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We consider hard three-loop nonlogarithmic corrections of order mα7 to hyperfine splitting in
positronium. All these contributions are generated by the graphs with photon and/or electron loop
radiative insertions in the two-photon exchange diagrams. We calculate contributions of six gauge-invariant
sets of diagrams. The total result for all these diagrams is ΔE ¼ −1.2917ð1Þmα7=π3 ¼ −5.672 kHz.
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Experimental and theoretical research on hyperfine
splitting (HFS) in positronium has a long and distinguished
history. The experimental research started with the discov-
ery of positronium [1] and the first HFS measurement [2],
both in 1951. Results comparable in accuracy were
obtained in the 1980s [3–5],

ΔEexp ¼ 203388.5ð1.0Þ MHz; ð1Þ

and much later in 2013 [6],

ΔEexp ¼ 203394.2ð1.6Þstatð1.3Þsys MHz: ð2Þ

An even later but less accurate result in Ref. [7] is
compatible with this last number. We see that the recent
result in Ref. [6] is about three standard deviations higher
than the earlier results. In this situation, new high-precision
measurements of the positronium HFS are warranted.
Theoretical work started with calculation of the leading

contribution of order mα4 to positronium HFS splitting at
the end of the 1940s and the beginning of the 1950s
[8–10]. The full quantum electrodynamic theoretical
expression for the positronium HFS splitting is a series
in the fine structure constant α with the coefficients that are
polynomials in ln α. During the years, many corrections to
the leading contribution were calculated. Nowadays, all
terms up to and including mα7 ln α are already calculated;
see the state-of-the-art theoretical expression in Ref. [11].
Calculation of the nonlogarithmic corrections of order
mα7 is the next theoretical goal. First results for these
corrections were published recently [11,12].
The current theoretical uncertainty of the positronium

HFS theory can be estimated by comparison with the
known results for HFS in muonium. There are two major
differences between HFS in muonium and positronium.

First, an additional annihilation channel arises in the case of
positronium, and, second, the masses of constituents
coincide in the case of positronium. After calculation of
the one-photon annihilation contribution of order mα7 in
Ref. [11], the dominant contribution to the theoretical
uncertainty of HFS in positronium is generated by the
unknown nonlogarithmic terms of order mα7 that are
similar to the terms of order αðZαÞ2EF in muonium.
These corrections in muonium are generated by the
one-loop radiative insertions in the electron line.
Structurally, they are similar to the classic Lamb contri-
butions and are represented by the series in lnðZαÞ,
½c1ln2ðZαÞ þ c2 lnðZαÞ þ c3�αðZαÞ2EF; see, e.g., reviews
in Refs. [13,14]. The nonlogarithmic term with the coef-
ficient c3 arises from the ultrasoft momenta of order
mðZαÞ2 and is about 2 × 10−6EF [15,16] in muonium.
Similar ultrasoft terms in positronium arise due to one-loop
radiative insertions in each of the fermion lines and also due
to an exchange of an ultrasoft photon between the fermion
lines. In this situation, we accept 2 × 10−6EPs

F ∼ 250 kHz
as a fair estimate of the ultrasoft nonlogarithmic contribu-
tion in positronium. This term is still uncalculated, and,
after the recent calculation of the one-photon annihilation
contribution in Ref. [11], it can be used as an estimate of the
theoretical uncertainty of the current positronium HFS
theory.
There are other sources of nonlogarithmic corrections of

order mα7 besides ultrasoft nonlogarithmic contributions.
Hard nonlogarithmic corrections of order mα7 are gener-
ated by seven gauge-invariant sets of nonannihilation
diagrams; six of them are presented in Figs. 2–4 and in
Figs. 6–81. One more set of diagrams with two-photon
exchanges and two radiative photon insertions in one and
the same fermion line also generates hard nonlogarithmic
corrections of order mα7. The contributions to HFS in
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1We systematically omit diagrams with crossed exchanged
photons in all figures.
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positronium produced by these diagrams are similar to
the contributions of orders α2ðZαÞEF, α2ðZαÞðm=MÞEF,
and αðZ2αÞðZαÞðm=MÞEF in muonium; see reviews in
Refs. [13,14,17] and more recent results in Refs. [18–22].
We report below the results of calculations of gauge-
invariant contributions to HFS in positronium generated
by the diagrams in Figs. 2–4 and in Figs. 6–82. All these
diagrams can be obtained by radiative insertions in the
diagrams with two-photon exchanges in Fig. 1. Because of
radiative insertions, the characteristic integration momenta
in all these diagrams are or order of the electron mass m,
much larger than the characteristic bound state momenta of
order mα. As a result, all these contributions can be
calculated in the scattering approximation with the on-
shell external electron (positron) lines, and the result should
be multiplied by the Schrödinger—Coulomb wave function
squared at the origin. To keep control of the positronium
calculations, we derived general expressions for contribu-
tions of order α2ðZαÞEF to HFS for a system with
constituents with an arbitrary mass ratio. We have checked
that these expressions reproduce the contributions to HFS
in muonium obtained earlier as series in the small mass
ratio [13,14,17–22]. Then, we used the same expressions
for the calculation of the hard nonlogarithmic corrections of
order mα7 in positronium.
We start the calculations with the infrared-divergent

contribution to HFS in positronium generated by the
two-photon exchange diagrams in Fig. 1 calculated in
the scattering approximation. It can be written in the form

ΔE ¼ −
α

π
EPs
F ð2m2Þ

Z
d4q
iπ2q4

ð2q2 þ q20ÞLskelðqÞLskelð−qÞ;
ð3Þ

where EPs
F ¼ mα4=3 is the leading nonannihilation

contribution to HFS in positronium and the factor Lskel
is defined by the skeleton electron line factor

Lμν
skelðqÞ≡ −

2q2

q4 − 4m2q20
γμq̂γν ¼ 2Lskelγ

μq̂γν: ð4Þ

Explicitly, after the Wick rotation, we obtain

ΔE ¼ α

π
EPs
F
4m2

π

Z
π

0

dθsin2θ
Z

∞

0

dq2
2þ cos2θ

ðq2 þ 4m2cos2θÞ2

≡ α

π
EPs
F

Z
∞

0

dq2fpðqÞ: ð5Þ

Radiative insertions in Figs. 2–4 and in Figs. 6–8 make
these diagrams infrared convergent and justify the validity
of the scattering approximation for their calculation. All
corrections calculated below are obtained by some mod-
ifications of the basic integrals in Eqs. (3) and (5).
Consider first the diagrams in Fig. 2 with two one-loop

polarization insertions:

α

π
I1ðqÞ ¼

α

π

Z
1

0

dv
v2ð1 − v2

3
Þ

4m2 þ q2ð1 − v2Þ : ð6Þ

The contribution of the diagrams in Fig. 2 is obtained by
insertion of the one-loop photon polarization squared
ðα=πÞ2q4I21ðqÞ in the integrand in Eq. (5). After
calculations, we obtain

ΔE1 ¼ 3
α3

π3
EPs
F

Z
∞

0

dq2fpðqÞq4I21ðqÞ

¼
�
6π2

35
−
8

9

�
α3

π3
EPs
F

¼ 0.803043294
α3

π3
EPs
F ; ð7Þ

where the factor 3 before the integral accounts for the
multiplicity of the diagrams.
Similarly the contribution of the two-loop vacuum

polarization in Fig. 3 can be obtained by the insertion of
the two-loop photon polarization ðα2=π2Þq2I2ðqÞ [23,24] in
the integrand in Eq. (5),

ΔE2 ¼ 2
α3

π3
EPs
F

Z
∞

0

dq2fpðqÞq2I2ðqÞ; ð8Þ

where 2 is the combinatorial factor. The integral repre-
sentation [24] for I2 is too cumbersome to put it down here.

FIG. 1. Diagrams with two-photon exchanges.
FIG. 2. Diagrams with two one-loop polarization insertions.

FIG. 3. Diagrams with two-loop polarization insertions.

2The contribution of the diagrams with the light-by-light
scattering insertions in Fig. 7 was recently obtained in Ref. [12].
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Nevertheless, it admits an analytic calculation of the
integral above, and we obtain

ΔE2 ¼
�
−
217

30
ζð3Þ þ 28π2

15
ln 2þ π2

675
þ 403

360

�
α3

π3
EPs
F

¼ 5.209219614
α3

π3
EPs
F : ð9Þ

The diagrams in Fig. 4 are obtained from the skeleton
diagrams in Fig. 1 by one-loop radiative insertions in one of
the exchanged photons and one of the fermion lines.
Because of the one-loop radiative insertions in the fermion
line in Fig. 4, effectively the skeleton fermion line in Fig. 1
is replaced by the one-loop fermion factor Lμν in Fig. 5.
This corresponds to the substitution

Lμν
skelðqÞ → LμνðqÞ

¼ 2
α

4π

�
γμq̂γν ~LIðq2; q20Þ

þ q0

�
γμγν −

qμq̂γν þ γμq̂qν

q2

�
~LIIðq2; q20Þ

�
;

ð10Þ

in the integral in Eq. (3), where ~LIðIIÞðq2; q20Þ are scalar form
factors. We derived explicit integral representations for
these form factors a long time ago, calculating contribu-
tions to HFS in muonium [25,26].
Then, we are ready to calculate the contribution of the

diagrams in Fig. 4 to HFS:

ΔE3 ¼
α3

π3
EPs
F
4m2

π

Z
∞

0

dq2q2I1ðqÞ

×
Z

π

0

dθsin2θLskel½ð2þ cos2θÞ ~LI − 3cos2θ ~LII�

¼ −1.28709ð1Þ α
3

π3
EPs
F : ð11Þ

Next, we turn to the diagrams in Fig. 6 with the one-loop
polarization insertions in the radiative photon. Effectively,

these diagrams contain a radiatively corrected electron
factor in Eq. (10). A photon line with the insertion of a
one-loop polarization operator has a natural interpretation
as a massive photon propagator, with the mass squared
λ2 ¼ 4m2=ð1 − v2Þ. This propagator should be integrated
over v with the weight ðα=πÞv2ð1 − v2=3Þ=ð1 − v2Þ; com-
pare Eq. (6). To obtain the electron factor necessary for
calculation of the diagrams in Fig. 6, we restored the
photon mass in the one-loop electron factor in Eq. (10) and
made the substitution above. In this way, we obtained an
explicit integral representation for this radiatively corrected
electron factor. This factor is similar to the radiatively
corrected electron factor used in our earlier calculations of
the respective contributions to HFS in muonium in
Refs. [20,27]. All entries in a two-loop fermion factor
except the two-loop anomalous magnetic moment decrease
at least as q2 when q2 → 0. As a result, the term with the
two-loop anomalous magnetic moments leads to an infra-
red-divergent contribution in the integral for the diagrams
in Fig. 6. This linear infrared divergence indicates the
existence of a contribution to HFS of the previous order in α
that is already accounted for. To get rid of this spurious
divergence, we subtract the term with the two-loop anoma-
lous magnetic moment from the two-loop electron factor.
Then, the contribution of the diagrams in Fig. 6 to HFS can
be written in the form

ΔE4 ¼
α3

π3
EPs
F
2m2

π

Z
∞

0

dq2

×
Z

π

0

dθsin2θLskel½ð2þ cos2θÞLp
I − 3cos2θLp

II�;
ð12Þ

FIG. 4. Diagrams with one-loop polarization and radiative photon insertions.

FIG. 5. One-loop fermion factor.

FIG. 6. Diagrams with one-loop polarization insertions in
radiative photons.
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where Lp
I and Lp

II are the two-loop form factors [20,27]
similar to the one-loop form factors in Eq. (10) but with
the subtracted anomalous magnetic moment terms. After
calculations, we obtain

ΔE4 ¼ −3.15441ð1Þ α
3

π3
EPs
F : ð13Þ

The calculation of the light-by-light scattering contribu-
tion in Fig. 7 proceeds exactly like the calculation of the
respective nonlogarithmic radiative-recoil correction to
HFS in muonium in Ref. [22]. The only difference is that
we need to let the muon mass be equal to the electron mass
and restore the terms of higher order in the recoil factor
m=M omitted terms in Ref. [22]. This can be easily
achieved by restoring the factor 1=ðq2 þ 4m2cos2θÞ instead
of 1=q2 in the integrand in Eq. (32) of Ref. [22]. Then, the
integral for the light-by-light diagrams in Fig. 8 acquires
the form

ΔE5 ¼
α3

π3
EPs
F
3m2

32π

Z
∞

0

dq2
Z

π

0

dθsin2θ
Tðq2; cos2θÞ

ðq2 þ 4m2cos2θÞ2 :

ð14Þ
The explicit integral representation for the function
Tðq2; cos2θÞ can be found in Ref. [22]. Calculating this
integral, we obtain

ΔE5 ¼ −0.70627ð5Þ α
3

π3
EPs
F ; ð15Þ

which coincides with the result obtained recently
in Ref. [12].
Consider now the diagrams in Fig. 8. These diagrams

contain one-loop fermion factors in Eq. (10) in both
fermion lines. As we mentioned above in discussion of
the diagrams in Fig. 6, all entries in a fermion factor except
the one-loop anomalous magnetic moment decrease at least
as q2 when q2 → 0. As a result, the product of anomalous
magnetic moments leads to an infrared-divergent contri-
bution in the integral for the diagrams in Fig. 8. This linear
infrared divergence indicates the existence of a contribution
to HFS of the previous order in α. We need to subtract this
lower-order contribution. To facilitate this substraction, we
write the fermion factors (after the Wick rotation) in the
form

~LI ¼ L1 þ LA; ~LII ¼ LII − LA; ð16Þ

where we have separated the contribution of the anomalous
magnetic moment

LA ¼ 2Lskel ¼
2

q2 þ 4m2cos2θ
ð17Þ

to the scalar form factors.
After subtraction of the infrared-divergent part, we

calculate the finite integral for the contribution of the
diagrams in Fig. 8 to HFS:

ΔE6 ¼
α3

π3
EPs
F

�
m2

4π

Z
∞

0

dq2sin2θdθ

�
ð2þ cos2θÞðLILI þ LALI þ LILAÞ

− 3cos2θðLILII þ LALII − LILA þ LIILI − LALI þ LIILAÞ

þ cos2θð1þ 2cos2θÞðLIILII − LALII − LIILAÞ
�
þ 9

16

�

¼ −4.73955ð40Þ α
3

π3
EPs
F : ð18Þ

Next, we collect the results in Eqs. (7), (9), (11), (13), (15), and (18) and obtain the total hard contribution to HFS of order
mα7 generated by the diagrams in Figs. 2–4 and in Figs. 6–8:

FIG. 7. Diagrams with light-by-light scattering insertions.

FIG. 8. Diagrams with one-loop radiative photon insertions in
both fermion lines.
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ΔE ¼ −3.8750ð4Þ
�
α

π

�
3

EPs
F

¼ −1.2917ð1Þmα7

π3

¼ −5.672 kHz: ð19Þ

Then, the total state-of-the-art theoretical prediction
for HFS in positronium with account of all theoretical
contributions known today [11,12] is

ΔEtheor ¼ 203391.90ð25Þ MHz; ð20Þ

to be compared with the experimental numbers in Eqs. (1)
and (2). Clearly, further reduction of both the experimental
and theoretical uncertainties is warranted. On the theoreti-
cal side, calculation of the still unknown ultrasoft and hard
nonlogarithmic contributions of order mα7 is the next goal.
Work on the calculation of the remaining hard correction of
order mα7 is now in progress, and we hope to report its
results in the near future.

This work was supported by the NSF Grant No. PHY-
1066054. The work of V. S. was also supported in part by
RFBR Grant No. 14-02-00467 and by DFG Grant No. HA
1457/9-1.

[1] M. Deutsch, Phys. Rev. 82, 455 (1951).
[2] M. Deutsch and E. Dulit, Phys. Rev. 84, 601 (1951).
[3] A. P. Mills, Jr. and G. H. Bearman, Phys. Rev. Lett. 34, 246

(1975).
[4] M.W. Ritter, P. O. Egan, V.W. Hughes, and K. A. Woodle,

Phys. Rev. A 30, 1331 (1984).
[5] A. P. Mills, Phys. Rev. A 27, 262 (1983).
[6] A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, M.

Yoshida, K. Tanaka, and A. Yamamoto, arXiv:1310.6923.
[7] A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai,

T. Kobayashi, H. Saito, Y. Tatematsu, I. Ogawa, and T.
Idehara, arXiv:1403.0312.

[8] J. Pirenne, Arch. Sci. Phys. Nat. 29, 265 (1947).
[9] V. B. Berestetskii, Sov. Phys. JETP 19, 1130 (1949).

[10] R. A. Ferrell, Phys. Rev. 84, 858 (1951).
[11] M. Baker, P. Marquard, A. A. Penin, J. Piclum, and M.

Steinhauser, Phys. Rev. Lett. 112, 120407 (2014).
[12] G. S. Adkins and R. N. Fell, Phys. Rev. A 89, 052518

(2014).
[13] M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342,

63 (2001).
[14] M. I. Eides, H. Grotch, and V. A. Shelyuto, Theory of Light

Hydrogenic Bound States (Springer, Berlin, 2007).
[15] K. Pachucki, Phys. Rev. A 54, 1994 (1996).

[16] T. Kinoshita and M. Nio, Phys. Rev. D 55, 7267
(1997).

[17] M. I. Eides, H. Grotch, and V. A. Shelyuto, Can. J. Phys. 83,
363 (2005).

[18] M. I. Eides and V. A. Shelyuto, Phys. Rev. Lett. 103, 133003
(2009).

[19] M. I. Eides and V. A. Shelyuto, Phys. Rev. D 80 053008,
(2009).

[20] M. I. Eides and V. A. Shelyuto, J. Exp. Theor. Phys. 110, 17
(2010).

[21] M. I. Eides and V. A. Shelyuto, Phys. Rev. D 87, 013005
(2013).

[22] M. I. Eides and V. A. Shelyuto, Phys. Rev. D 89, 014034
(2014).

[23] G. Kallen and A. Sabry, K. Dan. Vidensk. Selsk. Mat. Fys.
Medd. 29, 17 (1955).

[24] J. Schwinger, Particles, Sources and Fields, Vol. 2
(Addison-Wesley, Reading, MA, 1973).

[25] V. Yu. Brook, M. I. Eides, S. G. Karshenboim, and V. A.
Shelyuto, Phys. Lett. B 216, 401 (1989).

[26] M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rev. D 58,
013008 (1998).

[27] S. G. Karshenboim, M. I. Eides, and V. A. Shelyuto, Yad.
Fiz. 48, 1039 (1988) [Sov. J. Nucl. Phys. 48, 661 (1988)].

HARD NONLOGARITHMIC CORRECTIONS OF ORDER … PHYSICAL REVIEW D 89, 111301(R) (2014)

111301-5

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRev.82.455
http://dx.doi.org/10.1103/PhysRev.84.601
http://dx.doi.org/10.1103/PhysRevLett.34.246
http://dx.doi.org/10.1103/PhysRevLett.34.246
http://dx.doi.org/10.1103/PhysRevA.30.1331
http://dx.doi.org/10.1103/PhysRevA.27.262
http://arXiv.org/abs/1310.6923
http://arXiv.org/abs/1403.0312
http://dx.doi.org/10.1103/PhysRev.84.858
http://dx.doi.org/10.1103/PhysRevLett.112.120407
http://dx.doi.org/10.1103/PhysRevA.89.052518
http://dx.doi.org/10.1103/PhysRevA.89.052518
http://dx.doi.org/10.1016/S0370-1573(00)00077-6
http://dx.doi.org/10.1016/S0370-1573(00)00077-6
http://dx.doi.org/10.1103/PhysRevA.54.1994
http://dx.doi.org/10.1103/PhysRevD.55.7267
http://dx.doi.org/10.1103/PhysRevD.55.7267
http://dx.doi.org/10.1139/p05-008
http://dx.doi.org/10.1139/p05-008
http://dx.doi.org/10.1103/PhysRevLett.103.133003
http://dx.doi.org/10.1103/PhysRevLett.103.133003
http://dx.doi.org/10.1103/PhysRevD.80.053008
http://dx.doi.org/10.1103/PhysRevD.80.053008
http://dx.doi.org/10.1134/S1063776110010036
http://dx.doi.org/10.1134/S1063776110010036
http://dx.doi.org/10.1103/PhysRevD.87.013005
http://dx.doi.org/10.1103/PhysRevD.87.013005
http://dx.doi.org/10.1103/PhysRevD.89.014034
http://dx.doi.org/10.1103/PhysRevD.89.014034
http://dx.doi.org/10.1016/0370-2693(89)91139-8
http://dx.doi.org/10.1103/PhysRevD.58.013008
http://dx.doi.org/10.1103/PhysRevD.58.013008

