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We study the transverse single-spin asymmetry for single-hadron production in proton-proton collisions
within the framework of collinear twist-3 factorization in quantum chromodynamics. By taking into
account the contribution due to parton fragmentation, we obtain a very good description of all high
transverse-momentum data for neutral and charged pion production from the Relativistic Heavy Ion
Collider. Our study may provide the crucial step toward a final solution to the long-standing problem of
what causes transverse single-spin asymmetries in hadronic collisions within quantum chromodynamics.
We show for the first time that it is possible to simultaneously describe spin/azimuthal asymmetries in
proton-proton collisions, semi-inclusive deep-inelastic scattering, and electron-positron annihilation by
using collinear twist-3 factorization in the first process along with transverse-momentum-dependent
functions extracted from the latter two reactions.
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I. INTRODUCTION

The field of transverse single-spin asymmetries (SSAs)
in hard semi-inclusive processes began some four decades
ago with the observation of the large transverse polarization
(up to about 30%) of neutral Λ hyperons in the process
pBe → Λ↑X at FermiLab [1]. People noticed early on that
the naïve collinear parton model cannot generate such
large effects [2]. It was then pointed out that SSAs for
single-particle production in hadronic collisions are genu-
ine twist-3 observables for which, in particular, collinear
three-parton correlations have to be taken into account in
order to have a proper description within quantum chromo-
dynamics (QCD) [3]. This formalism later on was worked
out in more detail and also successfully applied to SSAs in
processes like hadron production in proton-proton colli-
sions,p↑p → hX (see, e.g., Refs. [4–10]). Herewe focus on
SSAs in such reactions, whichwere extensively investigated
in fixed target and in collider experiments.
Let us now look at the generic structure of the spin-

dependent cross section for AðP;~S⊥ÞþBðP0Þ→CðPhÞþX,
where the 4-momenta and polarizations of the incoming
protons A, B and outgoing hadron C are specified. In twist-
3 collinear QCD factorization, one has

dσð~S⊥Þ ¼ H ⊗ fa=Að3Þ ⊗ fb=Bð2Þ ⊗ DC=cð2Þ

þH0 ⊗ fa=Að2Þ ⊗ fb=Bð3Þ ⊗ DC=cð2Þ
þH00 ⊗ fa=Að2Þ ⊗ fb=Bð2Þ ⊗ DC=cð3Þ; ð1Þ

with fa=AðtÞ (fb=BðtÞ) indicating the distribution function
associated with parton a (b) in proton A (B), while DC=cðtÞ
represents the FF associated with hadron C in parton c. The

twist of the functions is denoted by t. The hard factors
corresponding to each term are given byH,H0, andH00, and
the symbol ⊗ represents convolutions in the appropriate
momentum fractions. In Eq. (1), a sum over partonic
channels and parton flavors in each channel is understood.
The first term in (1) has already been studied in quite

some detail in the literature [5,7–12]. It contains both
quark-gluon-quark correlations and trigluon correlations in
the polarized proton, where for the former one needs to
distinguish between contributions from so-called soft gluon
poles (SGPs) and soft fermion poles (SFPs). The second
term in (1), arising from twist-3 effects in the unpolarized
proton, was shown to be small [13]. Only recently, a
complete analytical result was obtained for the third term
in (1), which describes the twist-3 contribution due to
parton fragmentation [14].
For quite some time, many in the community believed

that the first term in (1) dominates the transverse SSA in
p↑p → hX (typically denoted by AN) for the production of
light hadrons (see, e.g., Refs. [5,7,10]), where the SGP
contribution is generally considered the most important
part. Note that the SGP contribution to AN is determined by
the Qiu-Sterman function TF [4,5], which can be related to
the transverse-momentum-dependent (TMD) Sivers parton
density f⊥1T [15,16]. For a given quark flavor q, these
entities satisfy [17]

Tq
Fðx; xÞ ¼ −

Z
d2 ~p⊥

~p2⊥
M

f⊥q
1T ðx; ~p2⊥ÞjSIDIS; ð2Þ

whereM is the nucleon mass. Because of the relation in (2),
one can extract TF from data on either AN or on the Sivers
transverse SSA in semi-inclusive deep-inelastic scattering
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(SIDIS) ASiv
SIDIS. It therefore came as a major surprise when

an attempt failed to simultaneously explain both AN and
ASiv
SIDIS [11]. The striking result pointed out in Ref. [11] was

that the two extractions for TF differ in sign. This “sign-
mismatch” puzzle could not be resolved by more flexible
parameterizations of f⊥1T [18]. Also trigluon correlations
are unlikely to fix this issue [12], while SFPs may play
some role [9].
At this point, one may start to question the dominance of

the first term in (1). In fact, data on the transverse SSA in
inclusive DIS [19,20] seem to support this point of view,
i.e., that the first term in (1) is not the main cause of AN
[21]. Therefore, in the present work, we study the potential
role of the twist-3 fragmentation part of (1). After fixing the
SGP contribution to AN through the Sivers function
extracted from data on ASiv

SIDIS [22,23] and the relation in
(2), we obtain a very good fit to all high transverse-
momentum forward-region pion data for AN from the
Relativistic Heavy Ion Collider (RHIC). As explained
below in more detail, our analysis shows for the first time
that one can simultaneously describe AN using collinear
factorization, ASiv

SIDIS, the Collins transverse SSA ACol
SIDIS in

SIDIS, and Acosð2ϕÞ
eþe− that represents a particular azimuthal

asymmetry in electron-positron annihilation into two
hadrons, eþe− → h1h2X [24].

II. FRAGMENTATION CONTRIBUTION TO AN

The fragmentation contribution to the cross section in (1)
reads [14]

P0
hdσð~S⊥Þ
d3 ~Ph

¼ −
2α2sMh

S
ϵ⊥;αβSα⊥P

β
h⊥
X
i

X
a;b;c

Z
1

zmin

dz
z3

×
Z

1

x0min

dx0

x0
1

x
1

x0Sþ T=z
1

−x0 t̂ − xû
ha1ðxÞfb1ðx0Þ

×

��
ĤC=cðzÞ − z

dĤC=cðzÞ
dz

�
Si
Ĥ
þ 1

z
HC=cðzÞSiH

þ 2z2
Z

∞

z

dz1
z21

1
1
z −

1
z1

ĤC=c;ℑ
FU ðz; z1Þ

1

ξ
Si
ĤFU

�
; ð3Þ

where i denotes the channel, x ¼ −x0ðU=zÞ=ðx0Sþ T=zÞ,
x0min ¼ −ðT=zÞ=ðU=zþ SÞ, zmin ¼ −ðT þ UÞ=S, and
ξ ¼ ð1 − z=z1Þ. Here we used the Mandelstam variables
S ¼ ðPþ P0Þ2, T ¼ ðP − PhÞ2, and U ¼ ðP0 − PhÞ2,
which on the partonic level give ŝ ¼ xx0S, t̂ ¼ xT=z,
and û ¼ x0U=z. Oftentimes one also uses xF¼2Phz=

ffiffiffi
S

p
,

where Phz is the longitudinal momentum of the hadron, as
well as the pseudo-rapidity η ¼ − ln tanðθ=2Þ, where θ is
the scattering angle. The variables xF, η are further related
by xF ¼ 2Ph⊥ sinhðηÞ= ffiffiffi

S
p

, where Ph⊥ is the transverse

momentum of the hadron. The nonperturbative parts in (3)
are the transversity distribution h1, the unpolarized parton
density f1, and the three (twist-3) fragmentation functions
(FFs) Ĥ, H, and Ĥℑ

FU, with the last one parameterizing the
imaginary part of a three-parton correlator. The definition
of those functions and the results for the hard scattering
coefficients Si can be found in [14]. (An alternative
notation of the relevant FFs is given in Ref. [25], where
twist-3 effects in SIDIS were computed.) We note that the
so-called derivative term in (3), associated with dĤ=dz,
was first obtained in [26].
The function Ĥ is related to the TMD Collins function

H⊥
1 [27] according to [14,26]

Ĥh=qðzÞ ¼ z2
Z

d2~k⊥
~k2⊥
2M2

h

H⊥h=q
1 ðz; z2~k2⊥Þ: ð4Þ

This relation can be considered the fragmentation counter-
part of Eq. (2). Exploiting the universality of the Collins
function [28], one can simultaneously extract H⊥

1 and h1
from data on ACol

SIDIS [29,30] and data on Acosð2ϕÞ
eþe− [31,32]

(see [33] and references therein). Below we utilize such
information for H⊥

1 and h1 when describing AN . The FFs
in (3) are related via [14]

Hh=qðzÞ ¼ −2zĤh=qðzÞ þ 2z3
Z

∞

z

dz1
z21

1
1
z −

1
z1

Ĥh=q;ℑ
FU ðz; z1Þ;

ð5Þ
implying that in the collinear twist-3 framework one has
two independent FFs. It is important to realize that this is
different from the so-called TMD approach for AN, where
only H⊥

1 enters the fragmentation piece [34].

III. PHENOMENOLOGY OF AN FOR
PION PRODUCTION

We consider AN for p↑p → πX in the forward region
of the polarized proton, which has been studied by the
STAR [35–37], BRAHMS [38,39] and PHENIX [40]
Collaborations at RHIC. We mainly focus on data taken
at

ffiffiffi
S

p ¼ 200 GeV for which typically Ph⊥ > 1 GeV.
Throughout we use the GRV98 unpolarized parton dis-
tributions [41] and the DSS unpolarized FFs [42]. Note
that the GRV98 parton distributions were also used in
Refs. [22,23,33] for extracting the Sivers function and
the transversity, which we take as input in our calculation.
The SGP contribution to (1) is computed by fixing TF
through Eq. (2) with two different inputs for the Sivers
function—SV1: f⊥1T from Ref. [22], obtained from SIDIS
data on ASiv

SIDIS [43,44]; and SV2: f⊥1T from Ref. [23],
“constructed” such that, in the TMD approach, the con-
tribution of the Sivers effect to AN is maximized while
maintaining a good description of ASiv

SIDIS. These two inputs
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for f⊥1T are mainly distinct by their quite different large-x
behavior. To compute the contribution in (3), we take h1
and H⊥

1 [which fixes Ĥ through (4)] from [33]. For favored
fragmentation into πþ, we make for Ĥℑ

FU the ansatz

Ĥπþ=ðu;d̄Þ;ℑ
FU ðz; z1Þ

Dπþ=ðu;d̄ÞðzÞDπþ=ðu;d̄Þðz=z1Þ
¼ Nfav

2IfavJfav
zαfavðz=z1Þα0favð1 − zÞβfavð1 − z=z1Þβ0fav ; ð6Þ

with the parameters Nfav, αfav, α0fav, βfav, β0fav, and the
unpolarized FF D. Note that the allowed range for z and
z=z1 is [0, 1] [45] and that our ansatz satisfies the constraint
ĤFUðz; zÞ ¼ 0 [45,46]. With the use of DSS FFs [42], the
factor Ifav reads Ifav ≡ Iuþū − Iū where Ii (i ¼ uþ ū, ū) is
defined as

Ii ¼
NiðK1;fav þ γiK2;favÞ

B½2þ αi; βi þ 1� þ γiB½2þ αi; βi þ δi þ 1� ;

with K1;fav ¼ B½α0fav þ αi þ 1; β0fav þ βi�;
K2;fav ¼ B½α0fav þ αi þ 1; β0fav þ βi þ δi�; ð7Þ

and B½a; b� the Euler β function. The parameters Ni, αi, βi,
γi, and δi come fromD FFs at the initial scale and are given
in Table III of [42]. Note thatDπþ=u in Ref. [42] differs from
Dπþ=d̄. Jfav in (6) is similarly defined as Jfav ≡ Juþū − Jū,
where Ji (i ¼ uþ ū, ū) follows from Ii through
α0fav→ðαfavþ4Þ, β0fav→ðβfavþ1Þ. The factor 1=ð2IfavJfavÞ
in (6) is convenient and implies

R
1
0 dzzHπþ=u

ð3Þ ðzÞ ¼ Nfav at

the initial scale, where Hð3Þ represents the entire second
term on the right-hand side of (5). For the disfavored FFs

Ĥπþ=ðd;ūÞ;ℑ
FU we make an ansatz in full analogy to (6),

introducing the additional parameters Ndis, αdis, α0dis, βdis,
β0dis. (Idis and Jdis are calculated using Dπþ=d ¼ Dπþ=ū from
[42].) The π− FFs are then fixed through charge conjuga-
tion, and the π0 FFs are given by the average of the FFs for
πþ and π−. The FFs Hπ=q are computed by means of (5).
All parton correlation functions are evaluated at the scale
Ph⊥ with leading-order evolution of the collinear functions.
Using the MINUIT package, we fit the fragmentation

contribution to data for Aπ0
N [35–37] and Aπ�

N [38]. To

facilitate the fit, we only keep seven parameters in Ĥπþ=q;ℑ
FU

free. We also allow the β-parameters βTu ¼ βTd of the
transversity to vary within the error range given in [33].
All integrations are done using the Gauss-Legendre method
with 250 steps.
For the SV1 input, the result of our eight-parameter fit is

shown in Table I. Note that the values for β0fav ¼ β0dis and
βfav are at their lower limits, which we introduce to
guarantee a finite integration upon z1 in (3) and a proper
behavior of AN at large xF, respectively. For the SV2 input,

the values of the fit parameters are similar, with an equally
successful fit (χ2=d:o:f: ¼ 1.10).
The very good description of AN is also reflected by

Fig. 1. We emphasize that such a positive outcome is
nontrivial if one keeps in mind the constraint in (5) and the
need to simultaneously fit data for Aπ0

N and Aπ�
N . Results for

the FFs Hπþ=q and ~Hπþ=q
FU ≡ R∞

z
dz1
z2
1

1
1
z−

1
z1

1
ξ Ĥ

πþ=q;ℑ
FU ðz; z1Þ are

displayed in Fig. 2. In either case, the favored and
disfavored FFs have opposite signs. This is like for
H⊥

1 where such reversed signs are actually “preferred”
by the Schäfer-Teryaev (ST) sum rule

P
h

P
Sh ×R

1
0 dzzMhĤ

h=qðzÞ ¼ 0 [47]. Note that the ST sum rule,
in combination with (5), implies a constraint on a certain
linear combination of Hh=q and (an integral of) Ĥh=q;ℑ

FU . In
view of that, reversed signs between favored and disfavored
FFs like in Fig. 2 are actually beneficial. Also depicted in

TABLE I. Fit parameters for SV1 input.

χ2=d:o:f: ¼ 1.03

Nfav ¼ −0.0338 Ndis ¼ 0.216
αfav ¼ α0fav ¼ −0.198 βfav ¼ 0.0
β0fav ¼ β0dis ¼ −0.180 αdis ¼ α0dis ¼ 3.99
βdis ¼ 3.34 βTu ¼ βTd ¼ 1.10
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FU switched off.
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Fig. 2 is Hπþ=q when Ĥπþ=q;ℑ
FU is switched off. As shown in

Fig. 1, in such a scenario, i.e., by turning off the three-
parton FF, one cannot describe the data for AN. According
to Fig. 3, the Ĥ term (including its derivative) in (3)
contributes only very little to AN . Also, the SGP pole term

is small, except for the SV2 input at large xF, where its
contribution is opposite to the data. Clearly, AN is governed
by the H term in (3). This result can mainly be traced back
to the hard scattering coefficients: e.g., for the dominant
qg → qg channel, one has SH ∝ 1=t̂3, but SĤ ∝ 1=t̂2 [14] in
the forward region where t̂ is small. Finally, Fig. 4 shows
the Ph⊥ dependence of AN for

ffiffiffi
S

p ¼ 500 GeV. Preliminary
data from STAR, extending to almost Ph⊥ ¼ 10 GeV,
show that AN is rather flat [48]. The twist-3 calculation
agrees with that trend, and also the magnitude of AN is in
line with the data. Note that the data of Ref. [48] were not
included in our fit and that only statistical errors are shown
in Fig. 4 [48].

IV. CONCLUSIONS

Collinear twist-3 QCD factorization can be considered
the most natural and rigorous approach to the transverse
SSA AN in p↑p → hX. However, the sign-mismatch issue
of the Sivers effect had put this framework into question
[11]. Here we have demonstrated for the first time that,
despite the sign-mismatch problem, twist-3 factorization
actually can describe high-energy RHIC data for Aπ

N very
well if one takes the fragmentation contribution into
account. We reemphasize that this result is nontrivial.
Since in the twist-3 approach part of AN can be fixed by
spin/azimuthal asymmetries in SIDIS and in eþe− →
h1h2X, we have shown that at present a simultaneous
description of all of those observables is possible. We
repeat that the fragmentation contribution in twist-3 fac-
torization goes beyond the pure Collins effect. Independent
information on the FFs Hπ=q, Ĥπ=q;ℑ

FU from other sources is
needed before one can ultimately claim that the intriguing
data on Aπ

N are fully understood. However, the fact that
Ĥπ=q;ℑ

FU gives a reasonable contribution to (the numerically
dominant) Hπ=q (see Fig. 2) allows one to be optimistic in
this regard.
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