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We consider the Wilson-Polchinski exact renormalization group (RG) applied to the generating
functional of single-trace operators at a free-fixed point in d ¼ 2þ 1 dimensions. By exploiting the rich
symmetry structure of free-field theory, we study the geometric nature of the RG equations and the
associated Ward identities. The geometry, as expected, is holographic, with anti–de Sitter spacetime
emerging correspondent with RG fixed points. The field theory construction gives us a particular vector
bundle over the dþ 1-dimensional RG mapping space, called a jet bundle, whose structure group arises
from the linear orthogonal bilocal transformations of the bare fields in the path integral. The sources for
quadratic operators constitute a connection on this bundle and a section of its endomorphism bundle.
Recasting the geometry in terms of the corresponding principal bundle, we arrive at a structure remarkably
similar to the Vasiliev theory, where the horizontal part of the connection on the principal bundle is
Vasiliev’s higher spin connection, while the vertical part (the Faddeev-Popov ghost) corresponds to the S
field. The Vasiliev equations are then, respectively, the RG equations and the Becchi-Rouet-Stora-Tyutin
equations, with the RG beta functions encoding bulk interactions. Finally, we remark that a large class of
interacting field theories can be studied through integral transforms of our results, and it is natural to
organize this in terms of a large N expansion.

DOI: 10.1103/PhysRevD.89.106012 PACS numbers: 11.25.Tq, 11.10.Gh

I. INTRODUCTION

One of the most appealing aspects of gauge/gravity
duality (or holography) is its interpretation as a geomet-
rization of the renormalization group (RG) of quantum field
theories. In this picture, scale transformations in the field
theory correspond to movement in the extra “radial”
direction, and specific RG trajectories correspond to
specific geometries, which are asymptotically anti–de
Sitter (AdS) if the RG flow begins or ends near a fixed
point. The precise details of this interpretation are some-
what controversial, and many variants exist in the literature.
Early papers [1,2] on the subject noted the relationship
between RG flow and Hamilton-Jacobi theory of the bulk
radial evolution. The literature on the subject is vast but
some highlights include [3–8] and the more recent [9–13].
From the perspective of quantum field theory, consid-

erations of the renormalization group usually begin within
the context of perturbation theory, naturally interpreted in
terms of deformations away from the free RG fixed point.
Indeed, the “exact renormalization group” (ERG) originally
formulated by Polchinski [14] was constructed within the
confines of a path integral over bare elementary fields with
(regulated) canonical kinetic terms corresponding to the
free-fixed point. Thus both the power and the curse of ERG
is that it is formulated in terms of the free-fixed point. One
of the hallmarks of holography is that it pertains to a quite
opposite limit, in which simple geometric constructions in
the bulk correspond to strongly coupled dynamics in the
dual field theory. So on the face of it, one might expect very

little relationship to exist between the exact renormalization
group and holography.
Nonetheless, the geometrization picture begs for such a

relationship to exist. In somewhat vague terms, one might
expect that passing towards weaker couplings on the field
theory side should correspond to some sort of nongeo-
metric version of string theoretic (or M-theoretic) con-
structions. To be more precise, simple geometric theories in
spacetime arise from string theory in a limit in which the
string scale α0 is small, the mass gap between gravitational
fields (and their partners) and other string modes being
large. One might then expect that a way to nongeometry in
string theory is to take α0 large. Unfortunately, very little is
known reliably about such a limit. One can say that within
the usual spacetime picture, apparently a great many fields
of arbitrarily high spin are becoming light (see for example
[15] and [16]). That this can be thought of in effective field
theory terms is doubtful.
We do however have one data point: a classical theory

involving an infinite number of higher spin gauge fields
exists on AdS geometry, a subject primarily developed by
Vasiliev (see for example [17–19] and the reviews [20,21]).
It has been widely speculated that this has something to do
with the α0 → ∞ limit of string theory. In fact, a conjectured
duality between 3d vector models and higher spin theory
[22] is well known (see also [23–25]). Recently, it has been
demonstrated [26] that a dual field theory possessing higher
spin symmetries must necessarily be free. From these
considerations, it seems plausible that holography might
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be derived from the exact renormalization group, but we
should not expect to obtain simple gravitational systems,
but rather some sort of higher spin system. Indeed, Douglas
et al. [27] considered this some time ago (see also the
followup papers [28,29] and also [18,30]), suggesting that
the higher spin equations of motion ought to be derivable
from the exact RG [14] of free-field vectorlike theories
(with global groupG), the sources forG-invariant quadratic
operators being related to a (higher spin) connection. In
such a picture, there is a connection on some bundle over a
dþ 1-dimensional base space, and specific choices of
connection should correspond to (higher spin versions
of) specific geometries.
Several aspects of this sort of structure must emerge if we

are to interpret it as a holographic construction. One of the
most basic properties is that AdSdþ1 should emerge as a
geometry associated with an RG fixed point. In geometric
language, there must be a specific connection on a bundle
over a dþ 1-dimensional topological space, that can be
interpreted as being equivalent to having an AdS metric,
with its concomitant conformal isometries. But much more
challenging is understanding the full diffeomorphism
invariance in the bulk dþ 1 space. Any such construction
must give rise to this as well.
In this paper, we reconsider and reformulate the scenario

of [27], the ERG for field theories whose actions contain
arbitrary sources for singlets of a global symmetry.
Although we begin with the basic idea of [27], most of
the details of our construction are quite distinct. It turns out
that one of the simplest such theories one might consider
contains N Majorana fermions in 3 dimensions, with OðNÞ
global symmetry, with an action quadratic in the bare fields.
This is the theory that we will study specifically in this
paper, although it will be clear that the concepts can be
straightforwardly carried over to similar theories in other
dimensions, and to scalar field theories as well. As we will
explain later in the paper, the full analysis of this theory
allows us to construct a large class of interacting theories as
well, and we will argue that in the case of theOðNÞmodels,
the interacting fixed point is visible at large N.
The free Majorana theory with global symmetry pos-

sesses a great many operators in various tensor representa-
tions. We choose to ask a specific question of these
theories, namely to supply the generating functional of
arbitrary “single-trace” bilocal operators. It is this question
whose answer will be relevant to higher spin theory. We
regulate the theory in the same fashion as Polchinski [14]
by introducing a cutoff function in the kinetic term. In the
context of Majorana fermions, with a single derivative in
the kinetic term, this means that we can think in terms of a
“regulated derivative operator” and the sources for singlet
operators can be organized in such a way that this regulated
derivative combines with one of the sources to form a
“regulated covariant derivative,’” and hence a connection.
One of the most important insights that we provide is a

precise characterization of the bundle for which this is a
connection. What we will find is that the exact renormal-
ization group of the field theory gives rise to a principal
bundle over a dþ 1-dimensional space, with the structure
group of the bundle corresponding, in the path-integral
language of the field theory, to bilocal linear transforma-
tions of the bare fields. The RG equations describing the
scale dependence of bi-local couplings and correlation
functions can be understood as Ward identities associated
to these symmetry transformations and map to equations
for the curvature of the connection over this bundle. The
full field content of the Vasiliev construction is seen to arise
in the principal bundle construction, in the sense that the
horizontal components of the connection correspond to
sources in the field theory, while the vertical components of
the connection (the Faddeev-Popov ghosts) correspond to
auxiliary pure-gauge degrees of freedom. The mathematical
details of the Vasiliev construction can be seen as a specific
representation of the structure group. The construction
provides a significant geometric interpretation of the pieces
of the Vasiliev construction.
Given that the paper is fairly lengthy and involved, we

feel the need to give here a detailed account of the structure
and presentation of the paper. In Sec. II, we formulate
the Majorana theory with arbitrary bilocal sources in the
classical action. This is structured in such a way that the
bilocal sources for the quadratic OðNÞ-singlet operators
consist of a Lorentz vector (more precisely, a 1-form) and a
pseudoscalar. This structure coincides with the fields
appearing in the Vasiliev construction and so is a good
starting point. The kinetic term is regulated by a cutoff
function, and we refer to the corresponding cutoff deriva-
tive operator as PF. We then make the fundamental
observation that a change of integration variables in the
path integral corresponding to linear, orthogonal, nonlocal
transformations of the bare fields leaves the kinetic term
invariant but transforms the vector source as if it were a
gauge field, and acts on the pseudoscalar source by
conjugation. Since a change of variables in the path integral
must be trivial, this leads to a relationship between the
generating functional evaluated at different values of the
source, i.e. a Ward identity. It is this set of symmetry
transformations, which we call OðL2Þ, for which the vector
source is a connection. These symmetry transformations
can be extended to include scale transformations as well,
the larger group then being called COðL2Þ. We note that
similar transformations have also been considered previ-
ously in [31,32] in the context of higher spin symmetries.
In Sec. 3, we construct the RG equations via a precise

sequence of steps involving exact (anomalous) Ward
identities and the fundamental property of cutoff independ-
ence of the partition function, and show how they may be
written as first order differential equations in a dþ 1-
dimensional spacetime. These equations form themselves
into relations involving the curvature of the connection and
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the covariant derivative of the pseudoscalar source, with the
right-hand sides being given by the RG β functions.
Similarly, the Callan-Symanzik equations for the one-point
functions of the singlet operators are derived. A special
value of the connection corresponds to the “pure-gauge”
RG flow of the free-fixed point, and gives rise to AdSdþ1

geometry; any other connection corresponds to a deformed
geometry (including higher spin deformations).
In Sec. III B, we show that the Callan-Symanzik equa-

tions are of such a form that they, along with the β-function
equations, admit an interpretation in terms of Hamilton-
Jacobi theory, with the radial coordinate of the dþ 1-
dimensional space playing the role of “time.” As we
mentioned above, this sort of interpretation has been
anticipated from the bulk point of view, and it is reassuring
that it is a direct consequence of the RG equations of the
field theory. The Hamilton-Jacobi theory implies the
existence of a corresponding Hamiltonian which is of a
special form linear in momenta, and the Hamilton equa-
tions derived from it are precisely the full set of RG
equations. As well, the appearance of the RG β functions in
the equations is such that they encode the 3-point functions
(in particular) of the field theory, and we show that, at the
free-fixed point, they are of the expected form. From the
bulk point of view, they give rise to the bulk interactions of
the higher spin theory.
Section IV contains a mathematical construction which

explains the underlying geometry that emerges from the
exact RG equations. (For a previous attempt at under-
standing the geometry of higher spin theories, see [33].) We
introduce and briefly review the concept of jet bundles to
allow us to speak in vector bundle terms. The vector and
pseudoscalar sources of the field theory then correspond to
a connection on this bundle, and a section of its endomor-
phism bundle respectively. We then observe that it is useful
to think of this connection as being inherited from a
connection on the corresponding principal bundle (namely
the frame bundle of the jet bundle). The latter connection,
of course, also contains a “vertical” piece which in physics
language corresponds to the Faddeev-Popov ghosts. These
ghost degrees of freedom are pure-gauge artifacts that do
not have a direct significance in the original field theory,
and we conjecture that they should be identified with
Vasiliev’s auxiliary S field. The equations for S are
identified with the Becchi-Rouet-Stora-Tyutin (BRST)
equations. The detailed construction given by Vasiliev
involving a ⋆ algebra of Y and Z variables is expected
to arise as a particular representation of the structure group
of our bundle.
Thus we arrive at a construction which promises to

possess precisely the same content as the Vasiliev theory,
although there are a number of differences in the detailed
form of the equations, which we highlight. In Sec. V, we
discuss a number of subsequent issues. First, we organize
the bosonic OðNÞ model in similar terms and note that the

most general bilocal sources for singlet quadratic operators
consist of a vector and a scalar, again a good starting point
for a comparison with the Vasiliev theory. The RG analysis
can be worked out along very similar lines, but we do not
present the details in this paper. In Sec. V B, we discuss
interacting theories. In particular, we note that by taking N
large, the partition function of the interacting critical theory
can be obtained from our partition function by an integral
transform (which constructs a “double trace” deformation
by reversing the Hubbard-Stratanovich idea). We conclude
the paper with a few additional remarks.

II. FREE MAJORANA FERMIONS

A. Preliminaries

We consider N Majorana fermions in 2þ 1-dimensional
Minkowski spacetime ðR3; ηÞ. We begin with the Dirac
action

SDirac ¼
Z
x
ψ̄mi∂ψm: ð1Þ

As written this has a global UðNÞ symmetry, where
m; n;… ¼ 1;…; N. Take a basis for Clð2; 1Þ as follows:

γ0 ¼ iσ2 ¼ ϵ; γ1 ¼ σ1; γ2 ¼ σ3 ð2Þ

where σa are the 2 × 2 Pauli matrices. This basis is real and
the Majorana condition is ψ� ¼ ψ . We then use the notation
ψ̄ψ → ~ψψ ≡ ψαε

αβψβ, etc. Since the Dirac ψ was a
fundamental of UðNÞ, the Majorana condition requires
that this contract to OðNÞ. The Dirac action then
becomes

SMaj ¼
Z
x
~ψmiγμ∂μψ

m: ð3Þ

This action describes the free (Majorana) fermion fixed
point. Of course, implicit in the above discussion is the fact

that we have picked a frame eð0Þa ¼ δμa∂μ on R3, where
a; b… are frame indices, and run over the spacetime
dimension. We will denote the dual coframe by eað0Þ, and
the corresponding metric as

gð0Þ ¼ ηabeað0Þ ⊗ ebð0Þ: ð4Þ

While we will mostly be interested in d ¼ 3 Minkowski
spacetime, many of our considerations can be generalized
straightforwardly to other dimensions, and to nontrivial
geometries. For this reason, we will often refer to the
spacetime manifold as Md, and the background metric as
gð0Þ instead of η.
Following Ref. [14], we regulate the action with a

smooth cutoff function KFðsÞ, which has the property that
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KFðsÞ ↦ 1 for s < 1 and KFðsÞ ↦ 0 for s > 1. We also
wish to add arbitrary bilocal sources for OðNÞ-singlet,
single-trace operators,1 which in this case are

Π̂ðx; yÞ ¼ 1

2
~ψmðxÞψmðyÞ; Π̂μðx; yÞ ¼ 1

2
~ψmðxÞγμψmðyÞ:

ð5Þ
The corresponding sources are thus a 0-form Aðx; yÞ and a
1-form Wμðx; yÞ. The resulting action is

SregMaj ¼
1

2

Z
x
~ψmðxÞK−1

F ð−□=M2Þiγμ∂μψ
mðxÞ

þ 1

2

Z
x;y

~ψmðxÞðAðx; yÞ þWμðx; yÞγμÞψmðyÞ

where M is a UV cutoff. Note that because the spinors are
Grassmann, the action is only sensitive to the symmetric
part of the 0-form Aðx; yÞ þ Aðy; xÞ and the antisymmetric
part of the 1-form Wμðx; yÞ −Wμðy; xÞ. Note also that A is
a pseudoscalar. In this form, we see a first indication that
the sources A and Wμ are directly related to those found in
the Vasiliev higher spin theory. These are just pieces of the
full story, as we expect holographically that the sources will
combine with pure-gauge modes to form the bulk fields.
Nevertheless, the above parametrization seems convenient
in order to make contact with higher spin theory. A similar
parametrization for the bosonicOðNÞmodel is described in
Sec. VA.2

To make further contact with higher spin gauge
theory, we note that we may choose to write “quasilocal”
expansions

Aðx; yÞ ¼
X∞
s¼0

Aa1…asðxÞ∂ðxÞ
a1 …∂ðxÞ

as δðx − yÞ ð6Þ

Wμðx; yÞ ¼
X∞
s¼0

Wμ
a1…as−1ðxÞ∂ðxÞ

a1 …∂ðxÞ
as−1δðx − yÞ: ð7Þ

Since the Majorana theory is sensitive to the symmetric part
of A and the antisymmetric part ofWμ, we may restrict s to
be even. From the point of view of the Majorana action,
these quasilocal expansions simply mean that we source all
local single-trace operators, with no prejudice towards the
number of derivatives they contain. Nevertheless, we will
generally work with arbitrary bilocal sources throughout
most of this paper. One of our primary goals is to

understand more fully the geometry associated with the
bilocal sources, and indeed, in a later section, we will have
occasion to reinterpret them in terms of geometric objects
on the so-called infinite jet bundles, a construction that
allows us to think in terms of (infinite-dimensional) vector
bundles.
Indeed the bilocal nature of the sources leads us to think

of them as “matrices” with indices x, y, and it is in fact
convenient to rewrite the action in the following “matrix”
form:

SregMaj ¼
Z
x;y

�
1

2
~ψmðxÞγμðPF;μðx; yÞ þWμðx; yÞÞψmðyÞ

þ 1

2
~ψmðxÞAðx; yÞψmðyÞ

�
ð8Þ

where we have defined the regulated derivative operator

PF;μðx; yÞ ¼ K−1
F ð−□ðxÞ=M2Þi∂ðxÞ

μ δðx − yÞ: ð9Þ
The introduction of this derivative operator [as opposed to

just ∂ðxÞ
μ δðx − yÞ] is ultimately what will tame the nonlocal

character of the theory (we will keep the subscript F
throughout the paper to emphasize this, and the reader
should regard the F as standing for “cutoff”). Given this
matrix form, we will often denote integration simply by a
center dot “.,” i.e.

ðf · gÞðx; yÞ ¼
Z
u
fðx; uÞgðu; yÞ: ð10Þ

The corresponding quantum theory is obtained as a path
integral

Z½M; gð0Þ; U; A;Wμ� ¼ ðdetPFÞ−N=2

Z
½dψ �eiUþiSregMaj½ψ ;A;Wμ�

ð11Þ

the prefactor included to define the integral, accounting for
the fact that KF cuts off the short-distance modes.3 Note
that we have made explicit the choice of the background
metric on spacetime; as has been mentioned before, we are
most interested in gð0Þ ¼ η, although later we will find it
natural to allow its conformal factor to be adjusted.
Additionally, we have added in a source U ¼ R

x UðxÞ
for the identity operator, to keep track of the overall
normalization of the path integral.
We will now show that there is a sense in which

Dμðx; yÞ≡ PF;μðx; yÞ þWμðx; yÞ should be regarded as a
1See Sec. V for comments on interacting theories.
2Note though that in higher dimensions (i.e. d > 3), there are

additional single-trace operators, for example ~ψmγμνψm, whose
sources have no obvious analogue in the Vasiliev higher spin
theory. It is for this reason that we specify d ¼ 3; see however
[34] for a discussion on the corresponding spectrum in d ¼ 4, and
[35] for general d.

3Since KFðsÞ → 0 for s > 1, the path integral is formally zero
due to the integral over s > 1 field modes unless we include the
determinant prefactor, which formally cancels out this effect. The
resulting normalization of the path integral will be tracked by
introducing a source for the identity operator (i.e. a cosmological
constant), which we have denoted by U in Eq. (11).
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covariant derivative, with PF playing the role of the
ordinary derivative, andWμ playing the role of gauge field.

B. The OðL2Þ symmetry

The key observation is that the operator Π̂μðx; yÞ is a
bilocal current operator, which satisfies a conservation
equation. To see this, consider the (connected) vacuum
expectation values

Πμðx;yÞ ¼−i δ

δWμðx;yÞ
lnZ; Πðx;yÞ ¼−i δ

δAðx;yÞ lnZ:
ð12Þ

Given the form of the partition function, it is straightfor-
ward to show that these satisfy the following conservation
equation:

½Dμ;Πμ�· þ ½Π; A�· ¼ 0; ð13Þ

where ½f; g�· ¼ ðf · g − g · fÞ. Inserting (12) into (13),
multiplying on the left by an infinitesimal antisymmetric
parameter ϵðx; yÞ of compact support, and then taking the
functional trace, we obtain

Tr

�
½Dμ; ϵ�

δ

δWμ
þ ½ϵ; A� δ

δA

�
Z½M; gð0Þ; A;W� ¼ 0: ð14Þ

The partition function is thus invariant under the
transformation

δWμ ¼ ½Dμ; ϵ�·; δA ¼ ½ϵ; A�· ð15Þ

which resembles a gauge transformation, if we interpretWμ

as a connection and A as a charged field. To better elucidate
the associated symmetry, we regard (14) as a Ward identity,
which we now rederive from a path-integral point of view.
To that end, consider a field redefinition

ψm
α ðxÞ ↦

Z
y
Lðx; yÞψm

α ðyÞ; ð16Þ

where L∶L2ðRd; ηÞ ↦ L2ðRd; ηÞ is a functional map
(d ¼ 3 in the present case).4 As written, this map acts
on the bare fields, the integration variables in the path
integral. Formally, the path-integral measure in (11) is
invariant under this linear transformation.5 For reasons

which will become clear soon, we will restrict L to be
functionally “orthogonal,” by which we mean

ðLT · LÞðx; yÞ≡
Z
z
Lðz; xÞLðz; yÞ ¼ δðx − yÞ: ð17Þ

When we need to, we will refer to the group of such
orthogonal functional maps6 as OðL2ðRd; ηÞÞ, or simply
OðL2Þ for short. We could obtain a representation in terms
of matrices of countable dimension by choosing a suitable
discrete basis for L2ðRdÞ. In any case, Eq. (17) should be
read as

“LT · L ¼ 1”: ð18Þ

Let us now consider how the Majorana action behaves
under an OðL2Þ transformation

SregMaj½L · ψ ; A;W� ¼ 1

2
~ψm · LT · γμðPF;μ þWμÞ · L · ψm

þ 1

2
~ψm · LT · A · L · ψm

¼ 1

2
~ψm · γμðPF;μ þ L−1 ·Wμ · L

þ L−1 · ½PF;μ;L�·Þ · ψm

þ 1

2
~ψm · L−1 · A · L · ψm ð19Þ

where in the last line, we have used the orthogonality
condition (17), allowing us to leave the canonical kinetic
operator PF;μ invariant. Given the assumed invariance of
the measure, we arrive at the Ward identity

Z½M;gð0Þ;U;A;Wμ�
¼ Z½M;gð0Þ;U;L−1 ·A ·L;L−1 ·Wμ ·LþL−1 · ½PF;μ;L�·�:

ð20Þ

So we see that Wμ behaves like an “OðL2Þ connection,”
while A simply conjugates tensorially. If we now consider
the infinitesimal version

Lðx; yÞ≃ δðx − yÞ − ϵðx; yÞ; ð21Þ

the orthogonality condition (17) implies

ϵðx; yÞ þ ϵðy; xÞ ¼ 0: ð22Þ

The infinitesimal version of (20) is precisely Eq. (14). Note
however that we must impose an important constraint on

4By L2ðM; gÞ we mean the set of all square integrable
functions over the manifold M with the norm

hψ ;ψig ¼
Z
M
ddx

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
ψðxÞψðxÞ:

5In terms of the infinitesimal antisymmetric parameter ϵðx; yÞ
defined as Lðx; yÞ≃ δðx − yÞ − ϵðx; yÞ, this amounts to the
assumption that ϵðx; yÞ is trace class.

6We can define an orthogonal groupOðVÞ for any vector space
V with an inner product, as the group of all endomorphisms on V
which preserves the inner product. This is the source of the
notation.
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ϵðx; yÞ—since the transformations we are talking about
involve mixing elementary field modes, we will require
them to have no support (in momentum space) at the cutoff.
More precisely, we will impose the condition

½ϵ; dMPF;μ�· ¼ 0 ð23Þ

where dMPF;μ has support only near the cutoff. Physically,
the above constraint ensures that we do not mix modes
across the UV cutoff.
Note the significance of Eq. (20). Normally we would

say that (3) is the action of the free-fixed point, and that
Z½M; gð0Þ; 0; 0� is the partition function of the regulated
theory, with a specific choice of regulated kinetic term. The
partition function actually depends only on PF;μ þWμ (in
particular, the kinetic and source terms have the same
tensor structure), and so we could regard the OðL2Þ
transformation from Wμ ¼ 0 to a generic pure-gauge
connection as a modification of the regulated kinetic term.
In other words, any flat connection (which is gauge
equivalent toWμ ¼ 0) equally well describes the free-fixed

point. It will then be convenient to pull out a flat pieceWð0Þ
μ

from Wμ:

Wμ ¼ Wð0Þ
μ þ bWμ ð24Þ

dWð0Þ þWð0Þ∧Wð0Þ ¼ 0 ð25Þ

with bWμ being a tensor under OðL2Þ. Here d ¼ dxμ½PF;μ; �·
is the regulated exterior derivative. For the time being we
will suppress this separation, but it will play a crucial role in
the renormalization group analysis.
We have made a choice in splitting PF;μ and Wμ apart.

Given such a splitting, we would like to consider additional
transformations, not contained in OðL2Þ, which change
PF;μ. Indeed, the simplest notion of changing PF;μ would
be to change the cutoff. Such a scale transformation is not
contained in OðL2Þ, and so we will extend that group to a
larger one. Of course, changing the cutoff in the regulated
kinetic term is precisely the construction of Ref. [14],
and so including that will induce renormalization
group transformations. Indeed, there is an immediate
generalization of (17) that can be made—instead of
considering orthogonal transformations, we can consider
transformations orthogonal up to a conformal factor

Z
z
Lðz; xÞLðz; yÞ ¼ Ω2ðxÞδðx − yÞ: ð26Þ

We call the group of such transformations COðL2ðRdÞÞ, or
COðL2Þ for short. We will mostly be interested in the
simpler case, where Ω is a constant: Ω ¼ λΔψ with Δψ ¼
d−1
2

being the scaling dimension of the bare field ψm.

The general case is not much harder, and we will comment
on it from time to time.
It is convenient at this stage to introduce a conformal

factor z in the background metric: gð0Þμν ¼ z−2ημν.
Furthermore, it is also useful to redefine the sources by
rescaling them: Aold ¼ zdþ1Anew and Wold ¼ zdWnew. For
simplicity, we will drop the subscript new from here on.
With these changes, the Majorana action takes the form

SregMaj ¼
1

2zd−1
Z
x
~ψmðxÞK−1

F ð−z2□=M2Þiγμ∂μψ
mðxÞ

þ 1

2zd−1
Z
x;y

~ψmðxÞðAðx; yÞ þ γμWμðx; yÞÞψmðyÞ

ð27Þ

where by □ we mean the η-d’Alembertian. Note that the
cutoff function KF now depends on the conformal factor z,
and falls off around the scale μ ¼ M=z. Under a COðL2Þ
transformation ψ ↦ L · ψ , the action transforms as

SregMaj½Lψ � ¼
1

2zd−1
~ψm · LT · γμðPF;μ þWμÞ · L · ψm

þ 1

2zd−1
~ψm · LT · A · L · ψm

¼ 1

2zd−1
~ψm · γμðLT · L · PF;μ þ LT ·Wμ · L

þ LT · ½PF;μ;L�·Þ · ψm

þ 1

2zd−1
~ψm · LT · A · L · ψm

¼ 1

2ðλ−1zÞd−1 ~ψm · γμðPF;μ þ L−1 ·Wμ · L

þ L−1 · ½PF;μ;L�·Þ · ψm

þ 1

2ðλ−1zÞd−1 ~ψm · L−1 · A · L · ψm: ð28Þ

Therefore, we find that the action of COðL2Þ can be
thought of as an appropriate “gauge” transformation on
the sources, plus a Weyl transformation of the background
metric z ↦ λ−1z [or equivalently gð0Þ ↦ λ2gð0Þ] and a
rescaling of the cutoff M ↦ λ−1M (note in particular that
we have just done a transformation of the bare fields and the
argument of PF has not changed). In addition, we allow for
a possible anomaly from the noninvariance of the measure
of the path integral, which we will indicate by replacing
U ↦ bU. Thus, we arrive at the Ward identity7

7At this point, we change our notation slightly, Z½M; gð0Þ;
U; A;W� ↦ Z½M; z; U; A;W�, in order to explicitly keep track of
the conformal factor z. Also note, that although we have allowed
the metric of the field theory to change (i.e. by a Weyl trans-
formation), one may equally well think of this as a scale
transformation in the sense of a conformal isometry.
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Z½M;z;U;A;Wμ�
¼Z½λ−1M;λ−1z;Û;L−1 ·A ·L;L−1 ·Wμ ·LþL−1 · ½PF;μ;L��:

ð29Þ

Thus, in this sense, the partition function is invariant under
this larger COðL2Þ symmetry. The 1-form Wμ transforms
like a “COðL2Þ connection,” while the 0-form A transforms
tensorially. Once again if we take L infinitesimal, L≃ 1 −
ϵ and λ≃ 1 − ε with ϵþϵT

2
¼ εΔψ1 [so as to satisfy the

orthogonality constraint (26)], then we get

δWμ ¼ ½Dμ; ϵ�·; δA ¼ ½ϵ; A�·: ð30Þ

As in Eq. (23), we must once again impose

½ϵ;MdMPF;μ� ¼ −½ϵ; zdzPF;μ� ¼ 0 ð31Þ

to avoid mixing modes across the cutoff.
The identity (29) can be extended to the case of λ being a

function (rather than a constant). In so doing, one should
allow the cutoff to vary in spacetime as well, and introduce
a cutoff function appropriately. One possible definition of
such a cutoff function is

KFð−□x=M2Þ↦KF

�
− 1

Md ffiffiffiffiffiffiffigð0Þ
p ∂μðMd−2 ffiffiffiffiffiffiffi

gð0Þ
p

gμνð0Þ∂νÞ
�
:

ð32Þ

This has the feature that a local scale transformation of the
metric can be absorbed by a local change in the cutoff.
Given this, the partition function would satisfy Eq. (29)
locally.
Having described the OðL2Þ and COðL2Þ symmetries in

some detail, we now move on to study the renormalization
group flow out of the free-fixed point in light of these
symmetries.

III. THE RENORMALIZATION GROUP AND
HOLOGRAPHY

The general principle of Wilsonian renormalization is
that the action of a quantum field theory should be thought
of as a function of the energy scale at which it is probed. In
simple terms, this amounts to having cutoff dependent
sources (or couplings)—this is because, in say lowering the
cutoff from M to λM (λ < 1), one is really integrating over
the fast modes in the path integral, which consequently
changes the values of the couplings, thus making them
cutoff dependent. The remarkable feature of the Wilson-
Polchinski exact renormalization group [14] is the

description of renormalization of a QFT action in terms
of a diffusionlike equation, with the cutoffM being the flow
parameter.
Alternatively, it is also possible to think of the conformal

scale z of the background metric gð0Þ ¼ z−2η as para-
metrizing the RG flow. In this version, one lowers the cutoff
M ↦ λM by integrating out fast modes, but then performs
a scale transformation gð0Þ ↦ λ2gð0Þ (or equivalently
z ↦ λ−1z) to take the cutoff back to M. Naturally, in this
case, the conformal factor z acts as the flow parameter,
and the sources may be thought of as z dependent. From a
geometric point of view, this version of RG is more
appealing, and we will adopt it in our discussions below.
In the notation introduced in the previous section, we will
then regard the sources, Aðz; x; yÞ and Wμðz; x; yÞ, as
functions of z. The plan is then to investigate the change
in the sources under z ↦ λ−1z, while paying special
attention to the COðL2Þ symmetry. Following Polchinski
[14], we will be able to write fully covariant exact differ-
ential RG equations by expanding λ close to unity.
For clarity, we restate the above program as a two-step

process:
Step 1. Lower the cutoff M → λM, for λ ¼ 1 − ε. This

will change the sources, and we label the new sources byeWμðzÞ and ~AðzÞ.

Z½M; z;UðzÞ; Aðz; x; yÞ;Wμðz; x; yÞ�
¼ Z½λM; z; ~UðzÞ; ~Aðz; x; yÞ; ~Wμðz; x; yÞ� ð33Þ

This step essentially amounts to integrating out the fast
modes, and may be worked out in detail using the method
of Ref. [14]. The result is discussed in the next section
and further details of the calculation may be found in the
Appendix A.
Step 2. Perform a scale transformation, to bring the cutoff

back to M while changing the background metric to
gð0Þ → λ2gð0Þ, and thus changing the conformal factor
z → λ−1z. In the present context, by scale transformation
we mean a COðL2Þ transformation L (with LT:L ¼ λ2Δψ1).
In addition to this scale transformation, we also have the
freedom to translate the spatial coordinates: xμ → xμ þ εξμ,
yμ → yμ þ εξμ.8 Such a transformation is natural if we
regard different values of z as corresponding to different
copies of spacetime—the map between coordinates on one
copy to those on another need not be trivial.
Having performed these two transformations, we now

relabel the final sources as Wμðλ−1z; xþ εξ; yþ εξÞ and
Aðλ−1z; xþ εξ; yþ εξÞ, and obtain the following equality
of partition functions at the same cut-off, but different z:

8Or, more generally, any isometry of the background metric
gð0Þ, so Lorentz diffeomorphisms could also be considered. We
choose translations in particular, because they preserve our choice
of the background frame, which the fermions couple to.
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Z½M; z;UðzÞ; Aðz; x; yÞ;Wμðz; x; yÞ� ¼ð1Þ Z½λM; z; ~UðzÞ; ~Aðz; x; yÞ; ~Wμðz; x; yÞ�
¼ð2Þ Z½M; λ−1z; ~̂UðzÞ;L−1 · ~Aðz; x; yÞ · L;L−1 · ~Wμðz; x; yÞ · Lþ L−1 · ½PF;μ;L��
¼ Z½M; λ−1z; Uðλ−1zÞ; Aðλ−1z; xþ εξ; yþ εξÞ;Wμðλ−1z; xþ εξ; yþ εξÞ�: ð34Þ

The first equality is just step one of RG (33), written again
for clarity. The second equality is step two of RG [the
COðL2Þ transformation]. This equality includes the nota-
tion ~̂U, denoting the possibility of aCOðL2ÞWeyl anomaly,
as was mentioned above Eq. (29). The third equality is
simply a relabeling of the source arguments, as described
above. The above procedure is indicated pictorially in
Figs. 1 and 2. We note in passing, that since the COðL2Þ
transformation can be made local (here, we mean that λ can
vary in spacetime), the above relations may be regarded as
being valid locally, although we will not need to do so.

Note that we now have a copy of A andWμ at each value
of z. Given the interpretation Wμ as a COðL2Þ connection
on spacetime, it is useful to parametrize this connection
(now at each z) as

WμðzÞ ¼ Wð0Þ
μ ðzÞ þ ŴμðzÞ; ð35Þ

where Wð0ÞðzÞ ¼ Wð0Þ
μ ðzÞdxμ is a flat connection

dWð0Þ þWð0Þ∧Wð0Þ ¼ 0 ð36Þ

with d≡ dxμ½PF;μ; �. Recall from the previous section, that
the reason for separating out the flat piece Wð0Þ from Wμ is
that the configuration ðWμ; AÞ ¼ ðWð0Þ

μ ; 0Þ is gauge equiv-
alent to the unperturbed free-fixed point, and consequently
Ŵμ and A are tensorial sources for single-trace deforma-
tions away from the fixed point. Our primary task is now to
describe how under RG, Wμ naturally evolves into a
connection 1-form on a one-higher-dimensional spacetime,
namely the mapping space of RG, with the extra dimension
parametrized by z. In fact, as we will see below, Wð0Þ also
evolves, in particular, into the AdSdþ1 connection.

A. Infinitesimal version: RG and
Callan-Symanzik equations

Let us now explore the above relations satisfied by the
partition function for infinitesimal transformations: we
write λ ¼ 1 − ε, and parametrize the infinitesimal
COðL2Þ transformation plus spatial translation appearing
in (34) as

L ¼ 1þ εzWz þ εξμWμ ð37Þ

FIG. 1. A schematic description of the two-step RG process. We have indicated the cutoff in terms of the lattice spacing.

FIG. 2. It is useful to think of different values of z as
corresponding to different copies of spacetime. From this point
of view, a holographic interpretation naturally emerges out of the
renormalization group.
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with zðWz þWT
z Þ ¼ −2Δψ1. Note that we have sugges-

tively relabeled L to indicate that the ε piece of it should be
thought of as containing the z component Wz of the
connection, while the ξ piece ensures covariance along
the transverse directions. Indeed, in this notation, L
resembles an infinitesimal Wilson line

L ¼ 1þ
Z

1

0

dt

�
dz
dt

Wz þ
dxμ

dt
Wμ

�
þOðε2Þ ð38Þ

which covariantly transports sources from ðz; xμ; yμÞ
to ðzþ zε; xμ þ εξμ; yμ þ εξμÞ, along the path ðzðtÞ;
xμðtÞ;yμðtÞÞ¼ðzþtεz;xμþtεξμ;yμþtεξμÞ (see Fig. 3). Wz
is thus a convenient bookkeeping device which keeps
track of the gauge transformations along the RG flow.
Following the two-step RG process outlined above in the

infinitesimal case, we get

Aðzþ εz;xþ εξ; yþ εξÞ ¼ Aðz;x; yÞ þ ½A; εzWz þ εξμWμ�·
þ εzβðAÞ þOðε2Þ ð39Þ

Wμðzþ εz; xþ εξ; yþ εξÞ
¼ Wμðz; x; yÞ þ ½PF;μ þWμ; εzWz þ εξνWν�·
þ εzβðWÞ

μ þOðε2Þ ð40Þ

where the tensorial RG beta functions are given by9

βðAÞðA;ŴμÞ ¼ A ·Δμ · Ŵμ þ Ŵμ ·Δμ ·Aþ εμνλŴμ ·Δν · Ŵλ

ð41Þ

βðWÞ
μ ðA; ŴμÞ

¼ A · Δμ · Aþ εμνλðA · Δν · Ŵλ þ Ŵν · Δλ · AÞ
þ Ŵν · Δν · Ŵμ − Ŵν · Δμ · Ŵ

ν þ Ŵμ · Δν · Ŵ
ν

ð42Þ

with

γμΔμðx; yÞ≡MdMfðPF þWð0ÞÞ−1gðx; yÞ: ð43Þ

These are obtained by an explicit computation following
[14], the details of which can be found in Appendix A. We
will have more to say about the structure of these beta
functions in Sec. III B.
Note that in Eq. (40), the full connectionW appears. We

may separate this equation into two pieces by requiring that
Wð0ÞðzÞ remains flat along the RG flow at ð1þ εÞz. In other
words, the RG flow of Wð0Þ

μ is pure gauge, and can be
expressed in terms of a COðL2Þ transformation parame-
trized by Wð0Þ

z ,

Wð0Þ
μ ðzþ zε; xþ εξ; yþ εξÞ

¼ Wð0Þ
μ ðz; x; yÞ þ ½PF;μ þWð0Þ

μ ; εzWð0Þ
z þ εξνWð0Þ

ν �
þOðε2Þ: ð44Þ

Physically, this expresses the fact that the theory is RG
invariant at the fixed point. Given Eq. (44), the flow
equation for Ŵμ can straightforwardly be extracted
from (40).
By continuing the RG process in this way, we may in

principle extend Wμ and A from a given value of z to any
other value of z. As we have seen above, in the process of
doing so, the connection 1-form naturally “grows a leg”Wz
in the dz direction, which keeps track of the gauge
transformations along RG flow. It is important to note that
given the constraint (31), the connections WμðzÞ and

Wð0Þ
μ ðzÞ as defined by Eqs. (40) and (44) respectively,

transform appropriately even under a z-dependent COðL2Þ
transformation ~LðzÞ ¼ 1 − αðzÞ,

δWμ ¼ ½Dμ; α�; δWð0Þ
μ ¼ ½Dð0Þ

μ ;α� ð45Þ

provided we require that Wz and Wð0Þ
z also transform as

δWz ¼ ½Dz; α�; δWð0Þ
z ¼ ½Dð0Þ

z ; α� ð46Þ

where we have definedDz¼dzþWz andD
ð0Þ
z ¼ dz þWð0Þ

z .
Therefore, we now find ourselves in a position to reinterpret
WðzÞ and Wð0ÞðzÞ, as connections over the one-higher-
dimensional spacetime Mdþ1 ¼ Rþ ×Rd. We will denote
these resulting connections over Mdþ1 as W and Wð0Þ (to
emphasize that they live in the “bulk”). Further details
about the structure of the bundle over which these are
connections can be found in Sec. 4. Similarly, the pseu-
doscalar A extends to a bulk field, which we will denote
by A.
By comparing the ε terms on both sides of the RG

equations (44), (39) and (40) and taking ε → 0, we obtain

FIG. 3. A pictorial representation of the Wilson line interpre-
tation—the COðL2Þ transformation in step 2 of RG may be
thought of as an infinitesimal Wilson line, covariantly trans-
porting sources from z to zþ zε.

9This is to say that the beta functions as defined transform
tensorially under COðL2Þ.
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F ð0Þ ≡ dWð0Þ þWð0Þ∧Wð0Þ ¼ 0 ð47Þ

i
eð0Þz

DA≡ i
eð0Þz

ðdAþ ½W;A�Þ ¼ βðAÞ ð48Þ

i
eð0Þz

F ≡ i
eð0Þz

ðdW þW∧WÞ ¼ βðWÞ
a eað0Þ ð49Þ

where we have defined the bulk forms Wð0Þ ≡Wð0Þ
I dxI ¼

Wð0Þ
μ dxμ þWð0Þ

z dz, and W ≡WIdxI ¼ Wμdxμ þWzdz.
In these expressions, we have also introduced the z

component eð0Þz ≡ ∂z þ z−1ξμ∂μ of the boundary frame

eð0Þa ¼ δμa∂μ, the notation iv for the interior product of a
differential form with the vector field v, and the regulated
bulk exterior derivative

d ¼ dxμ½PF;μ; �· þ dz∂z: ð50Þ

The corresponding coframe is defined as10

eað0Þ ¼ δaμdxμ − ξa
dz
z
; ezð0Þ ¼ dz: ð51Þ

We propose that the RG equations (48),(49) should be
interpreted as the z components of covariant equations

F ð0Þ ¼ dWð0Þ þWð0Þ∧Wð0Þ ¼ 0 ð52Þ

DA ¼ dAþ ½W;A� ¼ βðAÞ ð53Þ

F ¼ dW þW∧W ¼ βðWÞ ð54Þ

where βðAÞ has been promoted to the 1-form βðAÞ ¼
βðAÞezð0Þ þ βðAÞ

a eað0Þ and similarly βðWÞ
μ to a 2-form

βðWÞ ¼ βðWÞ
a ezð0Þ∧eað0Þ þ βðWÞ

ab eað0Þ∧ebð0Þ. The transverse

components of βðAÞ; βðWÞ not appearing in the original
RG equations (48),(49) are constrained by consistency to
satisfy their own flow equations, namely the Bianchi
identities

DβðAÞ ¼ ½βðWÞ;A�; DβðWÞ ¼ 0: ð55Þ

Thus, we find that the renormalization group equations
organize themselves in terms of covariant equations
expressing curvatures in terms of beta functions, with
the zeroes of the beta functions corresponding to flat
connections. In fact, the first equation simply states that
Wð0Þ, which encodes the pure-gauge RG flow of the free-
fixed point, is a flat connection on Mdþ1. At this point,

we see the emergence of the AdSdþ1 spacetime, because in
suitable local coordinates, a natural choice for Wð0Þ is
given by

Wð0Þ ¼ −dz
z
Dðx; yÞ þ dxμ

z
Pμðx; yÞ ð56Þ

where Pμðx; yÞ ¼ ∂ðxÞ
μ δðx − yÞ and Dðx; yÞ ¼

ðxμ∂ðxÞ
μ þ Δψ þ d

2
Þδðx − yÞ. Note that this choice of Wð0Þ

may be regarded as a Cartan connection on Mdþ1, or
equivalently as the Maurer-Cartan form of Oð2; dÞ,
and precisely corresponds to the AdSdþ1 metric in the
Poincaré patch (see [36] for more details). In this way, it
seems the renormalization group gives rise to a holographic
description.
It is also possible to derive similarly the Callan-

Symanzik equations for Π and Πμ following the two-step
procedure outlined above (see Appendix A for details)

Πðzþ εz; xþ εξ; yþ εξÞ
¼ Πðz; x; yÞ þ ½Π; εzWz þ εξνWν�
þ εTrγðx; y; u; vÞ · Πðv; uÞ
þ εTrγμðx; y; u; vÞ · Πμðv; uÞ þOðε2Þ ð57Þ

Πμðzþ εz; xþ εξ; yþ εξÞ
¼ Πμðz; x; yÞ − ½εzWz þ εξνWν;Πμ�
− εNΔμ þ εTrγμðx; y; u; vÞ · Πðv; uÞ
þ εTrγμνðx; y; u; vÞ · Πνðv; uÞ þOðε2Þ ð58Þ

where we have defined the gamma functions, whose
explicit expressions can be found in Appendix A. We note
that they have the properties

γðx; y; u; vÞ ¼ δβðAÞðu; vÞ
δAðx; yÞ ;

γμνðx; y; u; vÞ ¼
δβðWÞ

ν ðu; vÞ
δŴμðx; yÞ

ð59Þ

γμðx; y; u; vÞ ¼
δβðWÞ

μ ðu; vÞ
δAðx; yÞ ¼ δβðAÞðu; vÞ

δŴμðx; yÞ ð60Þ

which will play an important role in the next section. Note
that Π and Πμ transform tensorially under OðL2Þ. We
denote the bulk extensions of the momenta Π and Πμ as P
and Pμ respectively. Comparing the terms proportional to ε
on both sides of Eqs. (57) and (58), we obtain in the limit
ε ↦ 0

10Note that this coframe is merely a choice of basis for 1-forms
in the bulk, and should not be confused as having anything to do
with Wð0Þ. The translation ξμ of the spacetime coordinates as we
move in z appears merely as a shift vector in this basis.
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½D
eð0Þz

;P�ðx; yÞ ¼ fTrγðx; y;u; vÞ · Pðv; uÞ
þ Trγμðx; y; u; vÞ · Pμðv; uÞg ð61Þ

½D
eð0Þz

;Pμ�ðx; yÞ ¼ f−NΔμðx; yÞ þ Trγμðx; y; u; vÞ
· Pðv; uÞ þ Trγμνðx; y; u; vÞ · Pνðv; uÞg

ð62Þ

where as before D ¼ d þW.
Finally, in preparation for forthcoming discussions, we

also write down the Ward identity for RG transformations:

∂
∂z Z ¼ −Tr

�
ð½A;W

eð0Þz
�
·
þ βðAÞÞ · δ

δA

þ ð½PF;μ þWμ;Weð0Þz
�
·
þ βðWÞ

μ Þ · δ

δWμ

�
Z

þ NTrfΔμ · bWμ þ Δz · bW
eð0Þz

gZ: ð63Þ

This is just an infinitesimal version of Eq. (34). Note that by
∂
∂z Z we mean the partial derivative with respect to z,
keeping the sources fixed. In the last line of (63), we have
taken into account that the potential U is also modified as
we move into the bulk. The Δz appearing in the final term
denotes a possible COðL2Þ Weyl anomaly, with the
notation chosen suggestively (the Δμ

bWμ comes directly
from the transformation of the determinant). This notation
is discussed further in Appendix A.
We will see next that, from a holographic point of view,

Eq. (63) can be interpreted as theHamilton-Jacobi equation
[1]. With this interpretation, the RG equations and the
Callan-Symanzik equations then turn out to be Hamilton
equations of motion.

B. Holography as Hamilton-Jacobi

Let us now switch to a holographic perspective and
consider the free-field Majorana fermions as living on the
conformal boundary of a dþ 1-dimensional, asymptoti-
cally AdS spacetime ðMdþ1; GÞ. Corresponding to the
operators (whose vacuum expectation values are) Π and
Πμ sourced by A and Wμ in the boundary field theory, we
usually think in terms of bulk fields whose dynamics
relate them. In Ref. [1], it was proposed that the nature
of holographic renormalization is encapsulated in the
relationship

Z½M; z; AðzÞ;WμðzÞ� ¼ eiSHJ ½z;AðzÞ;WμðzÞ� ð64Þ

where SHJ is interpreted as the Hamilton-Jacobi functional
associated with given radial dynamics. Given such bulk
dynamics, this coincides with the on-shell action written as
a functional of boundary values of the fields.

Thus at the heart of the holographic principle is the
Lifshitz11 property—the generating functional in the boun-
dary is a wave functional in the bulk, from the point of view
of radial quantization in which the “time parameter” is the
radial coordinate z [1]. From this point of view, the
connected vacuum expectation values Π and Πμ given by

Π ¼ δSHJ
δA

; Πμ ¼ δSHJ
δWμ

ð65Þ

can then be thought of as the boundary values of momenta
P and Pμ conjugate to bulk fields A and Wμ respectively.
Now, from the point of view of the boundary field theory,

we are not given directly bulk dynamics, but we are given
SHJ, and one could attempt to reconstruct a choice of bulk
dynamics that reproduces it. We wish to identify the bulk
theory with a (classical) higher spin theory, but it is not
clear if a local action exists.
We can however proceed further. We observe that the RG

Ward identity (63) takes the form of the Hamilton-Jacobi
equation

∂
∂z SHJ ¼ −H ð66Þ

with the Hamiltonian12

H ¼ −Trfð½A;W
eð0Þz

�
·
þ βðAÞÞ · P

þ ð½PF;μ þWμ;Weð0Þz
�
·
þ βðWÞ

μ Þ · Pμg
− NTrfðΔμ · bWμ þ Δz · bW

eð0Þz
Þg: ð67Þ

It is straightforward to check that the dz components of the
RG equations (48), (49), and the Callan-Symanzik equa-
tions (61), (62) derived in the previous section are precisely
the Hamilton equations of motion

dzA ¼ δH
δP

; dzWμ ¼
δH
δPμ ;

dzP ¼ − δH
δA

; dzPμ ¼ − δH
δWμ

: ð68Þ

Note that Eqs. (59) and (60) are sort of integrability
conditions in making this Hamiltonian formalism work.
Note also, thatWz has no dynamics of its own; the partition
function does not depend on it, and thus its conjugate
momentum is zero. Thus Wz is a Lagrange multiplier,
which enforces the Ward identity associated with OðL2Þ.

11Here we are using language analogous to Lifshitz field
theories, whose vacuum wave functional is given by the
exponential of a spatial conformal field theory (CFT) action.

12This should be distinguished from the Hamiltonian
constraint of gravitational theories.
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Additionally of course, we have the transverse equations
of motion, i.e. the dxμ components of Eqs. (48), (49). If we
implement these constraints by introducing additional
non-dynamical Lagrange multipliers Qμ, Qμν

Hconstraint¼−Trfð½Dμ;A�−βðAÞ
μ Þ ·QμþðF μν−βðWÞ

μν Þ ·Qμνg
ð69Þ

then the full Hamiltonian ðHþHconstraintÞ might be taken
to give rise to an “action” (written in terms of phase space
variables)

I ¼
Z

dzTrfPI · ð½DI;A� − βðAÞ
I Þ þ PIJ · ðF IJ − βðWÞ

IJ Þ

− NΔI · Ŵ
Ig ð70Þ

where we have collected P and Qμ into the components of
a 1-form PI and Pμ and Qμν into a 2-form PIJ. The
equations of motion derived from this action are equivalent
to our RG and Callan-Symanzik equations provided we
gauge fix all the Lagrange multipliers to zero. This sort
of action has been proposed before in several contexts
[37–40]. Since the Hamiltonian is linear in momenta, we
are not free to pass back and forth between Hamiltonian
and Lagrangian formulations in the usual way.
A few important comments are in order here:
(i) First order vs. second order: It is clearly very

important here that the Hamiltonian H (67) is linear
in momenta—this means that the RG equations do
not involve momenta, and can be solved (in
principle) on their own, without reference to the
conjugate momenta. Subsequently, we may solve the
Callan-Symanzik equations to obtain the radial
evolution of momenta.
Thus in this sense, the RG equations are intrinsically
first order in nature. As was mentioned before, this
is a special property of vector models, namely that it
is possible to truncate the RG flow out of the free-
fixed point to single-trace operators. It is the fact that
this system is closed (other operators are not sourced
by the flow) that corresponds to the Hamiltonian
being linear in momenta. Of course, in most other
field theories with interactions such a truncation is
not possible. For instance in matrix models, the
generation of multitrace operators makes the Ham-
iltonian for radial evolution (RG flow) quadratic in
momenta, thus intertwining the RG equations with
Callan-Symanzik equations. It is useful to compare
these results with those of Refs. [12],[41],[42].
Indeed, from that point of view, the single-trace
vector models are a special case where because of
the absence of interactions, no bulk dynamics is
generated (because multitrace operators are not
generated and thus do not need to be disentangled

at each scale by introducing new degrees of
freedom). Further discussion of interacting theories
can be found in Sec. V B.

(ii) The two point function: As a check of the consis-
tency of our results, we compute the 2-point function
of the elementary field. Given the formalism, we
can’t do this completely, but we can extract itsOðNÞ
trace

Sαβðy; xÞ≡ hψm
α ðyÞ ~ψm;βðxÞi

¼ −Πðx; yÞδβα − Πμðx; yÞðγμÞαβ: ð71Þ

At the free-fixed point A ¼ 0 ¼ Ŵ, the Callan-
Symanzik equations simplify to

½Dð0Þ;ΠA�ðx; yÞ ¼ 0 ð72Þ

½Dð0Þ;Πμ�ðx; yÞ ¼ −NΔμðx; yÞdz: ð73Þ

Given the definition of Δμ in Eq. (43), we then find

γμΔμðx; yÞ ¼ −z∂zðiDð0Þ
F Þ−1 ð74Þ

and thus Eq. (73) integrates to

S ¼ iNðDð0Þ
F Þ−1: ð75Þ

We obtain the expected inverse Dirac operator, and the
factor of N is expected since we computed the OðNÞ
trace. Thus we see the significance of the Δμ term in
the β functions.

(iii) Structure of the beta functions: What role do the
β-function terms which appear in the Hamiltonian,
and RG equations play? To address this, it is useful
to make contact with conventional understanding of
RG within the context of conformal perturbation
theory. Let Oi be a complete set of operators at a
given fixed point, and we label by λi, the corre-
sponding coordinates on the coupling-constant
space of deformations away from the fixed point

Sperturb ¼
X
i

Z
ddxλiðxÞOiðxÞ: ð76Þ

In our case of course, all the λi s are contained in the
tensorial bilocal sources A and Ŵμ. From conformal
perturbation theory, the beta functions for renormal-
ization group flow take the form

dzλi ≡ βi0 ¼ Γi
jλ

j þ Cijkλjλk þ � � � ð77Þ

where Γi
j and Cijk are constants associated with the

fixed point. One might in certain situations, find it
natural to combine the Γi

jλ
j term with dzλi to define a
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“covariant derivative” Dzλ
i ¼ ðdzλi − Γi

jλ
jÞ. Indeed,

this is precisely the case in our RG equations (48),
(49), and consequently, our tensorial beta functions
(41), (42) must schematically be compared to

Dzλ
i ≡ βi ¼ Cijkλjλk þ � � � : ð78Þ

Now at the free-fixed point, the constants Cijk are
closely related to the operator product expansion
(OPE) coefficients

OiOj ∼
X
k

ckijOk: ð79Þ

Indeed, given that the free-field OPE essentially
involves contracting elementary fields between the
two operators, a closer look at the Polchinski ERG
formalism reveals

Cijk ¼ MdMcijk: ð80Þ

Thus, by extracting the coefficients Cijk from the beta
functions, it is straightforward to read off the OPE
coefficients cijk.

13

This discussion sheds new light on the structure of our
beta functions—from the field theory point of view, the
beta functions encode information about the OPE coef-
ficients, and hence the 3-point functions of the free-fermion
CFT. On the other hand, from the holographic point of
view, 3-point functions of the CFT are dual to 3-point tree
level scattering amplitudes in the bulk. We thus conclude
that the beta function terms in our RG equations encap-
sulate cubic interactions in the bulk. Detailed computations
of some tree level 3-point scattering amplitudes in Vasiliev
higher spin theory in AdS4 have been carried out in [21,43]
(see also [44,45]), and were found to be in agreement with
the 3-point functions of the CFT, in the case of the bosonic
as well as fermionic OðNÞ vector models.

IV. THE INFINITE JET BUNDLE

Although we have talked about general bilocal sym-
metries thus far, in order to make more direct contact with
higher spin theory, it is convenient to introduce a quasilocal
expansion for the sources

Aðz; x; yÞ≃X∞
s¼0

Aa1���asðz; xÞ∂ðxÞ
a1 � � � ∂ðxÞ

as δ
dðx − yÞ ð81Þ

WIðz; x; yÞ≃
X∞
s¼1

WI
a1���as−1ðz; xÞ∂ðxÞ

a1 � � � ∂ðxÞ
as−1δ

dðx − yÞ:

ð82Þ

From the field theory point of view, this means we source
all local single-trace operators with no prejudice towards
the number of derivatives they contain. In this section, we
will try to clarify the meaning of the above quasilocal
expansion. More importantly, we wish to make mathemati-
cally precise the sense in which the COðL2Þ symmetry
discussed previously is a gauge symmetry and W is a
connection. Naively, such a gauge-theoretic interpretation
of our bilocal symmetries would require a vector bundle
over spacetime, with the fiber being the space of all L2

functions over spacetime. As we will see shortly, this leads
us naturally to the idea of jet bundles.
Before we get into the details, we outline the basic

intuition behind the following construction. In physics, a
connection is usually thought of as a Lie-algebra valued
1-form W ¼ Wa

μTadxμ, which gives us a covariant deriva-
tive while acting on fields charged under the corresponding
gauge symmetry. In order to truly interpret our 1-formW as
a COðL2Þ connection, we need to cast it in this language.
Indeed, Eq. (82) can roughly be thought of as

Wðz; x; yÞ ¼
X∞
s¼1

Wa1���as−1ðz; xÞTa1���as−1ðx; yÞ;

Ta1���as−1ðx; yÞ≃ ∂ðxÞ
a1 � � � ∂ðxÞ

as−1δ
dðx − yÞ: ð83Þ

In order to interpret the Ta1���as−1 as a matrix (not in the
functional sense) acting on the elementary fields, it is useful
to think of the field ψa and all its derivatives at a point, as
forming a vector

�
ψmðxÞ; ∂ψ

m

∂xμ ðxÞ; ∂2ψm

∂xμ∂xν ðxÞ; � � �
�
: ð84Þ

Ta1���as−1 can then be thought of as a matrix, acting linearly
on this vector. The corresponding gauge symmetry then
locally (i.e. in a spacetime-dependent way) mixes the
various derivatives of ψm pointwise and linearly. In
mathematics, this simple idea fits in with the notion of a
jet bundle. The vector (84) is called a jet corresponding to
ψm, and W is naturally interpreted as a connection on the
jet bundle. The following section introduces mathematical
details of this construction. Less mathematically minded
readers may skip forward to Sec. IV B keeping in mind that
the jet-bundle construction allows us to think about sets of
derivatives of fields in “vector bundle” terms.

13For instance, by looking at the A · Δμ · A term in βðWÞ
μ , we

obtain

2cWμðx;yÞ
Aðu;vÞAðw;zÞ ¼ δðx − zÞGμðw; uÞδðv − yÞ

þ δðx − uÞGμðv; zÞδðw − yÞ

where γμGμðx; yÞ is the free-fermion Green function, with
Δμ ¼ MdMGμ. The other coefficients may be computed
similarly.
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A. Mathematical preliminaries

For any given value of z, the elementary fields ψmðxÞ in
the field theory are sections of the Majorana bundle14 E
over Md ¼ Rd, which we denote by π∶E ↦ Md. We will
label by ΓðEÞ the space of all C∞ sections of E.
Corresponding to E, there exists the infinite jet bundle
over Md

π∞∶J∞ðEÞ ↦ Md ð85Þ

which is defined as follows: two sections ψmðxÞ and χmðxÞ
of E are said to have the same rth jet at a point x ∈ Md if

∂k

∂xa1 � � � ∂xak ψ
mj

x
¼ ∂k

∂xa1 � � � ∂xak χ
mj

x
; 0 ≤ k ≤ r:

ð86Þ

For any given section ψmðxÞ of E, the rth jet of ψm at x,
denoted by jrxψ, is the equivalence class of all sections
which have the same rth jet at x as ψm. The rth jet bundle
πr∶JrðEÞ ↦ Md of E over Md is then defined by

JrðEÞ ¼ fjrxψ∶∀x ∈ Md;ψ ∈ ΓðEÞg ð87Þ

with the natural projection πr∶jrxψ ↦ x. The infinite jet
bundle J∞ðEÞ of E is defined as above, with r → ∞. Given
a section ψmðxÞ of E, we can naturally construct a section
j∞ψmðxÞ of J∞ðEÞ by taking its infinite jet at every point x.
This is called the prolongation map

j∞∶ΓðEÞ ↦ ΓðJ∞ðEÞÞ: ð88Þ

In simple terms, the prolongation map sends

ΓðEÞ ∋ ψmðxÞ ↦
�
ψmðxÞ; ∂ψ

m

∂xa1 ðxÞ;
∂2ψm

∂xa1∂xa2 ðxÞ; � � �
�

∈ ΓðJ∞ðEÞÞ: ð89Þ

The important point is that a differential operator can be
thought of as a section of the endomorphism bundle
EndðJ∞ðEÞÞ of J∞ðEÞ, i.e. it is simply a local linear
transformation when thought of as acting on sections of
the jet bundle. For instance, the derivative operator ∂

∂xμ can
loosely be thought of as the matrix (in terms of a local
trivialization)

Pμ ¼

0
BB@

0 1 0 0 …
0 0 1 0 …
0 0 0 1 …
..
. ..

. ..
.

1
CCA ð90Þ

with each entry corresponding to a map between tensors of
different ranks. In more precise notation, Pμ is a section of
EndðJ∞ðEÞÞ. Acting on a vector j∞x ψm at x, it may be
defined as the push forward of the derivative operator:

ðPμ · j∞x ψmÞðxÞ ¼ j∞x ð∂μψ
mÞðxÞ ð91Þ

or in terms of a commuting diagram

where, by J∞x ðEÞ we mean the fiber of the infinite jet
bundle over x. Similarly, we may also construct the operator
Xμ [again as a section of EndðJ∞ðEÞÞ], acting on the vector
j∞x ψm at x as

ðXμ · j∞x ψmÞðxÞ ¼ j∞x ðxμψmÞðxÞ: ð92Þ

In other words, Xμ is the push forward of multiplication
by xμ

Going further, we can use X and P to construct more
complicated matrices, such as generators of soð2; dÞ

Mab ¼ XaPb − PaXb

D ¼ XaPa

Ka ¼ X2Pa − 2XaXbPb ð93Þ

which may easily be shown to satisfy the appropriate
commutation relations. It is also convenient to introduce a
bilinear form on the fibers of J∞ðEÞ which, intuitively
speaking, we want to look like

h·; ·i ¼

0
BB@

1 0 0 0 …
0 0 0 0 …
0 0 0 0 …
..
. ..

. ..
.

1
CCA ⊗ ϵαβ ⊗ δmn ð94Þ

where ϵαβ and δmn are the metrics for spinor and OðNÞ
indices respectively. More precisely then, we define h·; ·i as

14More precisely, they are sections of the product of the
Majorana bundle associated with the spin bundle with a trivialRN

bundle, where N is the number of flavors of fermions. The spin
and OðNÞ indices are largely spectators in the geometric con-
struction that we are describing here, and thus the construction
applies equally well to any sort of field.
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hj∞x ψm; j∞x χniðxÞ ¼ δmn ~ψ
mðxÞχnðxÞ: ð95Þ

With this, we naturally get an inner product h·; ·iΓðJ∞ðEÞÞ on
sections of J∞ðEÞ

hΦm;ΨniΓðJ∞ðEÞÞ ¼
Z
Md

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0ÞðxÞ

q
hΦmðxÞ;ΨnðxÞi

ð96Þ

where Φ;Ψ ∈ ΓðJ∞ðEÞÞ, and we have made the (metric)
measure on spacetime explicit. The point of choosing this
inner product of course, is that on prolongations, it agrees
with the standard inner product on ΓðEÞ, namely

hj∞ψm; j∞χniΓðJ∞ðEÞÞ ¼ hψm; χniΓðEÞ
¼

Z
Md

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0ÞðxÞ

q
δmn ~ψ

mðxÞχnðxÞ.

ð97Þ

We can express this succinctly in terms of a commutative
diagram as follows:

B. COðL2Þ in the jet-bundle language

Now we come to the crucial point of all this discussion:
We interpret the (quasilocal) 1-form sourceWðzÞ ¼ Wμdxμ

(on a given z slice) as a connection15 on the infinite jet
bundle J∞ðEÞ at z, and AðzÞ as a section of EndðJ∞ðEÞÞ.
Further, by extending J∞ðEÞ trivially in the z direction16 to
a bundle J∞bulkðEÞ over the bulk Mdþ1, the bulk 1-form
W ¼ WIdxI becomes a connection over J∞bulkðEÞ, while the
0-form A is a section of EndðJ∞bulkðEÞÞ.
Let us label a basis of sections (or a local trivialization)

of EndðJ∞ðEÞÞ by fTαg. We thus interpret and generalize
the quasilocal expansions (81), (82) in concrete terms as

Aðz; x; yÞ ↦
X
α

Aαðz; xÞTα;

WIðz; x; yÞ ↦
X
α

Wα
I ðz; xÞTα: ð98Þ

Note the significance of this reinterpretation—we have
translated bilocal kernels mapping functions (on spacetime)
to functions, into local operators mapping sections (of a
vector bundle) to sections. While this might seem like a
technical point, it profoundly facilitates the identification
of gauge theory structure in the OðL2Þ and COðL2Þ
symmetries.
Indeed, by requiring that the inner product on ΓðJ∞ðEÞÞ

[see Eq. (97)] be preserved, we may reduce the structure
group down to generators ϵ ¼ ϵαTα which satisfy the
condition

hΦa; ϵΨbiΓðJ∞ðEÞÞ þ hϵΦa;ΨbiΓðJ∞ðEÞÞ ¼ 0 ð99Þ

for all Ψ;Φ ∈ ΓðJ∞ðEÞÞ. This is analogous to the familiar
idea of reducing the structure group of (for instance) the
tangent bundle of a manifold from GLðnÞ to OðnÞ by
picking a metric on it. Equation (99) is what we called the
OðL2Þ condition previously [see Eq. (22)], and may be
suggestively written as

“ϵþ ϵT ¼ 0”: ð100Þ

The space of all such generators forms a Lie algebra (with
the bracket being the commutator), which we may refer to
as oðL2Þ. Enlarging to COðL2Þ amounts to preserving the
inner product up to a local scale transformation
gð0Þ ↦ λ2gð0Þ. The corresponding Lie algebra may be
referred to as coðL2Þ. It is an easy exercise to check that
the soð2; dÞ generators in Eq. (93) all belong to coðL2Þ.
As was pointed out above, the main utility of the jet-

bundle formalism is that it allows us to cast our previous
discussion of symmetries in the language of vector bundles.
For example, an infinitesimal OðL2Þ or COðL2Þ gauge
parameter ϵðz; x; yÞ is now to be replaced by ϵ ¼ ϵαðz; xÞTα

in oðL2Þ or coðL2Þ respectively. The action of the gauge
symmetries on A and W

δA ¼ ½ϵ;A�; δW ¼ dϵþ ½W; ϵ� ð101Þ

remains the same, with the commutators appropriately
reinterpreted as matrix commutators of the Tα’s.
As before, a natural choice for the flat background

connection Wð0Þ is the AdSdþ1 connection [Eq. (56)],
which in the present language takes the form

Wð0Þðz; xÞ ¼ −dz
z
Dþ dxa

z
Pa: ð102Þ

From the field theory point of view,Wð0Þ encodes the pure-
gauge renormalization group flow of the free-fixed point.
The “global symmetries” of the free-fixed point (i.e.
symmetry transformations which leave the unperturbed
free CFT invariant) are therefore naturally identified with
the maximal Lie subalgebra within coðL2Þ comprising of

15Recall that a connection on a vector bundle π∶V ↦ M over
M is a section of T�M ⊗ EndðVÞ, i.e. a 1-form on M taking
values in the endomorphisms of fibers.

16More precisely, we mean that we take the jet bundle of E and
extend that to the bulk. This would not be the same as extending
E to the bulk and taking its jet bundle. In other words, the Taylor
expansions are in the transverse space only. Also, since we are
always in a local patch (namely the Poincaré patch), there are no
topological obstructions to extending the jet bundle into the bulk.
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elements ϵð0Þ which preserveWð0Þ (see also [31] for related
discussion), namely

δWð0Þ ¼ dϵð0Þ þ ½Wð0Þ; ϵð0Þ� ¼ 0: ð103Þ

It is not hard to obtain a basis for this subalgebra:

Td ¼ D

Ta ¼ Pa;

Ta;b ¼ Ma;b;

Ta1���as−1;b1���bt ¼ ðMa1;b1 � � �Mat;btPatþ1
� � �Pas−1ÞW ð104Þ

with s ¼ 2; 4; 6…. (Also, the boundary indices a; b run
over 0 to d − 1, and the radial direction is labeled as d.) The
subscript W indicates that the product is Weyl ordered,
which is essential in order for the element to lie within
coðL2Þ. For instance, the first few linear combinations
which leave the background connection invariant are

1

z
Ta;

�
Ta;b − 1

z
x½aTb�

�
;

�
Td − 1

z
xaTa

�
; � � � :

ð105Þ

From a physics point of view, it is natural to project down to
this subalgebra by only considering gauge transformations
of the form

ϵðz; xÞ ¼
X
s;t

ϵa1���as−1;b1���btðz; xÞTa1���as−1;b1���bt : ð106Þ

On the field theory side, this corresponds to “gauging” the
global symmetries of the free-fixed point. The connection
may be then taken to be

Wðz; xÞ ¼ dz
z
Td þ

X
s;t

ðdzWa1���as−1;b1���bt
z ðz; xÞTa1���as−1;b1���bt

þ dxμWa1���as−1;b1���bt
μ ðz; xÞTa1���as−1;b1���btÞ: ð107Þ

Note that the fields Wa1���as−1;b1���bt are in

representations of the boundary Lorentz groupOð1; d − 1Þ,
and can be thought of as sourcing higher spin currents in
the boundary theory. Similarly, the 0-formA takes the form

Aðz; xÞ ¼
X
s;t

Aa1���as;b1���btðz; xÞTa1���as;b1���bt ð108Þ

where s may be taken to be even because the Majorana
theory is only sensitive to the symmetric part of A.

In fact, let us introduce a specific representation of the
symmetry generators, that will allow us to make direct
contact with the formalism of Vasiliev (some background
discussion of the basic structure of Vasiliev’s higher spin
theory can be found in Appendix B, which we have
included for completeness). Indeed, a representation for
the generators in Eq. (104) is obtained by introducing the
variables YA

i [where A ¼ −1; 0;…; d are SOð2; dÞ vector
indices while i ¼ 1; 2 are spð2Þ indices], endowed with the
star product

YA
i ⋆ YB

j ¼ YA
i Y

B
j þ 1

2
ηABϵij: ð109Þ

(Alternatively, and perhaps more appropriate to the case at
hand, one can introduce a representation in terms of twistor
variables. Here, our intent is to sketch how a comparison
with Vasiliev might be started, rather than to provide such a
comparison in detail.) It is straightforward to check that the
generators in (104) may be represented as

D ¼ 1

2
ϵijYd

i Y
−1
j

Pa ¼ 1

2
ϵijðYa

i Y
−1
j þ Ya

i Y
d
j Þ

Ma;b ¼ 1

2
ϵijYa

i Y
b
j ð110Þ

with the Lie bracket given by the star commutator
½A;B�⋆ ¼ A ⋆ B − B ⋆ A. The flat background connection
then takes the form

Wð0Þðz; xjYÞ ¼ − 1

2
ϵijYd

i Y
−1
j

dz
z

þ 1

2
ϵijðYa

i Y
−1
j þ Ya

i Y
d
j Þηaμ

dxμ

z
: ð111Þ

Similarly, denoting the full connection and pseudoscalar as
Wðz; xjYÞ and Aðz; xjYÞ respectively, the gauge trans-
formations take the form

δA ¼ ½ϵ;A�⋆; δW ¼ dϵþ ½W; ϵ�⋆ ð112Þ

where the parameter ϵðz; xjYÞ is also thought of as a
function of the auxiliary variables. We may write the
renormalization group equations as

dAþ ½W;A�⋆ ¼ βðAÞ⋆
dW þW∧⋆W ¼ βðWÞ⋆ ð113Þ

where the z components of the ⋆-beta functions can be read
off from Eqs. (41) and (42) after replacing the integral
product with the star product, while the transverse compo-
nents are constrained by Bianchi identities as before. It is
here that we see our first real contact with the formalism of
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Vasiliev17—in particular his organization of higher spin
gauge fields is seen as a particular representation of the
general algebraic structure that arises from consideration of
the renormalization group.

C. Ghosts arise upon moving to the principal bundle

So far we have been thinking of W in terms of a
connection on a vector bundle, as is usually the case in most
applications in physics. We will now make some observa-
tions about the additional structure which we expect to
emerge by shifting to the language of principal bundles (see
[46] for details). Let G ↦ PG ↦ Mdþ1 be a principal
bundle over Mdþ1 (with G being the structure group), of
which J∞bulkðEÞ is an associated vector bundle. In particular,
we may take PG to be the frame bundle FrðJ∞bulkðEÞÞ. Let Zα

be local coordinates on the (infinite-dimensional) fibers of
PG. Given a local section Σ∶Mdþ1 ↦ PG, we may choose
local coordinates18 ðx; ZÞ on the total space of PG adapted
to the section, which is to say the section is given by Z ¼ 0
in these coordinates (see Fig. 4). Vector fields on PG of the
form V ¼ Vα ∂

∂Zα which point along the fiber directions are
referred to as vertical vector fields.
In order to specify what it means to be horizontal, we

need to define the notion of a connection on the G bundle.
An Ehresmann connection ω on PG is a G equivariant 1-
form on the total space, valued in the Lie algebra of G, and
may be written locally on PG as

ω ¼ ωIðx; ZjYÞdxI þωαðx; ZjYÞdZα: ð114Þ

Note that bothωI andωα are valued in the Lie algebra of G,
which is manifested above by their Y dependence. Having
defined the connection, we now refer to vector fields on PG
in the kernel of ω as horizontal. In terms of the local
coordinate basis of 1-forms ðdxI; dZαÞ, we may think of
dxI as being horizontal because they kill all vertical vector
fields, while dZα are simply normal to the section Σ. The
pull back of the connection by the section, Σ−1ω, is a
qualified connection 1-form on associated vector bundles,
and is what is usually called the connection (or gauge field)
in the physics literature. It is this piece which may be
identified with what we referred to as the connection over
J∞bulkðEÞ in the previous section

WðxjYÞ ¼ ωIðx; 0jYÞdxI: ð115Þ

As was explained in [46], the remaining piece
ωαðx; 0jYÞdZα (evaluated on the section) is called the
Faddeev-Popov ghost in physics, and we suggestively
label it as

SðxjYÞ ¼ ωαðx; 0jYÞdZα: ð116Þ
The fact that S is a 1-form means that it anticommutes with
itself, which is why the ghost is taken to be Grassmann.
The exterior derivative d on the total space PG can also

be separated with respect to our coordinate system into a
horizontal and a vertical piece: d ¼ dx þ dZ. The vertical
piece dZ is commonly referred to as the BRST operator in
physics. The curvature 2-form for ω19

Fω ¼ dωþ ω∧⋆ω
¼ dxW þW∧⋆W þ dZW þ dxSþ fW; Sg⋆
þ dZSþ S∧⋆S ð117Þ

consequently splits up into a horizontal, a vertical and a
mixed term. A fundamental property of the curvature
2-form is that it is purely horizontal (a quick proof for
physicists can be found in [46]). This implies that the
curvature 2-form must not have any dZα legs, which lead us
to conclude that

dZW þ dxSþ fW; Sg⋆ ¼ 0 ð118Þ

dZSþ S∧⋆S ¼ 0: ð119Þ
These relations are referred to as the BRST equations in
physics. Of course, the charged 0-form A has its own

FIG. 4. A pictorial representation of the principal bundle
structure.

17For readers familiar with the Vasiliev theory, note that
Vasiliev equations are usually written in terms of a 0-form B in
the twisted adjoint representation. If one considers the redefinition
A ¼ B ⋆ K with K being the Kleinian, then the new 0-form
A transforms in the adjoint representation, as opposed to the
twisted adjoint.

18In this section, the symbol x should be taken to stand for
xI ¼ ðz; xμÞ.

19Here dZS is to be interpreted appropriately as
dZðωαdZαÞjZ¼0.
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BRST relation as well, which encodes its tensorial
transformation property under gauge transformations

dZAþ ½S;A�⋆ ¼ 0: ð120Þ

At this point, putting all of the above BRST equations
together with the renormalization group equations (112)
and (113), we obtain the full set of equations satisfied by
the various pieces of our Ehresmann connection

dxW þW∧⋆W ¼ βðWÞ⋆
dxAþ ½W;A�⋆ ¼ βðAÞ⋆

dZW þ dxSþ fW; Sg⋆ ¼ 0

dZAþ ½S;A�⋆ ¼ 0

dZSþ S∧⋆S ¼ 0: ð121Þ

These equations bear remarkable resemblance with the
equations of motion in Vasiliev’s higher spin theory, which
have been briefly reviewed for completeness inAppendixB.
Note however, that there are also significant differences:

(i) Firstly, in our construction, Zα are coordinates on the
infinite-dimensional fibers of PG. To make contact
with Vasiliev, we can introduce a parametrization of
these fiber coordinates

Zα ¼
X

ðzαA1B1:::
ϵi1j1ZA1

i1
⋆ ZB1

j1
⋆ …Þ: ð122Þ

That is, by introducing auxiliary spð2Þ ×Oð2; dÞ
variables ZA

i , the Zα can be written as arbitrary
Spð2Þ-invariant ⋆ polynomials. We can then recast

SðxjYÞ ¼ ωαðx; 0jYÞdZα ¼ ωi
AðxjY; ZÞdZA

i : ð123Þ

(ii) Secondly, the equations in (121) have been written
along the Zα ¼ 0 section, and (123) represents some
sort of lift to nonzero ZA

i . While one is eventually
supposed to project the nonlinear Vasiliev equations
to ZA

i ¼ 0 to get the physical variables, such a
projection is not straightforward in the Vasiliev
theory, and is typically carried out order by order
in perturbation theory, thus making a direct com-
parison nontrivial.

(iii) Finally, in Vasiliev’s equations without the projec-
tion to ZA

i ¼ 0, the curvature is along vertical (i.e.
dZA

i ∧dZi
A) directions, as opposed to our situation,

where the horizontal components of curvature are
nontrivial.

It is natural to ask if there is some sort of redefinition of
our variables that would render our equations in Vasiliev’s
form. Such a redefinition was implicit in the construction of
Ref. [27], though it is not clear to us if such a redefinition is
natural. From our point of view, it seems compelling to think
of the RG β functions as the (horizontal) curvature, while the

equations for S are interpreted as the analogue of BRST
equations. Holographic RG certainly presents us with a
notion of a higher spin theory; it is perhaps not obvious that it
must agree in all details with Vasiliev’s construction, even
though the similarities are immense.However, it is our belief
that the differences pointed out above conspire to hide the
equivalence of our renormalization group equationswith the
nonlinear Vasiliev equations. A better understanding of this
equivalence by constructing an explicitmap between the two
sets of equations will be left to future work. But if the
conjectured equivalence is indeed true, then it would shed
new light on the auxiliary 1-form S in the Vasiliev system
(which has always appeared mysterious, to us anyway),
namely, that it is the Faddeev-Popov ghost corresponding to
the higher spin gauge symmetry.
Let us end this section with a comment on the usual

Faddeev-Popov formalism in physics. Conventionally, one
quantizes a classical gauge theory, thought of as a theory of
the horizontal components of the connection, by integrating
over equivalence classes of such connections. This is
usually described as dividing the path-integral measure
by the volume of the gauge group. The Faddeev-Popov
ghosts enter upon gauge fixing. The resulting free path
integral may be interpreted to mean that the quantum theory
should be considered as an integration over connections on
the principal bundle. Apparently, we are in a somewhat
analogous situation here. The field theory has sources
corresponding to the horizontal pieces of the connection,
while the ghosts are absent. As we have seen, it is certainly
natural to introduce the ghosts to complete the geometrical
structure, but whether it is inevitable, is far from clear.
Perhaps further thought along the lines of Batalin-Fradkin-
Vilkovisky theory would be fruitful.20

V. DISCUSSION

A. The bosonic theory

We can write the bosonic OðNÞ theory in a similar way
to the Majorana model, although it is not nearly as simple.
The trick is to recognize that the kinetic term can be written
in terms of the PF;μ that we introduced in the fermionic
theory above. This should be expected because of its
geometric significance. Indeed, we choose to write the
action coupled to arbitrary OðNÞ-singlet operators in the
matrix form

Sregbos½ϕ;B;W� ¼
Z
x;y

�
−1

2

Z
z
ϕmðxÞDF;μðx;zÞDF;

μðz;yÞϕmðyÞ

−1

2
ϕmðxÞBðx;yÞϕmðyÞ

�
ð124Þ

20We thank D. Minic for pointing out the importance of
Batalin-Fradkin-Vilkovisky in string field theory [47], which may
be related.
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where

DF;μðx; yÞ ¼ PF;μðx; yÞ þWμðx; yÞ: ð125Þ

This is equivalent up to some redefinitions to the para-
metrization employed in [27], although it is clearly more
suited to the geometric interpretation. Thus we see that
without loss of generality, the (singlet sector of the) bosonic
theory can be thought of as consisting of sourcesWμ and B.
We note that B is parity even here (recall that the scalar
source A in the Majorana theory was parity odd), a fact
familiar from the structure of the Vasiliev higher spin
theories.
The construction developed for the Majorana theory will

go through in this case in a very similar fashion, with only
the β functions (and thus the three point functions) being
modified appropriately. The details of this construction will
not be given here for brevity.
We note though that in the bosonic case, the jet-bundle

construction will go through in arbitrary dimension. This is
perhaps related to the fact that there is a vectorial
construction of the Vasiliev A model in any dimension.
In the fermionic case, the B model is known only in four
bulk dimensions in the twistorial construction. The RG
analysis can of course be carried out in arbitrary dimen-
sions, suggesting that corresponding higher spin theories
do exist. However, we note that such theories would
be more complicated than the Vasiliev theories, as
we must include sources for operators of the form
~ψγabψ ; ~ψγabcψ � � �, corresponding to higher tensor fields
in the bulk. The jet-bundle construction suggests that these
cannot be absorbed into the connection.

B. Interacting theories

It is a familiar idea that RG fixed points correspond to
zeroes of the RG β functions. We have remarked previously
that the connectionWð0Þ that can be identified with AdSdþ1

is an exact solution of the full set of ERG equations,
corresponding to the point ðA; ŴμÞ ¼ ð0; 0Þ. This indeed

corresponds to the only zero of βðAÞ and βðWÞ
μ . Other fixed

points of RG might arise once field theory interactions are
turned on.
Indeed, given the analysis based on the free-fixed point, it

is natural to ask what modifications might be expected once
interactions are introduced. A natural way to address this
would be to introduce sources for nonquadratic operators.
However in doing so, we would immediately lose much of
the geometric structure that we have described.
Another way to introduce a large class of interactions is

to implement the reverse of the Hubbard-Stratanovich idea.
Namely, given Z½M; z;Wμ; A�, we construct the partition
function of interacting theories by integrating over the
source with suitable weight. To proceed, we choose a gauge
in which A is diagonal

Aðx; yÞ ¼ σðxÞδðx − yÞ ð126Þ

and write (one could in addition introduce a source for σ)

Zint½M; z;Wμ� ¼
Z

½dσðxÞ�eiN2g
R

ddxσ2Z½M; z;Wμ; σ�:
ð127Þ

This transform corresponds to the particular case in which
we implement a double-trace deformation. It is precisely at
this point at which large N matters. In particular, at large N,
the integral can be done by saddle point approximation.
The corresponding gap equation is

N
g
σ þ Π ¼ 0; ð128Þ

and one expects to obtain the familiar result that the
partition function of the interacting fixed point is obtained
essentially as a Legendre transform with A and ΠA
swapping their roles.
This result seems consistent with the persistence of

higher spin symmetry at N ¼ ∞ for interacting fixed
points. It is far however from an explicit derivation of
the RG equations for the interacting fixed point, although it
does suggest that at zeroth order in 1=N, we should just
interchange ΠA and A. At finite N, there is every reason to
believe that the standard lore would emerge, namely that
the higher spin symmetry will be Higgsed in the presence
of interactions in the field theory, presumably through an
instability towards the condensation of A. It would of
course be of great interest to find an explicit “attractor
mechanism” in which a purely gravitational theory
(presumably in the case where translational invariance in
the transverse space is preserved) emerges in the infrared.
Certainly one might expect that the inclusion of field theory
interactions might lead to a replacement of our Hamiltonian
by a version nonlinear in momenta, perhaps along the lines
of the construction of Sung-Sik Lee [42].
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APPENDIX A: RENORMALIZATION GROUP:
DETAILS

In this appendix, we present the details of RG equations
and Callan-Symanzik equations. We will derive these
equations by going through the two-step RG transformation
explained in Sec. III. In doing so, we will find it convenient
to split the action as

SMaj
reg ¼ S0 þ Sint þ U;

S0 ¼
1

2

Z
x;y

~ψmðxÞDð0ÞðM; x; yÞψmðyÞ;
�
Dð0Þ

μ ðM; x; yÞ ¼ PF;μðM; x; yÞ þWð0Þ
μ ðx; yÞ

PF;μðM; x; yÞ ¼ K−1
F ð−□x=M2Þi∂x

μδðx − yÞ

Sint ¼
1

2

Z
x;y

~ψmðxÞ½Aðx; yÞ þ Ŵðx; yÞ�ψmðyÞ;

U ¼
Z
x;y

Uðx; yÞ≡
Z
x;y

U0δðx − yÞ ðA1Þ

where recall that ~ψm
β ≡ ψm;αϵαβ is not an independent field.

The partition function will be defined as Z ¼ Z−1
0

R ½dψ �eiS,
normalized with respect to Z0 ≡ R ½dψ �eiS0 ¼ ðdetPFÞN=2.

1. Exact RG equations

Step 1: We first begin by lowering the cutoff from M to
λM for λ < 1. From the Wilsonian point of view, this
essentially amounts to integrating out a shell of fast modes.
The way to carry out this integration within the Polchinski
formalism, is to demand

Z½M; z; A;Wμ;U� ¼ Z½λM; z; ~A; ~Wμ; ~U�: ðA2Þ

What is being said here, is that we’re adjusting the values of
the sources (denoted by tilde) in order to keep the path
integral unchanged. Infinitesimally, taking λ ¼ 1 − ε in
(A2) gives

0 ¼ δεZ

¼ δε

�
Z−1
0

Z
½dψ �eiS

�

¼ −Z−1
0

�
δε

Z
½dψ �eiS0

�
Z−1
0

Z
½dψ �eiS

þ Z−1
0

�
δε

Z
½dψ �eiS

�
ðA3Þ

where the variations of the path integrals can be expanded
by chain rule:

δε

Z
½dψ �eiS0 ¼−

Z
½dψ �MdMeiS0

δε

Z
½dψ �eiS¼

Z
½dψ �

�
−eiðSintþUÞMdMeiS0

þeiS0Tr

�
δεA ·

δ

δA
þδεŴμ ·

δ

δŴμ

þδεU ·
δ

δU

�

×eiðSintþUÞ
�
: ðA4Þ

These expressions use the dot notation defined in
(10), as well as a functional trace, Trfðx; yÞ ≡R
x;y δðx − yÞfðx; yÞ.21 It is convenient to define

Δðx; yÞ≡ γμΔμðx; yÞ ¼ MdMðDð0ÞÞ−1ðx; yÞ: ðA6Þ

Given our choice of S0, we get

MdMeiS0 ¼ − i
2

Z
x;y

ðDð0Þ · ψÞαðxÞ

× ϵαβðΔÞβγðx; yÞðDð0Þ · ψÞγðyÞeiS0 ðA7Þ

where we have suppressed the OðNÞ vector indices, and
explicitly shown some of the spinor indices. Using

ϵαβ
δS0

δψβðxÞ ¼ ðDð0Þ · ψÞαðxÞ ðA8Þ

we may rewrite (A7) as

MdMeiS0 ¼− i
2

Z
x;y

ðΔÞαγðx;yÞ

×ϵγβ
�

δ2

δψαðxÞδψβðyÞe
iS0 − i

δ2S0
δψαðxÞδψβðyÞe

iS0

�
:

ðA9Þ

Substituting this expression back into (A3), the term

proportional to δ2S0
δψαðxÞδψβðyÞ cancels out. This is the effect

of normalization. The other term, δ2

δψαðxÞδψβðyÞ e
iS0 , can be

integrated by parts so that the functional derivatives hit
eiSint . The result is

21Note, when a functional derivative appears as part of a
functional product, the contraction is

�
f ·

δ

δg

�
ðx; yÞ ¼

Z
u
fðx; uÞ δ

δgðy; uÞ : ðA5Þ
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0 ¼ 1

Z0

Z
½dψ �eiS0Tr

�
i
2
ðΔÞαγϵγβ ·

δ2

δψαδψβ

þ δεA ·
δ

δA
þ δεŴμ ·

δ

δŴμ

þ δεU ·
δ

δU

�
eiðSintþUÞ:

ðA10Þ
Using the explicit forms of Sint and U from Eq. (A1), this
expression reduces to

0 ¼
�
− i
2
N
Z
x;y

Δα
βðx; yÞðAþ ŴÞβαðx; yÞ

−
1

2
~ψ · ðAþ ŴÞ · Δ · ðAþ ŴÞ · ψ

þ 1

2
~ψ · δεA · ψ þ 1

2
~ψ · δεŴ · ψ þ δεU

	
: ðA11Þ

Now restricting our attention to 2þ 1 dimensions, we
evaluate the various gamma matrix products (making
repeated use of γμγν ¼ ημν þ ϵμνλγλ) to obtain

0 ¼
Z
x;y
ðδεA − βAÞðx; yÞΠðx; yÞ

þ
Z
x;y
ðδεŴ − βW;μÞðx; yÞΠμðx; yÞ þ ðδεU − βUÞh1i

ðA12Þ

where we have defined

βA ¼ A · Δμ · Ŵμ þ Ŵμ · Δμ · Aþ ϵμνλŴμ · Δν · Ŵλ

βW;μ ¼ A · Δμ · Aþ ϵμνλðA · Δν · Ŵλ þ Ŵν · Δλ · AÞ
þ Ŵν · Δν · Ŵμ − Ŵν · Δμ · Ŵ

ν þ Ŵμ · Δν · Ŵ
ν

βU ¼ −iNTrfΔμ · Ŵ
μg: ðA13Þ

Taking the coefficients of Π, Πμ and h1i in Eq. (A12) to be
independently zero, we deduce that

δεA ¼ βA; δεŴ ¼ βW;μ; δεU ¼ βU: ðA14Þ

Step 2: Next, we perform a COðL2Þ scale transformation,
accompanied by an arbitrary spatial translation,
L ¼ 1þ εzWz þ εξμWμ, such that the partition function
comes back to the original cutoff M, but the conformal
factor of the background metric changes as z ↦ λ−1z. We
then label the final sources as Aðλ−1z; xþ εξ; yþ εξÞ,
Wμðλ−1z; xþ εξ; yþ εξÞ and Uðλ−1zÞ, which are given by

Aðλ−1z; xþ εξ; yþ εξÞ ¼ Aðz; x; yÞ þ εz½A;Wz�·
þ εξμ½A;Wμ�· þ εβA þOðε2Þ

ðA15Þ

Wμðλ−1z; xþ εξ; yþ εξÞ ¼ WμðzÞ þ εz½PF;μ þWμ;Wz�·
þ εξν½PF;μ þWμ;Wν�·
þ εβW;μ þOðε2Þ ðA16Þ

Uðλ−1zÞ ¼ UðzÞ þ εβU − iεNTrfΔz ·Wzg ðA17Þ

where we have introduced the notation Δz to denote a
(possible) COðL2Þ anomaly. In particular, Δz should be
thought of as the anomaly for a single Majorana fermion,
hence the scaling of the full anomaly with N. Note that
given the structure of βU, it seems as if Δz naturally
combines with Δμ into ΔI ¼ ðΔz;ΔμÞ. Finally, expanding
out the left-hand sides of the above relations and taking ε to
zero, we arrive at the ERG equations (48) and (49).

2. Callan-Symanzik equation

We are also interested in the Callan-Symanzik equations
for quadratic operators like Π̂ðx; yÞ ¼ 1

2
ψαðxÞϵαβψβðyÞ and

Π̂μðx; yÞ ¼ 1
2
ψαðxÞϵαβðγμÞβδψδðyÞ. For a generic operator

O, one can straightforwardly check from an argument
similar to the one described above, that

MdMhOi ¼ 1

2

Z
u;v

Δγ
δðu; vÞϵδη

�
− δSint
δψγðuÞ

δO
δψηðvÞ

− δO
δψγðuÞ

δSint
δψηðvÞ þ i

δ2O
δψγðuÞδψηðvÞ

	
: ðA18Þ

For the case of quadratic interactions, as before we have

δSint
δψγðuÞ ¼

Z
z
ϵγβ½Aðu; zÞδβδ þ Ŵμðu; zÞðγμÞβδ�ψδðzÞ:

ðA19Þ

Let us also consider the general quadratic operator
OM ¼ 1

2
ψαðxÞϵαβMβ

δψ
δðyÞ. We have

δOM

δψm;γðuÞ ¼
1

2
ðδðdÞðx − uÞϵγβMβ

δψ
m;δðyÞ

− ψm;αðxÞϵαβMβ
γδ

ðdÞðy − uÞÞ; ðA20Þ

δ2OM

δψm;γðuÞδψm;ηðvÞ ¼
N
2
ðδðdÞðx − uÞδðdÞðy − vÞϵηβMβ

γ

− δðdÞðx − vÞδðdÞðy − uÞϵγβMβ
ηÞ
ðA21Þ

where the N appears from tracing overOðNÞ indices. Thus,
after step one of RG we have
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δεhOMi ¼ −i N
2
Δβ

γðx; yÞMγ
β −

1

2

Z
u;v;z

hψκðzÞϵκρ½Aðz; vÞδρη þ Ŵμðz; vÞðγμÞρη�Δη
δðv; xÞϵδγϵγβMβ

τψ
τðyÞi

−
1

2

Z
u;v;z

hψαðxÞϵαβMβ
γΔγ

δðy; vÞϵδηϵηρ½Aðv; zÞδρκ þ Ŵμðv; zÞðγμÞρκ�ψκðzÞi: ðA22Þ

We may now write down separate equations for M either 1 or γμ. Since both the operators transform tensorially under
COðL2Þ, after step 2 we get

Πðzþ εz; xþ εξ; yþ εξÞ ¼ Πðz; x; yÞ þ ½Π; εzWz þ εξμWμ� þ εðΔν · A ·Πν −Πν · A ·ΔνÞ− εðΔμ · Ŵμ ·ΠþΠ · Ŵμ ·ΔμÞ
þ εϵμνλðΔμ · Ŵν ·Πλ þΠμ · Ŵν ·ΔλÞ þOðε2Þ ðA23Þ

Πμðzþ εz; xþ εξ; yþ εξÞ ¼ Πμðz; x; yÞ − iεNΔμ þ ½Πμ; εzWz þ εξμWμ� þ εðΔμ · A · Πþ Π · A · ΔμÞ
þ εϵμνσðΔν · A · Πσ þ Πν · A · ΔσÞ − εðΔν · Ŵν · Πμ þ Πμ · Ŵν · ΔνÞ
− εðΔν · Ŵ

μ · Πν þ ΠνŴμΔνÞ − εðΔμ · Ŵν · Πν þ Πν · Ŵν · ΔμÞ
þ εϵμνλðΔν · Ŵλ · Πþ Π · Ŵν · ΔλÞ: ðA24Þ

The Callan-Symanzik equations can be written in a more compact form by making the definitions

γðx; y; u; vÞ ¼ δðx − uÞΔμ · Ŵμðy; vÞ þ Ŵμ · Δμðu; xÞδðv − yÞ ðA25Þ

γμðx; y; u; vÞ ¼ δðu − xÞΔμ · Aðy; vÞ þ A · Δμðu; xÞδðv − yÞ
þ ϵμνλðδðx − uÞΔν · Ŵλðy; vÞ þ Ŵν · Δλðu; xÞδðv − yÞÞ ðA26Þ

γμνðx; y; u; vÞ ¼ ϵμλνδðx − uÞΔλ · Aðy; vÞ þ ϵνλμA · Δλðu; xÞδðv − yÞ þ δðx − uÞΔμ · Ŵνðy; vÞ þ Ŵν · Δμðu; xÞδðy − vÞ
− δðx − uÞΔν · Ŵμðy; vÞ − Ŵμ · Δνðu; xÞδðy − vÞ þ δðx − uÞΔλ · Ŵ

λðy; vÞημν þ Ŵλ · Δλðu; xÞδðy − vÞημν:
ðA27Þ

Having done so, comparing the ε terms on both sides, we
obtain the Callan Symanzik equations (61) and (62).

APPENDIX B: VASILIEV HIGHER SPIN
GRAVITY

In this section, we will present a short review of the
nonlinear Vasiliev higher spin equations in general dimen-
sion dþ 1 in terms of vector oscillators.22 Of course, this is
not meant to be pedagogical by any means, as the details
are not relevant to our discussion in this paper—our aim
here is to merely present the Vasiliev equations so as to
facilitate comparison with our RG equations. For more

details on the Vasiliev theory, we refer the reader to
Refs. [17–21].
Let fYA

i g and fZA
j g be Spð2Þ ×Oð2; dÞ variables, where

uppercase latin indices A;B;… stand for Oð2; dÞ vector
indices, while i; j;… stand for Spð2Þ indices. The Spð2Þ-
invariant product is defined by YAiYB

i ≡ ϵijYA
i Y

B
j . We

define the star product between two functions fðY; ZÞ
and gðY; ZÞ as

fðY; ZÞ ⋆ gðY; ZÞ

¼ N2D

Z
d2DUd2DVe−2UA

i V
i
AfðY þU;Z þ UÞ

× gðY þ V; Z − VÞ ðB1Þ

where D ¼ dþ 2 and N2D is an appropriate normalization
constant chosen such that f ⋆ 1 ¼ f. It is easy to check that
this implies the relations

22We note that the case d ¼ 3 is special, in that the Vasiliev
equations can be formulated in terms of twistor variables, and
admit the two versions referred to as A type and B type. In
particular, it is not known how to construct the B type theory in
terms of vector oscillators. We do not wish to confuse the reader
on this point (it is the d ¼ 3 B model that is directly addressed
in this paper)—we merely provide this appendix as an intro-
duction to some of the language that we used in the body of the
paper.
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YA
i ⋆ YB

j ¼ YA
i Y

B
j þ

1

2
ηABϵij; ZA

i ⋆ ZB
j ¼ ZA

i Z
B
j − 1

2
ηABϵij

YA
i ⋆ ZB

j ¼ YA
i Z

B
j − 1

2
ηABϵij; ZA

i ⋆ YB
j ¼ ZA

i Y
B
j þ

1

2
ηABϵij:

ðB2Þ

We introduce the function KðtÞ ¼ e−2tziyi , where
yi ¼ Y−1

i and zi ¼ Z−1
i . For t ¼ 1 this is called the

Kleinian, and will be denoted by K. It has the important
property that

K ⋆ K ¼ 1; K ⋆ fðY; ZÞ ⋆ K ¼ ~fðY; ZÞ ðB3Þ

where ~fðY; ZÞ ¼ fðYA − 2Y−1δA−1; ZA − 2Z−1δA−1Þ.
The Vasiliev system is described by two 1-forms

WðxjY; ZÞ ¼ WIðxjY; ZÞdxI and SðxjY; ZÞ ¼ SiAðxjY;
ZÞdZA

i , and a 0-form BðxjY; ZÞ. The Vasiliev equations
are given by

dxW þW ⋆ W ¼ 0

dxBþW ⋆ B − B ⋆ ~W ¼ 0

dZW þ dxS þW ⋆ S þ S ⋆ W ¼ 0

dZBþ S ⋆ B − B ⋆ ~S ¼ 0

dZS þ S ⋆ S ¼ 2

3
dZ−1

i dZi−1B ⋆ K: ðB4Þ

In addition, onemust impose the appropriateSpð2Þ invariance
constraints on the above fields, in order for them to describe
physical higher spin fields. Note that B transforms in the
twisted adjoint representation, and in particular the covariant
derivatives for B feature the twisted commutators ðW ⋆ B −
B ⋆ ~WÞ and ðS ⋆ B − B ⋆ ~SÞ. By redefining the 0-form as

A ¼ B ⋆ K ðB5Þ
the new 0-form A transforms in the adjoint representation,
and the twisting can be partially removed from the Vasiliev
equations.
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