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We consider the high-temperature limit of the Casimir interaction between a Dirichlet sphere and a
Dirichlet plate due to the vacuum fluctuations of a scalar field in (D + 1)-dimensional Minkowski
spacetime. The high-temperature leading term of the Casimir free interaction energy is known as the
classical term, since it does not depend on the Planck constant /. From the functional representation of the
zero-temperature Casimir interaction energy, we use Matsubara formalism to derive the finite-temperature
Casimir free energy and obtain the classical term. It can be expressed as a weighted sum over logarithms of
determinants. Using similarity transforms of matrices, we reexpress this classical term as an infinite series.
This series is then computed exactly using a generalized Abel-Plana summation formula. From this, we
deduce the short-distance asymptotic expansions of the classical Casimir interaction force. As expected, the
leading term agrees with the proximity force approximation. The next two terms in the asymptotic
expansion are also computed. It is observed that the ratio of the next-to-leading-order term to the leading-
order term is proportional to the dimension of spacetime. Hence, a larger correction to the proximity force
approximation is expected in spacetime with higher dimensions. This is similar to a previous result deduced

for the zero-temperature case.
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I. INTRODUCTION

Casimir interactions between objects of nontrivial geom-
etries have been under active study in the past ten years.
This is partly motivated by the advent of nanotechnology
which explores physics and technology in a length scale
that renders Casimir interaction highly non-negligible.
Another motivation comes from Casimir experiments where
Casimir force is usually measured for the sphere-plate
configuration due to the absence of alignment problems [1].

In the past few years, multiple scattering formalism has
been used to cook up a recipe for computing the exact
functional representation for the Casimir interaction energy
between any two objects [2-17] in (3 + 1)-dimensional
spacetime. In principle, one has to compute the scattering
matrices of the objects in specific coordinate systems and the
translation matrices between different coordinate frames. For
objects with additional symmetries, such as planes, cylinders,
and spheres, there are special coordinate systems available,
and the problem is tractable. Given the explicit formula for the
Casimir interaction energy, one can then explore its properties
numerically or analytically. Of particular interest are the small-
separation and large-separation limits. The computation of the
large-separation limit is usually straightforward. In the small-
separation regime, which is of more concern to nanotechnol-
ogy, it has been long believed that the leading Casimir
interaction agrees with the proximity force approximation,
and this has been verified for various geometric configurations
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[11,12,18-27]. However, to better reflect the actual strength of
the Casimir force and for comparison to Casimir measure-
ments, there is a need to go beyond proximity force approxi-
mation. The computation of the next-to-leading-order term in
the small-separation asymptotic expansion is not an easy task
[11,12,18-32]. A scheme based on derivative expansion has
been proposed [33,34] but is yet to be verified.

Most of the above mentioned works only dealt with
the zero-temperature interaction. Nonetheless, the finite-
temperature effect cannot be neglected. Of particular appeal
is the limit of the Casimir interaction in the high-temperature
regime. It has long been known that the high-temperature
leading term is linear in the temperature, given by the term
with zero Matsubara frequency. This term is known as the
classical term, since it does not depend on the Planck constant
h. The asymptotic expansion of this classical term in the
small-separation regime is not much known. However, it was
shown in Ref. [35] that the classical Casimir interaction
between a sphere and a plate with Dirichlet boundary
conditions can be computed exactly, which can then be used
to derive the full small-separation asymptotic expansion.

Studying physics in higher-dimensional spacetime has
become a norm rather than an exception. The finite-
temperature Casimir effect inside a rectangular cavity in
(D + 1)-dimensional Minkowski spacetime has been
explored in Ref. [36] more than thirty years ago. Since
then, there have been quite a number of works that have
considered the finite-temperature Casimir effect in higher-
dimensional spacetime [37-54]. As a first step to under-
stand the Casimir effect between two nontrivial objects in
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higher-dimensional spacetime, we studied the zero-
temperature Casimir effect between a sphere and a plate
[55] and between two spheres [56] in (D + 1)-dimensional
Minkowski spacetime. In this work, we extend the work to
the finite-temperature regime and consider the high-
temperature limit. As in the three-dimensional case con-
sidered in Ref. [35], we expect that the classical term can be
computed exactly. Unlike Ref. [35], we do not make use of
bispherical coordinates but use similarity transformation of
matrices directly to obtain the result. An important tool in
our computation is the generalized Abel-Plana summation
|
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formula [57-59]. From the exact formula for the classical
Casimir interaction, we derive the small-separation asymp-
totic expansion. In the case D = 3, we recover the result
obtained in Ref. [35].

II. THE CASIMIR FREE ENERGY BETWEEN
A SPHERE AND A PLATE

In Ref. [55], we showed that when D > 4, the zero-
temperature Casimir interaction energy between a Dirichlet
sphere of radius R and a Dirichlet plate can be written as

Cas

where the elements M, , of M,, are

_ (2m+D=3)(m+ D —4)!
T=0
KZ (D —3)!m!

Tr,, In (1 = M,,(x)), (1)

(L+22)( + 221 -

m)\(I' = m)! 1} 0=2(kR)

’ D —2\?2
Mm;l.l’ — (_1)l+l 22m+D—3F(m + 5 > \/

x/ df(sinh 9)>m 02"
0

l—m

Here L is the distance from the center of the sphere to the
plate. For fixed m, the trace Tr,, is

I=m
When D = 3, we can also represent the Casimir inter-
action energy by Eq. (1), provided that the summation » /% _,
is replaced by the summation ) % _,/, where the prime /
indicates that the term m = 0 is summed with weight 1/2.
|

ECas = kB

(I+m+D=3)(I'+m+D=3) K, ,02(kR)

(cosh 0) C;?j,?(cosh 0)e2kL coshd, (2)

|

Using Matsubara formalism, the finite-temperature
Casimir free interaction energy between a Dirichlet sphere
and a Dirichlet plate can be obtained by replacing the
integration over x by summation over

27[pkBT
K= e

for p from —oo to co. Namely,

p=0 m=0

© & (2m+D=3)(m+D—4)!
TZ/Z (D —3)!m!

Tr,, In (1 —M,,(k,)). (3)

When « is large, M, (k) decays exponentially. Hence, in the high-temperature regime where 1 << RT < LT, the
contribution to the Casimir free interaction energy from those terms with p # 0 in Eq. (3) is exponentially small. The high-
temperature limit of the free energy is given by the p = 0 term in Eq. (3), which is called the classical term, since it is

independent of the Planck constant /. Namely,

cassical _ kBT~ (2m + D =3)(m + D — 4)|
Flassical _ 2 ZO

limTrIn (1 = M,,(x)). (4)

(D - 3)'11’1' k=0

Here we do not directly set x = 0, since M, (k) might
not be well defined when x = 0. Nevertheless, the
limit

limTrIn (1 —M,,(x))

k=0

should be well defined, and this is what we are going to
compute.
As 7z — 0,
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Hence, we find that as « — O,

02 (kR) 1
K .oa(kR) ~ 227 DST(1 1+ D2)0(1 + D)

(KR)21+D_2. (6)

By making a change of variables u = x cosh 8, we have

/ ” df(sinh 9)>m D=2 C;’fr% (cosh 0) CZ'_JF? (cosh @) e=2xL coshe

m
0
1 «© _ =2 [y =2y
_ 2 2\m+L253 ~m+75 m+=3 —2Lu
= —=.ob5 du(u> —x*)""2C_,7 | = |C,_,7 | = e . (7)
K p K K

To obtain the leading behavior of this integral when x — 0, we need to find the leading term of the Gegenbauer polynomials
C%(z) when z is large. From Rodrigues’s formula for the Gegenbauer polynomial [60,61],

1 TQu+n)(v+1) (2 —1) d
Cile) = e VWD = DT o gy ®)
2'"TQu)I(v+5+n) n!  d

we find that the leading term of the polynomial C%(z) is

Sy I(2v +2n)T(v +3) .
Cile) = 2"n! Tu)I'(v + % + n2) ct ©)

Hence, as k — 0, the leading term of the integral in Eq. (7) is given by

1 1 21+ D —-2)I'(2I' + D = 2)[(m + 251)2 /oo Juy D=3 g2Lu
7 i uu e
KHFD=2 I =2m (] ) \(I' = m)! T(2m+D =2 T(1+ZHT( + 2 o
1 1 FQ2I+D-2)F(2I' + D =2)[(m+ 2220+ + D -2)
- K.l+l’+D—2 221+21’—2m+D—2(l _ m)y(l/ _ m)y F(Zm +D- 2)21’*(1 4 %)F(l/ T %) Ll+l’+D—2
1 1 L+ 290 +22)T(1+ '+ D - 2) (10)
- K.l+l’+D—2 22m+D—2(l _ m)’(l’ _ m)y r‘(m -+ %)2 Ll+l’+D—2
[
In the last row, we have used the identity Mm = Pfle”j’l, (13)
221—1 1 . . . .
r(2z) = NG F(Z)F<Z + 2>. (11) where P; is a diagonal matrix with elements
7
From Egs. (6) and (10), one can deduce that as k — 0, - , [(I4+m+D=3)! 1 KR\!
Prar = (=1) (I+22)(Il—=mNT(+22)\ 2 Our
—1 2 : 2
Mm;l.l/<K) ~ K . (12)
(14)
Since the trace of a matrix is not changed if the matrix is
replaced by a similar matrix, we define Then
D-2 D=2 N
W0 (k) = (=1)1+" (I+5) " +m+ D =3)I(l-m)! T(I+°5%) (kR IHM 0 15)
e (I'+22)(Il+m+D=3)1(I' —=m)'T(I' +252) \ 2 e R
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matrices N, to upper triangular matrices and use the fact
that the determinant of an upper triangular matrix is equal
to the product of its diagonal elements.

~ ([ +I'+D-— 3) R\ [+!+D=2
Mm;l,l’(o) (l / . L
+m+D=3)(I' =m)! \2L et
(16) R I d (19)
X=—= , £=—.
Hence, the classical Casimir interaction energy is 2L 2(1+e) R
plusical _ kB_T ® (2m+D —3)(m+D—4)! Let P, be a lower triangular matrix with elements
2 = (D —3)!m! - ()t
" P ) = (1y—1/)! ((1’_—2)).!’ I>7 (20)
x Indet (1= N,,). (17) P2 =14 1o
where where 0 < y < 1 is such that
(I+7+D-3)! (R)WHH 1
Nm;Ll’ = 'Y ’ e . 21
(I+m+D-3)0 —mn\2L y+yT = (21)
">
LEzm. (18) One can check that the inverse P;! has elements
Since L = R + d, where d is the distance from the sphere to ;S ()
the plate, the determinant det (I — N,,) is finite. In the next N G D ey = P =
: etermi . : . (Py")y = (=71 (=) L ()
section, we will derive an alternative expression for this ’ 0 I<7
determinant.
Using the fact that
III. ALTERNATIVE EXPRESSION FOR THE
CLASSICAL CASIMIR INTERACTION ENERGY 1 _ i": (n+j)! o (23)
In this section, we use similarity transforms of matrices (1- U)"“ —  nlj!
to find an alternative expression for the classical Casimir
interaction energy [Eq. (17)]. Essentially, we transform the ~ we find that
|
[ =1, (1—m)! (L + L+ D =3)! L=l (lp, —m)!
P;'N,P,), , = —p)h 2 : e’ D hthen2 Y 2
(P2 NP2y, lzmlzl( ) (L=1)M (L =m)! (I +m+ D =3)\ (I = m)! (L=1)(I'=m)!
l 0 _
- Z:(—l)l—z1 yihe (1=m)! (1 Hz+l'+D—3)’le+zz+z'+D-zy_lz 1
=i (I=I) (1, —m)! (I +m+D-=3)! L!(I"'=m)!
N~ Ly 2T =)t 1 D=3 ( x )W*D-Z I
= (=) —=m)(ly, +m+D-=3)! \1—xy (I' = m)
Ny 2R A=t (D=3
_ll:m (=1 (L =m)!(l; + m+ D =3)! (I' = m)!
— yl+l’+D—2 x coefficient of p!+*™m+P=3in (1 _ U)l—m<1 _ U)—l’+m—1
D=2 (' 4 m+D=3)!
{y(l’—l)! (I+m+D=3)! * I'>1 ) (24)
0 <l
|
Notice that P5'N,,P, is an upper triangular matrix, and the ~ Hence,
diagonal elements are
det (1-N,,) = Zln y2+D-2) (26)

([p NmPZ)ll 21+D 2 (25)

In fact, using a sultable matnx [P5, one can transform
P5'N,,P, into a diagonal matrix. We leave it to the reader
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to check that if P; is the upper triangular matrix with
elements

- (I+m+D=3)!

PHYSICAL REVIEW D 89, 105033 (2014)

then

Lormrr=o): I >
(P3)y = {8/ Dt (Hm+D=3) > 5, B ll (27) (PPN, PP,y = 6,y P2 (28)
< .
where
B Returning to the classical Casimir interaction energy, we
zZ=y=-y obtain from Egs. (17) and (26) that
cassical kBT ~e~(2m +D =3)(m+ D —4)! &
Eehas 12372 e In (1 = y2+D-2)
m=0 ( ) m: I=m
kT L @2m+D-3)(m+D-4)!
“BL 1 204+D-2
2 lz: Z (D =3)!m! n(l-y )
kBT = (21 + D (l + D -3)!
kgl In (1 — y21+D-2) 29

Notice that when D = 3, Eq. (29) gives

:0

which is exactly the result derived in Ref. [35] using
bispherical coordinates.
From the definitions in Eqgs. (21) and (19), we find that

R

L L\?
y:1+€—\/82—|—2€:§— (—) -1. (31)

When L > R,

IR
~——, 32
Y~ (32)
which shows that the large-separation leading term of the
classical Casimir interaction energy comes from the [ = 0

term in Eq. (29) and is given by

kyTRP2

[Eclassical
Cas 2D-17D-2"

(33)

kT 2 -/~ D-4\/-
EclasswalzL 11 i
O D ] (1+25) (1+

=232

Notice that the summand is zero when [ = 1,2,...,
(D —2)/2. Moreover,

D-6

—)...(i+ DI(I-1)...

IV. SMALL-SEPARATION EXACT FORMULA
OF THE CLASSICAL CASIMIR
INTERACTION FORCE

In this section, we use a generalized Abel-Plana sum-
mation formula to compute the classical Casimir interaction
force. We need to consider the case when D is even and the
case when D is odd separately.

Let

y=e",
where

pu=—In(1+e—\e*+2e) >0. (34)

First, we want to rewrite Eq. (29). When D is even, let

~
|
~

+

Then

(? - DT_4> In(1—e2h). (35)

(D — 4)/2. This allows us to start the summation from / = 1 instead of
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?G+D;4>G+D;6>“d+mﬂiqync—9§f>

is a polynomial of degree D —2 in I which can be written as

D-2
E :xD;jl]’
Jj=1

with xp.; = 0 when j is odd. Hence,

co D-2

Eclassical
Cas ( D—

When D is odd, let

We find in the same way that

) kT 2 ~ 1 1 D-4\/-
[classical _ ZB~ = (4= — )+
szAD—2ﬁ<+?>(+2+ 2 ><
==
X ln(l — =@ 1uy
o D-2 -
3SR (1) - e
=0 J=1
where now

kgT
5 'ZZXDJZ In (1 —e=2)., (36)

=1 J=

1

(37)

D-2 ;
~ 1\ [~ 1 1 D-4 1 D-6 1 1 1 1\ (~ 1 D-4
jzl:x,);j<l+§> _<l+§><l+2+—2 )<l+2+—) (l+2+2><l+5—§)...<l+5——2 ) (38)

with xp.; = 0 when j is even.

As a function of the complex variable z, In (1 — e™%)
does not have good analytic properties. So instead of
considering the classical Casimir energy, we consider the
classical Casimir force. Since

1
w(e) = —, 39
€ =e= (39)
we find that when D is even,
‘ kT 2 &
[Frelassical _ _ B g : 0
RVe2 +2¢(D=2)! — ;xl’d 20 _q (40)

and when D is odd,

[

classical __
F Cas -

A
Xpi——=— .
RV 1 26(D -2l P 0k

Notice that xp.; # 0 only if D and j have the same parity.
Now we have to deal with functions of the form

e —1’

which is not analytic but is meromorphic. We cannot apply
the Abel-Plana summation formula, but instead we can
apply the generalized Abel-Plana summation formula
[57-59], which says that if f(z) is a meromorphic function
that only has poles on the imaginary axis,

105033-6
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1 e - [ fiy) - f(=iy)
+7”Z Resz:iyf(Z)z,; Resz:—iyf(z) ,
= e —1
(42)
= 1 e i [ f(iy) = f(=iy)
;f(zlﬂ'l)—EA f(x)dx—il Wdy

7 Z Res,_f(z) —Res,__;, f(2)
2 ™ +1 '

y>0
(43)
When D is even, we apply Eq. (42) with
Zit1
fz) = 21’ (44)

where j>1 is even. f(z) has poles at z = +izn/u,
n=1,2,..., and

I i+l ]

ReSZ:iiﬂTnf(Z) == 2/.,£j+2 (45)
Hence,
Res,_,/(2) = Res.__,f(2)
’Z e — 1
y>0
(_1)§+1ﬂj+2 ®_ it
- j+2 Z wn (46)
H n=1er —1
|
: kgT &= j+2)
lassical __ B
Fe™ = m (D =2)! Z {21+2 ]+2Z:(

When D is odd, we apply the generalized Abel-Plana
summation formula [Eq. (43)] with

1 Zj+1

f(2) = (51)

2j+1 ert — 1 ’

where j > 1 is odd. Then f(z) has poles at z = +2izn/u
with

jIH i+

Res,mf (2) = (52)

W2

Consequently,

PHYSICAL REVIEW D 89, 105033 (2014)

This sum goes to zero exponentially fast when g — 0. On
the other hand,

I'(j+2)

0 © J+1

A f(x)dx_/) e;;fx_ldx 2]+2 Jj+2 ZJ( )
(47)

[ fly) = f(=iy) pfe ¥

ZA oy D= 1)2/) A

TG +2
= (LD 1)

(48)

Here {(s) =) ,1/n* is the Riemann zeta function.
Since f(0) =0, the generalized Abel-Plana summation
formula [Eq. (42)] implies that

P T +2) TG +2)
eﬁﬂ -1 2]+2 J+2 Z:( + 2) + ( 1)2 2J+2 7 +2 C( )
(_1)§+lﬂj+2 © it
M1+2 o elzfn 1

From this, we obtain the exact expression for the classical
Casimir interaction force:

T +2) () A !
2) +(=1) WC( +2)+ P Z 2 :
n=1er —1
(50)
_mi Z Res,_;,f(z) —Res,__;,f(z) 0 (53)
y=0 e™ +1 o
On the other hand,
| [ 1 feo xit! rG+2) ..
EA floydx = WA ko P2 G +2),
(54)
_ gLyl i
f(ly>_f< ly) 2j+1 zﬂy_]_2j+1 e—iyy_]
' Hy
= g1y eots (55)

which gives
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i [ fliy)=f(=iy) ,
5 T =
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From these, we obtain the exact formula for the classical Casimir interaction force:

classical __
F Cas -

ksT S (-1)
m D — 2 jz 2/+2 ]+2§( ) 2j+2 /)

From the definition of y [Eq. (34)], we find that as e < 1,

-1 . !
—1)7 (o yitlcot’
( ')22 y ,CO 5 (56)
27 Jy e+ 1
L(j+2) o y/ 1 cot
o 12 dy ;. (57)
o~ 2e. (58)

Hence, Egs. (50) and (57) are ideal for studying the small-separation asymptotic behavior of the Casimir interaction force.

In particular, we find that when y < 1,

Fclamcal

if D is even; and

classical __
F Cas -

if D is odd. In the latter, we have used the fact that

2
cotﬂ~—+
2 py

O(u)

as u < 1.

V. COMPARISON TO PROXIMITY FORCE
APPROXIMATION

The proximity force approximation approximates the
Casimir interaction force between two objects by summing
the local Casimir force density between two planes over the
surfaces. In (D + 1)-dimensional Minkowski spacetime,
the classical Casimir force density between two parallel
plates both subject to Dirichlet boundary conditions is
given by [62]

(D-1rB)MD) 1 _

2 L
2077

bp
d_D’

]:E]Z:Sica].” (d) _ —kBT (62)

daP

where d is the distance between the two plates.

As in Ref. [55], we find that the proximity force
approximation to the classical Casimir interaction force
between a Dirichlet sphere and a Dirichlet plate in (D + 1)-
dimensional spacetime is

kgT Jj+2) (_l)j;] & )’j
E —+ — d + O(u
R\/(—: +2e(D-2)! = {2/+2 Jj+2 §i+2) 20+ A e+ 1 Y ()

TG +2)
SacU+ )+ (R b ot o9
(60)
[
F%l;l:%lcal JPFA RD_lbD 2r T delsinD‘zel

F(DT‘I)A (d+ R(1 —cos6,))P
1

25 T(2) Re™
(D-1)¢(D)
F RS
From Egs. (50) and (57), we find that when ¢ < 1, the
leading term of the classical Casimir interaction force
comes from the term with j = D — 2. Since xp.p_, = 1,
we have

= —kyT (63)

classical kBT D-1
e R\/sz_lﬂDC(D)
(D-1)¢(D)
—kgT T 64
WO R oY

which agrees with the proximity force approxima-
tion [Eq. (63)].

VI. SMALL-SEPARATION ASYMPTOTIC
EXPANSION

In this section, we derive the small-separation asymptotic
expansion of the classical Casimir interaction force from
Eqgs. (50) and (57) in terms of € = d/R.

As ex 1,

), (65)

3
+-o=er+-

1 1 e
\/782”5_\/%( 4732
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which gives

1 B 1 1+D8+
uP 288 12

For the constants xp,j, it is straightforward to show that

D(5D -22)
1440 ¢ '

Xp.p—2 = L,
XDp:p-3 = 0,
B :_(D—2)(D—3)(D—4)
D:D—4 24 )
Xp;p—s =0,
. :(D—Z)(D—3)(D—4)(D—5)(D—6)(5D—8)
D:D-6 5760
On the other hand,
2
ol ~ 2
Hy
Hence,
(—1)% oo y/t1 Cot%y B (—1)'%1 y”'(m ”y+ )d
2J+2 0 e™ 11 To9jt2 o e™ 1 y
(=DZI0G+D) (=D T(+3)
T g (1-2 ’)C(J+1>+3X2j+3” 23 (

When D = 3, Egs. (57), (70), (65), and (67) give
2kpT { 1 l/ooy“cot"zy }
3)+ , d
Trve e et TR )y e
2kB & 3
= — 1__+—82+
R\ 2¢e < 4 32 )
1 e Te
3 c_1=
% (gfg%g( )< TR

(e (b Yesn)

When D = 4, Egs. (50), (65), and (67) give

classical __
F Cas -

classical _ __
F Cas -

ky 3 3
24 = ¢(4) + - -
. W26<8ﬂ4<:<> e+ )
T RS 4 32
32(4)

kT~ (145 + T ey
— — — —— 8 .« o .
B 30\2Re 1440 7

105033-9
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1 € 7
A IR (5 TRLRTIDN I/, PO
)+48\/2_8< T ) 5760V 2 )

2 2
T3C—M)<1 8+i€2+...> <1_|_f_8__4i4+...>

PHYSICAL REVIEW D 89, 105033 (2014)

(66)

(67)

(68)

(69)

(70)

(71)

(72)



L.P. TEO
When D =5, Egs. (57), (70), (65), and (67) give

PHYSICAL REVIEW D 89, 105033 (2014)

classical __ kBT i _i/ y COtM l(i l/ y COtm )}
Few 3R\/82+2€{4ﬂ5§(5) 32 e™ +1 4 4M3C(3>+8 0 ”"+1d
= kT (1—54-38 + - )
~ 3RV2e 4732
M) (143 8y Yo DL (e )LL)
X(lﬁfg% 1+12+96+ 1920 2 3226 bt 192\/£+
B, T L
32R*‘:()< 6 6c(5) " T3605)° T ) (73)

When D > 6, we do not need to take into account the term Eq. (70) in Eq. (57), or the second and third terms in Eq. (50).

Equations (50), (57), (65), (67), and (68) give

. kT 2 (D) (D-2)(D-3)(D-4)T(D-2)
Felassical — _ B D D-2
e )" 24 =0
(D —2)(D —3)(D—4)(D —5)(D - 6)(5D — 8) T(D — 4)
D—4)+ ...
* 5760 =303 £ P =)
(D=1)D) (, e 3 De (D=3)(D-4){(D-2)
—kpT - ? I+ -
277 legD;I 4+328 + +12 3(D_1) C(D)
D(5D=22) , (D=2)(D=3)(D=4){(D=2) , (P=5)(D-6)(SD=8){(D—4) ,
1440 36(D — 1) Z(D) 90(D - 1) ¢(D)
L D-0D) (| (D=3) (D-3)(D-4LD-2)
B RS 12 3(p-1) (D)
(D-5)(5D-27) , (D=3)(D-4)(D=-5{D-2) , (D-5D-6)5D-8){(D-4),
1440 36(D—1) ¢(D) 90(D — 1) ¢(D) '
(74)
14 1.1
exact classical term —
135 — — — asymptotic expansion (3 terms) , RN <
13} AN
09t AN
£ o125f = s
émmf e T T T T T~ éwo.sf AN
28 /// \\\ T)&U \\
1.15 /7 NN e | \\
n 4 0.7 exact classical term \
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FIG. 1 (color online). Comparison between the exact Casimir
interaction force and the asymptotic expansion in Eq. (71) when
D = 3. Both quantities are normalized by the proximity force
approximation.
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FIG. 2 (color online). Comparison between the exact Casimir
interaction force and the asymptotic expansion in Eq. (72) when
D = 4. Both quantities are normalized by the proximity force
approximation.
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1

classical, PFA
o
~

exact classical term N

— — — asymptotic expansion (3 terms) \

FIG. 3 (color online). Comparison between the exact Casimir
interaction force with the asymptotic expansion in Eq. (73) when
D = 5. Both quantities are normalized by the proximity force
approximation.

In Figs. 1, 2, 3, and 4, we compare the exact
classical Casimir interaction force to the three-term
asymptotic expansions derived in Egs. (71), (72), (73),
and (74) when D = 3,4, 5, 6. Both quantities are normal-
ized by the proximity force approximation. It is observed
that when & =1, there is a considerable amount of
correction to the proximity force approximation, but the
three-term asymptotic expansion still gives a quite good
approximation to the exact classical Casimir term.
However, the three-term approximation will break down
when ¢ is larger.

In Fig. 5, we plot the dependence of the three-term
asymptotic expansion [Eq. (74)], normalized by the
proximity force approximation, on the normalized

051 >~
> ~
< S
5} ~
Tﬁ N
i, oo .
3 g N
< O N
N
= AN
N
~05 exact classical term AN
— — — asymptotic expansion (3 terms) AN
_1 ‘ ‘ ‘ ‘
0 1 2 3 4 5

FIG. 4 (color online). Comparison between the exact Casimir
interaction force and the asymptotic expansion in Eq. (74) when
D = 6. Both quantities are normalized by the proximity force
approximation.
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FIG. 5 (color online). Dependence of the asymptotic expansion
in Eq. (74) on ¢ and D for 0 <e <1 and 6 <D <25. The
asymptotic expansion is normalized by the proximity force
approximation.

distance & and dimension D. It is observed that the
correction to the proximity force approximation becomes
larger when D is larger. In fact, from Eq. (74), we find that
when D is large,

classical classical, PFA 2 D_2 >
Feas™™ ~ Feag l——e+——e+---|. (75)
4 32
This shows that the proximity force approximation

becomes less accurate in spacetime with higher
dimensions.

VII. CONCLUSION

In this work, we have computed the high-temperature
limit for the Casimir free interaction energy between a
Dirichlet sphere and a Dirichlet plate in (D + 1)-
dimensional Minkowski spacetime. This high-temperature
limit is known as the classical term, since it does not depend
on the Planck constant. It comes from the term with
Matsubara frequency zero in the functional representation
of the Casimir free energy and can be expressed as a
weighted sum of logarithms of determinants. We derive two
alternative exact expressions for this classical term. First,
we express the logarithms of the determinants as sums of
the logarithms of the eigenvalues. We then use the
generalized Abel-Plana summation formula to rewrite this
sum so that one can deduce the small-separation asymptotic
behaviors of the classical interaction force. The first three
terms of the small-separation asymptotic expansion are
derived explicitly. As expected, the leading term agrees
with the proximity force approximation and is proportional
to d="=", where d is the distance between the sphere and the
plate. The dimension dependence of the next two terms in
the expansion is studied, and it is found that in higher

105033-11
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dimensions, proximity force approximation becomes less
accurate.

In this work, we only study the classical term of the
finite-temperature Casimir free interaction energy, which is
the limit of the Casimir interaction when 1 < RT < LT,
where R is the radius of the sphere and L is the distance
from the center of the sphere to the plane. The small-
separation asymptotic behavior is the asymptotic behavior
of the Casimir free interaction energy when R7 > 1 and
d < R, where d =L — R is the distance between the
sphere and the plate. When studying finite-temperature
Casimir interaction, there are three zones of interest: i.e.,
RT< LT« 1, RT<1<LT, and 1 < RT < LT. The
first one is dominated by the zero-temperature behavior

PHYSICAL REVIEW D 89, 105033 (2014)

studied in Ref. [55]. The last one is the high-temperature
region studied in this work. The intermediate region R7T <«
1 <« LT is the transition from the first one to the last one.
To study the small-separation asymptotic behavior of the
Casimir free interaction energy in this region is quite
challenging, and we leave it for a future work.
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