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The frequency dependent conductivity σðωÞ of the strongly coupled quark-gluon plasma is estimated
using a bottom up holographic model that can adequately describe recent lattice data for QCD
thermodynamics at zero chemical potential. Different choices for the coupling between the bulk gauge
field and the other bulk fields that define the background (the metric and a scalar field) are used in order to
fit the lattice data for the electric charge susceptibility χQ2 =T

2. The ratio σDC=T is found to vary near the
deconfinement transition in a way that is similar to recent lattice results. This model is used to compute the
charge diffusion coefficient D of the strongly coupled plasma. We find that the dimensionless combination
DT has the same type of temperature dependence displayed by σDC=T, and, thus, charge diffusion is
suppressed at low temperatures. The frequency dependent conductivity σðωÞ reveals some nontrivial
structure for values of the temperature near the phase transition. None of these structures appears in the
associated Euclidean correlator, which we also compute. Our results suggest that the conformal invariance
violation near the QCD deconfinement phase transition may be seen in the Euclidean correlator through a
downward shift of its value at the minimum, which gives a rough estimate of the temperature dependence of
the DC conductivity in the plasma.
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I. INTRODUCTION

The gauge/gravity duality [1–3] is a powerful non-
perturbative tool that can be used to investigate the trans-
port properties of strongly coupled gauge theories with a
large number of colors Nc [4]. In particular, after the
seminal calculation of the shear viscosity to entropy density
ratio, η=s, performed in Refs. [5–7], a lot of effort has been
put toward the determination of other transport coefficients
that can be used to fully characterize the nonequilibrium
dynamics of strongly coupled plasmas, such as the quark-
gluon plasma (QGP) formed in ultrarelativistic heavy ion
collisions [8].
While much attention has been given to the holographic

calculation of transport coefficients associated with the
diffusion of energy and momentum in the hydrodynamic
expansion, such as η and also the bulk viscosity [9], much
less is known about transport coefficients associated with
other conserved currents such as the electric conductivity σ
and the charge diffusion coefficient D (in the context of
heavy ion collisions). The electric conductivity, in particu-
lar, may be relevant [10,11] for the time evolution of the
strong electromagnetic fields present in noncentral ultra-
relativistic heavy ion collisions at the RHIC and the LHC
[12], while Ref. [13] claimed that the directed flow in
asymmetric heavy ion collisions may be used to estimate
the value of this coefficient in the QGP. A recent lattice
QCD calculation [14] performed using 2þ 1 dynamical

flavors found that σDC=T is enhanced near the deconfine-
ment transition.1 A similar behavior has been found using a
parton-hadron nonperturbative approach [18] (other recent
nonperturbative calculations include Ref. [19]). Given the
usual difficulties encountered in computing spectral func-
tions from Euclidean correlators determined on the lattice,
further independent confirmation of such an enhancement
computed using other nonperturbative approaches, such as
the gauge/gravity duality, are certainly welcome.
The conductivity in strongly coupled plasmas has been

studied before using holography (see, for instance,
Refs. [16,20–31]). However, to understand how the strong
violation of conformal invariance at temperatures
T ∼ 150–300 MeV found in current lattice QCD calcula-
tions [32,33] affects the electric conductivity, it is necessary
to drop the assumption of a conformal plasma. While
top-down string theory constructions of nonconformal
plasmas2 are known (see the references in Ref. [4]), these
models cannot yet describe the specific temperature
dependence of the equilibrium quantities of finite temper-
ature QCD found on the lattice. On the other hand, bottom-
up holographic models in five dimensions involving the
metric and a bulk scalar field are able to adequately
describe the violation of conformal invariance seen in
the thermodynamical properties of QCD at vanishing
chemical potentials [34–40]. One should keep in mind
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1See Refs. [15,16] and, more recently, Ref. [17] for studies
about the electric conductivity in weakly coupled plasmas.

2By a nonconformal plasma, we mean a plasma for which the
associated field theory is nonconformal even at T ¼ 0.
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that such phenomenological models for the strongly
coupled QGP may be only useful when T ∼ 150–
300 MeV. For lower temperatures an effective description
involving explicit hadronic degrees of freedom should be
used [41–44], while at sufficiently high temperatures, a
weak coupling description of the QGP is more appropriate3

(note also that these nonconformal holographic models
remain strongly coupled even in the UV, which is not the
case of an asymptotically free theory such as QCD).
A few years ago, it was shown in Ref. [49] that the

effects of a nonzero baryon chemical potential can be nicely
incorporated into this class of models by adding a Uð1Þ
gauge field in the bulk that is dual to the conserved baryon
current at the boundary.4 This general strategy follows
directly from the holographic dictionary, which establishes
that global symmetries at the boundary are dual to gauge
symmetries in the bulk [3]. While it is possible to include
D-branes into this type of bottom-up model to describe its
flavor content [50–52], the Einsteinþ scalar þMaxwell
model pursued in Ref. [49] contains the minimum physics
needed to study the effects of global conserved charges in a
strongly coupled plasma. Similar models, usually defined
in asymptotically AdS4 spaces, have been used in con-
densed matter applications [53,54]. See also Refs. [55,56]
for applications of the Einsteinþ scalar þMaxwell model
in the study of the QCD phase diagram.
Moreover, this type of model provides a straightforward

way to compute the transport coefficients associated
with the given conserved charges when their chemical
potentials vanish. In fact, in this case the on-shell gauge
field in the bulk vanishes, and the Maxwell action enters
only in the description of the small fluctuations needed in a
linear response analysis. More specifically, the metric and
the scalar field define the nonconformal background (taken
at zero chemical potential) while the Maxwell action acts as
a probe, entering only in the calculation of two-point
functions of the given channel evaluated on this back-
ground. Therefore, while the gauge field does not backreact
on the background, it determines the calculation of sus-
ceptibilities and other transport coefficients such as the
electric conductivity.
In this paper, we shall use this Einsteinþ scalar þ

Maxwell model to compute the frequency dependent
electric conductivity and the charge diffusion coefficient
in a strongly coupled plasma with thermodynamic proper-
ties similar to those displayed by QCD with three

dynamical flavors [32] at zero chemical potential. The
nonconformal background described by the Einstein-scalar
sector a few parameters that enter into the scalar potential
and are fixed to match lattice QCD thermodynamics [32] at
zero chemical potential. The gauge field couples with the
metric in the usual way through the Maxwell action, but it
also couples to the background scalar field ϕ. This coupling
is described by an a priori unknown scalar function, fðϕÞ,
which does not affect the system’s pressure, though it enters
directly in the calculation of the electric charge suscep-
tibility χQ2 ðTÞ, as we will show below. Thus, fðϕÞ can be
fixed by imposing that the electric charge susceptibility of
the model matches the corresponding lattice data for
χQ2 ðTÞ=T2 [57]. Once fðϕÞ is determined, one can use
the holographic dictionary [58] and extract the retarded
Green’s function of the electric current, which is used to
compute the frequency dependent susceptibility σðωÞ. The
DC conductivity is simply σDC ¼ limω→0σðωÞ, and it may
be computed directly using the membrane paradigm
[59]. The charge diffusion coefficient D can be directly
obtained using the Einstein relation involving the σDC and
χQ2 , which is valid for this class of theories [59]. Since all
the parameters of the model are fixed to match known
equilibrium quantities computed on the lattice, the transport
properties obtained in the model can be interpreted as
holographic predictions that may be compared with the
results of other methods.
This paper is organized as follows. In Sec. II we present

the details about the holographic model used in this work.
Section III is reserved to the calculation of the electric
charge susceptibility χQ2 and its comparison to lattice data.
In Sec. IV, we present the study of the frequency depend-
ence of the conductivity and also compute the charge
diffusion constant. The spectral function that enters in the
calculation of σðωÞ is then used in Sec. V to compute the
Euclidean correlator. In Sec. VI we present our conclusions
and outlook.

II. NONCONFORMAL HOLOGRAPHIC MODEL

The holographic model that defines the strongly
coupled plasma studied in this paper is given by the five-
dimensional action

SES ¼
1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

ð∂ϕÞ2
2

− VðϕÞ
�
: (1)

The ansatz for the metric used here (also known as the
Gubser gauge [38]) is

ds2 ¼ e2AðϕÞð−hðϕÞdt2 þ dx2Þ þ e2BðϕÞ
dϕ2

hðϕÞ ; (2)

where the scalar field ϕ is set as the fifth coordinate and
hðϕÞ has a simple zero at the horizon ϕ ¼ ϕh while at the
boundary ϕ → 0 and one recovers hðϕ → 0Þ ¼ 1. The

3In fact, recent calculations [45–48] involving hard thermal
loop perturbation theory were shown to provide a good descrip-
tion of the high temperature QGP properties in equilibrium.

4For QCD with three dynamical quark flavors, the equilibrium
pressure may depend on the baryon μB, electric charge μQ, and
strangeness μS chemical potentials besides the temperature T,
i.e., p ¼ pðT; μB; μQ; μSÞ. The case described in Ref. [49]
corresponds to setting μQ ¼ μS ¼ 0 (i.e., all quark flavors have
the same chemical potential equaling μB=3).
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background (which describes the equilibrium properties of
the plasma at nonzero T and μQ ¼ 0) is defined by the
metric gMNðϕÞ, where M, N ¼ t, x, ϕ. The metric of the
space-time that is the solution of Einstein’s equations is
assumed to be asymptotic AdS5 with radius L≡ 1 [this is
reflected in the choice for the near boundary behavior of
VðϕÞ]. In this bottom-up phenomenological approach, the
scalar potential VðϕÞ is not determined directly from string
theory. Rather, it is conveniently chosen to reproduce the
temperature dependence of the equilibrium properties of
the plasma such as its speed of sound. The entropy density
is given by the area of the horizon

s ¼ 2π

κ2
e3AðϕhÞ; (3)

and the Hawking temperature of the black brane is

T ¼ eAðϕhÞ−BðϕhÞ jh0ðϕhÞj
ð4πÞ : (4)

The numerical procedure to solve the equations of
motion for the metric and the scalar field is the one derived
in Ref. [38] and used in the calculation of the Polyakov
loop in Refs. [39,40], the heavy quark and light quark
energy loss in Refs. [60–62], and the Debye screening mass
in Ref. [63]. A reasonable fit to the lattice data for the speed
of sound squared c2s ¼ d logT=d log s in QCD (data from
Ref. [32] and shown in Fig. 1) in the temperature interval
T ∼ 150–300 MeV is obtained using a potential similar to
that studied in Ref. [37],

VðϕÞ ¼ −12 cosh γϕþ b2ϕ2 þ b4ϕ4 þ b6ϕ6; (5)

where γ¼0.606, b2¼0.703, b4 ¼ −0.12, and b6 ¼ 0.0044.
Most of the needed temperature dependence of the
thermodynamic quantities can be obtained using only γ,
b2, and (to a less extent) b4. The other coefficient, b6, is
only needed if one wants to describe the phase transition
region very accurately, as we have tried here.5 The UV
scaling dimension of the relevant operator dual to the bulk
scalar field ϕ is Δ ¼ 3.0. Note that, to have a crossover
transition, as found on the lattice [32,64], the black brane
solution must be the most stable solution (largest pressure)
for all T (in contrast to the case involving a first-order phase
transition studied in Ref. [34]).
The gauge field in the background is set to zero, AM ¼ 0

(remember that μQ ¼ 0). Its fluctuations are needed to

compute the retarded Green’s function associated with the
electric current, and they are described by the action

SM ¼ −
1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p fðϕÞ
4

FMNFMN; (6)

where the field tensor is FMN ¼ ∇MAN −∇NAM and fðϕÞ
is an unknown function of the background scalar field.
This function enters in the calculation of the electric
charge susceptibility, χQ2 ðTÞ¼ð∂2p=∂μ2QÞT , which is
defined at μQ ¼ 0.

III. ELECTRIC CHARGE SUSCEPTIBILITY

We now proceed to fix the form of the bulk U(1) gauge
coupling fðϕÞ. The strategy is to compute, via holography,
the electric charge susceptibility and then choose a simple
form for fðϕÞ that reproduces the corresponding lattice data
for the charge susceptibility χQ2 ðTÞ.
In the following, we will use the membrane paradigm to

compute the electric charge susceptibility. The applicability
of this method for this type of calculations was discussed in
detail in Ref. [59], and we refer the reader to that work for
details. The most convenient gauge to work out these
calculations is the conformal gauge, defined by

ds2 ¼ e2 ~AðzÞ
�
− ~hðzÞdt2 þ d~x2 þ dz2

~hðzÞ

�
; (7)

where now the bulk scalar field is a function of z, i.e.,
ϕ ¼ ϕðzÞ; the horizon is at z ¼ zh (ϕðz → zhÞ ¼ ϕh); and
the asymptotically AdS5 boundary is located at z → 0
(where ϕðz → 0Þ → 0). The gauges (2) and (7) are related
by the equation
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FIG. 1 (color online). The speed of sound squared of the plasma
c2s as a function of the temperature T for our holographic model
(solid curve) compared with lattice results for QCD with physical
quark masses from Ref. [32].

5This choice of parameters is nearly the same as in Ref. [60],
which used older lattice data to find the set of parameters. The
only difference with respect to the set used in Ref. [60] is our
choice of b6, which had to be updated to better describe the lattice
data from Ref. [32]. The temperature scale Tc is chosen in a way
that the minimum of the speed of sound squared in the model
matches the value found on the lattice, which gives Tc ¼
150 MeV [63].
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zðϕÞ ¼
Z

ϕ

0

dϕ0eBðϕ0Þ−Aðϕ0Þ; (8)

which can be inverted to yield ϕðzÞ. Moreover, we have that
~AðzÞ ¼ AðϕðzÞÞ and ~hðzÞ ¼ hðϕðzÞÞ. We shall use the
conformal gauge in all the calculations below. In Fig. 2
we show a typical profile of the function ϕðzÞ for a
temperature near but below the phase transition.
From the membrane paradigm [59], the electric charge

susceptibility χQ2 ðTÞ in the conformal gauge is simply
given by

χQ2 ¼ 1R zh
0 dz½e ~AðzÞfðϕðzÞÞ�−1

: (9)

We remark that the gauge field is zero for the μQ ¼ 0

calculations. In fact, fðϕÞ only enters in the calculation of
χQ2 , and ~AðzÞ, ~hðzÞ, and ϕðzÞ are, of course, not influenced
by the gauge field at μQ ¼ 0, justifying our procedure for
solving only the equations for the metric and the scalar field
pursued in the previous section. We note that the proper
dimensionless quantity to evaluate is χQ2 =T

2. For a con-
formal field theory, χQ2 =T

2 is a constant. For three flavor
QCD in the Stefan–Boltzmann limit, χSB2 =T2 ¼ 2=3 6.
Let us investigate the minimum physical requirements

that the gauge coupling fðϕÞ must satisfy. First, fðϕÞ must
clearly be positive and smooth in the bulk. Second, to
recover the correct UV fixed point behavior χQ2 =T

2 →
constant for T → ∞, we must require, apart from the

geometry being asymptotically AdS5, that fðϕÞ goes to
a finite constant as zh → 0 (ϕðrhÞ → 0), in order to render
the integral in Eq. (9) proportional to T2. Third, in order to
have χQ2 → 0 as T → 0, we must require that fðϕÞ → 0 as
ϕ → ∞ so that the integral in Eq. (9) diverges.
With these requirements in mind, we have chosen three

different simple parametrizations for the gauge coupling in
order to check the sensitivity of the electric transport
coefficients with the choice of fðϕÞ. The parametrizations
are

f1ðϕÞ ¼
sechða1ϕÞ

g25;1
; (10)

f2ðϕÞ ¼
1

g25;2

1

ðϕ2 þ a22Þ
; (11)

and

f3ðϕÞ ¼
e−a

2
3
ϕ2

g25;3
; (12)

where a1, a2, a3, and g5;i are constants. To best fit the lattice
results for χQ2 =T

2 of Ref. [57] (for another set of lattice data
for χQ2 , which are, however, compatible with Ref. [57], see
Ref. [65]), we have chosen a1 ¼ 0.4, a2 ¼ 4.0, and
a3 ¼ 0.23. For comparison, we show the profiles of the
resulting couplings fðϕðzÞÞ in Fig. 3; we see that, although
the functional forms of each parametrization in Eq. (10) is

0.0 0.2 0.4 0.6 0.8 1.0
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4

z zh

z

FIG. 2 (color online). A typical profile of the function ϕðzÞ, for
T=Tc ¼ 0.74. The solid line is the function ϕðzÞ, and the dashed
curve is the AdS5 result ϕðzÞ ¼ z, which must be the boundary
limit of ϕðzÞ.
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FIG. 3 (color online). Typical profiles of the Uð1Þ gauge
coupling fðϕÞ in the z coordinate system, that is, the function
fðϕðzÞÞ. We display the profiles for the three parametrizations
(10): the solid black curve is for f1ðϕðzÞÞ with a1 ¼ 0.4, the
dashed red curve is for f2ðϕðzÞÞ with a2 ¼ 4.0, and the dotted-
dashed curve is for f3ðϕðzÞÞ with a3 ¼ 0.23. The constants g5;i
were chosen in order to normalize fðϕðzÞÞ to 1 as z → 0. These
profiles where evaluated at T=Tc ¼ 0.74.

6For convenience, we have set the electric charge to 1 in this
paper.
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different, the choice of parameters leads to qualitatively
similar profiles for fðϕðzÞÞ. We have normalized the results
for χQ2 computed holographically using the highest temper-
ature available numerically (T=Tc ∼ 10) and assumed that
the conformal regime χQ2CFT [16] has already been reached
at this temperature—this is reasonable since the holo-
graphic results reach conformality already at T ∼ 3 − 4Tc.
One can see in Fig. 4 that the holographic model calcula-
tion for χQ2 =χ

Q
2CFT is in good agreement with lattice results

[57] (normalized by the Stefan–Boltzmann limit) for T <
300 MeV for the three different parametrizations chosen in
Eqs. (10)–(12). For T > 300 MeV there is a sizable dis-
crepancy. However, this is not worrisome since these
holographic models are not expected to model accurately
QCD at high temperatures (i.e., theweakly coupled regime).

IV. HOLOGRAPHIC CALCULATION OF THE
ELECTRIC CONDUCTIVITY AND CHARGE

DIFFUSION CONSTANT

The frequency dependent conductivity associated with
the conserved current operator Ĵi (x ¼ x1, x2, x3) is a 3 × 3
matrix, σijðωÞ in Fourier space, and it is directly related to
the retarded Green’s function of Ĵi via

σijðωÞ ¼ −
Gij

Rðω;k ¼ 0Þ
iω

; (13)

where Gij
RðkÞ ¼ −i

R
d4xe−ik·xθðtÞh½Ĵiðt; xÞ; Ĵjð0; 0Þ�iT

[(with kμ ¼ ð−ω;kÞ]. The conductivity appears in

Ohm’s law as hĴiðωÞi ¼ σijðωÞFjtðω; z → 0Þ. Rotational
invariance implies that σijðωÞ ¼ σðωÞδij, and, without any
loss of generality, we shall assume here that the external
electric field is in the x1 direction.

A. DC conductivity

The DC electric conductivity is simply the limit
σDC ¼ limω→0σðωÞ. For the type of theory we consider
in this paper, σDC can be straightforwardly computed using
the general formula derived in Eq. (47) of Ref. [59] via the
membrane paradigm, which gives (in the conformal gauge)

σDC ¼ fðϕðzhÞÞe ~AðzhÞ: (14)

It is now clear that if fðϕÞ satisfies the properties given in
the foregoing section, then σDC=T goes to a constant when
T → ∞ (the expected conformal behavior found in
Ref. [16]) and σDC=T → 0 as T → 0. Since VðϕÞ is
completely fixed by the thermodynamics and fðϕÞ was
fixed to reproduce the lattice data for the electric charge
susceptibility, we have no more free parameters left to
determine, and σðωÞ can then be considered a prediction of
the holographic model.
Using the parametrizations for fðϕÞ discussed above, we

obtain the result shown in Fig. 5 for σDC, where we again
normalize by the conformal result. One can see that the DC
conductivity varies rapidly in the crossover region, a feature
also seen in recent lattice QCD calculations [14]. Note also
that the results for σDC=σDC;CFT are robust with respect to
the specific form of the gauge coupling fðϕÞ (though note
that our choices for this function guarantee that the
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FIG. 4 (color online). The electric charge susceptibility χQ2 of
the holographic model, normalized by its conformal limit, as a
function of the temperature T of the plasma. The circles, squares,
and diamonds correspond to the results found using the para-
metrizations in Eqs. (10), (11), and (12), respectively. The lattice
data points for χQ2 =χ

SB
2 [57] are in black.
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FIG. 5 (color online). The DC conductivity divided by its
conformal value as a function of the temperature T of the plasma.
The circles, squares, and diamonds correspond to the results
found using the parametrizations in Eqs. (10), (11), and (12),
respectively.
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conformal limit is reached from below). Also, we remark
that since our charge susceptibility in principle includes the
strange quark contribution, our results may be taken as
estimates for the DC conductivity in the QCD plasma near
the deconfinement transition (in the case of QCD, the result
would be then normalized by its value in the Stefan–
Boltzmann limit).

B. Charge diffusion coefficient

The small charge disturbance created by the external
electric field eventually diffuses back into thermal equi-
librium, and this diffusion process is controlled (to lowest
order in a derivative expansion) by a single transport
coefficient D called the charge diffusion constant. This
coefficient defines the hydrodynamic mode of the Gx1x1

R
correlator [66], which has been previously investigated in
holography (see, for instance, Refs. [67–69]).
Within the membrane paradigm, Einstein’s relation

among the transport coefficients involved is valid [59],
and the charge diffusion constant can be directly obtained
using our previous results for χQ2 and σDC as follows:

D ¼ σDC
χQ2

: (15)

Thus, we may compute directly this diffusion coefficient in
the dimensionless form D=DCFT, arriving at the results
shown in Fig. 6. Again, the results are not sensitive to the
specific form of fðϕÞ at high temperatures T > 150 MeV.
However, for T < 150 MeV, D=DCFT becomes very sen-
sitive to the choice of fðϕÞ. The curve dispersion is due to

the fact that both σDC and χQ2 vary strongly as T ∼ Tc, and,
since D ¼ σDC=χ

Q
2 , D becomes sensitive to the particular

way that σDC and χQ2 vary near Tc. That is, D for T < Tc is
sensitive to the choice of Uð1Þ coupling. This does not
constitute a problem per se since this holographic model
certainly does not provide a good guide for the physics of
the plasma at those low temperatures since the plasma is
then in the hadron gas phase. However, the fact that
D=DCFT < 1 at low temperatures should be robust (for
instance, this behavior has been seen in the nonconformal
top-down model studied in Ref. [24]). Thus, the overall
shape of the curve shown in Eq. (6) provides an estimate for
the temperature dependence of the charge diffusion con-
stant in the strongly coupled QGP, which may be checked
by lattice calculations in the near future.

C. AC electric conductivity

To obtain the AC conductivity σðωÞ, we must compute
Gx1x1

R ðωÞ. The equations of motion for the bulk fields in
response to the fluctuations can be written in terms of gauge
invariant quantities such as the bulk conserved current and
the bulk field strength. Moreover, these equations of motion
can be reduced to first-order differential equations with
respect to the z coordinate, which completely describe the
flow of the fields from the black brane horizon to the
boundary [59]. For nonzero momentum there are two such
flow equations: one for the longitudinal channel involving
the x1 direction and another equation for the transverse part.
However, in our case when the momentum is taken to be
zero, these two equations converge (as required by rotation
invariance) to the expression [59]

∂zσ̄ðω; zÞ ¼ iω
ΣðzÞ
~hðzÞ

�
σ̄ðω; zÞ2
ΣðzÞ2 − 1

�
; (16)

where

ΣðzÞ ¼ fðϕðzÞÞe ~AðzÞ: (17)

Regularity at the horizon provides the initial condition

σ̄ðω; zhÞ ¼ σDC; (18)

and the AC conductivity is obtained by following the flow
from the horizon to the boundary

σðωÞ ¼ −
GRðωÞ
iω

¼ σ̄ðω; z → 0Þ: (19)

This gives an interpretation of σ̄ðω; zÞ as the AC conduc-
tivity of the corresponding z slice in the bulk. In the limit of
ω → 0, the flow equation is trivial: ∂zσ̄ ¼ 0. Thus, σ̄
remains at its initial value set at the horizon, which is
nothing but σDC. This is the basis for the formulas used in
the DC calculations in the previous section. In this case,
following Ref. [59], one only needs to evaluate σ̄ at the
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FIG. 6 (color online). The charge diffusion constant of the
plasma normalized by the conformal result as a function of the
temperature T of the plasma. The circles, squares, and diamonds
correspond to the results found using the parametrizations in
Eqs. (10), (11), and (12), respectively.
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horizon to determine σDC. Now, if ω ≠ 0, the full flow from
horizon to the boundary must be considered to determine
σðωÞ. Note that the nonlinear equation in Eq. (16) is a Riccati
equation, and, thus, it can always be rewritten in terms of a
linear second-order differential equation. When this is done
for Eq. (16), one recovers the equations ofmotion for the bulk
field Ax1ðω; zÞ. The boundary condition (18) is equivalent to
impose regularity at the horizon, which in turn is equivalent
to the imposition of infalling boundary conditions at the
horizon—seeAppendixA of Ref. [59] for details. Therefore,
in this case the flow from the membrane horizon gives
exactly the same results as the standard prescription used in
the evaluation of holographic retarded correlators [58].

The numerical procedure to evaluate σðωÞ is straightfor-
ward.With a fixed temperature (and thus a fixed background
geometry), one has to integrate Eq. (16) for finite ω. We
impose that the intercept of σðωÞ with the σ axis matches
σDC. The units for ω are matched by imposing the correct
conformal behavior for ω=T ≫ 1, that is, σðωÞ=T ¼
CAdS5 × ω=T, where CAdS5 is a constant found by analyzing
the strongly coupled conformal limit obtained using an
AdS5—Schwarzchild geometry with a constant fðϕÞ.
Following this procedure we obtain for our three choices

of fðϕÞ given in Eqs. (10), (11), and (12) the results for
ReσðωÞ shown in Fig. 7. First, we remark that we were able
to reproduce the results obtained in Ref. [20] for strongly
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FIG. 7 (color online). The electric conductivity ReσðωÞ (normalized by the DC conductivity in the CFT limit) as a function of
ω=ð2πTÞ for the different model choices of the gauge coupling in Eqs. (10), (11), and (12). The solid black curve is the conformal result
at strong coupling, the short-dashed blue curve is for T=Tc ¼ 0.45, the dotted red curve is for T=Tc ¼ 0.74, the dash-dotted magenta
curve is for T=Tc ¼ 1.13, and the long dashed green curve is for T=Tc ¼ 1.81.
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coupled N ¼ 4 SYM (in that case, those were interpreted
as R-current correlators). We see that for T=Tc < 1 one can
find some nontrivial structure in ReσðωÞ when compared to
the conformal strongly coupled result.7 Our holographic
model is certainly not applicable in the thermal hadron gas
phase, which is present in QCD at low T. The lowest T
chosen, T ∼ 0.5Tc, is the absolute lowest temperature used
in our model, that is, up to approximately 70 to 100 MeV.
As T increases, these structures disappear. Already for
T ∼ 2Tc, the difference between the nonconformal and

conformal results is negligible. This last remark can be
seen more clearly in Fig. 8, where the strongly coupled
conformal result has been subtracted from the nonconfor-
mal results. Also, we see that all choices for fðϕÞ yield
similar results for the AC conductivity, in agreement with
the computation of susceptibility and DC conductivity
shown before.

V. EUCLIDEAN CORRELATOR

The AC conductivity σðωÞ is given by Eq. (13).
However, note that ReσðωÞ ¼ ρðωÞ=ω, where ρðωÞ≡
−ImGx1x1

R ðωÞ is the spectral density. The Euclidean
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FIG. 8 (color online). The electric conductivity ReσðωÞ subtracted from the corresponding strongly coupling CFT result (normalized
by the DC conductivity in the CFT limit) as a function of ω=ð2πTÞ for the different model choices of the gauge coupling in Eqs. (10),
(11), and (12). The short-dashed blue curve is for T=Tc ¼ 0.45, the dotted red curve is for T=Tc ¼ 0.74, the dash-dotted magenta curve
is for T=Tc ¼ 1.13, and the long dashed green curve is for T=Tc ¼ 1.81.

7We remind the reader that Tc ¼ 150 MeV.
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correlator GEðTτÞ in the imaginary time formalism is
related to the real time spectral density by the following
relation [70]:

GEðTτÞ ¼
Z

∞

0

dωρðωÞ cosh ½ωðTτ −
1
2
Þ=T�

sinh ðω=2TÞ : (20)

It is interesting to check if the structures observed in
ReσðωÞ or, alternatively, in ρðωÞ due to the strong violation
of conformal invariance experienced by the theory near the
deconfinement transition are reflected at all inGEðTτÞ.Using
Eq. (20) with the results of the previous section, we evaluate
GEðTτÞ for a range of temperatures and for all the three
model choices of fðϕÞ, obtaining the results shown in Fig. 9.

One can see that for all the different temperatures considered
that the Euclidean correlator is basically featureless—the
details present in ρðωÞ are smoothed out in the computation
of the Euclidean correlator. The strongly coupled conformal
field theory (CFT) limit is reached already in this case at
fairly intermediate temperatures, T ∼ 2Tc.
Also, all model choices of the gauge coupling yield

similar results—displaying the consistency already seen in
the calculations done in the previous sections. This sug-
gests that in order to obtain the real time spectral density at
strong coupling ρðωÞ from GEðTτÞ (reversing the direction
of calculation) one needs to be able to evaluate the
Euclidean correlator with extremely great precision, as
already remarked in the previous analysis of Teaney in
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FIG. 9 (color online). The Euclidean correlatorGEðTτÞ in Eq. (20) as a function of Tτ. The solid black curve is the conformal result at
strong coupling, the short-dashed blue curve is for T=Tc ¼ 0.45, the dotted red curve is for T=Tc ¼ 0.74, the dash-dotted magenta curve
is for T=Tc ¼ 1.13, and the long dashed green curve is for T=Tc ¼ 1.81.
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Ref. [20]. However, it is interesting to see that as the
temperature is lowered toward the phase transition region
the value of GEðTτÞ at the minimum (which must be at
τT ¼ 1=2) decreases. This is consistent with the behavior
observed in Fig. 8: for lower temperatures the region inω for
which ρðωÞ < ρðωÞCFT becomes larger, and, thus, for Tτ ¼
1=2 one should expect that thevalue of the integral performed
with the conformal spectral density should be larger than the
value found for the nonconformal theory. Also, this is
consistent with the fact that σDC=σDC;CFT < 1 for those
temperatures. Thus, at least within this model, the downward
shift of the minimum of the Euclidean correlator is a good
indicator of the temperature dependence of the DC conduc-
tivity. This also seems to be the case in recent lattice
calculations [71] (see also thegeneral discussion inRef. [72]).

VI. CONCLUSIONS

In this paper a nonconformal, bottom-up holographic
model that is able to describe recent lattice QCD thermo-
dynamics at zero chemical potential [32] was used to
estimate the electric transport properties of the strongly
coupled QGP near the deconfinement phase transition. To
access the electric properties of the plasma, the coupling
between the bulk fields that define the background (the
metric and a scalar field) and the bulk gauge field (which
describes the conserved current in the gauge theory) was
fixed by imposing that the charge susceptibility of the model
agrees with recent lattice data [57] near the transition. All
the parameters of the model were then fixed, and the model
was subsequently used to compute the frequency dependent
electric conductivity (which has the DC conductivity as its
ω → 0 limit) and the charge diffusion constant. We remark
that in our phenomenological bottom-up model, the cou-
pling fðϕÞ between the scalar and gauge sectors is put in by
hand, and, clearly, its profile is not specified a priori in the
model. However, some information about this function is
obtained by imposing that the electric charge susceptibility
of the model is similar to that found on the lattice. We have
used three different parametrizations for this coupling,
which give the same qualitative results for all the observ-
ables investigated in this paper.
The ratio σDC=σDC;CFT was found tovaryvery rapidly in the

temperature rangeT ∼ 150–300 MeV,whichmayhave some
interesting implications for heavy ion collision observables
[10–13]. Also, we have shown that the charge diffusion

constant of the plasma has a similar temperature dependence
(when normalized by its conformal value) as σDC=σDC;CFT
when T > 150 MeV. Overall, we find that both the DC
conductivity and the charge diffusion coefficient are
suppressed with respect to their CFT values at low temper-
atures where the violation of conformal invariance is large.8

It would be interesting to check if that is also going to be
the case in lattice calculations (in this case the high T is a
weakly interacting CFT). The results for ReσðωÞ show
distinct differences for temperatures below and above
Tc ¼ 150 MeV. Below Tc, the violation of conformal invari-
ancemakes ReσðωÞ smaller than its CFT value for lowω (this
is consistent with our findings that σDC=σDC;CFT ≤ 1) while it
approaches the CFT result from above at high frequencies.
We also computed the Euclidean correlator GEðTτÞ, and

its overall shape seems to be insensitive to the structure
present in σðωÞ. This means that, at least from the view-
point of this holographic setup, the extraction of the
spectral density from GEðTτÞ by analytic continuation
may require very precise numerical results for the
Euclidean correlator. However, within this model the
downward shift of the minimum of the Euclidean correlator
due to nonconformal effects seems to be a good indicator
for the temperature dependence of the DC conductivity.
A generalization of the flow equation in Eq. (16) can be

solved numerically for nonzero momenta yielding the
complete spectral density ρðω;kÞ, which can then be used
to estimate holographically the photon and dilepton pro-
duction rates in the QGP near the deconfinement transition.
Such study was already done forN ¼ 4 SYM in Ref. [16],
and it would be interesting to compute these observables
with the model used in this paper. We intend to pursue this
study in the future.
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