.4.
The cross section obtained with the LO GdRG set is
independent of the fragmentation scale since all depend-
ence on it is exactly cancelled between integrated sub-
traction terms and the fragmentation functions. The other
two sets of fragmentation functions include higher order
corrections beyond the formal accuracy of the calculation,
leading to a small residual dependence on the fragmenta-
tion scale. Of course, if higher order corrections to the
fragmentation process are explicitly included in the calcu-
lation (for instance, as in predictions for direct photon and
photon pair production, cf. Refs. [15,19]), this dependence
is alleviated by the use of corresponding higher-order
fragmentation sets. The mismatch of orders in perturbation
theory may explain the unusual behavior of the GdRG

NLO and BFG predictions for R0 ¼ 0.4, Fig. 1(left). For
these predictions, the cross section increases as ϵγ
decreases, for ϵγ < 0.5. The increase in the cross section
is much more pronounced for the OðααsÞ set of GdRG.
Although it is tempting to conclude from Fig. 1 that higher
order corrections could be sizeable, a priori we do not
know the effect of the remaining higher order contributions.
Therefore, based on the comparison shown in Figs. 1 and 2,
we advocate the use of the OðαÞ fragmentation functions
with our NLO predictions. In this case we observe that such

FIG. 2 (color online). Dependence of the NLO triphoton cross
section on the fragmentation scale μfrag, for the different sets of
fragmentation functions. The renormalization and factorization
scales are held fixed at μ0 ¼ mγγγ while μfrag is varied about this
central choice. The solid horizontal line represents the LO GdRG
prediction and the dotted lines correspond to the BFG (magenta)
and NLO GdRG (red) fragmentation sets.

FIG. 1 (color online). Dependence of the NLO triphoton cross section on the parameter that controls the amount of hadronic energy
inside the isolation cone, ϵγ . Results are shown for the fractional and smooth cone isolation procedures, using an isolation cone of size
R0 ¼ 0.4 (left) and R0 ¼ 0.7 (right). Smooth cone predictions correspond to the dashed line, while the solid line represents the LO
GdRG prediction and the dotted lines correspond to the BFG (magenta) and NLO GdRG (red) fragmentation sets.

1We note that the fitting range of the GdRG fragmentation sets
corresponds to ϵγ ≲ 0.5 and that results may not be reliable
outside this range. However, the GdRG and BFG fragmentation
sets do not differ greatly in the region ϵγ > 0.5. Since the BFG
sets use more inclusive LEP data, this similarity gives some
confidence in the GdRG set in this region.
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predictions are close to those obtained using smooth cone
isolation. This suggests that, for cuts that are similar to the
ones we have used here, the use of smooth cone isolation
for this process should provide an adequate description of
experimental isolation requirements.
Comparing the results for different cone sizes it is clear

that the cross sections obtained using the larger cone size
R0 ¼ 0.7 depend much more strongly on ϵγ . This reflects
the importance of the real radiation terms on the total cross
section. For large values of ϵγ the cross section obtained
using smooth cone isolation is more strongly suppressed
than for the fractional isolation. This suppression can be
explained by considering event topologies in which a
radiated parton is near the threshold for acceptance in
the inner cone. In these topologies we assume that the
radiation in the smaller cone (for example R0 ¼ 0.4) is just
soft enough to pass the isolation requirement. For the
fractional isolation this event will then pass all subsequent
increases in cone size, since the parameters used to
determine the isolation requirements are fixed (the trans-
verse momenta of the parton and of the photon). However,
for the smooth cone isolation the isolation requirements for

this event change as a function of the cone size, due to the
(1 − cosR0) prefactor in Eq. (11). Therefore, as the cone
size increases the smooth cone isolation requirement
becomes tighter and thus more events are rejected than
in the fractional isolation case.
In order to check the dependence of the isolation

algorithms on the event selection cuts, we have repeated
this analysis using selection criteria with higher cuts on the
photon transverse momenta. Specifically, we modify the
photon transverse momentum cuts of Eq. (12) as follows,
with the other cuts unchanged. In the first case we simply
raise the cut uniformly and require pγ

T > 50 GeV. In the
second case we use a set of cuts with staggered thresholds,
pγ1
T > 100 GeV, pγ2

T > 50 GeV and pγ3
T > 30 GeV where

the photons are labeled according to pγ1
T > pγ2

T > pγ3
T . Our

results are shown in Fig. 3. It is clear from comparing
Figs. 1 and 3 that the overall structure of the results remains
the same. The smooth cone algorithm is in reasonable
agreement with the fractional isolation result using the LO
GdRG fragmentation functions. There is particularly good
agreement for the smaller cone size of R0 ¼ 0.4, whilst
more significant differences are observed for the larger

FIG. 3 (color online). Dependence of the NLO triphoton cross section on the parameter that controls the amount of hadronic energy
inside the isolation cone, ϵγ with harder selection requirements pγ

T > 50 GeV, and staggered cuts pγ
T > 100, 50, 30 GeV. Results are

shown for the fractional and smooth cone isolation procedures, using an isolation cone of size R0 ¼ 0.4 (left) and R0 ¼ 0.7 (right).

TABLE I. Triphoton cross sections at the LHC (in femtobarns), computed using the fixed energy, fractional energy and smooth cone
forms of isolation prescription. The comparison uses the LO GdRG fragmentation functions and is performed for two values of the
photon pT cut.

R0 ¼ 0.4 R0 ¼ 0.7
Minimum pγ

T Isolation E ¼ 5 E ¼ 25 E ¼ 50 E ¼ 5 E ¼ 25 E ¼ 50

30 GeV fixed, Emax
T ¼ E [GeV] 16.86 17.56 19.45 14.16 16.00 18.61

fractional, ϵγ ¼ E=30 16.96 18.76 21.15 14.43 17.48 20.51
smooth., ϵγ ¼ E=30 17.58 19.00 20.15 14.58 16.37 17.60

50 GeV fixed, Emax
T ¼ E [GeV] 3.26 3.37 3.60 2.76 3.04 3.39

fractional, ϵγ ¼ E=50 3.28 3.50 3.86 2.83 3.23 3.68
smooth., ϵγ ¼ E=50 3.32 3.51 3.65 2.77 3.04 3.22
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cone choice and ϵγ > 0.5. As the photon transverse
momentum cut is raised, the smooth cone results depend
less strongly on ϵγ than those including fragmentation. This
is illustrated by the fact that, for R0 ¼ 0.4, the GdRG
prediction is smaller than the smooth cone result for
ϵγ < 0.5 but higher for ϵγ > 0.5. The exact value of ϵγ
for which the predictions intersect is of course dependent
on the phase space selection requirements. For example, for
the loose cuts defined previously the predictions intersected
around ϵγ ¼ 0.95 for R0 ¼ 0.4, cf. Fig. 1.
Finally we turn to the case of fixed energy isolation. In

Table I we present results obtained using this form of
isolation and compare them to the cross sections obtained
using fractional and smooth cone isolation. Specifically, for
fixed isolation with a maximum transverse energy Emax

T in
Eq. (9), we compare to fractional and smooth cone isolation
with ϵγ ¼ Emax

T =pγ
T;min in Eq. (10). When the isolation is

tight (E ¼ 5 in Table I), the results obtained in the different
cases are in very good agreement, which is simply a
reflection of the fact that most of the cross section is
due to production of photons near the minimum pT
threshold. However, as the isolation requirement weakens,
the predictions begin to show bigger differences. Requiring
amuch looser criterion,E ¼ 50, induces differences of up to
10% for fractional and fixed isolation, with slightly smaller
differences between smooth cone and fixed isolation.

B. Isolation effects in γγ þ jet production

As already noted, it is interesting to compare the
isolation effects in γγγ and γγ þ jet processes. In order
to maximize the similarities with the triphoton results that
have just been presented, for the γγ þ jet final state we
adopt the same photon cuts as in Eq. (12) and tailor the jet
cuts as follows. Partons are clustered into jets using the
anti-kT algorithm with D ¼ 0.5 and are required to satisfy

the same rapidity requirement as the photons, i.e.
jηjj < 2.5. To obtain a finite cross section we must impose
a minimum jet-photon separation, Rγ;j. For this we use
the same value as for the isolation cone, namely
Rγ;j ¼ R0 ¼ f0.4; 0.7g. The common scale choice, μ, that
we have used for these calculations is given
by μ2 ¼ m2

γγ þ
Pðpj

TÞ2.
Results for the NLO cross section as a function of ϵγ for

pj
T pγ

T > 30 GeV are shown in Fig. 4, for the two choices
R0 ¼ 0.4 and R0 ¼ 0.7. The predictions for γγ þ jet pro-
duction are very similar to the equivalent results obtained
for the γγγ process (cf. Fig. 1), suggesting that the
dependence of the cross section on ϵγ is not strongly
influenced by the number of photons. Instead it is governed
by the kinematics of the underlying scattering.
We note that a similar study was undertaken in Ref. [22]

employing selection cuts relevant for Higgs searches in the
channel H → γγ. We have repeated this analysis using the
results of this paper and find agreement for very tight
isolation requirements but substantial differences for larger
values of ϵγ . The qualitative behavior of our predictions is
more similar to the results shown in Fig. 4, with a milder
dependence of the cross section on ϵγ. We understand that
this difference is due to an error in the implementation of
the fragmentation functions in Ref. [22].2

C. Summary

It is clear from the results of this section that the
predictions using smooth cone isolation and those using
fractional isolation are in reasonable agreement with one
another, provided that the fragmentation functions are

FIG. 4 (color online). Dependence of the NLO γγ þ jet cross section on the parameter that controls the amount of hadronic energy
inside the isolation cone, ϵγ . Results are shown for the fractional and smooth cone isolation procedures, using an isolation cone of size
R0 ¼ 0.4 (left) and R0 ¼ 0.7 (right).

2We thank the authors of Ref. [22] for confirmation of this
issue.
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restricted to fixed OðαÞ accuracy. The agreement is
particularly good for smaller cone choices and tighter
isolation requirements. For smooth cone isolation with
larger cones the ð1 − cosR0Þ−1 prefactor tightens the
isolation, and results in larger differences between smooth
cone and fractional energy isolation for the same choice of
ϵγ. For all of the phase space selection cuts we investigated,
the smooth cone results showed the mildest dependence on
ϵγ. Therefore, varying ϵγ in a smooth cone calculation in
order to gauge the uncertainty associated with isolation
effects is not advisable. We observed that including higher
order corrections to the fragmentation functions induced
large differences with respect to the smooth cone and
LO GdRG sets. This may be indicative of large NNLO
corrections, but since they are only a partial computation no
definitive statement can be made on the impact of higher
order corrections.

V. RESULTS

A. Triphotons at the LHC

In this section we provide predictions for the triphoton
process at the LHC, operating at a variety of center of mass
energies. We use a set of basic cuts that is appropriate
for experimental analyses at the LHC and which closely
corresponds to the cuts used in the previous section,
cf. Eq. (12). The photons are required to satisfy,

jηγj < 2.5; Rγγ > 0.4;
X

∈Rγ¼0.4

Ehad
T < 0.4pγ

T; ð13Þ

i.e. we use the fractional form of isolation and, following
the conclusions of our previous analysis, the LO GdRG set
of fragmentation functions. As before we employ the CT10
(CTEQ6L1) PDF set for our NLO (LO) predictions. We
consider two thresholds for the photon transverse momenta,
pγ
T > 30 GeV and pγ

T > 50 GeV. Our results for the two
values of the cut are collected in Table II.

The results have been obtained using mγγγ as the central
renormalization, factorization and fragmentation scale and
the quoted uncertainty corresponds to variation of this
central scale by a factor of two in each direction. Since this
process does not depend on the strong coupling at leading
order, there is only a very small dependence on the
factorization scale at that order. At NLO the prediction
becomes sensitive to the gluon distribution and, as a result,
we observe large K-factors (∼2–2.5) when going from LO
to NLO. Thus it is only at NLO that one obtains a realistic
prediction for the normalization of these processes at the
LHC. At NLO the scale dependence remains rather small,
and reflects a partial cancellation between the factorization
and renormalization scales. As

ffiffiffi
s

p
increases the depend-

ence on the factorization scale increases, as can clearly be
seen from the LO results, such that the cancellation
becomes more complete. At 14 TeV this procedure yields
a scale uncertainty of about �4%. It should be borne in
mind that other sources of uncertainty, for instance due to
the particular choice of fragmentation functions, are not
accounted for here. As noted in the previous section such
uncertainties may be at least as large.
In Fig. 5 we present the differential distribution for the

pT of the hardest photon. This distribution is significantly
altered by the higher order corrections, both in rate and
shape. The region pT < 2pmin

T experiences the most dra-
matic corrections. Since we require three photons with
pT > 30 GeV, this distribution has a distinct broad peak
around 60 GeV. At NLO the kinematic suppression in the
region pT < 60 GeV is reduced due to the presence of real
radiation contributions that allow a parton to recoil against

TABLE II. Summary of LHC triphoton cross sections at
various LHC operating energies, with two choices of photon
pT threshold.
ffiffiffi
s

p
Photon cut LO [fb] NLO [fb] K-factor

7 TeV pγ
T > 30 GeV 3.36þ1%

−2% 7.49þ6%−4% 2.23

pγ
T > 50 GeV 0.64þ2%

−1% 1.30þ6%−5% 2.03

8 TeV pγ
T > 30 GeV 3.89þ2%

−3% 8.87þ5%−5% 2.28

pγ
T > 50 GeV 0.77þ1%

−1% 1.60þ6%−4% 2.08

13 TeV pγ
T > 30 GeV 6.42þ4%

−5% 15.87þ4%−3% 2.47

pγ
T > 50 GeV 1.38þ1%

−1% 3.13þ5%−4% 2.27

14 TeV pγ
T > 30 GeV 6.91þ5%

−6% 17.28þ4%−3% 2.50

pγ
T > 50 GeV 1.50þ1%

−2% 3.44þ5%−4% 2.29

FIG. 5 (color online). The pT;γ spectrum for the hardest
photon at the 8 TeV LHC. The solid lines represent the
contributions with μ ¼ mγγγ , the dashed lines represent the
NLO predictions with μ ¼ f0.5; 2gmγγγ .
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the photonic system. This leads to the K-factor in this
region being larger than at the peak of the distribution.

B. Triphotons at the Tevatron

Since the leading order triphoton process is qq̄ → γγγ,
this process is significantly easier to produce at a pp̄
collider where both the quark and the antiquark may be
described by the valence content of the proton and anti-
proton, respectively. This is to be contrasted with an
equivalent pp machine where the antiquark must be
obtained from the proton sea. For this reason it is interest-
ing to contrast the LHC results of the previous section with
the triphoton cross section at the Tevatron.
To that end we define a set of cuts that is appropriate for

experimental analyses that could be performed at the
Tevatron,

pγ
T > 15 GeV; jηγj < 1.1;

Rγγ > 0.4;
X

∈Rγ¼0.4

Ehad
T < 5 GeV ð14Þ

and use the same parton distribution and fragmentation
functions as before. Note though that the isolation con-
dition is now at a fixed energy rather than taking the
fractional form, although since the isolation condition is
rather strict it could be well described by a corresponding
fractional isolation, cf. Table I. With these cuts the
triphoton cross section is

σNLOγγγ ¼ 4.74þ6%
−5% ½fb�: ð15Þ

As was the case at the LHC, the NLO corrections to this
process result in a large K-factor (1.93) when comparing
with the LO result of 2.46 fb (obtained using the CTEQ6L1
PDF set). The upper and lower percentages in the above
result represent scale variation by a factor of two around a
central scale choice of μ ¼ mγγγ . Given the 10 fb−1 of data
recorded by the CDF and D0 detectors during Run II of the
Tevatron, one therefore expects Oð50Þ events in the total
data set, before accounting for acceptance and efficiency
corrections. This suggests that a measurement of this
process by the Tevatron experiments may therefore also
be possible.

VI. CONCLUSIONS

In this paper we have studied the production of triphoton
final states at hadron colliders, paying particular attention
to the role of photon fragmentation and isolation effects.
We calculated compact analytic expressions for γγγ and
γγ þ jet one-loop amplitudes and used them to implement
these processes in MCFM. We investigated the impact of
different isolation prescriptions, finding that the NLO cross
section is quite sensitive to the type of isolation and
fragmentation functions applied. This is due to the fact

that a large part of the NLO cross section arises from
configurations that contain an initial state gluon and,
consequently, a quark in the final state. With three photons
in the final state, the phase space in which this quark is near
a photon is large and therefore the NLO prediction is
especially sensitive to the isolation definition. We inves-
tigated the impact of different fragmentation functions on
the NLO cross section. We found that the results obtained
using predictions accurate to Oðα3αsÞ, i.e. using smooth
cone isolation and LO GdRG fragmentation contributions,
are similar to each other. However, including higher order
effects in the predictions for the fragmentation functions
resulted in substantially different results. Since our pre-
dictions do not include the full Oðα2sÞ corrections we
advocated the use of LO fragmentation sets which result
in a consistent NLO prediction.
We studied the phenomenology of triphoton production

at hadron colliders. We presented NLO cross sections for a
range of LHC operating energies and phase space selection
criteria. At 8 TeV the cross sections are typically around
5 fb, suggesting that this signal should be observable in the
existing LHC data set. The measurement of this cross
section would be one of the first studying triboson
production. The study of this class of processes is
extremely interesting since it tests the interplay between
electroweak and QCD physics in a final state involving
multiple electroweak couplings.
Since at LO the production of triphotons is dominated by

uū initial states, pp̄ colliders are more sensitive to this
process than equivalent pp machines. Indeed the cross
section at the Tevatron, with different cuts more appropriate
for a lower-energy machine, is also around 5 fb. Therefore
with the 10 fb−1 data set accumulated by the CDF and D0
experiments this signature may also be observable at the
Tevatron.
Our results for γγγ and γγ þ jet have been implemented

into MCFM v6.8, including all of the fragmentation func-
tions studied in this paper.
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APPENDIX: AMPLITUDES FOR γγ þ JET

In this appendix we present the amplitudes needed to
compute the NLO corrections to γγ þ jet production,

0 → q̄ðp1Þ þ qðp2Þ þ gðp3Þ þ γðp4Þ þ γðp5Þ: ðA1Þ

At leading order the amplitude can be decomposed into the
following color stripped amplitude,
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Að0Þð1h1q̄ ; 2h2q ; 3h3g ; 4h4γ ; 5h5γ Þ ¼ 2
ffiffiffi
2

p
iQ2

qe2gsðTa3
i1i2

Þ
×Að0Þð1h1q̄ ; 2h2q ; 3h3g ; 4h4γ ; 5h5γ Þ:

ðA2Þ
The nonvanishing helicity amplitudes for the LO process
have identical kinematic structure to Eq. (3), i.e.

Að0Þð1−q̄ ; 2þq ; 3þg ; 4þγ ; 5−γ Þ ¼
h12ih15i2

h13ih14ih23ih24i ; ðA3Þ

Að0Þð1−q̄ ; 2þq ; 3−g ; 4þγ ; 5þγ Þ ¼
h12ih13i2

h15ih14ih25ih24i : ðA4Þ

For simplicity we refer to these helicity structures as the
“γ-MHV” and “g-MHV” amplitudes, with the nomencla-
ture denoting the identity of the negative-helicity particle.
Although these amplitudes are trivially related at LO,

Að0Þð1−q̄ ; 2þq ; 3−g ; 4þγ ; 5þγ Þ ¼ Að0Þð1−q̄ ; 2þq ; 5þg ; 4þγ ; 3−γ Þ;
ðA5Þ

differences arise in the one-loop and real radiation ampli-
tudes. At one loop the amplitude can be decomposed into
the following leading and subleading color pieces

Að1Þð1h1q̄ ; 2h2q ; 3h3g ; 4h4γ ; 5h5γ Þ ¼ Nc
αs
4π

ð2
ffiffiffi
2

p
Þie2gsðTa3

i1i2
Þ
�
Q2

qAðLÞð1h1q̄ ; 2h2q ; 3h3g ; 4h4γ ; 5h5γ Þ

þQ2
q

N2
c
AðRÞð1h1q̄ ; 2h2q ; 3h3g ; 4h4γ ; 5h5γ Þ −

X
i

Q2
i

Nc
ANfð1h1q̄ ; 2h2q ; 3h3g ; 4h4γ ; 5h5γ Þ

�
: ðA6Þ

In the above equation the summation over i represents the contributions arising from closed (light) fermion loops, which in
our implementation corresponds to i ¼ u, d, s, c, b. In all cases the subleading R pieces can be obtained from the γγγ

helicity amplitudes presented in Sec. II, i.e. AðRÞð1h1q̄ ; 2h2q ; 3h3g ; 4h4γ ; 5h5γ Þ ¼ Að1Þð1h1q̄ ; 2h2q ; 3h3γ ; 4h4γ ; 5h5γ Þ. As a result we need
only present the amplitudes that appear at leading color or contain closed fermion loops.
We begin by presenting the unrenormalized γ-MHV amplitude,

AðLÞð1−q ; 2þq̄ ; 3þg ; 4þγ ; 5−γ Þ ¼
�
1

ϵ2

��
μ2

−s13

�
ϵ

þ
�

μ2

−s23

�
ϵ
�
þ 3

2ϵ

�
μ2

−s25

�
ϵ

þ 3

�
Að0Þð1−q ; 2þq̄ ; 3þg ; 4þγ ; 5−γ Þ

−
h12i3h45i2

h13ih14ih23ih24i3 Ls−1ðs13; s45; s25Þ þ
h15i2

h13ih24ih34iLs−1ðs15; s24; s23Þ

−
h12ih15i2

h13ih14ih23ih24iLs−1ðs23; s45; s15Þ −
h13i2h45i2

h14ih23ih34i3 Ls−1ðs25; s14; s13Þ

−
h12ih15i2

h13ih14ih23ih24iLs−1ðs45; s13; s23Þ þ
h12ih25i2½32�
h23ih24i2

L0ð−s13;−s45Þ
s45

−
ðh13ih24i þ h12ih34iÞh45i2½43�

h24i2h34i2
L0ð−s13;−s25Þ

s25
−
h13ih45i2½43�2
2h24ih34i

L1ð−s13;−s25Þ
s225

þ ðh15ih34i − h13ih45iÞ h35i½43�
h23ih34i2

L0ð−s14;−s25Þ
s25

−
h14ih35i2½43�2
2h23ih34i

L1ð−s14;−s25Þ
s225

þ h12ih25ih15i
h13ih23ih24i2 log

�
s45
s25

�
þ h34i½34�2
2h23ih24i½15�½25� : ðA7Þ

The unrenormalized g-MHV amplitude is given by,
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AðLÞð1−q ; 2þq̄ ; 3−g ; 4þγ ; 5þγ Þ ¼
�
1

ϵ2

��
μ2

−s13

�
ϵ

þ
�

μ2

−s23

�
ϵ
�
þ 3

2ϵ

�
μ2

−s23

�
ϵ

þ 3

�
Að0Þð1−q ; 2þq̄ ; 3−g ; 4þγ ; 5þγ Þ

þ h13i2
h14ih25ih45iLs−1ðs14; s25; s23Þ −

h13i2
h15ih24ih45iLs−1ðs15; s24; s23Þ

−
h13i2

h15ih24ih45iLs−1ðs24; s15; s13Þ þ
h13i2

h14ih25ih45iLs−1ðs25; s14; s13Þ

−
h14ih35i2½54�2
2h25ih45i

L1ðs14; s23Þ
s223

−
h13ih35i½54�
h25ih45i

L0ðs14; s23Þ
s23

þ h15ih34i2½54�2
2h24ih45i

L1ðs15; s23Þ
s223

−
h13ih34i½54�
h24ih45i

L0ðs15; s23Þ
s23

−
½45�

2½13�½23�
� ½24�
h25i −

½25�
h24i

�
þ h13i½45�
2h23i½23�h45i

�h34i
h24i þ

h35i
h25i

�
: ðA8Þ

These amplitudes must be renormalized, which is achieved by adding a UV counterterm that also accounts for the transition
to the normal M̄S definition of the strong coupling,

AðLÞð1h1q̄ ; 2h2q ; 3h3g ; 4h4γ ; 5h5γ Þ → AðLÞð1h1q̄ ; 2h2q ; 3h3g ; 4h4γ ; 5h5γ Þ − 1

6

�
1

ϵ

�
11 −

2Nf

Nc

�
− 1

�
Að0Þð1h1q̄ ; 2h2q ; 3h3g ; 4h4γ ; 5h5γ Þ: ðA9Þ

Finally the amplitude arising from closed loops of fermions is

ANfð1−q ; 2þq̄ ; 3þg ; 4þγ ; 5−γ Þ ¼ −2
�h14i2h35i2 þ h13i2h45i2

h12ih34i4
�
Ls−1ðs12; s35; s45Þ −

h14ih35i½43�
h12ih34i3 ð2h14ih35i þ 4h13ih45iÞ

×
L0ð−s12;−s35Þ

s35
− 2

h14i2h35i2h45i½43�½54�
h12ih34i3

L1ð−s12;−s35Þ
s235

−
h13ih45i½34�
h12ih43i3 ð2h13ih45i þ 4h14ih35iÞL0ð−s12;−s45Þ

s45

− 2
h13i2h45i2h35i½34�½53�

h12ih43i3
L1ð−s12;−s45Þ

s245
−
2h35ih45i½25�2½34�
h34i3½12�½35�½45� . ðA10Þ

For the fermion loops the g-MHV and γ-MHV amplitudes are related in the same manner as the leading order ones,

ANfð1−q̄ ; 2þq ; 3−g ; 4þγ ; 5þγ Þ ¼ ANfð1−q̄ ; 2þq ; 5þg ; 4þγ ; 3−γ Þ: ðA11Þ
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