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We generalize our holographic derivation of spontaneous angular momentum generation in 2þ 1

dimensions in several directions. We consider cases when a parity-violating perturbation responsible for the
angular momentum generation can be nonmarginal (while in our previous paper we restricted to a marginal
perturbation), including all possible two-derivative interactions, with parity violations triggered both by
gauge and gravitational Chern-Simons terms in the bulk. We make only a minimal assumption about the
bulk geometry that it is asymptotically AdS, respects the Poincaré symmetry in 2þ 1 dimensions, and has a
horizon. In this generic setup, we find a remarkably concise and universal formula for the expectation value
of the angular momentum density, to all orders in the parity violating perturbation.
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I. INTRODUCTION

The spontaneous generation of angular momentum and of
an edge current are typical phenomena in parity-violating
physics (see, for example, [1–5]). For a given interacting
system, whether spontaneous generation of angular momen-
tum does occur, and if yes, the precise value, are important
dynamical questions for which a universal answer (applicable
to generic parity-violating systems) does not appear to exist. A
famous example is helium 3-A, in which case there has been a
long controversy about the value of its angular momentum
(see e.g. [1,6]). The controversy highlights the importance of
finding exactly solvable models, especially strongly interact-
ing systems, through which one could extract generic lessons.
Holographic systems are ideal laboratories for this purpose.
In a previous paper [7], we initiated exploration of these

phenomena in holographic systems.1 There, for technical
simplicity, we restricted to parity violation effected by
turning on a marginal pseudoscalar operator, and consid-
ered only the Schwarzschild and Reissner-Nordström
geometries. In this paper, we generalize the results to
parity violation through a relevant scalar operator, and to
general bulk black hole geometries.
More explicitly, we consider a ð2þ 1Þ-dimensional

boundary field theory with a Uð1Þ global symmetry, which
is described by classical gravity (together with various
matter fields) in a four-dimensional, asymptotically anti–de
Sitter spacetime (AdS4). We consider two representative
bulk mechanisms for parity violation, with a gravitational
Chern-Simons interaction [19]

αCS

Z
ϑR∧R; (1.1)

or an axionic coupling [20,21]

βCS

Z
ϑF∧F; (1.2)

where R is the Riemann curvature two-form, F is field
strength for the bulk gauge field Aa dual to the Uð1Þ
global current, and ϑ is a pseudoscalar dual to a boundary
relevant pseudoscalar operator O. αCS and βCS are some
constants.
The parity symmetry is broken explicitly if a source is

turned on for O corresponding to turning on a non-
normalizable mode for the pseudoscalar field ϑ.
Alternatively, the parity can be spontaneously broken
when O develops an expectation value in which case
the bulk field ϑ is normalizable. In both situations if we
put the system in a finite box (i.e., parity-violation terms
are nonzero only inside the box), the spontaneous
generation of angular momentum is always accompanied
by an edge current. We emphasize that the source or
expectation value for O is taken to be homogeneous
along boundary directions. An angular momentum den-
sity is generated, despite the boundary quantum state and
the corresponding bulk geometry being homogeneous and
isotropic.
It may appear puzzling how a homogeneous and iso-

tropic bulk geometry can give rise to a nonzero angular
momentum, as directly applying the standard AdS/CFT
dictionary to such a geometry will clearly yield a zero
value. The key idea, following [7], is to consider a small
and slightly inhomogeneous perturbation δϑ around the
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1See [8–18] for other discussions of parity-violating effects in
holographic systems and in ð2þ 1Þ-dimensional field theories.
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background value of ϑ, which results in a nonzero
momentum current density δT0i.

2 To leading order in the
derivative expansion along the boundary directions, T0i
depends linearly on ϵij∂jδϑ. Now let us consider a
configuration of δϑ which is homogeneous along boundary
spatial directions inside a big box but vanishes outside.
Then δT0i is only nonvanishing at the edge of the box,
but remarkably such an edge current generates an angular
momentum proportional to the volume of the box

δJ ¼ ϵij

Z
d2xxiδT0j ∝ Vboxδϑ (1.3)

resulting in a nonzero angular momentum density δL
which survives even when we take the size of the box
to infinity. Thus in the homogeneous limit, the angular
momentum density δL arises from the global effect of an
edge current, which explains why it is not visible from the
standard local analysis of the stress tensor.
When ϑ is dual to a marginal operator, δϑ is independent

of radial direction of AdS and δL is given by δϑ times a
constant which can be easily integrated to find the value of
L for a finite ϑ. But for ϑ dual to a boundary relevant
operator, δϑ has a nontrivial radial evolution (which simply
reflects that a relevant operator flows), and the relation
between δL and δϑ involves a somewhat complicated radial
integral over various bulk fields. Remarkably, this relation
can be written as a total variation in the space of gravity
solutions, which can then be easily integrated to yield a
closed expression for L at a finite ϑ.
More explicitly, we consider a most general bulk metric

consistent with translational and rotational symmetries
along boundary directions, which can be written in a form

ds2 ¼ l2

z2
ð−fðzÞdt2 þ hðzÞdz2 þ ðdxiÞ2Þ (1.4)

with z ¼ 0 as the boundary. Matter fields include ϑðzÞ,
AtðzÞ, and possibly others. We denote z0 as the horizon of
the metric. Note that in the coordinate choice of (1.4) z0 is
inversely proportional to the square root of the entropy
density s, i.e. z0 ∝ s−

1
2, and serves as an IR cutoff scale3 of

the boundary system. For the axionic coupling (1.2) we find
that the angular momentum density can be written as

L ¼ −
2βCSl2

κ2
μ2ϑðz0Þ þ

2βCSl2

κ2

Z
z0

0

dzðAtðzÞ − μÞ2ϑ0ðzÞ
(1.5)

where μ is the chemical potential, l is the AdS radius,
and κ2 ¼ 8πG4. For gravitational CS coupling (1.1), we
find that

L¼−
4π2αCSl2

κ2
T2ϑðz0Þþ

αCSl2

4κ2

Z
z0

0

dz

�
f02

fh

�
ϑ0 (1.6)

where T is the temperature.
Equations (1.5)–(1.6) are universal in the bulk sense that

they have the same form in terms of bulk gauge fields or
metric components, independent of the specific form of
bulk actions, geometries and possible other matter fields.
But they are not universal in the boundary sense as it
appears that they cannot be further reduced to expressions
in terms of boundary quantities only.
When ϑ is dual to a marginal operator at the boundary,

ϑðzÞ is constant in the bulk and its value can be identified as
the coupling ofO. Then for both (1.5) and (1.6), L is given
by the first term, reproducing our earlier results in [7].
These expressions are now universal also in the boundary
sense, valid for any boundary theory with a gravity dual. In
Sec. IV, we will present a preliminary explanation of this
universal behavior from the perspective of the boundary
conformal field theory (CFT). We hope to explore this point
in future.
For ϑ dual to a relevant operator, ϑðzÞ can be interpreted

as the running coupling for the corresponding boundary
operator O, with z as the renormalization group (RG)
length scale. In this case, the first term of (1.5) and (1.6) is
proportional to the running coupling evaluated at the IR
cutoff scale z0. The second term of (1.5) and (1.6) has the
form of the beta function (given by ϑ0) forO integrated over
the RG trajectory all the way to the IR cutoff. This indicates
that in the case of a relevant operator, despite being an IR
quantity, the angular momentum receives contribution from
all scales. The simplicity of the integration kernel in these
equations may suggest a possible simple boundary inter-
pretation which should be explored further.
Another interesting phenomenon associated to parity

violation in 2þ 1 dimensions is the Hall viscosity [22].
It turns out that, in quantum Hall states, there is a close
relation between the Hall viscosity and the angular
momentum density [5,23–25]. It would be interesting to
understand how universal such a relation is. In a forth-
coming paper, we will discuss this issue from the holo-
graphic perspective. We will apply the prescription of [12]
to identify models where the Hall viscosity is nonzero and
compare its value with the angular momentum density.
For the remainder of this paper, wewill use the following.

Latin letters stand for ð3þ 1Þ-dimensional spacetime indi-
ces, greek letters stand for ð2þ 1Þ-dimensional indices on
the boundary, latin letters in the middle of the alphabet
ði; j; k;…Þ stand for 2-dimensional spatial indices on the
boundary and ∂2 ≡ ∂2

x þ ∂2
y. The metric is denoted via gab

with signature ð−;þ;þ;þÞ in the bulk, and via hαβ on the
boundary; the Einstein summation convention and geo-
metric units with ℏ ¼ c ¼ 1 are assumed, unless otherwise
specified; we denote κ2 ¼ 8πG4.
After posting this paper on the arXiv e-print server, it was

pointed out by K. Landsteiner and by a referee of this paper

2We use latin letters in the middle of the alphabet ði; j; k; …Þ
to denote two-dimensional spatial indices on the boundary.

3Physically, it can be interpreted as characterizing the corre-
lation length of the boundary system.
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that the spontaneous generation of the edge current and of
the angular momentum in 2þ 1 dimensions discussed in
this paper may be related to the chiral magnetic effect
[26–28] and axial magnetic effect [29–31] in 3þ 1 dimen-
sions. Prompted by their suggestions, we found that the
effects in 3þ 1 dimensions and 2þ 1 dimensions are
indeed related by dimensional reduction when the parity-
violating perturbation is marginal, which was the focus of
our previous paper [7]. For completeness, we added Sec. IV
to discuss the relation. The purpose of this paper is to
generalize our results to the case when the parity-violating
perturbation is relevant, and the discussion in Sec. IV is not
immediately applicable. There may exist a generalization
of the chiral magnetic effect and axial magnetic effect in
3þ 1 dimensions which correspond to dimensional oxi-
dation of the effects studied in this paper.

II. AXIONIC COUPLING

In this section we consider a scalar field ϑ coupled to a
Maxwell field via an axionic coupling, ϑ�FabFab. We first
explicitly work out the angular momentum for a simple
setup, and then generalize the results to general gravity
theories.

A. Angular momentum

1. Small perturbations

Consider the action

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϑÞ2 − VðϑÞ

− l2FabFab − l2βCSϑ
�FabFab

�
; (2.1)

with βCS a coupling constant, and ϑ dual to a relevant (or
marginal) pseudoscalar boundary operator. We assume that
the background geometry is asymptotically AdS with l the
AdS radius. The equations of motion are

Rab−
1

2
∂aϑ∂bϑ−

1

2
gabVðϑÞ−2l2

�
FcaFc

b−
1

4
gabF2

�
¼ 0;

(2.2)

1ffiffiffiffiffiffi−gp ∂aðgab
ffiffiffiffiffiffi
−g

p ∂bϑÞ − V 0ðϑÞ − βCSl2�FF ¼ 0 (2.3)

∂a½
ffiffiffiffiffiffi
−g

p ðFab þ βCSϑ
�FabÞ� ¼ 0: (2.4)

Amost general solution describing the boundary in a static,
homogeneous, isotropic state can be written as

gð0Þab dx
adxb ¼ l2

z2
ð−fðzÞdt2 þ hðzÞdz2 þ ðdxiÞ2Þ;

ϑ ¼ ϑðzÞ; Aa ¼ AtðzÞδta: (2.5)

The AdS boundary lies at z ¼ 0 with

fðzÞ → 1; hðzÞ → 1; z → 0 (2.6)

and

Atðz ¼ 0Þ ¼ μ (2.7)

where μ is the chemical potential. We assume that there is a
horizon as z ¼ z0, where fðzÞ has a simple zero and hðzÞ
has a simple pole. The temperature is given by

T ¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðz0Þh−10 ðz0Þ

q
: (2.8)

Here are some background equations of motion which
will be important below. The t component of the back-
ground Maxwell equation can be integrated to give

At
0ðzÞ ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞhðzÞ

p
(2.9)

with Q the charge density. The tt and ii components of the
background Einstein equations can be used to obtain

4
ffiffiffiffiffiffi
fh

p
Q2 ¼

�
f0

z2
ffiffiffiffiffiffi
fh

p
�0
: (2.10)

As discussed in the Introduction, to compute the angular
momentum, we consider a small and slightly inhomo-
geneous perturbation δϑðz; xiÞ around the background
value ϑðzÞ. Such a perturbation will clearly also induce
perturbations of the metric and gauge field,

gab ¼ gð0Þab þ l2

z2
δgab; (2.11)

Aa ¼ AtðzÞδta þ δAaðz; xiÞ: (2.12)

The metric and gauge field perturbations will be assumed to
be normalizable, while δϑ can be either normalizable or
non-normalizable. We will also make the following gauge
choice:

δAz ¼ 0; δgzt ¼ 0: (2.13)

To find the angular momentum, we first compute Tti,
which in turn requires us to find δgti. Since δϑ is small we
can work at the linear order in all perturbations, and since
we will eventually take δϑ to be homogeneous, it will be
enough to keep only terms with at most one boundary
spatial derivative (for details on the derivative expansion in
holographic fluid dynamics see for instance [32,33]).
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We now proceed with the computation in detail. The ti
component of the Einstein equations reads�

f0

f
þ h0

h
þ 4

z

�
∂zδgti − 2∂2

zδgti ¼ 8z2A0
t∂zδAi (2.14)

while the i component of the Maxwell equations reads

∂z

� ffiffiffi
f

p ∂zδAiffiffiffi
h

p þQδgti

�
þβCSϵijð

ffiffiffiffiffiffi
fh

p
Q∂jδϑ−ϑ0∂jδAtÞ¼0:

(2.15)

Due to the presence of δϑ and δAt in (2.15), Eqs. (2.14)–
(2.15) do not close between themselves, which implies that
solving δgti explicitly will be a very complicated task, if
possible at all.4 Fortunately as we will see it turns out to be
unnecessary to do so.
Integrating (2.15) from the horizon to z we find that

∂zδAiðz;xkÞ¼
ffiffiffiffiffiffiffiffiffi
hðzÞp
ffiffiffiffiffiffiffiffiffi
fðzÞp �

−Qδgtiðz;xkÞ

þβCSϵij

Z
z

z0
dwðϑ0∂jδAt−At

0∂jδϑÞ
�

(2.16)

where we have assumed that ∂zδAiðz; xkÞ is nonsingular at
the horizon.
Plugging Eqs. (2.16) into (2.14), and using (2.10) we

find that

∂z

�
f

3
2ðzÞ

z2
ffiffiffiffiffiffiffiffiffi
hðzÞp ∂z

�
δgtiðz; xkÞ

fðzÞ
��

¼ 4βCSϵijA0
tðzÞ

Z
z

z0

dw½A0
t∂jδϑ − ϑ0∂jδAt�: (2.17)

The above equation implies that despite the mixing
between δAi and δgti, the combination 1

f δgti remains

“massless.” Writing gab ¼ gð0Þab þ gð1Þab with gð1Þab ¼ l2

z2 δgab,

we note that 1
f δgti in fact corresponds to ðgð1ÞÞti.

Integrating Eq. (2.18) from the boundary z ¼ 0 to the
horizon z0, we find that

f
3
2ðzÞ

z2
ffiffiffiffiffiffiffiffiffi
hðzÞp ∂z

�
δgtiðz;xkÞ

fðzÞ
�����

z¼0

¼ 4βCSϵij

Z
0

z0

dzA0
tðzÞ

Z
z

z0

dw½A0
t∂jδϑ−ϑ0∂jδAt� (2.18)

where we have used that at the horizon

δgtiðz0; xiÞ ¼ 0 (2.19)

and ∂zδgti is regular there. Equation (2.19) is analogous
to the well-known statement that At vanishes at black
hole horizons, and is similarly most transparent in
Euclidean signature, where a nonzero δgti at the shrinking
time cycle indicates a delta-function contribution to the
Einstein tensor. It can be also shown directly from con-
sistency of various components of Einstein equations (see
Appendix A).
Now consider the left-hand side of (2.18). With δgti

normalizable, i.e.

δgtiðz; xlÞ ¼ Gð3Þ
i ðxlÞz3 þOðz4Þ; (2.20)

we find

3Gð3Þ
i ¼ 4βCSϵij

Z
0

z0

dzA0
tðzÞ

Z
z

z0

dw½A0
tðwÞ∂jδϑðwÞ

− ϑ0ðwÞ∂jδAtðwÞ�: (2.21)

Using the standard formulas as in [34–36] (see also
Appendix B and the Appendix of [7]), the boundary
stress-energy tensor is

δTti ¼
3l2

2κ2
Gð3Þ

i ¼ −ϵij∂jδΦ (2.22)

where

δΦ ¼ 2βCSl2

κ2

Z
z0

0

dzA0
tðzÞ

Z
z

z0

dw½A0
tδϑ − ϑ0δAt�

¼ 2βCSl2

κ2

Z
0

z0

dw½A0
tδϑ − ϑ0δAt�ðAt − μÞ: (2.23)

In the second equality above we have exchanged the
order of integration to perform one integral and used that
Atð0Þ ¼ μ.
Now consider a configuration of δϑ which is homo-

geneous along boundary spatial directions inside a big box
but vanishes outside. The above δT0i is nonvanishing only
at the edge of the box, but generates an angular momentum
proportional to the volume of the box, resulting in an
angular momentum density

δL ¼ 2δΦ: (2.24)

We now take the box size to infinity, with δϑ and δAt
homogeneous everywhere with no dependence on xi.

2. Angular momentum density

Equations (2.22)–(2.24) apply to infinitesimal variations
δϑ and δAt around (2.5). To computeL for (2.5), we need to
integrate (2.23) along some trajectory in the space of field
configurations from a configuration with ϑ ¼ 0 (and thus
L ¼ 0) to (2.5), i.e. schematically

4Note that equations for δϑ and δAt are rather complicated.
This is especially the case for more general action (2.41).
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Φ ¼
Z

ϑ

ϑ¼0

δΦ (2.25)

from which we then find

Tti ¼ −ϵij∂jΦ; L ¼ 2Φ: (2.26)

At first sight this appears to be an impossible task as
solving δAt in terms of δϑ is complicated and so is
integration over field space as At in general also has
nontrivial ϑ dependence.
Remarkably, Eq. (2.23) can be written as a total

derivative δ in the field configuration space. Choosing a
trajectory in configuration space with a fixed μ (i.e. δμ ¼ 0)
we can rewrite (2.23) as

δΦ ¼ βCSl2

κ2

Z
0

z0

dw½B0δϑ − ϑ0δB�

¼ βCSl2

κ2

Z
0

z0

dw½ðBδϑÞ0 − δðBϑ0Þ� (2.27)

where B ¼ A2
t − 2μAt and in the second line we have used

that for arbitrary functions F and G

ðFδGÞ0 − δðFG0Þ ¼ F0δG − δFG0: (2.28)

Recall that At is zero at the horizon and equal to μ at the
boundary. Evaluating the total derivative and taking δ
operation outside the integral for the second term,
Eq. (2.27) becomes

δΦ ¼ βCSl2

κ2
δ

�
−μ2ϑð0Þ þ

Z
z0

0

dwðA2
t − 2μAtÞϑ0

�
:

(2.29)

Note that in exchanging the order of δ with the integration,
there is a term proportional to δz0, which, however,
vanishes as Atðz0Þ ¼ 0. Now (2.29) is a total variation
and we conclude that

Φ ¼ βCSl2

κ2

�
−μ2ϑð0Þ þ

Z
z0

0

dwðA2
t − 2μAtÞϑ0

�
: (2.30)

The above equation can also be slightly rewritten as

Φ ¼ βCSl2

κ2

�
−μ2ϑðz0Þ þ

Z
z0

0

dwðAt − μÞ2ϑ0
�
: (2.31)

Note that Eqs. (2.30)–(2.31) also apply to inhomogeneous
configurations as far as the spatial variations are suffi-
ciently small.
When ϑ is dual to a marginal operator, ϑ is constant in

the bulk with ϑð0Þ ¼ ϑðz0Þ ¼ ϑ, and the second term in
(2.30) or (2.31) drops out. We then recover the result of [7],

L ¼ −
2βCSl2

κ2
μ2ϑ: (2.32)

For a general relevant operator, the second term in (2.30) or
(2.31) is nonzero and the angular momentum density will
receive contribution from integration over the bulk full
spacetime. In terms of boundary language, the angular
momentum receives contributions from degrees of freedom
at all scales. Also note that for a relevant operator ϑð0Þ ¼ 0,
so in (2.30) the sole contribution comes from the second
term.

3. An explicit example

We now consider an explicit example. For simplicity we
take VðϑÞ ¼ 1

2
m2ϑ2 with m2 ¼ −2. Thus ϑ is dual to a

relevant boundary operatorO in d ¼ 3withΔ ¼ 2. We will
consider a solution (2.5) in which ϑ is non-normalizable,
i.e. ϑ has the asymptotic behavior near the boundary

ϑðzÞ ¼ MzþOðz2Þ; z → 0 (2.33)

where M is a parameter of dimension mass. The solution
(2.5) then describes a boundary theory flow upon turning
on a relevant perturbation

R
d3xMO, with M interpreted as

the bare coupling. Since we are considering the system at a
finite density/finite temperature, the flow is cut off at some
infrared scale characteristic of finite density/finite temper-
ature physics. In the coordinate system we are using in
(2.5), such a scale should correspond to location of the
horizon z0 ∝ s−

1
2 with s the entropy density.

We present plots of the axionic angular momentum as a
function of μ2=M2 in Figs. 1 and 2 and as a function of
μ2=MT in Figs. 3 and 4. We exhibit the two terms entering
Eq. (1.5), as well as the total angular momentum, in Figs. 2
and 4. We note that in the large T regime the angular
momentum density grows as Lax ∝ μ2M=T. This is
expected from the general structure of Eq. (1.5) since

T 5M

T 2MT MT M 3T M 5

0 20 40 60 80 100 120
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 M 2

L
ax

M
2

FIG. 1 (Color online) (color online). Angular momentum
density as a function of μ2=M2 for axionic coupling and non-
normalizable scalar field in a quadratic potential with m2 ¼ −2.
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roughly speaking the angular momentum is proportional to
A2
t and ϑ, while the gauge field is proportional to μ2 plus

corrections and the scalar field is proportional toM=T plus
corrections. When T → 0, the angular momentum tends to
a finite constant. We also remark that out of the three
contributions represented in Figs. 2 and 4, the second term
in Eq. (1.5) varies almost linearly with μ2=MT over the
interval we have considered.

B. Electric edge current

Another interesting phenomenon associated to the
axionic coupling is a spontaneous generation of the
electric current dual to the bulk gauge field. As we will
see in Sec. IV, this is closely related to the angular
momentum generation when the scalar field ϑ is dual to
a marginal operator.

The expectation value of the current is defined in terms
of the normalizable mode of the bulk gauge field as

δji ¼ −
4l2

2κ2
limz→0

δAi

z
¼ −

4l2

2κ2
ðδAiÞ0jz¼0: (2.34)

Evaluating (2.16) at the boundary we obtain (with δgti
normalizable)

∂zδAiðz ¼ 0; xkÞ ¼ −βCSϵij∂j

Z
z0

0

dw½ϑ0δAt − At
0δϑ�
(2.35)

leading to

δji ¼ −ϵij∂jδχ (2.36)

with

δχ ¼ 2l2βCS
κ2

Z
0

z0

dw½ϑ0δAt − A0
tδϑ�: (2.37)

Again using (2.28), the above equation can be written as
a total variation in the space of configurations

δχ ¼ −
2l2βCS

κ2
δ

�
μϑð0Þ þ

Z
z0

0

dwϑ0At

�

¼ 2l2βCS
κ2

δ

�Z
z0

0

dwϑA0
t

�
: (2.38)

We thus find an electric current

ji ¼ −ϵij∂jχ (2.39)

0 20 40 60 80 100 120
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2 M 2

L
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FIG. 2 (Color online) (color online). Angular momentum
density as a function of μ2=M2 for axionic coupling and non-
normalizable scalar field in a quadratic potential with m2 ¼ −2
for T ¼ 5M (orange), T ¼ M (blue) and T ¼ M=5 (purple). The
total angular momentum is represented by solid lines, the first
term in Eq. (1.5) by dot-dashed lines and the second term in
Eq. (1.5) by dashed lines.
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FIG. 3 (Color online) (color online). Angular momentum
density as a function of μ2=MT for axionic coupling and non-
normalizable scalar field in a quadratic potential with m2 ¼ −2.
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FIG. 4 (Color online) (color online). Angular momentum
density as a function of μ2=MT for axionic coupling and non-
normalizable scalar field in a quadratic potential with m2 ¼ −2
for T ¼ 5M (orange), T ¼ M (blue) and T ¼ M=5 (purple). The
total angular momentum is represented by solid lines, the first
term in Eq. (1.5) by dot-dashed lines and the second term in
Eq. (1.5) by dashed lines.
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with

χ ¼ 2l2βCS
κ2

�Z
z0

0

dwϑA0
t

�
: (2.40)

C. Bulk universality

The results obtained in the previous subsections extend
without modification to most general two-derivative theo-
ries of the form

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
GIJðϑKÞ∂aϑ

I∂aϑJ

− VðϑKÞ − l2ZPQðϑKÞFP
abF

Qab

− l2βCSCPQðϑKÞ�FPabFQ
ab�: (2.41)

In the above I, J, K label different scalar fields, while P,
Q label different vector fields, and GIJ, ZPQ and CPQ are
functions of scalar fields ϑK . They are symmetric and
assumed to be invertible. We consider a metric of the form
(2.5) with

ϑI ¼ ϑIðzÞ; AP
a ¼ AP

t ðzÞδta; AP
t ð0Þ ¼ μP (2.42)

where μP is the chemical potential for boundary conserved
current JP dual to AP

a .
The discussion exactly parallels that of Sec. II A so

below we will simply list the counterparts of the key
equations there.
Background equations of motion (2.9)–(2.10) now

become

AP
t
0ðzÞ ¼ ðZ−1ÞPRQR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞhðzÞ

p
(2.43)

with QR the charge density for JR and

4
ffiffiffiffiffiffi
fh

p
ðZ−1ÞPRQPQR ¼

�
f0

z2
ffiffiffiffiffiffi
fh

p
�0
: (2.44)

As before we consider general small perturbations
generated by a small and slow-varying δϑIðz; xiÞ and make
the gauge choice

δAP
z ¼ 0; δgzt ¼ 0: (2.45)

Equations (2.14) and (2.15) then generalize respectively to

�
f0

f
þh0

h
þ4

z

�
∂zδgti−2∂2

zδgti ¼ 8z2ZPQAP
t
0∂zA

Q
i (2.46)

and

∂z

� ffiffiffiffiffiffiffiffiffi
fðzÞp

ZPQ∂zδA
Q
iffiffiffiffiffiffiffiffiffi

hðzÞp þQPδgti

�

þ βCSϵij∂jðδCPQAQ
t
0 − CPQ0δAQ

t Þ ¼ 0: (2.47)

Then identical manipulations as before lead to
(2.26) with

Φ ¼ βCSl2

κ2

�
−μPμQCPQð0Þ

þ
Z

z0

0

dwðAP
t A

Q
t ðwÞ − 2μPAQ

t ðwÞÞCPQ0ðwÞ
�

(2.48)

or equivalently

Φ ¼ βCSl2

κ2

�
−μPμQCPQðz0Þ

þ
Z

z0

0

dwðAP
t − μPÞðAQ

t − μQÞCPQ0
�
: (2.49)

III. GRAVITATIONAL CHERN-SIMONS TERM

In this section, we consider the induced stress tensor and
angular momentum density for bulk theories where parity
violation is generated by the gravitational Chern-Simons
coupling, ϑ�RR. We will first consider a simple example
with a relevant scalar operator and then generalize the
discussion to generic theories. The discussion is similar to
that of the last section, so we will be briefer.

A. Relevant scalar field

Consider the action

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϑÞ2 − VðϑÞ − αCSl2

4
ϑ�RR

�
(3.1)

where αCS is a constant and ϑ is dual to a relevant (or
marginal) pseudoscalar boundary operator. In (3.1)

�RR ¼ �RabcdRbacd; �Rabcd ¼ 1

2
ϵcdefRab

ef (3.2)

and ϵabcd is the totally antisymmetric tensor with
ϵ012z ¼ 1=

ffiffiffiffiffiffi−gp
. The equations of motion are

Rab −
1

2
∂aϑ∂bϑ −

1

2
gabVðϑÞ ¼ αCSl2Cab;

1ffiffiffiffiffiffi−gp ∂aðgab
ffiffiffiffiffiffi
−g

p ∂bϑÞ −
αCSl2

4
�RR ¼ 0 (3.3)

where Cab ≡∇cð∇dϑ
�RcðabÞdÞ.

We again consider a solution of the form (2.5) (without
the gauge field). The strategy is the same as before. We
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consider a small and slowly varying perturbation δϑðz; xiÞ
and work out the momentum response δTti to order OðϵÞ
where the power ϵ counts the number of spatial derivatives
of δϑ. We then write the resulting expression as a total
variation in the space of field configurations which enables
us to find the angular momentum associated with (2.5).
We will choose a gauge where δgtz ¼ δgxx ¼ δgyy ¼ 0.

With the Einstein equations schematically reading

LHSab ¼ αCSl2Cab (3.4)

we note that in this gauge,

LHSti¼
−z2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞhðzÞp ∂z

�
f

3
2ðzÞ

z2
ffiffiffiffiffiffiffiffiffi
hðzÞp ∂z

�
δgtiðz;xkÞ

fðzÞ
��

(3.5)

and δgzi, δgxy are all at least of order OðϵÞ. We then find to
OðϵÞ, Cti can be written as

Cti ¼
z2

l2
ffiffiffiffiffiffi
fh

p ϵij∂jδΨ (3.6)

with

δΨ ¼ K0 þ
�
f02

8fh

�0
δϑ −

f02ϑ0δgtt
8f2h

þ f0ϑ0δgtt0

4fh
þ f02ϑ0δgzz

8fh2

(3.7)

and

K ¼ ff0h0 þ hðf02 − 2ff0Þ
8fh2

δϑ −
f0ϑ0δgzz
8h2

þ f0ϑ0δgtt
8fh

−
ϑ0δgtt0

4h
: (3.8)

Then following similar manipulations as in (2.18)–(2.22)
we find that

δTti ¼ −ϵij∂jδΦ (3.9)

with

δΦ ¼ αCSl2

κ2

Z
0

z0

δΨdz: (3.10)

Note that δgtt ¼ −δf and δgzz ¼ δh and δΨ can be further
written as

δΨ ¼ K0 þ
�
f02δϑ
8fh

�0
− δ

�
f02

8fh
ϑ0
�
: (3.11)

It can then be immediately checked that the boundary terms
coming from K are all zero with the assumption of the
asymptotic behavior

fðzÞ ¼ 1þ #z2þ2α þ � � � ; hðzÞ ¼ 1þ #z2β þ � � �
(3.12)

where α > 0, β > 0. We then note further that

Z
z0

0

dz

��
f02δϑ
8fh

�0
− δ

�
f02

8fh
ϑ0
��

¼ δ

�Z
z0

0

dz

�
f02

8fh

�0
ϑ

�
− δ

�
f02

8fh

����
z0

�
ϑðz0Þ (3.13)

where the second term is proportional to δT, and thus
vanishes if we choose a path in configuration space such
that δT ¼ 0. Collecting the above we thus find δΦ is a total
variation with

Φ ¼ −
αCSl2

κ2

Z
z0

0

dz

�
f02

8fh

�0
ϑ (3.14)

¼ −
2π2αCSl2

κ2
T2ϑðz0Þ þ

αCSl2

8κ2

Z
z0

0

dz
�
f02

fh

�
ϑ0: (3.15)

The angular momentum is thus given by

L ¼ 2Φ: (3.16)

For a marginal ϑ, ϑ is independent of z and only the first
term in (3.22) is present. We then find a universal result
which is independent of specific forms of f and h

L ¼ −
4π2αCSl2

κ2
T2ϑ: (3.17)

B. Generalizations

The above discussion can be immediately generalized to
theories of the form

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
GIJðϑKÞ∂aϑ

I∂aϑJ−VðϑKÞ

− l2ZPQðϑKÞFP
abF

Qab −
αCSl2

4
CðϑKÞ�RR

�
: (3.18)

Fixing the gauge AP
z ¼ 0, one finds that

∂zδAP
i ðz; xkÞ ¼ −QP

ffiffiffiffiffiffiffiffiffi
hðzÞ
fðzÞ

s
δgtiðz; xkÞ: (3.19)

From (3.19) one then finds that the ti component of the
Einstein equations can again be written as

LHSti ¼ αCSl2Cti (3.20)

with LHSti given by (3.5) and Cti by (3.6)–(3.8) except that
everywhere in Cti the pseudoscalar ϑ is replaced by CðϑIÞ.
In this case we thus find that
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Φ ¼ −
αCS
κ2

Z
z0

0

dz

�
f02

8fh

�0
CðϑIÞ (3.21)

¼ −
2π2αCSl2

κ2
T2CðϑIðz0ÞÞ þ

αCSl2

8κ2

Z
z0

0

dz

�
f02

fh

�
CðϑIÞ0

(3.22)

We also note in passing that in this case there is no
electric edge current as

δjPi ¼ −
4l2

2κ2
limz→0

δAP
i

z
¼ 0 (3.23)

where we have used (3.19) and that δgti ∼Oðz3Þ.

C. An explicit example

We now examine an explicit example. For simplicity
we once again consider the setup of Sec. II A 3 with
VðϑÞ ¼ 1

2
m2ϑ2, m2 ¼ −2 and ϑ non-normalizable with

M the scalar source. We exhibit plots of the gravitational
angular momentum as a function of T=M in Fig. 5, with the
two terms entering Eq. (1.6) presented separately. We
remark that the plots are almost linear, which can be
understood from the general structure of Eq. (1.5) as
follows: the geometric factor under the integral is roughly
proportional to T2 to leading order, while the scalar field is
proportional to M=T at leading order, making the overall
leading order dependence Lgr ∝ MT.

IV. RELATION TO THE CHIRAL MAGNETIC
EFFECT AND THE AXIAL MAGNETIC EFFECT

When the scalar field is marginal it is possible to relate
our results to the chiral magnetic effect and to the axial

magnetic effect in 3þ 1 dimensions [26–31] via dimen-
sional reduction, as we now explain.
In 3þ 1 dimensions, the gauge anomaly,

∂αjα ¼
bCS
4

ϵαβγδFαβFγδ; (4.1)

is known to cause spontaneous generation of the corre-
sponding current,

ji ¼ bCSμϵijkFjk; (4.2)

and of the momentum density,

T0i ¼ bCS
2

μ2ϵijkFjk; (4.3)

where i, j, k ¼ 1, 2, 3 are spatial directions in 3þ 1
dimensions. These effects are called the chiral magnetic
effect for ji and the axial magnetic effect for T0i. (The
formulas derived in [27] in the Landau frame contain terms
in higher powers of μ. The formulas in the above are in the
laboratory frame [28].)
In comparison, the Chern-Simons term in our bulk

action in 3þ 1 dimensions,

SCS ¼ −
βCSl2

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
ϑ�FabFab; (4.4)

gives rise to an anomalous divergence of the current jα on
the boundary in 2þ 1 dimensions as

∂αjα ¼
2βCSl2

κ2
ϵαβγ∂αϑFβγ; (4.5)

where Fβγ is the background gauge field for the boundary
CFT. Since it is the dimensional reduction of the chiral
anomaly (4.1) in 3þ 1 dimensions, where the scalar field
ϑ in the bulk is identified with the extra component ϑ ¼ A3

and Fi3 ¼ ∂iϑ, we expect effects corresponding to the
chiral magnetic effect (4.2) and to the axial magnetic effect
(4.8) to be

ji ¼ 2bCSμϵij∂jϑ;

T0i ¼ bCSμ2ϵij∂jϑ; (4.6)

where we should identify bCS ¼ βCSl2=κ2.
We can also include effects due to the axial-gravitational

anomalies. In 3þ 1 dimensions, the axial-gravitational
anomaly,

∂αjα ¼
aCS
8π2

ϵγδηθRαβ
ηθRβαγδ; (4.7)

is known to generate the momentum current

T0i ¼ aCS
2

T2ϵijkFjk; (4.8)
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FIG. 5. Angular momentum density as a function of T=M for
gravitational Chern-Simons coupling and non-normalizable sca-
lar field in a quadratic potential withm2 ¼ −2, at μ ¼ 0. The total
angular momentum is represented by solid lines, the first term in
Eq. (1.6) by dot-dashed lines and the second term in Eq. (1.6) by
dashed lines.
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but not the current jα itself. The corresponding effect in
2þ 1 dimensions should be

T0i ¼ aCST2ϵij∂jϑ; (4.9)

with the identification, aCS ¼ 2π2αCSl2=κ2.
The dimensional reduction of the chiral magnetic effect

and axial magnetic effect, (4.6) and (4.9), are in agreement
with Eqs. (2.39) and (2.40) and consistent with results in
our previous paper [7], where the scalar field ϑ is dual to a
marginal operator on the boundary CFT.
The main results in this paper, however, are for ϑ dual to

a relevant operator, which cannot be obtained by dimen-
sional reduction of a massless gauge field in 4þ 1
dimensions. There may be a generalization of the chiral
magnetic effect and of the axial magnetic effect in 3þ 1
dimensions which would correspond to dimensional oxi-
dation of the effects studied in this paper, and we leave this
possibility for future investigation.
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APPENDIX A: BOUNDARY CONDITION
AT THE HORIZON

The zt component of the Einstein equations reads

f0ðzÞ∂iδgtiðz; xiÞ − fðzÞ∂iδg0tiðz; xiÞ ¼ 0 (A1)

which can be integrated to give

∂iδgtiðz; xiÞ ¼ fðzÞWðxiÞ: (A2)

Since fð0Þ ¼ 1 and we choose δgti to be a normalizable
perturbation, we must have WðxiÞ ¼ 0 so we conclude

∂iδgtiðz; xiÞ ¼ 0: (A3)

Using the ii component of the background Einstein
equations the ti component of the Einstein equations reads

þ 2zfh2ϵij∂jð∂xδgty − ∂yδgtxÞ − 2zfhδg00ti þ ðzfh0
þ zhf0 þ 4fhÞδg0ti − 8z3fhA0

tδA0
iðz; xiÞ ¼ 0: (A4)

Using (A3) ϵij∂jð∂xδgty − ∂yδgtxÞ ¼ −∂2δgti with ∂2 ¼
∂i∂i this is

− 2zfh2∂2δgti þ ðzfh0 þ zhf0 þ 4fhÞδg0ti
− 2zfhδg00ti − 8z3fhA0

tδA0
i ¼ 0: (A5)

We now count the divergences in (A5), using that near
the horizon

hðzÞ ¼ K
fðzÞ þ K0 þ K1ðz − z0Þ þ � � � ; (A6)

h0ðzÞ ¼ K
f0ðzÞ
f2ðzÞ þ K1 þ � � � ; (A7)

with K an arbitrary constant. Since the gauge and scalar
fields do not diverge at the horizon we obtain the lhs of the
Einstein equations to be

−
1

2
∂2δgtiðz0; xiÞ ¼ 0 (A8)

and imposing the boundary condition δgtiðz0; xiÞ → 0 at
spatial infinity we conclude

δgtiðz0; xiÞ ¼ 0: (A9)

APPENDIX B: REGULARIZATION
AND RENORMALIZATION

Consider the action

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
GIJðϑKÞ∂aϑ

I∂aϑJ

− VðϑKÞ − l2ZPQðϑKÞFP
abF

Qab þ Scs

�
; (B1)

where either
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Scs ¼ −l2βCSCPQðϑKÞ�FPabFQ
ab (B2)

or

Scs ¼ −
αCSl2

4
ϑI¼0�RR: (B3)

Note the gravitational Chern-Simons term can always be
written in this form via field redefinition.
A priori, there are four possible contributions that need

to be accounted for: the usual Gibbons-Hawking-York
boundary term, a term arising from the variation of the
(axionic or gravitational) Chern-Simons term Scs, potential
additional terms that must be added for the Dirichlet
boundary-value problem to be well-defined and local
counterterms (see the Appendix of [7] for details). Thus,
we can write

Tbdy
αβ ¼ 1

2κ2
ð2Kαβ − 2hαβK þ Tcs

αβ þ Treg
αβ − Tct

αβÞ: (B4)

The CFT stress-energy tensor is obtained by computing the
boundary stress-energy tensor Tbdy

αβ on a plane at finite z
parallel to the boundary, multiplying by an appropriate
power of z (z−1 in our case for the stress-energy tensor with
both indices down) and taking the z → 0 limit, according to
the standard AdS/CFT dictionary (see e.g. [34–36]).
Let us first concentrate on possible Chern-Simons and

regularization contributions to the boundary stress-energy
tensor. As explained in the Appendix of [7], the gravita-
tional Chern-Simons term does not contribute to the
boundary stress-energy tensor and also does not require
additional regularization terms. Similarly, the axionic
Chern-Simons term is topological, so under the variation
we consider it will not contribute to the boundary stress-
energy tensor, nor will it require regularization terms.
We are thus left to analyze possible counterterms. For

planar boundaries there is a standard counterterm obtained

by adding a cosmological constant term on the boundary,
which does not depend on the presence of scalar fields. In
addition, there can be scalar-field dependent counterterms,
which we can schematically write by addingffiffiffiffiffiffi

−h
p

HðϑIÞ (B5)

to the action, with H some function and hab the induced
metric,

hab ¼ gab − nanb; na ¼
1

gzz
δza: (B6)

The scalar field counterterms contribute

Tct;ϑ
ti ∼HðϑIÞhti (B7)

to the ti component of Tbdy
αβ . However, since we are

considering the metric perturbations to be normalizable

hti ∼OðzÞ (B8)

near the boundary. Furthermore, HðϑIÞ cannot contain
marginal scalar fields, so it must consist entirely of scalar
fields decaying as some positive power of z towards the
boundary. Since the counterterms must vanish in the
absence of any scalar field HðϑIÞ must be proportional
to at least one positive power of ϑI, which introduces at
least one more positive power of z in Tct;ϑ

ti . Thus

Tct;ϑ
ti ∼Oðz1þγÞ; γ > 0 (B9)

and the scalar field counterterms decay at least one power
of zγ too fast near the boundary to contribute to the CFT
stress-energy tensor.
We are thus left with the usual boundary stress-energy

tensor in the ti component,

Tbdy
ti ¼ 1

κ2

�
Kti − htiK −

2

l
hti

�
: (B10)
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