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Standard model with new order parameters at finite temperature
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We consider the finite temperature effective potential of the standard model at the one-loop level in four
dimensions by taking account of two kinds of order parameters, the Higgs vacuum expectation value and
the zero modes of gauge fields for the Euclidean time direction. We study the vacuum structure of the
model, focusing on the existence of the new phase, where the zero modes, that is, the new order parameters,
develop nontrivial vacuum expectation values except for the center of the gauge group. We find that under
certain conditions there appears no new phase at finite temperature.
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I. INTRODUCTION

Quantum field theory at finite temperature [1] provides
useful tools to study phase transition in high-energy
physics. The effective potential at finite temperature
actually plays an important role for studying the scenario
of the electroweak baryogenesis [2] and the deconfinement
phase of QCD [3] in weak coupling regime. Quantum field
theory at finite temperature has been used in various
contexts [4].

The imaginary time formulation of quantum field theory
at finite temperature is familiar, and in this formulation, the
Euclidean time direction is compactified on a circle S}
whose length of the circumference is the inverse temper-
ature T7~'. When one considers gauge theory on such a
space, it is well known that zero modes of component
gauge fields for the S! direction cannot be gauged away and
become dynamical degrees of freedom [3] so that they can
develop vacuum expectation values [5]. We can determine
the vacuum expectation values by minimizing the effective
potential for the zero modes. One should notice that such
zero modes must be taken into account as long as they are
the dynamical degrees of freedom.

In the context of higher dimensional gauge theory at
finite temperature, zero modes of component gauge fields
for the S, direction should be taken into account in addition
to possible zero modes of component gauge fields corre-
sponding to topological spatial extra dimensions. Gauge
symmetry breaking through the zero modes has been
discussed in [6,7]. The high-temperature phase transition
of the standard model through the dynamics of the zero
modes of the SU(2),,U(1), gauge fields for the S!
direction has been studied in [8], where the Higgs potential
has been ignored. It has been found that there appear
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metastable states by studying the effective potential for the
zero modes.

One may think that the zero mode of the SU(2), gauge
fields for the S, direction takes the value at the center of the
SU(2), gauge group like QCD in weak coupling regime at
finite temperature [3]. This is, however, not so trivial
because the models contain the Higgs potential, and the
vacuum expectation value of the Higgs field may influence
the location of the minimum for the zero mode in the
effective potential. This is actually the case in physics with
extra dimensions [6].

In this paper, we investigate the phase structure of the
standard model in four dimensions at finite temperature by
studying the effective potential at the one-loop level. In
doing it, we correctly take the zero modes of the
SU(3),,SU(2),,U(1), gauge fields for the S! direction
into account in addition to the usual order parameter, the
vacuum expectation value of the Higgs field. It is expected
that there appear new phases in which the zero modes of the
SU(2),,U(1), gauge fields, that is, new order parameters
in the model, take nontrivial values except for the center of
the gauge group. If this is the case, the zero modes give a
source for the gauge symmetry breaking. We focus on
seeking whether such a new phase appears or not.

One encounters the situation that has never been seen
before due to the new order parameters. The parametriza-
tion of the vacuum expectation value of the Higgs field
changes, contrary to the usual case. The electromagnetic
component in the Higgs field, which is usually gauged
away by using the SU(2), x U(1), degrees of freedom,
remains even after using the gauge degrees of freedom
because of the new order parameters. As a result, the
number of the order parameters increases in the model. We
follow the standard prescription to calculate the effective
potential. We expand fields around the vacuum expectation
values and take up to quadratic terms. The increased order
parameters complicate the quadratic terms, which contain
the couplings that break the electromagnetic U(1), denoted
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by U(1),,,, invariance. This makes it difficult to obtain the
effective potential in an analytic way.

We impose plausible conditions among the order param-
eters in order to study the effective potential as analytically
as possible. Even under these conditions we can still
investigate a possibility of new phases in which new order
parameters take nontrivial values. Our analyses tell us that
there is no new phase in the standard model in four
dimensions. It may be essential for the result that the
boundary condition of fermions for the S! direction is fixed
by the Fermi statistics. This is quite different from the case
of the physics with spatial extra dimensions.

This paper is organized as follows. In Sec. II we
introduce the order parameters of the model and discuss
the minimum of the tree-level potential for latter conven-
ience. We obtain the effective potential at the one-loop level
under certain conditions among the order parameters and
study the phase structure by minimizing the effective poten-
tial, focusing on the new phase in Sec. III. Conclusions and
discussions are devoted to Sec. IV. In the Appendix, we
present the detail of the calculations in the presence of the new
order parameters.

II. ORDER PARAMETERS

The imaginary time formulation of quantum field theory
at finite temperature is to consider the theory on S! x M3,
where the Euclidean time direction 7 is compactified on the
S! whose circumference is the inverse temperature 77'.
The M? is the three-dimensional flat space whose coor-
dinate is denoted by x'(i = 1,2, 3).

We consider the standard model in four dimensions at
finite temperature. As discussed in the literature [3,5], the
zero modes of the Euclidean time components of the gauge
fields, which cannot be gauged away, become the dynami-
cal variable to parametrize the vacuum of the theory. They
are order parameters of the theory. The vacuum expectation
values are determined by minimizing the effective potential
for the order parameters.

In the present case, the order parameters we have to take
into account are

(A, (B, (G, (D), ey

where A.(B,,G,) is the Euclidean time component of
the SU(2),.[U(1)y,SU(3),] gauge field and @ is the
Higgs field.

Let us discuss the parametrization of the vacuum expect-
ation value (1) in the electroweak sector. By using the
SU(2);, x U(1), degrees of freedom, we can parametrize
the vacuum expectation values as

El (A;) = 2zdiag.(p, —¢), g?y (B,) = 270,

T
<<I>>=\%<‘Z). @)
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Here g, gy are the SU(2),, U(1), gauge couplings, respec-
tively. Let us note that ¢ (also 6) is physically identical
to p+1(l €Z). The ¢,0,v, p are real parameters. One
can choose another parametrization, but equivalent to (2),
given by

<A1> = 27T<{p3 7 ), @ <BT> = 270,
Y1 —¢3 r

<‘1>>—\%p(;),>- 3)

The parametrizations (2) and (3) are mutually related by the
transformations

(@) = V(®),

where V is defined by

1 v -
V:7< p) with
Vpr+vr\p v

VVi=Viv =1, detV = 1. 4)

One easily finds that
_ 2op _v-p? / 2 2
(p]_1)2+p2’ ¢3—U2+p2(/)’ v = V" + p.
(5)

We employ parametrization (2) in the paper. Let us note
that in the vacuum expectation value of the Higgs field
there remains the component p that can break the
electromagnetic U(1), denoted by U(1),,, invariance
contrary to the usual case where (A;) and (B,) are not
taken into account.

In the SU(3), sector, one can parametrize (G,) as

g—;(G,) = 2zdiag.(w,, w,, ®3)

g, is the SU(3), gauge-coupling constant. @,(r = 1,2,3) is
physically identical to w, + (I € Z).

Let us discuss the potential at the tree level. The Higgs
potential is given by

A
Vi =2 47 (37D)2. )

In the background of (2), the potential at the tree level is
given by the Higgs potential (7) and the contribution
from the Higgs kinetic term, which yields the third term
below,
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ViEs = 2l (@) + 5 ((@)P)2

2 A 2xT)?
=B e e+

2 2
x{<<p+§> p2+(¢—§> vz}. ®)

There are three extreme points:

2u?
(I>:p:07 v = 77 (p:&:O’ (9)
2
(I): p=v=0, e:zﬂ—”T, ¢=0. (10)
u
m): p=v=0, 6=0, = 1
(I): p=v =5z (D

It is easy to show that (I) is the vacuum configuration and
that (II) and ( III) are the saddle point configurations.
The configuration (I) is the usual vacuum in the stan-
dard model.

For latter convenience, let us minimize the potential
under the assumption p = 0,

2,2 2xT)? A%
Vgee|p=o:—%112 +§U4+( 2) ((p—5> 2. (12)

There are two extreme points:

s 0_
(I) v = 7, (,0—5*0» (13)
2 2
(I): v =0, <¢—§> = <2;‘—T> L4

It is easy to show that configuration (II) is a saddle point
and that the vacuum configuration is given by (I). Let us
note that as long as the second equation in Eq. (13) is
satisfied arbitrary configurations for ¢, 6 are allowed.

ITII. ONE-LOOP EFFECTIVE POTENTIAL

The one-loop effective potential is obtained by the
standard prescription. To this end, one needs to expand
the fields around the vacuum expectation values (2) and
takes quadratic terms with respect to fluctuations. The
calculation is straightforward, but a little bit tedious
because of the new order parameters. Namely in the present
case, as discussed in the previous section, there remains the
component p in the vacuum expectation values of the Higgs
field that can break the U(1).,, invariance, and accordingly,
this results in couplings that do not conserve the U(1),
charge. This never happened in the past calculations of the
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standard model at finite temperature. This is entirely due to
the new order parameters, that is, the vacuum expectation
values for A,. We present the details of the calculations in
the Appendix.

The quadratic terms are given by Eqs. (A23), (A28),
(A35), and (A44) in the Appendix. One needs to find the
eigenvalues for the matrices Mguge, Miyiars Manoss M quarks
and Mepo, and has to sum up all of the Matsubara mode
labeled by the integer n whose dependence in the eigen-
values is quite nontrivial in the present case. It may be also
difficult to carry out the summation with respect to n
though we obtain the eigenvalues. The matrices are too
complex to calculate the effective potential as analytically
as possible because of the increased order parameters.

We are very much interested in the possibility of whether
the new order parameters, namely, ¢, 6, take the nontrivial
values or not. Taking account of the fact that at the tree level
there is no vacuum that breaks the U(1),,, invariance, it is
likely that perturbative corrections do not induce the
vacuum that breaks the U(1),, invariance. Therefore, it
may be natural to assume p = 0. Since the tree-level
potential has the global minimum (13) under the
assumption p = 0 as shown in Sec. II, let us impose an
ansatz, which is given by

0

p—~=0. (15)

:0’
p 2

This drastically simplifies the quadratic terms with the
dependence on the new order parameters ¢, 0, and we are
able to perform the analytic calculations for obtaining the
effective potential at the one-loop level by the standard
prescription. The details of the calculations under the ansatz
are also given in the Appendix.

Let us quote relevant results from the Appendix where
we give notations and present details of calculations. The
quadratic terms for the gauge sector are given by

EW(2 = 1 -, -
‘Cgauée)|ansatz = Wi DWi(Q)‘ijVV;r + 5 (A?, Bi)

DA3 &7)2 3
(2R o
%1}2 DB Bj

DV =87 + (9, — i(22T)(2¢))? —%2122,

2
DY = + 02— T2,

N

where

2
DB:%+%—%#.UD
As we can see, the second term in Eq. (16) can be
diagonalized by the usual rotation defined by Eq. (AS5S5)
in the Appendix. The eigenvalues are given by Eq. (A56) in
the Appendix. The new order parameter ¢ appears in
the DV". Then the one-loop contributions from the gauge
sector are given by
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9

2
+—02}

Vone—loop
4

gauge

1
:6x?/ln {k% (24T (n - 20)?
Uk

1 2 2
+3 x—,/ln k2 + (22T )*n? +g—|—79),02

21 k 4

1
+3x5; /k In [k% + (2;;T)2n2}, (18)

where we have defined
d3k
=T Z (19)

n=—oo

The integer n stands for the Matsubara mode.

The quadratic terms from the scalar sector under the
ansatz, including the Euclidean time components of the
gauge fields, A?, B, are given by

1o, - A a)\ (Al 1
£(2> — — (Al A2 N i —(q", &P
scalar lansatz 2( T T) —a A A% +2(g g)
B g ! 1 .- (D 1
-5 C)\¢ 2 I E

1 - 1 -
) —|—§hFh —l—EGOGGO, (20)

one-loop
Vscalar

+1x / In [k% + (22T)*n* +
2i k

=2x —/ In [kz (27T)%(n - 2¢)?
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where
- g2
A=07+02—(2aT)*(2¢)? —sz,
_ A 92 _
B=0%+0%— (22T)*(29)* + 12 —Ezﬁ—zvz:a
2 2
D=2+ -T2, E=2402-T 42,
4 4
_ 3
F:@%—f—@f—}—/ﬂ—iﬂvz,
B A 2 2 2
G=P+Rypp -t T
2 4
~2(22T)(29)0r, §=-2024T)(20)0,, 1=%L02.
(21

The first and second terms in Eq. (20) are automatically
diagonalized by the original complex base,

1
:75(9' Fig?). (2

+

The third term is diagonalized by the usual rotation by
Eq. (AS55), as before. The eigenvalues are given by
Eq. (A61). Then the contributions from the scalar sector are

2
2

9+9Y2
4 ”]

1
+1x —,/ In[k? + (27T )*n?]
2i k

1
+2><— ln

+1><—/1n
I1x— [ 1
+ le,An_

The quadratic terms from the ghost sector are given by

k? + (2xT)?

k? +

ﬁ(z)

ghost | ansatz —

(24)

where DW*, DA’ DB are the same as the ones given in
Eq. (17). Then the contributions to the effective potential
are

k? + (22T)?

(22T)*n?

y) 2
—M2+§Z}2+gz’l)2

2 2
g+ gy 1}21|

(n—2¢)*

|

/1

7V 2+

n— 4= 1

2 +%92} | 23)

-loop 1
Vone' — 4% —
ghost 2i

—2x—/ln[k2 © ety 4 L9 Igy 2]

-2 x —,/ In [klz + (ZHT)znz} .
21 k

We observe from Eqgs. (18) and (25) that the on-shell
degrees of freedom for the gauge fields are extracted by the
ghost fields. Let us note that the ghost fields obey the
periodic boundary conditions [9].

2
ln [k? + (272T)*(n —2¢)* + gZ vz]

(25)
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The SU(3), gauge contribution to the effective potential
is given from Eq. (A51) in the Appendix by
3

PHYSICAL REVIEW D 89, 105032 (2014)

We consider only the third generation for fermions.
Our results do not change even if we introduce the first
and second generations with the mixings among the

ngllj’(;f;()p (4-2) Z % / In[k? generations, and we simply assume that the neqtrino is
r.q=1 k massless. Then the quadratic terms from the fermions are
2 2 given by
+ (22T)*(n+ 0, — w,)?]. (26)
|
.= f, » f
@ o iD,, Vikd iy o —iDy, \/—%ﬂ b,
Ly rmionlansaz = (1> Tr) f = + (b, bg) /o - b
v —iD,, IR v —iDy, R
—iD,, \f/i v 7 .
+ (71, 78) ; ~ ( ) —iv Dy, vy, (27)
“zp —iD, R
2 R
where
_ ) 4 _
DtL =V (a‘r - Z(Q’HT) <wr + §(p>> + yiai = Dtkv
_ . 2 _
DbL =7 a‘r_l(ZET) wr_§§0 +7iai:Dva
D‘L'L =V <a‘r + Z(ZET)Z(p) + yiai = DTR7
DDL = 7/181 + 7/[8[- (28)

The contributions to the effective potential are given by the determinants of the two-by-two matrices in Eq. (27) and by

taking the logarithm of them, which is given by

one-loop
errrnlon

= (-1)2% x

—lilln{k%—f—(ZﬂT)z(n—i—%—

X—Z/ln{kz + (22T)? (n+;—a)r+ »)* +

I

_ 2
(ﬂ) 5

/
i

1 1
ek [nfig e eerpo s ez + B
Uk

22
7X7

+(-1)3

2

Let us note that the half integer in the Matsubara mode n
comes from the antiperiodic boundary condition of fermion
for the S! direction. Collecting all of the contributions
obtained above, we obtain the effective potential at the one-
loop level under the ansatz (15), as given by Eq. (A70) in
the Appendix.

The typical expression we have to evaluate is

1
Visis = (-1 Ny (5:) [ 1082 + a7

X (n+ @)* + m(v)?), (30)

lil In [k,z + (22T)*(n + ;)2] :

2

(29)

|

where F' takes 1(0) for fermions (bosons) and N g.,. counts
the degrees of freedom. Following the standard prescrip-
tion, Vy.es consists of the zero-temperature part and the
finite-temperature part,

Viasis = Viaos T Veasies: 31)
where
m(v)* m(v)?\ 3
Vgasl(is = _(_1)F+1Ndeg 4(4 ) (1[1( M2 _5 . (32)
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Vl’fa#s?cs = ( )F+1Ndcg (2 Z 277:m§0
2
x (m(TZ) m2> K, <@m> (33)

Let us note that the Matsubara mode n is now replaced by
the “winding” mode m through the Poisson’s resummation
formula,

/4 Tze t(22T)* (n+¢)?

n=-—oo

Z e~ 4T2,+2mm(/7)‘ (34)

m=—00

Here we have employed the MS scheme for the zero-
temperature part of the effective potential, which comes
from the m = 0 mode and M is a certain mass scale. K,(z)
is the modified Bessel function defined by

|

PHYSICAL REVIEW D 89, 105032 (2014)

/oo dirv=le A=t = 2<%)§K2(2\/E). (35)

0

Equipped with Egs. (32) and (33), we finally obtain the
effective potential at the one-loop level, as given by
Egs. (A73) and (A74) in the Appendix. Let us note that
the finite-temperature part (33) becomes the same as the
one obtained by Dolan and Jackiw [1] for ¢ =0 and
m(v)/T < 1 by expanding the modified Bessel function in
polynomial [10].

We are very much interested in the new phase, in which
the new order parameter ¢ takes the nontrivial value except
for the center of gauge group. The new order parameters ¢
and w, appear only in the finite temperature parts of the
contributions from the W=, G*, 1, b, 7, G,, which is given
from Eq. (A74) by

2 =1 my (v)? my (v)
T#0 _ 4 w 2 w
V(p.a)r—dep. =—4 7(277:)2 T r; ﬁcos[ZEm(Z(p)] <7Q m > K2 <T m

2
4 mg=(v)” 5 mg=(v)
-2 (277:)2 T mz::] %Cos[zﬂm<2¢)] (Tm )Kz (Tm
3 0 m 2
-1) 4 m,(v m,(v
+4 T4;;(m cos{Zﬂm(a},—i-ggo)] (—t](Q) m2>K2< ty(, )m>
3 ) 2
1) 2 my, (v my, (v
+4 T4;;(m COS|:271’m<a),—§g0):|< [7("2) m2>K2< ”T( )m)
2 (=D m(v)® me(v)
+4 (27[)2 T4,,; - cos[27zm(2(p)]< T2 m? | K, —m
3 © 9
- ( Z 27 s2am(w, — o,)]. (36)
=im=l |
The notation m;(v)(i = W,G*,t,b,7) is defined by . =1 N -
Eq. (A75) in the Appendlx. fx2) =~ Z% os[2mmyx] (2m)? K (Zm),
Let us minimize V; . —dep, With respect to @, w,.. It has =
. S —1)m
been well known that the SU(3), gauge sector, the last line g(x.3) = + Z ( 2 cos|2amx] (3m)?Ky(Zm).  (39)

in Eq. (36), is minimized at

o, :%‘ (k=0,1,2) (modl). (37)

One sees from the Polyakov loop defined by

Wp = Pexp (zgv /T dT<GT>>

that it is the center of the SU(3), gauge group.
The typical structure of the potential (36) is given by the
following two types of the functions:

=e2%15,5 (38)

k
3

®,=

1 m

3
Il

We numerically depict f(x,Z) and g¢(x,Z) for positive
values of z in Figs. 1 and 2. We find that both of the
functions are minimized at x = 0 for z > 0. This result is
understood by noting that the m = 1 mode dominates the
functions f(x, Z) and g(x, Z) to yield x = 0 as the minimum
configuration. It is also confirmed numerically that the
m =1 mode dominates the two functions. Then the

configurations that minimize VWD —dep. are given by

4
a)r—l—ggo:O(r: 1,2,3),

2¢ =0 (modl) (40)

2
w,—§¢=0(r: 1,2,3),
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FIG. 1 (color online).

The behavior of f(x,Z).

and (37). The first and the second equations in Eq. (40) are
a result of the top and bottom contributions, and the third
one is resulted by W* G*, and tau contributions. We

immediately find that V}7" .

k/2(k=0,1) and o, = k/3(k = 0, 1,2) (mod 1) for non-
zero temperature. This also implies 6 = 0 (mod 1) at the
vacuum from the second equation in the ansatz (15). We
conclude that the center of SU(3), and SU(2), is the
vacuum configuration at finite temperature.

There is no new phase in which the new order parameters
take nontrivial values other than the center of the gauge
group. It is crucial that the boundary condition of fermions
for the Euclidean time direction must be antiperiodic due to
the Fermi statistics. This is essential for ¢ to take the center
of SU(2), at the minimum of the effective potential. This is
a remarkable difference when we consider the boundary
conditions of the fields for extra dimensions, which is
a priori unknown.

Let us mention the studies of [8], where the very high-
temperature behavior of the standard model has been
studied by the effective potential for the zero modes of
A., B,, and G, with the assumption of p = v = 0. We can

is minimized at ¢ =

7

FIG. 2 (color online). The behavior of g(x, Z).
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reproduce the results of [8] by taking p = v =0 in the
quadratic terms (A25), (A32), (A37), (A46), and (A47).

IV. CONCLUSIONS AND DISCUSSIONS

We have taken account of the new order parameters
arising from the zero mode of the Euclidean time compo-
nents of the gauge fields for studying the effective potential
of the standard model at finite temperature in four dimen-
sions. Because of the increased number of the order
parameters, there remains the component that can break
the electromagnetic U(1), denoted by U(1).,,, invariance in
the parametrization of the vacuum expectation values of the
Higgs field.

The existence of such a parameter complicates the
quadratic terms of the fluctuating fields by which one
obtains the effective potential at the one-loop level. We
have imposed the ansatz, which preserves the U(1),,
invariance, in order to study the effective potential as
analytically as possible. Then we have obtained the analytic
expression for the effective potential and study the vacuum
structure, namely, the possibility of whether the new order
parameters take nontrivial values except for the center of
the gauge group or not.

We find that the new order parameters do not take the
nontrivial values. It is important that the fermion obey the
antiperiodic boundary condition for the Euclidean time
direction due to the Fermi statistics. Thanks to this fact, the
new order parameter ¢ always takes zero at the vacuum for
finite temperature. It has been pointed out in [6] that the
nontrivial phase exists if there is a cross term between v and
@ in the tree-level potential. One may think that the absence
of the cross term in Eq. (8) due to the ansatz is the reason
that no new phases exist. Such a cross term, however, is not
important for the existence of the new phase. The boundary
condition for the compactified direction is essential. In the
case of [6], the boundary condition can be taken to be
periodic even for fermions because of the spatial compac-
tified direction, which contrary to the Euclidean time
direction is free from the Fermi statistics. This makes it
possible that the new order parameter ¢ can take a non-
trivial value except for the center of the gauge group.

Some comments are in order. Originally there are four
order parameters, v, p, ¢, 6. Even though it may be unlikely
for p,,0 to have nontrivial values at the vacuum, one
should calculate the effective potential at the one-loop level
by using the matrices in Egs. (A25), (A32), (A37), (A46),
and (A47) without imposing any conditions among the
order parameters. To this end, one needs to develop the
technique to sum up all of the Matsubara modes » that have
the complicated dependence in the eigenvalues of the
matrices. Concerning this point, we mention the limit
g,gy = 0. Even in the limit, the dependence of the
quadratic terms on ¢, 0 is survived in the simplified form.
Nevertheless, it is still difficult to perform the analytic
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calculation for obtaining the effective potential at the one-
loop level.

It may be true that the order parameters arising from the
Euclidean components of the gauge fields do not develop
nontrivial values except for the center of the gauge group. If
one considers two Higgs doublets models, including the
minimal supersymmetric standard model, for example, the
number of order parameters in the models is larger than
the usual case because of the additional zero modes of the
Euclidean components of the gauge fields. Then there may
be a possibility of a new source for CP violation at finite
temperature in dependence on the structure of the Higgs
potential.]

We stress that as long as the zero mode of the Euclidean
time component of the gauge field becomes the dynamical
variable at finite temperature field theory, it is important
and natural to take into account the effective potential at
finite temperature in addition to the usual order parameter
such as the Higgs field. We are now studying the electro-
weak models such as the two Higgs doublet models,
including the minimal supersymmetric standard model,
at finite temperature by taking account all of the order
parameters [12]. We are interested in whether the order
parameters take the nontrivial values or not. This will be
reported elsewhere in the future.
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APPENDIX

In this Appendix we present the details of notations and
calculations, some of which are used in the text.

1. Quadratic terms

In the imaginary time formulation of finite temperature
field theory, the Euclidean time 7 is defined by the Wick
rotation

T =it (A1)

Here we use #** = diag(1,—1,—1,—1) as the Minkowski
metric. Accordingly, the Euclidean time component of the
gauge field is related with the Minkowski component of the
gauge field by
AT - —iAo, BT - —iBo,

G, = —iG,. (A2)

'A spontaneous CP violation at finite temperature has been
reported in [11].

PHYSICAL REVIEW D 89, 105032 (2014)

The Euclidean time direction is compactified on S!
whose circumference is the inverse temperature 77!,
Bosons (Fermions) must obey the (anti) periodic boundary
conditions because of quantum statistics. Then the
Euclidean component of the momentum k, = —ik, is
discretized as

w8 =2xnTn for bosons,

ke = { wf =2xT(n+14) for fermions, (A3)
where n denotes the Matsubara mode, n = 0, 1,2, ....

In order to obtain the effective potential at the one-
loop level, we expand the fields around the vacuum
expectation values as defined by Eq. (2) in the text and
take up to the quadratic terms with respect to the
fluctuations.

Let us start with the gauge sector of the standard model,

EEW

1 " 1 w
gauge — _z tr(prF ) - ZBMVB ’

(A4)
where F,,,B,, are the SU(2),,U(1)y field strengths,
respectively. We consider the SU(3), gauge sector later.
The quadratic terms from the gauge kinetic terms are
obtained by

N = 2 (290,40~ 0,A90,47)
- (DM PR (DI A )~ 0,420,
—% (a,Bja,B, - 8,-3,0,3,) ~0,B.0.B,
- %&B,@,B, + (DY 4,)e0,A¢ + 0,B,0,B,,
(AS)
where we have defined
D}'PA, = 0.4 —igl(A).A] (i=1.2.3). (A6)

a(=1,2,3) is the SU(2), index, and the i, j, [ stand for
the space component. The bar on the field denotes
the fluctuation. The Higgs kinetic term and potential
are

Liiges = (D, @) DF® — Vy, (A7)
where
. .g
D,®=0,0—igA,®d - z%Bﬂ@,
A,
Vy = —u20Td + 3 (T ®)2. (A8)

The quadratic terms of the Higgs sector are given by
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2
- oTe + ;( [(@)PID]? +2((2) @) (2T(D)) + ((2)®)* + (27(®))?). (A9)
Here we have defined
D.®=0,8—iglA)d— i%y (B,)®. (A10)
Now let us introduce the gauge fixing and the ghosts,
Lyt irp = [’ngrFP + [’gf+FP = (=1)65(C*F*) + (~1)65(CF), (ALD)

where 55 denotes the BRS transformations [13]. Let us note that C* and C are antighost fields. The gauge fixing functions
are chosen to be

Fi=-9,A% — o [(DfU(Z)A,)“ —ig (ciﬂ % (@) — (@) %cﬁ)] + %b“, (A12)
F=-0,B;, — [aTB, - ig—zY (0T (D) — <<I>>"'i>)} + %b, (A13)

where a; and a, are the gauge parameters. Hereafter we take a; = a, = & for simplicity. After operating the BRS
transformations and performing the integration of b* and b fields, the quadratic terms from the SU(2), part are given by

ESU(Z)L (2) — (_l)éB(CaFa)

o — L g aco,dc - (D4, )e0,A0

|quadratic é: i Y

+igloas (85 (@) - <¢>*5&>)} S (DDA, e

2
pSURIZ ya 5 T (D) — (D) G 8 (5 o) — (o )

+z§g[( A,) (cp (@) - (@) 2¢>]+ 5 <<1> (@) - (@) 2@)

—iCe92C - ieC (DY DV c)e

+igeCe <g (@)1 (D)C* + ngc@)W(@)). (Al4)

Likewise we obtain the quadratic terms of the U(1), part,
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L9 @ — (—0)55(CF)| gadratic = 5‘9 B,0,B; — 0:B,0.B, + 2L 9y [a B < (D) — <<1>>T<i>>} - ga,B,a,BT

of
b [a B, ( (D) — <q>>*<i>>} + % <<i>f<<1>> - <<1>>T<i>>2
—iCO?C — iECO2C + iEgyC(D)T <g§ Cc* + % c> (D). (A15)

The first term in the third line of Eq. (A5) [the second term in the third line of Eq. (AS5)] is canceled by the second term in the
second line of Eq. (A14) [the second term in the second line of Eq. (A15)] after the partial integration. The third line of
Eq. (A9) is canceled by the first term in the third line of Eq. (A14) and the third term in the second line of Eq. (A15) after the
partial integration.

By noting that
(D,®)'A,(@) = -7 (D" A,)(®) + ighTA(A,)(®) + i & (B,)A,(®), (A16)
(D:®)'B.(®) = ~B70,B,(®) + igh' (A.)B.(®) +i 2 & (BB, (), (A7)
where the partial integration has been performed, the second line of Eq. (A9) is recast as
- (0.8 (~igh (@) - 12 B.(@)) - (i0(®)'A, + i (9)'B, ) D,

=iy =D V) () + i Al () + 1B (BYA()

1 (D)10,B,® + ig(®) B, (A,)D + i% <¢>"'B,<BT><T>] . (A18)

The first terms in the second and the third line of Eq. (A18), together with the first term in the fourth line of Eq. (A14), are
summarized into the compact form given by the first term in Eq. (A19) below. Likewise, the first terms in the fourth and the
fifth lines of Eq. (A18), together with the first term in the third line of Eq. (A15), are summarized into the compact form
given by the second term in Eq. (A19) below. The compact form is given by

ig(¢ 1) (é*(Df”‘”ATM@ - <¢>>*<Df”<2)AT><T>) + 2 () (@B@*@ - <¢>>*<T>8£T> L A1)

which vanishes for the Feynman gauge £ = 1.
The quadratic part of the Lagrangian for the gauge fields Af’ and B; is given by

— 7 (®)TAA (D) — ggy(D)TA;B; (D) — gY) (®)B;B;(®). (A20)

The quadratic part for the ghost fields C%, C%, C, and C is given by
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LR = —itegrce - iglo (D@ DSV ) - iCoRC - ieCoEC
e a9 2a  9Y i a . = N §
+iggC (S (R)PC + T C(2) 2(®) | + itgy C(®)( J2°C +5C |(®). (A21)

Let us comment on the gauge fixing. We have chosen the gauge fixing in order to cancel all of the unwanted mixing terms
with derivatives between the gauge and Higgs fields. We found that this can be done by the gauge choices of (A12) and
(A13) with @y = a, = & = 1, as seen above. One might think that our results are gauge dependent. This is not, however, the
case. The gauge invariance of the effective potential at minima (also maxima) has been proved in [14]. Furthermore, the
vacuum expectation values of gauge fields are also gauge invariant because they correspond to the Wilson (Polyakov) line
phases for the Euclidean time direction, which are manifestly gauge-invariant quantities.

The quadratic part for the scalar fields A%, B,, and ® is given by

££§2)11a1' = _%aiAgaiA? - g (DVPA ) (DSVP4 )
- %a,-B,a,.BT - ga,é,a,ie, —9,5°9,8 — (D,8)'D.®
— G (2(P)(A)A P 4 20TA(A) (D) + (P)TAA (D))
~ 9 (281 (B,)A,(®) +2()A,(B)® + 2B (A,) B.(®)

2P — =
+u 5

2
+ 6% (@@ + (@ dy+

+ 1 (e )08, (9) - (2)'50,8,) (A2)

The last two lines in Eq. (A22) vanish when we take the Feynman gauge & = 1.
Let us put the parametrization (2) into Eqs. (A20)-(A22). We obtain for the gauge sector E(gﬁflge that

!
¢

_ 1 92 _
AT [@ja% _ (1 _E)a,.aj + (az L +p2)>a,.,]A;

2
_ . g
Egzlge = Wi [511(9[2 - (1 )a,a] + <(81 - Z(ZHT) (2(0))2 - Z (1}2 + p2)>5”:| W;r

1. 1 7 _
- 2 _
-5 (97— v))ATB, - %ggypv(W? +Wi)B (A23)
Wy
= (Wi, A} B)Mguee | A7 |, (A24)

where

105032-11



MAKOTO SAKAMOTO AND KAZUNORI TAKENAGA PHYSICAL REVIEW D 89, 105032 (2014)

Dl‘,}yi 0 . - \{;—ggYpU&]
MZyge = 0 3Dy —1399v(p* = v?)8;; |- (A25)
—@ggypvéij —%ZI;QQY(Pz - 02)51‘1‘ %Dﬁ»
Here we have defined
1 - -
W,f = 7§(A}4 F zAl%) (h=r1,1,2,3) (A26)

and

+ 1 2

¢
3 1 gz
D} = 6;;07 - (1 - E) 9;0; + (83 - —(”2 + Pz)) bijs
1
Df = 5,07 - (1 _E> 9,0; + (82 o (v* + p2)> (A27)

One observes that there is a coupling between W; and B; that breaks the U(1).,, invariance due to the vacuum expectation
value p. This also happens in the scalar, ghost, and fermion sectors discussed below. The scalar sector is given by

£(2>

scalar

- Wi [08 + 600, - iaa)20) - (2 )

% {32+£82 o ] % [82+582 T —l—p)]B
1 o\ \ 2 2

+§h[a$+<a —l27rT( 5)) ( 2_|_2> i92p2]h
1 0 ) 2

+§G0[8%+<8 —12ET< 5)) ( +%> ' Zgy gL p]
G‘[@%—l—(@,—z(ZnT)( §>>2+ﬂ _,1<2 ) if— 59 —;g”pz}G*
A

2
—5[%(G+2+G‘2)+\/§pv(G++G ) ] e +9Y PH(G*2 + G2)

—g(2xT) [% ((p + g) {(Gt + G A + (WH +WD)h

0 _
+i(WH = W;)GO) - v(go —§> (WGt 4+ W/G- —A%h)}

— gy(22T) [\% <(,0 + g) (G"+G7)B,—v <(p - g) th}
V2

- 99y E (p* - v*)AB, +TPU(W++W )B } éﬁg *po(GT 4+ G- )h+§£gypv(G - G)iG’

+ig(é—1) 2\% [P(G™ = G")O.A? + V20(G™(9, ~ i(2aT) (20))W{ ~ G*(9, — i(22T ) (—29)) W)
+ p((9: —i(27T)(=29))Wz = (0: — i(22T)(20))WI)h = ip((9; = i(22T)(=2¢)) W

+ (8, — i(2aT)(29))WH) GO + ivV20G°D,A%] + igy(é — 1) —= [p(G~ — G1)d.B, — V2ivG°d,B,]. (A28)

1
2V/2

Here we have defined
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— G Gi=i( 'xig?) (A29)
“\5+iG%) ) BV A

In terms of the real fields defined by Eq. (A26) and Eq. (A28) becomes

1- e _
£ = 51|08 + 508 - a1y ) = (74 07|
1 2 - - - - -
5A2 [62 FEOL - 2T (20)2) =% (7 + v2>]A% —24T(20)(A10,42 - A20,4))
1 i _ 1_
1 0\ 2 3 p2 &
“nlor 482 — a2 =0 2 2_ (2.2, P 220
+2 {81—%8, (ﬂ)((p+2> +u ﬂ(zv +2) 4gp}
1 A% vt p? 7+ 97 g
260002 £ 02 — (2272 (= + 2 2L (VPN LY TGy 2 9 o0
+2G{8l+8, (ﬂ)((p+2> +u /1(2—1-2) 13 R §4p]G
1 A A 3 g2
212 482 — (2T v 2_ Ao 2.0 LY o
+2g {8,—1—81 (n)((p—i—z) +u 5 Y 2/119 541}}9
1 0\ 2 2 A e 7+ g
22192 4 82— (2T v 2_ Ao Ao G, Y 2| 2
+29{3,+3f (ﬂ)<<p+2> tH =St =Pt = e = g
9 1 2 2 1 9 0 0
- 27T go+§ (¢'0.9° — g*0.9") = 27T =5 (hd,G° — GY0.h)
O\, 153, 11 72,0 AV 2 3
—9(22T) |p| @ +3 | (9'A2 + Ath + AZG") —v( ¢ =5 ) (Aeg' + AZg? — A2h)
0 - o0\ -
— gy(22T) [p (fp + 5) g'B.—v (fﬂ — 5) th}
Ly i3 [ g 1 gy 20 1
- 99y Z(p - )ATBT+§vaTBT + & pvgh+ 7 pug G = Apvhg
~L(E—1)[(pg? + vG*)D, A — v(g'0,A% — ?0,AL) + p(hd,A% - G°D,A!
2
— (22T)(29)v(g' A} + §*A2) + (22T) (29) p(hA; + G°A7)]
- % (&-1)(pg* = vG")d.B, (A30)
Al -
_; A a b —-¢ 0 ¢ d_ d
Az —-a A ¢ b 0 0 —d d
! b —¢ B g h i j 0
1 1 2 1 0 2 gZ Mgcalar = . b 9 C_ d b 0 k—
E(A A? SALBL R GOM | S, | (A3D) 0 0 h —-d D I m -t
Az c 0 i -b I E n e
B, d d j 0 m n F J
i d d 0 k ¢ - —-§ G
GO (A32)
where M2 ealar 1 defined by The components in M? calar Ar€ given as
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A = 0% + £(0% — (22T)*(29)?) —g;(p2 + v?),
A 3 7
B =0+ — (22T)? _A o 290 9 o
0;+0; - (2n <g0+ ) —5v 2/1p 5411,
A A g ¢
C=0;+ 07— (2aT)?*( o+ ) —3v =3Pt =i =2 (P )P,
D= 82—1—582—?(])2—5—1;2)
2
E= 3+ et -2 (2 02),
0\2 3 p? ¢,
F=0*+02—(2aT)* | —p += R B ,
07 + 03 (ﬂ)((p+2> +u <2v+2> 4p
2 o 2 AR P g +9y 2
G =0;+0:—(2aT) —(p+§ +pt =il = 7 5 p,
0
a==2(22T)(20)0,. b= gv(22T){ ¢ —5 | =m(22T)(2¢)v.
g9 0 0
c= _TYPU’ d=—gp(2xT) (tp + 5) +m(22T)(20)p.  g=-2(2aT) <40 + 5) ;.
- 0 0 . 0
9=-2021T){9=5)0.  h=-gpQaT){@+5).  i=-grp2rT){o+5).
2 2
S _ o _ 92 . 9
j=&gpo=dpv.  k=&Tpu. L ). om gv(2frT)<rﬂ 2>,
0 i - - _
n=gyv(2zT)| ¢ — 5 ) ¢ = nvo,, d=mn,po,, b =mnpo,, e =nvo,, (A33)
|
where we have definedn, = —g(é - 1)/2,n, = —gy(E— 1)/
2, which vanishes if we take the Feynman gauge & = 1.
Let us proceed to the ghost sector. As usual, it is Cc-
convenient to introduce o oas
=i(C*,C,C3, C)MéhoSt o | (A36)
1 _ |
Ct=—(C'"FiC?), Ct=—(C'"FiC?. (A34
Then the ghost sector is given by
where M? shost 1S given by
2
2 . g -
£ =€ (<060, ~CaT) )P+ (P4 P M
2
+iC- <—a,2—5(8,—i(2nT)(2¢))2+5%(p2+u2)> ct -DV"* 0 0 £L2 199y pv
R N B 0 -pV* 0 £42 99y pv
+lC‘ <_al _567 +£Z(p +v ))C 0 0 _DA3 5%(p2_1)2)
2
+i(_7<—812—§83+§i—y(p2+112)>c 5 99y PV 54 99vpv E4F(p* = v?) -D*
—lfgil( 2_p2)CC + 599Y< 2_2)eC (A37)

1Y 0 pr{C(C +8)—B(C 4O

1 (A35)
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where the covariant derivatives are given by

DY = 3 +¢[ (0, - i1 o) - 7+ )

2
: . gyl . gy4
DY = +¢ Bf—g—(pz—ﬁ—vz) . DY =V,—igA,~iZ -B, Djf=V,-i" "B,
4 23 23
2 br .9y 2 . . .9y
=02 +§(82 S )) (Aa3g)  Di'= ﬂ‘lj(—§>3w Dy, =08, —igA,—i=(=1)B,,
T, .9y
These are the same as (A27) with £ =1 aside from the D,f :aﬂ - ’7(_2)3/1 (A41)
factor 6;;.

Let us introduce the fermions of the third generation, .
and f,, . stands for the Yukawa couplings for the top,

(1 (v bottom, and tau. Here Vﬂ stands for the covariant derivative
0L = (bL)’ k> br; L= (TL > TR (A3 for the SU(3),., which is defined by

Since our results do not change even if we introduce the

first and second generations with the mixings among V,=0,-i9G,. (A42)

the generations, we consider only the third generation.

We simply assume that the neutrino is massless. The

Lagrangian for the fermions is The Euclidean component of the gamma matrices is
_ _ , _ , defined by y, = iy, with

Lienmion= Q1 ir" D Qp +Tiy" Dif tg+ byiy" Dy by

+ £ (i ® QL+ 0, i) + f1 (b®T O + Oy Pbp) et} = =26, (v =1.1.2.3).  (Ad3)
+7Ll-]/ﬂD}lllL+%Rl.}’ﬂD;RTR +fr(%R(I)%lL +ZL¢)TR),
(A40)

|

Ehion = =100 (1200 = i0.G2) = i0lar) =% (8 ) + 0, )2,

Then the quadratic terms from the fermions are

— 2,9 - T\ P =
— 1R (71( —ig,(G ZTY<BT>> + }/iai> tg + [i(Tr(®)T 0L + O (P)1g)
. g . ~
—ibg (71 <87 ig,(G;) + lgy< r>> + 71'81‘) br + f5(br(®) Q1 + 01 (®)bg)
—ily, (77 <az' )+ l? <Br>> + }’iai> Iy
— T (J’T <aT + igY<BT>> + Yiaz) g+ [ (T(®) 1, + 1, (D)) (Ad4)
By substituting the parametrizations for the vacuum expectation values (2) and (6) in Eq. (A44), we obtain that
Iy
t =
. R -
Lermion = (tLv iR Dy, bR)Mquark b + (I/L’ TL>TRs )Mlepton | (A45)
L
T
br K
[
where we have defined
. —iD 0 Lp
—iD,, \J;—’E v 0 \f/—”ip = v2
S : =/ Mle ton 0 _lDr L v (A47)
55U =Dy Ep 0 P LooV2
Mquark = —f f , (A46) Sz p Iy —iD,
0 Hp —iDy,, v V2 V2 k
f—\/%p 0 f—\/%v —iDy,

The diagonal elements are given by
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0
DZL =V <af - 1(2”T) <a)r + @ +6)> + Yiaia

DbL =7 <81 - l<2ﬂT> (Cl)r - @ +g)> + }/iai,

DTL =7, (af =+ 1(271'T) <(/) + g)) + J/,-@,-, DTR

DUL =7 (al' - 1(27[T> <(P _§>> + }/iai'

Let us finally consider the SU(3), gauge sector whose
Lagrangian, including the gauge fixing and the ghost, is
given by

i55(C2F%),  (A49)

Lsya), = tr(G,,G") —

where a(= 1 ~ 8) is the SU(3), color index and the gauge-
fixing function F¢ is chosen to be

1= 0,Gr - & (DY UG+ e (ASO)

as usual. The calculations are straightforward and go in
parallel with the SU(2), case except that there is no scalar
field like the Higgs field in this sector. Expanding the gauge
field G, around the background (G,) and taking the
quadratic terms with respect to the fluctuations, one obtains
that

2) 1 1 ~a
ﬁ(su(3)t, - 5 (51181 ( E) aia}') G/

1 _ _
— 5 (DEU(?’)c Gi)a(DfU(?’)c Gi)a

1. - _ ) _ _
3 0GE0,Ge 5 (DG ) (DG e
—iCtRCe — i, C (D D )e, (AS1)

where the covariant derivative in Egs. (A50) and (A51) is

defined by
SUBed — 9 7

D; G,=0.G,

—ig[(G,),G,] (u=7,1,2,3). (A52)

2. Quadratic terms under the ansatz

We have obtained the quadratic terms. It is, however,
difficult to sum up all of the Matsubara modes n because of
the complex dependence on n in the matrices (A25), (A32),
(A37), (A46), and (A47).2 As explained in the text, it may
be natural to impose the ansatz (15) in order to study the

*The derivative 9, is replaced by i(2zT)n(i(2zT)(n + 1)) in
the momentum space for bosons (fermions).

PHYSICAL REVIEW D 89, 105032 (2014)

D, =7, <6T —i(2=T) <a)r + 39)) +7,0;,

Dy, =y, (ar —i(2xT) (wr - g)) +7:0;,

= Y‘r(a‘r + 1(27TT)9) + yiah

(A48)

|
effective potential at the one-loop level as analytically as
possible. Under the ansatz with the Feynman gauge £ = 1
and & = 1, the matrices become so simple that we can
diagonalize them and sum up all of the Matsubara modes.

The quadratic terms under the ansatz for the gauge sector
is simplified as

(Wi, A}, B;)M;

gauge | ansatz

- W= + 1 A3 B DA3
:Wi D 5UW] +§(A;,Bl) | )
199yv

199y v
DB

o)
5,’/ _ N
B;

(AS53)

2

W= 02+ (0.~ i(24T)(29))" - %vz,

9Y2

2 2
=07+ 0; — 1

DY =02+ 02 -
(A54)

Diagonalization of the A? and B; sector can be done by the
usual rotation,

)= (0 )
Al Sy Cy

’ w [P+
x - o (A55)
= Sin =
SW w 92+g%,

Then the eigenvalues in the momentum space are given by

2
k2 — (22T (n—29)? =L 02w

k2 — (22T —

24 2
%UZ'“ZI"

—k? — (22T)*n? - - AL, (A56)

The quadratic terms for the scalar sector are
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A;
A2

1 - g

(A}.,A%, gl’gz’Ag’BT’h’GO)Mgcalarlansatz = (A57)

N

) (5 0)(3)

I
“hEh+-G°GGO, (A
)(B,>+2 +3G°GG. (AS)

A=+ 02— (zﬂr)2(z¢>2—%v2,

- A _
B=0?+02—(2xT)*(2¢)* +p? —Evz —%1}2 =C,

2 2
D:%+%—%M,E:¥+%—%M,

~ 3 _ 12 P
F=0} +0;+p2 =S, G:a%+8$+u2—%——g Zgyvﬂ,
a=-2(22T)(20)d,. §=-2(22T)(2¢).. iz%v%

(A59)

The A;? and g sectors are diagonalized by the original
base defined in Eqs. (A26) and (A29). The A3 and B, sector
is diagonalized by the rotation matrix given by Eq. (A55),

ZT o Cy —Sy Ag
AL )] s, ¢ B, )

Then the eigenvalues in the momentum space are

(A60)

2
g
—k? — (22T)*(n — 2¢)* - Zv2 - WE,

—k2 = (22T)*n? —@ﬁ . Z

—k2 = (2aT)%n? - - AL,

2

A
—k? — (22T)*(n = 2¢)? + u? —Evz T

G*,
4

y 2 2
—k? — (2aT)*n® + u? —51)2 _9‘:791/”2 - GY,

31
—k? — (2aT)*n® + p* == v*--- h.

5 (A61)
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Let us note that in the above calculations the terms
proportional to —¢ +6/2 or p vanish and ¢ + 6/2
becomes 2¢ due to the ansatz.

The quadratic terms for the ghost sector are

Cc-

- - - = C+
i(c+, C_7 C3’ C)Méhost|ansatz

o)
= —iC*Dy+C~ —iC~Dy-C* —i(C?, ()

5 DA3 %UZ C3
W2 DB c)’

DV =@ + (0, — i(22T)(2¢) )? —%vz,

1

(A62)

where

2
D=y -T2,

— gz
1 D =92 + 02 — 7L,

4
(A63)

By introducing the new bases by the rotation matrix

(AS5),

Cz\ _(cw =s0\(C

C,) \s» ¢ c)

Cz\ (¢, =s,\[C

C, ) \s, ¢ c )
the ghost sector is diagonalized. The eigenvalues are
given, in the momentum space, by

(A64)

2

& = (22T (n = 2)* = 0 CF.CF,

TG
4
—i2 — (22T)*n---C,,C,.

—klz - (2ﬂT)2n2 . Cz, Cz,

(A65)

Let us finally consider the fermion sector whose matrices
under the ansatz are given by

(ib ER’ Bb ER)MquarkLmsatz

v
(A66)

+ (DL ’ %Lv %Rv )Mlepton |ansalz 7L

TR
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- - _iDtL \J}_%U 153
= (tL’ tR) f .=
BV —iD;, IR
_ _ _iDbL %U bL
Fbube)| 7 <b >
ik —iDy, R
_iDTL f—fz v 7
+(%L57R) f — < > lI/LDU,I/L,
U —iD,, TR
(A67)
where
= 4 _
DIL =7 87 27[T r+§(ﬂ +y13,:DIR,
= 2 _
DbL =Y < 27TT (a)r—§§0>> +y181 :DbR’
D, =y, <8 +i(2xT) 2(/)) +7:0; = D,,,
Dy, = 7.0, + 1:0;. (AG8)

y/one-loop _
Lk

PHYSICAL REVIEW D 89, 105032 (2014)

Let us note that thanks to the ansatz the diagonal compo-
nents of each matrix for the top, bottom, and tau sectors
become identical. The eigenvalues in the momentum space

are
2 2 1 4 2 ft2 2
ki + (2aT) 5 —3% +? o, IR,
1 2 \2 2
k? (271’T)2< E a),—l—g(p) +% 2 by, bg,
2 f2
k2 + (2xT)? (n+ +2(p> +7’ V2T, TR,

k? + (2xT)? <n + 2> v (A69)

The half integer in the Matsubara mode 7 is due to the Fermi
statistics for fermions. Since the quarks have the color
degrees of freedom, the eigenvalues also depend on the
order parameter w, of the vacuum expectation value (G,).

Taking account of the eigenvalues obtained above, the
one-loop contributions to the effective potential are
given by

1 2
(6+2—4)x 2—/ In {kf + (22T)*(n — 2¢)* + %vz]

4

1 2 2
+(3+1-2) x?/ln{k% + (22T)*n? —l—g—'_—gyvz}
i Jk

1
+(B3+1-2)x 2—/ In[k? + (22T )*n?]
i

422

rql

. i
+2x5- [ In k? +

| -
+1x— [ In|k? +
2i i

(22T)%*(n —2¢)?

(22T)*n?

/lnk + (22T)*(n + w, — w,)?]

2 2
—ﬂ2+§1)2+%1)2:|

A g+gY2
,u+2v+ 1

1 [ 31
+1x 5 In|k? + (22T)?n? — u? + —vz}

+(—1)2ZZ%ll {kz + (2xT)?

+(—1)222%11n{k2

+ (2=T

2
1 f2
o) o4
1 2 \2 f2
) (n+§—w,+§§0> +7”v2}

1 1 2 g2
+<_1)22X—./ln K2+ Q2aT)?(n+=+2¢) +=0?
21 k 2 2

+ (_1)2;x%lln{k? + (ZﬂT)Z(n—i-%)T,

(A70)
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where we have defined The last four lines are the fermion contributions. In addition
to the usual order parameter v, the one-loop contributions
&k depend on the new order parameters ¢ and @,. As discussed
/ =iT Z / 2x)3 (AT1) in the text, the effective potential at the one-loop level
e consists of the zero and finite temperature part,
The first to fourth lines come from Wi, Z; . Al , and
GY%,, respectively, together with the ghost fields yoneloop — yT=0 4 yT#0, (A72)

Cc*,C*, Cy,, C‘Z,Cy,Cy,Cg’,‘, C?. The fields G*, G, and h
contribute to the fifth, sixth, and seventh lines, respectively. where

VT:() — _

1 my(v)? 3 12 m,(v)> 3
+4(4n)2mh(v)4<ln v _E)_4(4n)2m’(”)4<ln M _E>

my(v)? o (v)2
gm0 (0 3) e (0 3) (AT3)

and

YT#0 _ _4@ T mi % cos[2m(2¢)] (’”WT(ZUV m2> K, (mWT(”) m)
2™ S (5 o ()
—2 (23:) T Z —cos Ram(2¢)] (LQV m2> K, <mGT(”) m>

1o D (e ()

T S (e ()

e o) (L) (50
e S e om0 30)] (5 ()

i 3 o eoammp)] (M ) o ()

2T ii%ws 2am(w, - ,). s

The last line in Eq. (A74) comes from the SU(3), gauge sector. The new order parameters ¢ and w, enter into the finite
temperature part of the one-loop effective potential. Here we have defined the notations,
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2 2 31
my (v)? = %”27 my(v)* = I 9 v?, my(v)* = —p* + ?”2,
mgs(v)? = —p® + =0 + my (v)?, meo(v)? = —p? + = 0% 4+ my(v)?,
2 2 2
m,(v)* = 3'1)2, my(v)? = 7” 2 m,(v)? = ?Tvz. (A75)

K> (z) is the modified Bessel function defined in Eq. (35).
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