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We analyze the one-loop effective action of the Gribov-Zwanziger Lagrangian and use the local
composite operator formalism to include the most general Becchi-Rouet-Stora-Tyutin dimension two mass
operator for the localizing ghost fields. We show that the energetically favorable color channel corresponds
to what is known as the R direction.
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In recent years there has been interest in understanding
the infrared behavior of the gluon and Faddeev-Popov
ghost propagators in quantum chromodynamics (QCD).
This is motivated mainly by their relation to confinement.
Gluons, which are the quanta mediating the strong nuclear
force, are not observed in nature, unlike the other vector
bosons in the full standard model. In this respect, the gluon
propagator does not have the canonical behavior associated
with an observed fundamental particle which is the pres-
ence of a simple pole at the mass shell value. While its
high-energy asymptotic properties are similar to those of
say a photon, in the low-energy regime, a pole at zero
momentum does not apparently emerge. Evidence for
this is provided by several approaches. These are the lattice
gauge theory, Schwinger-Dyson methods, and the
Hamiltonian approach (in the Coulomb gauge) [1]. The
majority of the activity in recent years has primarily
centered on the Landau gauge. In this gauge, which we
concentrate on here, there are several scenarios. In one case
at zero momentum, the gluon propagator freezes to a
nonzero finite value without any singular behavior. A
selection of articles demonstrating this are, for example,
[2–11]. However, in analyzing non-Abelian gauge theories
at low energies, one has to be aware of global consid-
erations. In the case of Landau gauge-fixed QCD, the main
problem one has to be aware of is the Gribov problem [12].
Stated briefly, it is not possible to fix the gauge globally,
as there are different gauge copies satisfying the same
gauge-fixing condition which have to be factored out of the
path integral to ensure that there is no double counting.
Although there are additional subtle issues as to whether
accounting for such Gribov copies produces a unique gauge
configuration, Gribov demonstrated [12] that their presence
affected the properties of the gluon and Faddeev-Popov
propagators at low momenta. The former is suppressed
and freezes to a zero value while the latter enhances with a
double-pole structure in p2 where p is the momentum.
Clearly this is not the behavior found in recent years
from lattice and some Schwinger-Dyson solutions [2–11].
On terminology, the original Gribov scenario of [12] is
referred to as the scaling solution, and the nonzero freezing
is termed the decoupling solution [11]. Indeed, recently,

various lattice analyses have shed some light as to why
the latter emerges in the data as opposed to the scaling
case [13,14]. However, Schwinger-Dyson solutions do
find the scaling solution, too. Moreover, the Coulomb
gauge Hamiltonian approach strongly supports the Gribov
confinement picture and connects the dual Meissner
effect with the Gribov-Zwanziger confinement analysis
[1,15–17].
After Gribov’s definitive analysis of the gauge fixing

problem in the Landau gauge [12], the nonlocal resultant
Lagrangian was localized in a series of articles [18–26].
This produced a local renormalizable Lagrangian, which
meant that one could carry out loop computations. For
instance, the two-loop gap equation satisfied by the
Gribov mass γ, which derives from the path integral cutoff,
was determined in [12,25,27]. Also, the zero-momentum
freezing of the gluon propagator and the Faddeev-Popov
ghost enhancement were confirmed at one and two
loops, respectively. However, the localization process of
[18–26] which Zwanziger constructed required two sets
of extra localizing spin 1 ghost fields. One set is bosonic
and the other is Grassmann. These play a passive role at
high energy but affect the low-momentum behavior of
the propagators. Indeed they have interesting dynamics in
themselves. For instance, it was shown in [28] that the
adjoint projection of the bosonic localizing ghost had an
enhanced behavior in its longitudinal part. However,
like the original Gribov formulation, this pure Gribov-
Zwanziger Lagrangian does not produce the decoupling
properties observed in current data. To model this, the
Gribov-Zwanziger Lagrangian was refined in [29] to
include a mass operator for the localizing ghost fields.
Such a mass term alters the infrared properties of their
propagators as well as that of the gluon. In particular,
the gluon has a nonzero value at zero momentum. The
analysis was based on the local composite operator (LCO)
formalism [30–32] and constructed the effective potential
satisfied by the mass operator. It was then shown that the
potential had a minimum at a nonzero value, indicating
that the condensation of the operator would produce a
mass term for the localizing ghosts thereby modeling the
nonzero frozen gluon propagator behavior [29]. However,
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the analysis of [29] did not use the most general possible
localizing ghost mass operator. In [33], the most general
dimension two Becchi-Rouet-Stora-Tyutin (BRST)
invariant operator was considered based on all of the
possible color tensors. One feature was that the frozen
gluon propagator behavior did not have a unique solution
from the LCO mechanism. Indeed, it was shown in [33]
that other color structures not considered in [29] could
reproduce lattice data. Therefore, to reconcile whether
there is a preferred color tensor structure, we extend here
the analysis of [29] to the general case of [33] and
complete the program begun in [33]. The aim is to see
if there is indeed a unique minimum solution to the
corresponding LCO effective potential for the general
operator. If there is a unique minimum, we can therefore
regard this as the energetically favorable operator con-
densation color direction. Moreover, once determined,
the properties of the corresponding propagators at low
momentum can therefore provide potential tests on future
data to ascertain whether this is the underlying Lagrangian
structure.
To set the background to the problem, we recall Gribov’s

observation [12] that the QCD action has to be modified
to account for the effect of copies deriving from the global
gauge-fixing ambiguity. The subsequent nonlocal Gribov
Lagrangian which depends on the Gribov mass is [12,25]

LGribov ¼ LQCD þ γ4

2
feacfebdAa

μ

�
1

∂νDν

�
cd
Ab μ −

dNAγ
4

2g2
;

(1)

where Aa
μ is the gluon, NA is the adjoint representation

dimension with 1 ≤ a ≤ NA, and d is the spacetime
dimension, and

LQCD ¼ −
1

4
Ga

μνGa μν −
1

2α
ð∂μAa

μÞ2 − c̄a∂μDμca

þ iψ̄ iIDψ iI (2)

is the QCD Lagrangian for Nf massless quarks ψ iI

with 1 ≤ i ≤ Nf and 1 ≤ I ≤ NF where NF is the funda-
mental representation dimension and ca is the Faddeev-
Popov ghost. The presence of γ results from imposing the
no-pole condition [12], which equates to defining the Gribov
horizon in configuration space. From (1), this is [12,25]

feacfebd
�
Aa
μ

�
1

∂νDν

�
cd
Ab μ

�
¼ dNA

g2
: (3)

Given that the gluon propagator depends on γ, this condition
constrains γ to satisfy a gap equation. In other words
[12,20,25], only when the gap equation is imposed is one
in the gauge theory. To circumvent the inability to perform
computations with a Lagrangian with a nonlocal term, in a
series of articles [18–26], Zwanziger localized the horizon

term of (1) with the introduction of localizing ghost fields. In
the current formulation of this, these fields are ξabμ , ρabν , ωab

μ ,
and ω̄ab

μ , where the first two are bosonic and the other two
are Grassmann. The latter play the same role to the bosonic
localizing ghosts as the Faddeev-Popov ghosts do for the
gauge field. The full localized Lagrangian is [25]

LGZ ¼ LQCD þ 1

2
ρab μ∂νðDνρμÞab þ

i
2
ρab μ∂νðDνξμÞab

−
i
2
ξab μ∂νðDνρμÞab þ

1

2
ξab μ∂νðDνξμÞab

− ω̄ab μ∂νðDνωμÞab −
1ffiffiffi
2

p gfabc∂νω̄ae
μ ðDνcÞbρec μ

−
iffiffiffi
2

p gfabc∂νω̄ae
μ ðDνcÞbξec μ

− iγ2fabcAaμξbcμ −
dNAγ

4

2g2
: (4)

Its properties are well established [25–27]. For the purposes
of this article, the key ones are that the Faddeev-Popov
ghosts as well as ωab

μ enhance in the infrared when the
gap equation for γ is satisfied. Hence the Kugo-Ojima
confinement criterion [34] is fulfilled. Indeed, more recently,
an analysis of this condition for other gauges such as
Coulomb and the maximal Abelian gauge has been provided
in [35]. There the Kugo-Ojima confinement condition was
generalized to these additional gauges, and criteria were
given to differentiate between the Higgs or Coulomb phases
of BRST symmetric gauge theories and the color-confining
phase. Indeed, this represents progress toward having a
universal criterion for color confinement. In addition, there
is an infrared enhancement for the bosonic localizing ghosts
in (4). More specifically, it has been shown in [28] that the
adjoint projection of the longitudinal part of the ξabμ
propagator enhances in the infrared. It was argued that this
feature reflected the Goldstone boson associated with the
spontaneous breaking of a BRST-related symmetry of the
Lagrangian in the presence of a constraint. The final property
of (1) which is relevant is that the gluon propagator is
suppressed in the infrared. The last property can be seen in
the propagators of (4), which are

hAa
μðpÞAb

νð−pÞi¼−
δabp2

½ðp2Þ2þCAγ
4�PμνðpÞ;

hAa
μðpÞξbcν ð−pÞi¼ ifabcγ2

½ðp2Þ2þCAγ
4�PμνðpÞ

hξabμ ðpÞξcdν ð−pÞi¼−
δacδbd

p2
ημνþ

fabefcdeγ4

p2½ðp2Þ2þCAγ
4�PμνðpÞ;

hAa
μðpÞρbcν ð−pÞi¼ 0

hρabμ ðpÞρcdν ð−pÞi¼ hωab
μ ðpÞω̄cd

ν ð−pÞi¼−
δacδbd

p2
ημν;

hξabμ ðpÞρcdν ð−pÞi¼ 0; (5)
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where PμνðpÞ ¼ ημν − pμpν=p2. The gluon suppression has
been checked at one loop [36], which is due mainly to the
fact that (4) is renormalizable [25,37,38], allowing one to
perform loop computations.
In summarizing these general features of the Gribov

construction which persist in loop calculations, it is evident
that they are not observed on the lattice [2–11]. Instead, the
numerical data indicate that the gluon propagator freezes
to a nonzero value, and the Faddeev-Popov ghost is not
enhanced in the infrared. This decoupling behavior has
been observed in one set of Schwinger-Dyson solutions
[11]. However, in [29], a BRST invariant mass operator for
the localizing ghosts was introduced, and its effect on the
structure of the theory in the infrared was analyzed. Briefly,
a frozen gluon propagator and nonenhanced Faddeev-
Popov ghost propagator emerged in the quantum analysis
which mimics the lattice observations. It was subsequently
pointed out in [33] that the particular choice of BRST
invariant mass operator of [29] was not unique to modeling
the decoupling solution. Indeed it was not the most general
possible BRST dimension two operator from a group
theoretic point of view. While one could in principle add
a mass operator for the localizing ghosts to (4), such a term
would have no origin in the original Gribov Lagrangian (1).
Therefore, a mass term for the extra fields can be estab-
lished via a nonzero vacuum expectation value for the mass
operator. In other words, if one computed the effective
potential for the mass operator and found that it was a
minimum at a nonzero value which was energetically more
favorable than the massless localizing ghost case, then the
mass operator would condense. Thus the nonzero vacuum
expectation value would produce the necessary masses
to model a frozen gluon propagator and nonenhanced
Faddeev-Popov ghost propagator. In [29], such an analysis
was performed for the operator considered there. However,
as noted in [33], by restricting the seed operator to a
specific color direction in color space, it was not clear
whether the vacuum solution which emerged was the
energetically most favorable one. Therefore, we provide
the analysis for the most general BRST dimension two
localizing ghost operator and aim to establish the direction
in color space which is the most energetically favorable.
The most general BRST dimension two operator

was introduced in [33] and in the same (nonorthogonal)
basis is

O ¼
�
μ2Qδ

acδbd þ μ2Wfacefbde þ μ2R
CA

fabefcde

þ μ2Sd
abcd
A þ μ2P

NA
δabδcd þ μ2T δ

adδbc
�
Oabcd; (6)

where the color directions are each associated with a mass
parameter, μ2I . We use the label I to indicate the various
possible color channels defined by the color tensor. For
reference in [29] channelQwas the main focus. In (6), fabc

are the structure functions of the color group and [39]

dabcdA ¼ 1

6
TrðTa

AT
ðb
A T

c
AT

dÞ
A Þ; (7)

which is totally symmetric in its color indices. The field
content of the operator is [33]

Oabcd ¼ 1

2

h
ρabρcd þ iξabρcd − iρabξcd þ ξabξcd

i

− ω̄abωcd; (8)

which is BRST invariant. Its anomalous dimension satisfies
a Slavnov-Taylor identity and is simply related to the
Faddeev-Popov ghost anomalous dimension [29,33].
To proceed to the effective potential that the operator

satisfies, we outline the LCO method [30–32] in general
terms. If we have an operator O, then it is coupled to a
source J, and the generating functionalW½J� is constructed

e−W½J� ¼
Z

DΦo exp

�
−Sþ

Z
ddxJoOo þ

1

2
ζoJ2o

�
; (9)

where Φ represents the fields of the action S and the
subscript o corresponds to a bare quantity. After renorm-
alization, one has [30–32]

e−W½J� ¼
Z

DΦ exp

�
−Sþ ZO

Z
ddxJOþ 1

2
ðζ þ δζÞJ2

�
:

(10)

The quantity ζ is known as the LCO parameter and is a
nonperturbative function of the coupling constant. It is
defined to ensure that the renormalization group equation
satisfied byW½J� is homogeneous [30–32]. As it has similar
properties to a coupling constant, it undergoes renormal-
ization, but we use the same notation for the counterterm,
δζ, as [30–32]. The method to determine the explicit
divergences contributing to δζ was developed from the
ideas of [30] in [40]. If one denotes the renormalization
group function associated with the renormalization of ζ
by δðgÞ in the notation of [30], then ζðgÞ is defined by the
solution of

μ
∂ζ
∂μ ¼ 2γOðgÞζ þ δðgÞ; (11)

where γOðgÞ is the anomalous dimension of the operator
whose effective potential we are interested in. Once ζðgÞ
is defined to the loop order required, one evaluatesW½J� or
applies a Hubbard-Stratonovich transformation to translate
the source in the exponential within the path integral
definition to a linear dependence [30]. This allows one
to construct the effective potential using the standard
procedures. Here the structure of W½J� is sufficient for
our purposes as its dependence on μ2I determines the
energetically favorable color direction.
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One main difference from the earlier application of the
LCO formalism to 1

2
Aa
μAa μ is that the operator (6) can be

regarded as a sum of different operators which are color
projections of (8). In this respect, one should have a vector
of sources, JI , so that the operator source seed term in the
initial application of the LCO formalism in (9) is
�
JQδacδbd þ JWfacefbde þ JR

CA
fabefcde þ JSdabcdA

þ JP
NA

δabδcd þ JT δadδbc
�
Oabcd: (12)

From this we have performed the summation of one loop
leg graphs for the SUðNcÞ color group and found

W½J� ¼ −
dNAγ

4Z4
γ

2g2Z2
g

þ dNAζJγ2

g2

þ ðd − 1ÞNA

2

Z
k
ln

�
k2
�
k2 þ CAγ

4

½k2 þ J�
��

þOðg2Þ;
(13)

where Zγ and Zg are the respective renormalization con-
stants for γ and g and

J ¼
�
JQ þ JR − JT þ CA

2
JW

�
(14)

is the combination of sources which emerges from the
formulation. The second term of (13) has no one-loop
divergences [29]. We recall that to proceed to the effective
potential one introduces a field σðxÞ which is the field
which couples linearly to the source [30–32] and in effect
corresponds to theoriginal compositeoperator.Consequently,
the effective potential for σ emerges from the constant field
value of the effective action for the operator given by

Γ½σ� ¼ W½J� −
Z

d4xJðxÞσðxÞ (15)

after a Legendre transformation [30–32]. Hence, the one-loop
effective potential is

VðM2Þ ¼ −
2NAγ

4

g2
þ 4NAζM2γ2

g2

þ NA

64π2

�
7CAγ

4 þM4 ln

�
M2

μ2

�

þ 3M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M4 − 4CAγ

4�
q

ln

�
a2þ
μ2

�

−
3

4
½M4 − 4CAγ

4� ln
�
CAγ

4

μ4

�

−
3

2
M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M4 − 4CAγ

4�
q

ln

�
CAγ

4

μ4

��
; (16)

where a2þ ¼ 1
2
½M2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M4 − 4CAγ

4�
p

� and μ is the scale
introduced to ensure that g is dimensionless in d dimensions.
In the present context, the effective potential depends on the
unique combination of masses given by

M2 ¼
�
μ2Q þ μ2R − μ2T þ CA

2
μ2W

�
; (17)

where M2 represents the constant field value of the corre-
sponding σ field. The potential has an absolute minimum at
this value of M2 as it is this specific combination which
minimizes the potential. Any deviation away from this
combinationwill increase it.However, considering theoverall
situation, this means that not only does the original operator
Oabcd condense, it does so in a particular color direction.
To see what this is, one computes the different combinations
of μ2I which emerge when the color tensor

T abcd ¼
�
μ2Qδ

acδbd þ μ2Wfacefbde þ μ2R
CA

fabefcde

þ μ2Sd
abcd
A þ μ2P

NA
δabδcd þ μ2T δ

adδbc
�

(18)

is multiplied by each constituent tensor in turn. It is straight-
forward to see that, for SUðNcÞ, T abcdfabefcde ¼
CANAM2. Thus, at one loop from theLCOeffective potential,
the general operator condensation is in theR color direction
since

hOabcdi ∝ fabefcde: (19)

This preferred color direction was suggested in [33] based
on the structure of the propagators (5). Integrating over the
localizing ghost propagators in the combination defining the
BRST invariant dimension two operator, the only nonzero
contribution comes from the massive propagator term in
the ξabμ propagator. Note that this only applies above two
dimensions as there are potential infrared divergences in
strictly two dimensions. Indeed the zero-momentumbehavior
of the gluon in two dimensions is different from that in three
and four dimensions. Lattice data [41,42] show that the gluon
propagator is suppressed and vanishes at zero momentum
unlike the nonzero freezing above two dimensions. In this
respect, the scaling solution appears to be preferred over the
decoupling one. Aside from this caveat, it is worth stressing
that our result (19) is derived in an explicit one-loop analysis,
and the observation of [33] should be regarded as a trivial
consistency check.Concerning three dimensions, it is also the
case that theR channel is theenergetically favorable one.This
can be seen from the summation of the graphs leading toW½J�
since the emergence of the combination (17) for the mass
dependence is due to the underlying group theory. Integration
over the loopmomentum does not affect this. Instead it would
lead to different values of the integral in (13) when the loop
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integration is performed. If one accepts that the natural
solution is the R color direction, then the next stage is the
observation that theoperatorOabcd condenses in thisdirection
thereby giving nonzero masses to the localizing ghost fields.
That one-loop analysiswas given in [33]. The localizingghost
propagator corrections have properties which distinguish
them from the Q solution and could be tested on the lattice.
To conclude, we have extended the analysis of [29]

to consider the most general dimension two BRST invariant
localizing ghost operator in the Gribov-Zwanziger
Lagrangian of [33]. The computation indicates that at least
to one loop the energetically favored color condensation
channel is the R one. To proceed, one would have to

continue to the next loop order. This would be a huge task
given the multiscale nature of the two-loop massive
vacuum bubble graphs which would arise. However, in
the interim, one hope would be that the infrared structure
of the localizing ghost propagators could be analyzed by
other techniques. While the lattice could provide numerical
data, the definition of an object on the lattice corresponding
to say ξabμ is not straightforward. So a Schwinger-Dyson
approach may offer the best avenue for an independent
analysis.

This work was carried out in part with the support of an
STFC studentship (D. J. T.).
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