
Quantum Hall effect on the Grassmannians Gr2ðCNÞ
F. Ballı,* A. Behtash,† S. Kürkçüoğlu,‡ and G. Ünal§

Department of Physics, Middle East Technical University, Dumlupinar Boulevard, 06800 Ankara, Turkey
(Received 2 April 2014; published 27 May 2014)

Quantum Hall effects on the complex Grassmann manifolds Gr2ðCNÞ are formulated. We set up the
Landau problem in Gr2ðCNÞ and solve it using group theoretical techniques and provide the energy
spectrum and the eigenstates in terms of the SUðNÞWigner D functions for charged particles on Gr2ðCNÞ
under the influence of Abelian and non-Abelian background magnetic monopoles or a combination of
these. In particular, for the simplest case ofGr2ðC4Þ, we explicitly write down the Uð1Þ background gauge
field as well as the single- and many-particle eigenstates by introducing the Plücker coordinates and show
by calculating the two-point correlation function that the lowest Landau level at filling factor ν ¼ 1 forms
an incompressible fluid. Our results are in agreement with the previous results in the literature for the
quantum Hall effect on CPN and generalize them to all Gr2ðCNÞ in a suitable manner. Finally, we
heuristically identify a relation between the Uð1Þ Hall effect on Gr2ðC4Þ and the Hall effect on the odd
sphere S5, which is yet to be investigated in detail, by appealing to the already-known analogous relations
between the Hall effects on CP3 and CP7 and those on the spheres S4 and S8, respectively.
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I. INTRODUCTION

Some time ago, Hu and Zhang introduced a four-
dimensional generalization of the quantum Hall effect
(QHE) [1]. They formulated and solved the Landau
problem on S4 for fermions carrying an additional
SUð2Þ degree of freedom and under the influence of an
SUð2Þ background gauge field. For the multiparticle
problem in the lowest Landau level (LLL) with filling
factor ν ¼ 1, it turns out that in the thermodynamic limit a
finite spatial density is achieved only if the particles are in
infinitely large irreducible representations of SUð2Þ [i.e.,
they carry an infinitely large number of SUð2Þ internal
degrees of freedom]. In this limit, a two-point density
correlation function immediately indicates the incompress-
ibility property of this four-dimensional quantum Hall
liquid, as the probability of finding two particles at a
distance much shorter than the magnetic length in this
model approaches zero. The appearance of massless chiral
bosons at the edge of a two-dimensional quantum Hall
droplet [2–5] also generalizes to this setting. Nevertheless,
it is found that, among the edge excitations of this four-
dimensional quantum Hall droplet, not only photons and
gravitons but also other massless higher-spin states occur.
The latter is essentially due to the presence of a large
number of SUð2Þ degrees of freedom attached to each
particle, and, as such, it is not a desirable feature of the
model. In a subsequent article [6], two equivalent effective
Chern– Simons (CS) field theory descriptions, an Abelian

CS theory in 6þ 1 dimensions and a SUð2Þ non-Abelian
CS theory in 4þ 1 dimensions, of the quantum Hall droplet
on S4 have been constructed as generalizations of the well-
known Chern–Simons–Landau–Ginzburg model for the
fractional QHE, which successfully captures the long-
wavelength-limit structure of quantum Hall fluid as a
topological field theory [2,7].
Other developments ensued in the ground-breaking work

of Hu and Zhang. Several authors have addressed other
higher-dimensional generalizations of the QHE to a variety
of manifolds including complex projective spaces CPN , S8,

S3, R4, the Flag manifold SUð3Þ
Uð1Þ×Uð1Þ, and quantum Hall

systems based on higher-dimensional fuzzy spheres [8–13].
Of particular interest to us is the work of Nair and Karabali
on the formulation of the QHE problem on CPN [8]. These
authors solve the Landau problem on CPN by appealing to
the coset realization of CPN over SUðN þ 1Þ and perform-
ing a suitable restriction of the Wigner D functions on the
latter. In this manner, wave functions for charged particles
under the influence of both Uð1Þ Abelian and/or non-
Abelian SUðNÞ gauge backgrounds are obtained as sec-
tions of Uð1Þ and/or SUðNÞ bundles over CPN. This
formulation simultaneously permits the authors to give
the energy spectrum of the Landau level (LL), where the
degeneracy in each LL is identified with the dimension of
the irreducible representation (IRR) to which the afore-
mentioned restricted Wigner D functions belong. An
important feature of these results is that the spatial density
of particles remains finite without the need for infinitely
large internal SUðNÞ degrees of freedom, contrary to the
situation encountered for the Hall effect on S4. It also turns
out that there is a close connection between the Hall effects
on CP3 and CP7 with Abelian backgrounds and those on
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the spheres S4 and S8 with SUð2Þ and SOð8Þ backgrounds,
respectively [8,9,13]. Effective actions for the edge dynam-
ics in the limit of a large number of fermions at the LLL for
ν ¼ 1 on CPN were obtained also by Nair and Karabali in
Refs. [14,15] for Abelian and non-Abelian backgrounds,
respectively, and on S3 with a non-Abelian background,
which is taken as the spin connection, by Nair and
Randjbar-Daemi [10]. These theories involve either
Abelian bosonic fields or they are higher-dimensional
generalizations of gauged Wess-Zumino-Witten models,
which are chiral in a sense related to the geometry of these
spaces. These investigations reveal that the effective edge
action for the QHE on S4 obtained from that of CP3 does
not describe a relativistic field theory, although there are
states that do satisfy the relativistic dispersion relation.
Nevertheless, these models possess several features that
make them interesting in their own right and worthy for
further investigations.
In this paper, we focus on the formulation of the QHE on

the complex Grassmannians GrkðCNÞ, which are general-
izations of complex projective spaces CPN and share many
of their nice features, such as being a Kähler manifold.
Several of these features are effectively captured by their

so-called Plücker embedding into CPðNkÞ−1. For the case
k ¼ 2, to which we will be restricting ourselves in this
paper, the Plücker embedding describes GrkðCNÞ as a
projective algebraic hypersurface in CPN . For GrkðC4Þ,
this is the well-known Klein quadric in CP5 [16]. We use
group theoretical techniques to solve the Landau problem
on Gr2ðCNÞ and provide the energy spectrum and the
eigenfunctions in terms of SUðNÞ Wigner D functions for
charged particles on Gr2ðCNÞ under the influence of
Abelian and/or non-Abelian background magnetic monop-
oles, where the latter are obtained as sections of bundles
over Gr2ðCNÞ. In addition to the developments regarding
the QHE in higher dimensions, there are compelling
reasons that motivate us to take up the formulation of
the QHE problem on the Grassmannians Gr2ðCNÞ, which
we explain in the ensuing paragraphs.
The Landau problem on two- and higher-dimensional

spaces has close and striking connections to the physics of
strings and D-branes, string-inspired matrix models, and to
the structure of noncommutative or, to be more precise,
fuzzy spaces such as the fuzzy sphere S2F and fuzzy
complex projective spaces CPN

F , which are studied at
various levels of sophistication in the literature [17–19].
As it is well known, fuzzy spaces are quantized versions of
their parent manifolds, and they are described by finite-
dimensional matrix algebras that tend to the algebra of
functions over the parent manifolds under a suitable
mapping such as the diagonal coherent state map.
Quantum field theories are formulated over fuzzy spaces
as matrix models with finite degrees of freedom while
preserving the symmetries of the parent space, which

makes them appealing for quantum field theory applications
(see Ref. [21] and references therein). Construction of fuzzy
spaces using geometric quantization methods yields Hilbert
spacesHN of wave functions that are holomorphic sections
ofUð1Þ bundles over the commutative parent manifold, and
the matrix algebras MatN of linear transformations onHN’s
form the fuzzy spaces [19]. Observables on the fuzzy spaces
belong to this matrix algebra. It has been observed that the
LLL inLandau problems overS2,CPN inUð1Þ backgrounds
define Hilbert spaces that are identical toHN as they are also
holomorphic sections of Uð1Þ bundles over these spaces.1

Similar structural relations between S4F and the QHE on S4

also exist [19]. Building upon this connection, observables
of the QHE problem are also contemplated as linear trans-
formations in MatN acting on HN . From this angle, we see
that there appears almost an immediate connection of our
findings for the QHE problem on Gr2ðCNÞ to fuzzy
Grassmann spaces, which are discussed in some detail in
the literature [29,32,33]. There is also a natural correspon-
dence between the zero modes of Dirac operator with an
Abelian background gauge field onCPN and the degeneracy
of the LLL (i.e., the dimension of HN) on CPN in the
Abelian background, which is discussed in some detail in
Ref. [22] and which we think may be worthwhile to explore
in our case too. Fuzzy spaces, such as S2F,CP

2
F, andCP

3
F are

also related to the Banks-Fischler-Shenker-Susskind [23]
and Ishibashi-Kawai-Kitazawa-Tsuchiya [24] matrix mod-
els since they can appear as part of the vacuum solutions in
these models or their certain deformations, signalling a
somewhat indirect relation between the QHE problem and
matrix models in string theory. These facts provide us good
reasons for studying the Landau problem on Gr2ðCNÞ, but,
in fact, there is a stronger relationship to string physics as we
discuss below.
The Landau problem on S2, S4 and in higher dimensions,

which may be of interest in the context of string theory, has
descriptions in terms of strings interacting with D-branes
[17,18]. In the two-dimensional case, one considers a D2-
brane wrapped around an S2 and with N D0-branes
dissolved on it. A stack of K D6-branes extending in
directions perpendicular to the D2-brane are then moved to
the center of the D2-brane. Because of the Hanany–Witten
effect [20], K fundamental strings stretch between a D2-
brane and D6-branes. Each D0-brane provides a magnetic
flux quantum over the world volume of the D2-brane, while
the end points of the string on the D2-brane play the role of
charged particles under the world volume gauge field. Low-
energy excitations of this system are described by the QHE
system on S2 with K playing the number of charged
particles, N being the magnetic flux, and the ratio K

N ¼ ν
being the filling factor. In this picture, the background

1It is also conjectured that QHE problems in non-Abelian
backgrounds are related to vector bundles over the corresponding
fuzzy spaces [19].
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magnetic field may be described as the density of D0-
branes on the D2-brane, and the D0-brane may be viewed
to form an incompressible fluid. An alternative point of
view is obtained by describing the background magnetic
field in terms of a combination of D0-branes and flux due to
a background 2-form field Bμν. In a similar manner,
Fabinger [18] was able to argue that the QHE on S4

describes the low-energy dynamics of a configuration of
strings interacting with D-branes, in which one now wraps
a stack of D4-branes on S4 and spreads D0-branes on it.
Moving flat infinite D4-branes to the center of S4 gives
once again fundamental strings connecting the branes at the
center and those forming the S4. Low-energy dynamics of
this configuration turns out to be the QHE of Hu and Zhang
on S4. Alternatively, one may develop another interpreta-
tion of the latter in terms of a certain number of D0-branes
expanded into a fuzzy 4-sphere S4F [25]. We consider the
possibility that these connections between string physics,
fuzzy geometries, and QHE systems over two- and higher-
dimensional compact manifolds may be further exploited to
give a description of the QHE on Gr2ðC4Þ in terms of a
strings–D-branes configuration, although it may prove very
hard to address the stability of the latter. Nevertheless, we
hope that our results may be preliminarily conceived as a
low-energy limit of such a strings–D-branes configuration.
Our work in this paper is organized as follows. In

Sec. III, we first treat the simplest and perhaps more
interesting case of Gr2ðC4Þ, in which the solution for
the most general case of nonzero Uð1Þ and SUð2Þ × SUð2Þ
backgrounds is given. In particular, we show that at the
LLL with ν ¼ 1, finite spatial densities are obtained at
finite SUð2Þ × SUð2Þ internal degrees of freedom in agree-
ment with the results of Ref. [8]. In Sec. IV, we generalize
these results to all Gr2ðCNÞ. The local structure of the
solutions onGr2ðC4Þ in the presence of aUð1Þ background
gauge field is presented in Sec. V. There, we give the single-
and multiparticle wave functions by introducing the
Plücker coordinates and show by calculating the two-point
correlation function that the LLL at filling factor ν ¼ 1
forms an incompressible fluid. The Uð1Þ gauge field, its
associated field strength, and their properties are illustrated
using the differential geometry onGr2ðC4Þ. We also briefly
comment on the generalization of this local formulation to
allGr2ðCNÞ. As we noted earlier, the QHE problem onCP3

with Uð1Þ is special because of its close connection to the
QHE on S4. Already, CP3 has the form S4 × S2 locally, but,
in fact, CP3 is the projective twistor space, and it forms a
nontrivial fiber bundle over S4 with S2 fibers [8,16]. Thus,
another motivation for our work comes from the twistor
correspondence between CP3 and Gr2ðC4Þ≡ F2. The
latter is also a twistor manifold, and together they form
the base spaces for the double fibration from the Flag
manifold F12. We hope that our work may be taken as a first
step toward an extensive study to reveal possible twistor
correspondences between the QHE on these manifolds and

also between QHE formulations on similarly related twistor
spaces such as F13 and F2. We discuss our conclusions and
some possible future directions of research in Sec. VI. In
this section, we also discuss a heuristical correspondence
between the Uð1Þ Hall effect on Gr2ðC4Þ and the Hall
effect on the odd sphere S5. An independent treatment of
the latter, apart form our proposed suggestion in Sec. VI, is
still missing in the literature, while we think that it can be
formulated by generalizing the results of Ref. [10] on S3.

II. REVIEW OF THE QHE ON CP1 AND CP2

In this section, we provide a short account of the
formulation of the quantum Hall problem on CP1 and
CP2 for the purposes of orienting the developments in the
subsequent sections and making the exposition self-
contained. The formulation of the QHE on CP1 ≡ S2 is
originally due to Haldane [26]. Karabali and Nair [8] have
provided a reformulation of the QHE on CP1 in a manner
that is adaptable to formulate the QHE on CPN . Here, we
closely follow the discussion of Ref. [8], and while at it, we
provide the Young diagram techniques for handling the
QHE problem on CP2. In Secs. III and IV, we employ the
latter to transparently handle the branching of the IRR of
SUðNÞ under the relevant subgroups appearing in the coset
realizations of Gr2ðCNÞ.
The Landau problem on CP1 can be viewed as electrons

on a two-sphere under the influence of a Dirac monopole
sitting at the center. Our task is to construct the Hamiltonian
for a single electron under the influence of a monopole
field. To this end, let us first point out that by the Peter–
Weyl theorem the functions on the group manifold of
SUð2Þ≡ S3 may be expanded in terms of the Wigner D

functionsDðjÞ
L3R3

ðgÞ, where g is an SUð2Þ group element and
j is an integral or a half-odd integral number labeling the
IRR of SUð2Þ. The subscriptsL3 and R3 are the eigenvalues
of the third component of the left- and right-invariant vector
fields on SUð2Þ.2 The left- and right-invariant vector fields
on SUð2Þ satisfy

½Li;Lj� ¼ −εijkLk; ½Ri;Rj� ¼ εijkRk; ½Li;Rj� ¼ 0:

(2.1)

The harmonics as well as sections of bundles over CP1

may be obtained from the WignerD functions on SUð2Þ by
a suitable restriction of the latter. The coset realization of
CP1 is

CP1 ≡ S2 ¼ SUð2Þ
Uð1Þ : (2.2)

2Throughout the article, we sometimes denote the left- and
right-invariant vector fields of SUðNÞ and their eigenvalues by Li
and Ri, respectively; which one is meant will be clear from the
context.
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This implies that the sections of Uð1Þ bundles over CP1

should fulfill

DðgeiR3θÞ ¼ ei
n
2
θDðgÞ; (2.3)

where n is an integer. This condition is solved by the

functions of the form DðjÞ
L3

n
2
ðgÞ. In fact, the eigenvalue n

2
of

R3 corresponds to the strength of the Dirac monopole at the

center of the sphere, and DðjÞ
L3

n
2
ðgÞ are the desired wave

functions as will be made clear shortly. In particular,

DðjÞ
L30

ðgÞ correspond to the spherical harmonics on S2,
which are the wave functions for electrons on a sphere
with zero magnetic monopole background.
In the presence of a magnetic monopole field B, the

Hamiltonian must involve covariant derivatives for which
the commutator is proportional to the magnetic field. Let us
take this commutator as ½Dþ; D−� ¼ B. It is now observed
that the covariant derivatives D� may be identified by the
right-invariant vector fields R� ¼ R1 � iR2 as

D� ¼ 1ffiffiffi
2

p
l
R�; (2.4)

where l denotes the radius of the sphere. Noting that
½Rþ; R−� ¼ 2R3, for the eigenvalue n

2
of R3, we have

B ¼ n
2l2

(2.5)

for the magnetic monopole with the strength n
2
in accor-

dance with the Dirac quantization condition. The associated
magnetic flux through the sphere is 2πn.
The Hamiltonian may be expressed as

H ¼ 1

2M
ðDþD− þD−DþÞ

¼ 1

2Ml2

�X3
i¼1

R2
i − R2

3

�
; (2.6)

where M is the mass of the particle. We have thatP
3
i¼1 R

2
i ¼

P
3
i¼1 L

2
i ¼ jðjþ 1Þ. To guarantee that n

2

occurs as one of the possible eigenvalues of R3, we need
to have j ¼ 1

2
nþ q where q is an integer. The spectrum of

the Hamiltonian reads

Eq;n ¼
1

2Ml2

��
n
2
þ q

��
n
2
þ qþ 1

�
−
n2

4

�

¼ B
2M

ð2qþ 1Þ þ qðqþ 1Þ
2Ml2

: (2.7)

The associated eigenfunctions are DðjÞ
L3

n
2
ðgÞ as noted earlier.

In Eq. (2.7), q is readily interpreted as the LL index. The
ground state, which is the LLL, is at q ¼ 0 and has the

energy B
2M. The LLL is separated from the higher LL by

finite energy gaps.
The degeneracy of the LL is controlled by the left-

invariant vector fields Li since they commute with the
covariant derivatives ½Li;Dj� ¼ 0. Each LL is
(2jþ 1 ¼ nþ 1þ 2q)-fold degenerate. In other words,

there are this many wave functions DðjÞ
L3

n
2
ðgÞ at a given

LL with L3 eigenvalues ranging from −j to j.
The local form of the wave functions may be written

down by picking a suitable coordinate system. We omit this
here and refer the reader to the original literature [8], in
which this was done in detail. In particular, it is shown in
Ref. [8] that the LLL forms an incompressible liquid by
computing the two-point correlation function for the wave
function density. We will address this crucial property of
the LLL for our case in Sec. V.
Let us now briefly turn our attention to the formulation of

the Landau problem on CP2. This and its generalization to
CPN are given in Ref. [8]. The coset realization ofCP2 may
be written as

CP2 ≡ SUð3Þ
Uð2Þ ∼

SUð3Þ
SUð2Þ ×Uð1Þ : (2.8)

Following a similar line of development as in the previous
case, we can obtain the harmonics and local sections of
bundles over CP2 from a suitable restriction of the Wigner
D functions on SUð3Þ. Let g ∈ SUð3Þ, and let us denote the
left- and the right-invariant vector fields on SUð3Þ by Lα

and Rα (α∶ 1;…; 8); they fulfill the Lie algebra commu-
tation relations for SUð3Þ. We can introduce the Wigner D
functions on SUð3Þ as

Dðp;qÞ
L;L3;L8;R;R3;R8

ðgÞ; (2.9)

where ðp; qÞ label the irreducible representations of SUð3Þ
and the subscripts denote the relevant quantum numbers for
the left and right rotations. In particular, the left and right
generators of the SUð2Þ subgroup are labeled by Li and Ri
(i∶ 1; 2; 3) and LiLi ¼ LðLþ 1Þ and RiRi ¼ RðRþ 1Þ.
We note that the tangents along CP2 may be para-

metrized by the right-invariant fields, Rα (α∶ 4; 5; 6; 7).
Consequently, the Hamiltonian on CP2 may be written
down as

H ¼ 1

2Ml2

X7
α¼4

R2
α

¼ 1

2Ml2
ðC2ðp; qÞ − RðRþ 1Þ − R2

8Þ; (2.10)

where C2ðp; qÞ is the quadratic Casimir of SUð3Þ.
The coset realization of CP2 implies that there can be

both Abelian and non-Abelian background gauge fields
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corresponding to the gauging of the Uð1Þ and SUð2Þ
subgroups, respectively.
Let us first obtain the wave functions with the Uð1Þ

background gauge field. This means that our desired Dðp;qÞ
should transform trivially under the SUð2Þ and carry aUð1Þ
charge under the right actions of these groups. In other
words, these wave functions must be singlets under SUð2Þ
with R ¼ 0, R3 ¼ 0 and a nonzero R8 eigenvalue. We can
use the Young tableaux to see the branching of the SUð3Þ
IRR satisfying this requirement. The SUð3Þ IRR labeled by
ðp; qÞ may be assigned to a Young tableau with p columns
with one box each and q columns with two boxes each. The
branching SUð3Þ ⊃ SUð2Þ × Uð1Þ, which keeps the SUð2Þ
in the singlet representation, is therefore

(2.11)

where the diagram on the lhs of the arrow represents the
generic ðp; qÞ IRR of SUð3Þ and the first diagram on
the rhs of the arrow represents the SUð2Þ IRR, which is the
singlet in this case. A general formula exits [27] for
expressing the Uð1Þ charge of the branching SUð3Þ ⊃
SUð2Þ × Uð1Þ [see Eq. (3.8) for a more general case],

n ¼ 1

2
ðJ1 − 2J2Þ; n ∈ Z; (2.12)

where J1 is the number of boxes in the tableau of SUð2Þ
and J2 is the number of boxes in the rightmost tableau in
the branching. Thus, for the tableaux given above, we
conclude that n ¼ q − p. To fix the relation between R8

eigenvalues and the integer n, we use the fundamental
representation (1,0) with the generators λa fulfilling
the normalization condition TrðλaλbÞ ¼ 1

2
δab, and λ8 ¼

1

2
ffiffi
3

p diagð1; 1;−2Þ, so that

R8 ¼ −
nffiffiffi
3

p ¼ −
p − qffiffiffi

3
p : (2.13)

It is useful to note that the flux of the Uð1Þ field strength
corresponding to the background gauge field is propor-
tional to the number n. We omit the details of this here and
refer the reader to Ref. [8].
The spectrum of the Hamiltonian (2.10) may be given as

Eq;n ¼
1

2Ml2
ðqðqþ nþ 2Þ þ nÞ; (2.14)

where we have used the eigenvalue of the quadratic Casimir
C2ðp; qÞ of the IRR ðp; qÞ, which is

C2ðp; qÞ ¼
1

3
ðpðpþ 3Þ þ qðqþ 3Þ þ pqÞ; (2.15)

and expressed the energy levels in terms of q and n only. In
Eq. (2.14), q appears as the Landau level index; the ground-
state energy may be obtained by setting q ¼ 0, and that
gives the LLL energy ELLL ¼ n

2Ml2.
The wave functions corresponding to this energy spec-

trum can be written in terms of the Wigner D functions as

Dðp;qÞ
L;L3;L8;0;0;− nffiffi

3
p ðgÞ: (2.16)

The degeneracy of each Landau level q is given by the
dimension of the IRR ðp; qÞ, which is

dimðp; qÞ ¼ ðpþ 1Þðqþ 1Þðpþ qþ 2Þ
2

: (2.17)

This means that the set of quantum numbers L, L3, and L8

can take dimðp; qÞ different values.
It is also useful to note that the case n ¼ 0 simply

reduces the Wigner D functions to the harmonics on CP2,
corresponding to the wave functions of a particle on CP2

with a vanishing monopole background.
Consider the case of filling factor ν ¼ 1; i.e., each of the

LL states is occupied by one fermion. We therefore have
that p ¼ n, q ¼ 0, and the number of fermions N is equal
to dimðn; 0Þ ¼ ðnþ 1Þðnþ 2Þ=2. The density of particles
ρ is given by

ρ ¼ N
volðCP2Þ ; (2.18)

where volðCP2Þ ¼ 8π2l4. In the thermodynamic limit
l → ∞ and N → ∞, this yields the finite result

ρ ¼ N
8π2l4

⟶
l→∞;N→∞

n2

16π2l4
¼

�
B
2π

�
2

; (2.19)

as first discussed in Ref. [8].
The wave functions can be expressed in suitable local

coordinates, and, taking advantage of these functions, the
multiparticle wave function for the filling factor ν ¼ 1 state
can immediately be constructed. A straightforward calcu-
lation for the two-point correlation function for the wave
function density that signals the incompressibility of the
LLL may be given. We refer the reader to Ref. [8] for
details.
The case of SUð2Þ and Uð1Þ background gauge fields

may be handled as follows. In this case, we allow for all
possible right SUð2Þ IRR labeled by spin R. It is possible to
label SUð3Þ representations in the form ðpþ k; qþ k0Þ.
The branching SUð3Þ ⊃ SUð2Þ × Uð1Þmay be represented
by the Young tableaux:
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(2.20)

These tableaux represent the maximum, generic, and
minimum-spin R-value configurations that can result from
the branching, and we have assumed without loss of
generality that k0 > k and k ≥ x ≥ 0. Here, x is an integer
introduced to conveniently represent the generic case. From
the tableaux, the range of the spin R and R8 eigenvalues
may be easily obtained as follows:

R ¼ jk − k0j
2

;…;
kþ k0

2
(2.21)

R8 ¼
1

2
ffiffiffi
3

p ð−2ðp − qÞ þ ðk − k0ÞÞ ¼ −
nffiffiffi
3

p : (2.22)

Noting that n is an integer restricts the spin R to integer
values. The spectrum of the Hamiltonian (2.10) is now

E ¼ 1

2Ml2
ðC2ðpþ k; qþ k0Þ − RðRþ 1Þ − R2

8Þ

¼ 1

2Ml2
ðq2 þ qð2k −mþ nþ 2Þ þ nðkþ 1Þ

þ k2 þ 2kþm2 −mðkþ 1Þ − RðRþ 1ÞÞ; (2.23)

where k0 ¼ k − 2m and m is an integer. As indicated in
Eq. (2.21), there is an interval for the values of R. The LLL
is obtained when we choose the maximum value for R,

Rmax ¼
kþ k0

2
¼ k −m; (2.24)

where m should take only integer values within the interval
m ¼ 0;…; k

2
if k is even and m ¼ 0;…; k−1

2
if k is odd.

Using Eq. (2.24) in Eq. (2.23), the energy spectrum is
expressed as

E ¼ 1

2Ml2
ðq2 þ qð2Rþ nþmþ 2Þ þ nðRþmþ 1Þ

þ ðRþmÞðmþ 1ÞÞ: (2.25)

For fixed n, R, we observe from this expression that the LL
is controlled by the two integers q and m. The LLL is
obtained for q ¼ 0 and m ¼ 0.
As discussed in Ref. [8], for the pure SUð2Þ background,

to ensure the finiteness of energy eigenvalues, R should
scale like R ∼ l2 in the thermodynamic limit. For ν ¼ 1, we
have N ¼ dimðR;RÞ ¼ 1

2
ðRþ 1ÞðRþ 1Þð2Rþ 2Þ, and

this results in a finite density of particles:

ρ ∼
N

ð2Rþ 1Þl4
⟶

l→∞;N→∞

R3

2Rl4
: (2.26)

As for the case of both Uð1Þ and SUð2Þ backgrounds, it is
possible to pick either n or R to scale like l2. Taking n ∼ l2

and R to be finite as l → ∞ gives again a finite spatial
density

ρ ∼
dim ðRþ n; RÞ
ð2Rþ 1Þl4

⟶
l→∞;N→∞

n2

4l4
; (2.27)

for ν¼1 with dimðRþ n; RÞ ¼ 1
2
ðnþ Rþ 1ÞðRþ 1Þ×

ðnþ 2Rþ 1Þ.

III. LANDAU PROBLEM ON THE
GRASSMANNIAN Gr2ðC4Þ

Starting in this section, we will consider the quantum
Hall problem on the complex Grassmannians Gr2ðCNÞ. To
set up the Landau problem on Gr2ðCNÞ, it is necessary to
list a few facts about the Grassmannians and their geometry.
The complex Grassmannians GrkðCNÞ are the set of all

k-dimensional linear subspaces of the vector space CN with
the complex dimension kðN − kÞ. They are smooth and
compact complex manifolds and admit Kähler structures.
Grassmannians are homogeneous spaces and can therefore
be realized as the cosets of SUðNÞ as
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GrkðCNÞ ¼ SUðNÞ
S½UðN − kÞ ×UðkÞ�

∼
SUðNÞ

SUðN − kÞ × SUðkÞ ×Uð1Þ : (3.1)

It is clear from this realization that Gr1ðCNÞ≡ CPN .
Gr2ðC4Þ is therefore the simplest Grassmannian that is
not a projective space. The coset space realization of the
Grassmannians is the most suitable setting for group
theoretical techniques that we will employ to formulate
and solve the Landau problem on Gr2ðC4Þ first and
subsequently on all Gr2ðCNÞ.
To set up and solve the Landau problem on Gr2ðC4Þ, we

contemplate, following the ideas reviewed in the previous
section, that SUð4Þ Wigner D functions may be suitably
restricted to obtain the harmonics and local sections of
bundles overGr2ðC4Þ. Let g ∈ SUð4Þ, and let us denote the
left- and the right-invariant vector fields on SUð4Þ by Lα

and Rα (α∶ 1;…; 15); they fulfill the Lie algebra commu-
tation relations for SUð4Þ. We can introduce the Wigner D
functions on SUð4Þ as

g → Dðp;q;rÞ
Lð1ÞLð1Þ

3
Lð2ÞLð2Þ

3
L15;Rð1ÞRð1Þ

3
Rð2ÞRð2Þ

3
R15

ðgÞ; (3.2)

where ðp; q; rÞ are three integers labeling the irreducible
representations of SUð4Þ and the subscripts denote the
relevant quantum numbers for the left and right rotations.
In particular, the left and right generators of the

SUð2Þ × SUð2Þ subgroup are labeled by Lα ≡
ðLð1Þ

i ; Lð2Þ
i Þ and Rα ≡ ðRð1Þ

i ; Rð2Þ
i Þ (i∶ 1; 2; 3, α∶ 1;…; 6)

with corresponding SUð2Þ × SUð2Þ quadratic Casimirs
CL2 ¼Lð1ÞðLð1Þþ1ÞþLð2ÞðLð2Þþ1Þ, CR2 ¼ Rð1ÞðRð1Þ þ 1Þþ
Rð2ÞðRð2Þ þ 1Þ.
The real dimension of Gr2ðC4Þ is 8, and tangents along

Gr2ðC4Þ may be parametrized by the eight right-invariant
fields Rα (α∶7;…; 14). Consequently, the Hamiltonian on
Gr2ðC4Þ may be written down as

H ¼ 1

2Ml2

X14
α¼7

R2
α

¼ 1

2Ml2
ðC2ðp; q; rÞ − CR2 − R2

15Þ; (3.3)

where C2ðp; q; rÞ is the quadratic Casimir of SUð4Þ in the
IRR ðp; q; rÞ with the eigenvalue

C2ðp; q; rÞ ¼
3

8
ðr2 þ p2Þ þ 1

2
q2

þ 1

8
ð2prþ 4pqþ 4qrþ 12pþ 16qþ 12rÞ:

(3.4)

The dimension of the IRR ðp; q; rÞ is

dimðp; q; rÞ ¼ 1

12
ðpþ qþ 2Þðpþ qþ rþ 3Þðqþ rþ 2Þ

× ðpþ 1Þðqþ 1Þðrþ 1Þ: (3.5)

The coset realization of Gr2ðC4Þ implies that there can
be both Abelian and non-Abelian background gauge fields
corresponding to the gauging of the Uð1Þ and one or
both of the SUð2Þ subgroups. We list these as three
distinct cases:

(i) Uð1Þ background gauge fields only,
(ii) Uð1Þ background gauge field and a single SUð2Þ

background gauge field,
(iii) Uð1Þ background gauge field and SUð2Þ × SUð2Þ

background gauge field.
It is useful to remark that the second case may be viewed as
a certain restriction of the third. We will discuss these
matters in detail in what follows.
Following Refs. [28,29], it is useful to list a few facts

regarding the branching:

SUðN1 þ N2Þ ⊃ SUðN1Þ × SUðN2Þ ×Uð1Þ: (3.6)

We can embed SUðN1Þ × SUðN2Þ × Uð1Þ into
SUðN1 þ N2Þ as

�
eiN2ϕU1 0

0 e−iN1ϕU2

�
; (3.7)

where U1 ∈ SUðN1Þ and U2 ∈ SUðN2Þ. Let us denote
the IRR of SUðN1Þ and SUðN2Þ with J 1 and J 2. We
also let Ja be the total number of boxes in the Young
tableaux of SUðNaÞ (a∶ 1; 2). The Uð1Þ charge may thus
be expressed as

n ¼ 1

N1N2

ðN2J1 − N1J2Þ: (3.8)

Clearly, the IRR of Uð1Þ is fixed by those of the SUðNaÞ
factors, and the IRR content of the subgroup SUðN1Þ ×
SUðN2Þ ×Uð1Þmay be denoted as ðJ 1;J 2Þn. The decom-
position of a given IRR J of SUðN1 þ N2Þ under this
subgroup is expressed as

J ¼ ⨁
J 1;J 2

mJ
J 1;J 2

ðJ 1;J 2Þn; (3.9)

where mJ
J 1;J 2

are the multiplicities of the IRR ðJ 1;J 2Þn
occurring in the direct sum. Further details may be found in
the references [28,29] and in the original article of Hagen
and Macfarlane [30].
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A. Uð1Þ gauge field background

For the QHE problem on Gr2ðC4Þ, we are concerned
with the branching

SUð4Þ ⊃ SUð2Þ × SUð2Þ ×Uð1Þ: (3.10)

Obtaining the wave functions with the Uð1Þ background
gauge field requires us to restrict Dðp;q;rÞ in such a way
that they transform trivially under the right action of

SUð2Þ × SUð2Þ and carry a right Uð1Þ charge; that is,
they should be singlets under SUð2Þ × SUð2Þ with a
CR2 ¼ 0 eigenvalue and a nonzero R15 eigenvalue.
We can use the Young tableaux to see the branching of

the SUð4Þ IRR fulfilling this requirement. The SUð4Þ IRR
labeled by ðp; q; rÞ may be denoted as a Young tableau
with p columns with one box on each, q columns with two
boxes on each, and r columns with three boxes on each.
The branching (3.10), which keeps the SUð2Þ × SUð2Þ in
the singlet representation, is therefore

where we have introduced the splitting q ¼ q1 þ q2 in the representation in order to handle the partition of columns labeled
by q in the branching. It is important to realize that in the last row of the SUð4Þ representation there are r (fully
symmetrized) boxes, which are moved as a whole under this branching to the second slot in the rhs, and the trivial
representation of SUð2Þ × SUð2Þ is obtained if and only if p is equal to r. Otherwise, we have a nontrivial representation for
the second SUð2Þ in the branching (3.10).
Using the formula (3.8), we compute the Uð1Þ charge as

n ¼ 1

2
ðð2rþ 2q1Þ − ðpþ rþ 2q2ÞÞ ¼ q1 − q2; (3.12)

where we have used p ¼ r.
To fix the relation between the eigenvalues of R15 and theUð1Þ charge n, we need to use the six-dimensional fundamental

representation (0,1,0) (Young tableaux: ) of SUð4Þ. As opposed to CP3 ≈ SUð4Þ=SUð3Þ ×Uð1Þ, where the branching of
the four-dimensional representations [i.e., (1,0,0) and (0,0,1)] of SUð4Þ contain singlets of SUð3Þ, in the present case, the
smallest SUð4Þ IRR containing the singlet of SUð2Þ × SUð2Þ is (0,1,0), and it has the branching

where subscripts show the charge (3.12). Taking the
generators λa of SUð4Þ fulfilling the normalization con-
dition TrðλaλbÞ ¼ 1

2
δab, in one of the four-dimensional IRR

[(1, 0, 0) or (0, 0, 1)], it is possible to show that in the
six-dimensional IRR3 (0, 1, 0)

R15 ¼
1ffiffiffi
2

p diagð0; 0; 0; 0;−1; 1Þ; (3.14)

and therefore we in general have

R15 ¼
nffiffiffi
2

p ¼ q1 − q2ffiffiffi
2

p : (3.15)

It is now easy to give the energy spectrum corresponding
to the Hamiltonian (3.3), using Eq. (3.4), p ¼ r, R15 taking
the value in Eq. (3.15) and CR2 ¼ 0:

E ¼ 1

2Ml2
ðp2 þ 3pþ npþ 2q22 þ 4q2 þ 2pq2

þ 2nð1þ q2ÞÞ: (3.16)

The LLL energy at a fixed monopole background n is
obtained for q2 ¼ p ¼ 0, and it is

ELLL ¼ n
Ml2

¼ 2B
M

; (3.17)

with the degeneracy dimð0;n;0Þ¼ 1
12
ðnþ1Þðnþ2Þ2ðnþ3Þ.

In Eq. (3.17), B ¼ n
2l2 is the field strength of the Uð1Þ

3Generalization of this result to the NðN−1Þ
2

-dimensional repre-
sentations of SUðNÞ is used in the subsequent sections. A proof is
provided in Appendix A.
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magnetic monopole. The gauge field associated to B and
related matters will be discussed in Sec. V.
The wave functions corresponding to this energy spec-

trum can be written in terms of the Wigner D functions as

Dðp;q1þq2;pÞ
Lð1ÞLð1Þ

3
Lð2ÞLð2Þ

3
L15; 0;0;0;0;

nffiffi
2

p
ðgÞ≡D

ðp;½qþn
2
�þ½q−n

2
�;pÞ

Lð1ÞLð1Þ
3
Lð2ÞLð2Þ

3
L15; 0;0;0;0;

nffiffi
2

p
ðgÞ:

(3.18)

The degeneracy of each Landau level is given by the
dimension of the IRR ðp; q; pÞ in Eq. (3.5). This means that

the set of left quantum numbers fLð1Þ; Lð1Þ
3 ; Lð2Þ; Lð2Þ

3 ; L15g
can take on dimðp; q1 þ q2; pÞ different values as a set.
For the many-body fermion problem in which all the

states of the LLL are filled with the filling factor ν ¼ 1, in
the thermodynamic limit l → ∞, N → ∞, we obtain a
finite spatial density of particles

ρ ¼ N
π4l8
12

⟶
l→∞;N→∞

n4

π4l8
¼

�
2B
π

�
4

; (3.19)

where we have used N ¼ dimð0; n; 0Þ ¼ 1
12
ðnþ 1Þ×

ðnþ 2Þ2ðnþ 3Þ for the number of fermions in the LLL
with ν ¼ 1 and4 volðGr2ðC4ÞÞ ¼ π4l8

12
.

We note that the case n ¼ 0 simply reduces the Wigner
D functions to the harmonics on Gr2ðC4Þ corresponding to
the wave functions of a particle on Gr2ðC4Þ with the
vanishing monopole background.
It is possible to interchange the Young tableaux of the

two SUð2Þ’s in Eq. (3.11). This flips the sign of the Uð1Þ
charge, n → −n; in the formulas for the energy, degeneracy,
etc., this fact can be compensated by substituting jnj for n.
In Sec. V, we give the single- and many-particle wave

functions (for the filling factor ν ¼ 1 state) in terms of the
Plücker coordinates forGr2ðC4Þ and use the latter to obtain
the two-point correlation function for the wave-function
density signaling the incompressibility of the LLL. An
account of the Uð1Þ gauge field is also provided for
illustrative purposes.

B. Single SUð2Þ gauge field and Uð1Þ gauge field
background

In this case, we need to restrict to Dðp;q;rÞ, which
transform as a singlet under one or the other SUð2Þ in
the right action of SUð2Þ × SUð2Þ and carry aUð1Þ charge.
Therefore, we have a range of possibilities within the
branching (3.10) as given in the following Young tableaux
decomposition:

4It may be useful to state that this volume is computed with the help of the repeated iteration of (special) unitary group manifolds in
terms of the odd-dimensional spheres,

SUðNÞ ≈ SUðNÞ
SUðN − 1Þ ×

SUðN − 1Þ
SUðN − 2Þ × � � � × SUð3Þ

SUð2Þ × SUð2Þ

≅ S2N−1 × S2N−3 × � � � × S5 × S3 (3.20)

(for N ≥ 3), where ≈ means “locally equal to” and ≅ indicates isomorphism. Considering this local expression, we can expand all the
special unitary groups in Eq. (3.1) and employ the volume formula for spheres to obtain an approximation for the volume of the
Grassmannians [31], namely,

volðGrkðCNÞÞ ¼ 1!2! � � � ðk − 1Þ!
ðN − 1Þ!ðN − 2Þ!…ðN − kÞ! ðπl

2ÞkðN−kÞ; (3.21)

which produces the factor 1
12
for k ¼ 2 and N ¼ 4. This factor is in general subject to change upon using other methods. Since this is

immaterial for our purposes, we will stick to the approximation (3.21) throughout this paper.
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We have assumed that p > r and split q1 þ q2 ¼ q. We
have introduced the integer x (0 ≤ x ≤ r) to conveniently
represent the generic case. From the tableaux, R15

eigenvalues may be easily obtained as

n ¼ 1

2
ð2ðq1 − q2Þ − ðp − rÞÞ; (3.25)

and we observe that the first SUð2Þ in the branching
remains a singlet, while the second may take on values over
a range;

Rð1Þ ¼ 0; Rð2Þ ¼ p − r
2

;…;
rþ p
2

: (3.26)

Since n is an integer, we must have that p − r is an even
integer. This condition restricts the spin Rð2Þ to integer
values.
Using CR2 ¼ Rð2ÞðRð2Þ þ 1Þ, the energy spectrum

corresponding to the Hamiltonian (3.3) is given as

E ¼ 1

2Ml2

�
C2ðp; q; rÞ − Rð2ÞðRð2Þ þ 1Þ − n2

2

�
: (3.27)

This can be rewritten in terms of q2, n, p using Eqs. (3.4)
and (3.25), assuming p > r and introducing m via r ¼
p − 2m (m ¼ 0;…; p

2
if p is even and m ¼ 0;…; p−1

2
if p is

odd) as

E ¼ 1

2Ml2
ð2q22 þ 2q2ðnþ pþ 2Þ þ nðpþ 2Þ þ p2 þ 3p

þm2 −mðpþ 1Þ − Rð2ÞðRð2Þ þ 1ÞÞ: (3.28)

To obtain the lowest energy, we have to take the maximum

value of the spin Rð2Þ
max ¼ rþp

2
¼ p −m. Then, the energy

spectrum becomes

E ¼ 1

2Ml2
ð2q22 þ 2q2ðnþ Rð2Þ þmþ 2Þ

þ nðRð2Þ þmþ 2Þ þ ðRð2Þ þmÞð2þmÞÞ: (3.29)

The LLL energy at fixed background fields Rð2Þ and n is
obtained for q2 ¼ m ¼ 0 as follows:

ELLL ¼ 1

2Ml2
ðnðRð2Þ þ 2Þ þ 2Rð2ÞÞ: (3.30)

The wave functions in the present case can be written in
the form

Dðp;q1þq2;rÞ
Lð1ÞLð1Þ

3
Lð2ÞLð2Þ

3
L15;0;0;Rð2Þ;Rð2Þ

3
; nffiffi

2
p
ðgÞ; (3.31)

where Rð2Þ is given in Eq. (3.26).

To have finite energy eigenvalues in the thermodynamic
limit l → ∞, N → ∞, the scales of n and Rð2Þ in terms of
the powers of l have to be determined. For a pure SUð2Þ
background (n ¼ 0, Rð1Þ ¼ 0, Rð2Þ ≠ 0), Rð2Þ should scale
in the thermodynamic limit as Rð2Þ ∼ l2. The number of
fermions in the LLL with ν ¼ 1 is

N ¼ dimðRð2Þ; 0; Rð2ÞÞ

¼ 1

12
ðRð2Þ þ 2Þ2ð2Rð2Þ þ 3ÞðRð2Þ þ 1Þ2 ⟶

Rð2Þ→∞

ðRð2ÞÞ5
6

;

(3.32)

and the corresponding spatial density is

ρ ∼
N

π4l8
12

ð2Rð2Þ þ 1Þ ⟶
l→∞;N→∞

ðRð2ÞÞ4
π4l8

; (3.33)

which is finite.
When both Uð1Þ and SUð2Þ backgrounds are present

(i.e., n ≠ 0, Rð1Þ ¼ 0, Rð2Þ ≠ 0), just like the case of CP2

reviewed in the previous section, we may choose either one
of n or Rð2Þ to scale like l2. Taking n ∼ l2 and Rð2Þ to be
finite in thermodynamic limit, we again get a finite spatial
density

ρ ∼
N

π4l8
12

ð2Rð2Þ þ 1Þ ⟶
l→∞;N→∞

n4

2π4l8Rð2Þ ; (3.34)

where we have the number of fermions N in the LLL with
ν ¼ 1 given in this case as

dimðRð2Þ;n;Rð2ÞÞ

¼ 1

12
ðRð2Þ þnþ2Þ2ð2Rð2Þ þnþ3ÞðRð2Þ þ1Þ2ðnþ1Þ

⟶
n→∞;Rð2Þ→finite

n4

12
: (3.35)

Before closing this subsection, we note that interchang-
ing the Young tableaux of two SUð2Þ’s amounts to
interchanging Rð1Þ and Rð2Þ in Eq. (3.26) and also a flip
in the sign of the Uð1Þ charge. In the relevant formulas
above, one can compensate for these changes by replacing
Rð2Þ with Rð1Þ and substituting jnj for n.

C. SUð2Þ × SUð2Þ gauge field background

Now, we need to restrict Dðp;q;rÞ to those wave functions
that transform as an IRR ðRð1Þ; Rð2ÞÞ of SUð2Þ × SUð2Þ and
carry a Uð1Þ charge. It is useful to partition the IRR of
SUð4Þ as ðp1 þ p2; q1 þ q2 þ x; rÞ. There are now two
classes of branchings, which differ in their Uð1Þ charge as
given in terms of p1, p2, q1, q2, and r below.
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If q2 ¼ 0, the branching with maximal Rð2Þ value is

As Rð2Þ decreases down from its maximal value Rð2Þ ¼ rþp2þx
2

in increments of 1, the total number of boxes in each SUð2Þ
does not vary, so we have, with q ¼ q1 þ x,

n ¼ 1

2
ð2q1 − ðp2 − p1 − rÞÞ: (3.37)

Suppose now that q2 ≠ 0. This may happen only if all p boxes are already in the tableaux of the second SUð2Þ in the
branching; thus, we must have that p1 ¼ 0. Once again, we have the branching with the maximal Rð2Þ value as

and the Uð1Þ charge is now (with p ¼ p2)

n ¼ 1

2
ð2ðq1 − q2Þ − ðp2 − rÞÞ: (3.39)

Using both of the tableaux, we observe that the first
SUð2Þ in the branching takes the value

Rð1Þ ¼ p1 þ x
2

; 0 ≤ x ≤ q; 0 ≤ p1 ≤ p: (3.40)

For this value of Rð1Þ, the second SUð2Þ takes on values

between Rð2Þ
max ¼ S

2
and Rð2Þ

min ¼ j2M−Sj
2

,

j2M − Sj
2

≤ Rð2Þ ≤
S
2
; S ¼ p2 þ xþ r; (3.41)

whereM is defined as the largest among the integers p2, x,
and r.
We consider the cases q2 ¼ 0 and q2 ≠ 0 with the Uð1Þ

charges given in Eqs. (3.37) and (3.39) separately to

determine the energy spectrum corresponding to the
Hamiltonian (4.3). We have that

E ¼ 1

2Ml2

�
C2ðp; q; rÞ − Rð1ÞðRð1Þ þ 1Þ

− Rð2ÞðRð2Þ þ 1Þ − n2

2

�
: (3.42)

For the case q2 ¼ 0, we have the condition that

m ≔
p2 − p1 − r

2
(3.43)

is an integer to ensure that n is so. Let us assume that
p2 > p1 þ r so that m is positive.
To obtain the lowest-energy eigenvalues, we use

Eq. (3.40) together with the maximum value of Rð2Þ as
given in Eq. (3.41). Next, we eliminate p2, q1, x, and r in
favor of n, Rð1Þ, Rð2Þ, p1, and m (explicitly, we have
p2 ¼ Rð2Þ − Rð1Þ þ p1 þm, q1 ¼ nþm, x ¼ 2Rð1Þ − p1,
and r ¼ Rð2Þ − Rð1Þ − 2m) to get

E ¼ 1

2Ml2

�
C2ðRð2Þ − Rð1Þ þ 2p1 þm; nþmþ 2Rð1Þ − p1; Rð2Þ − Rð1Þ −mÞ − Rð1ÞðRð1Þ þ 1Þ − Rð2ÞðRð2Þ þ 1Þ − n2

2

�

¼ 1

2Ml2
ðp2

1 þ p1ðmþ Rð2Þ − Rð1Þ þ 1Þ þm2 þmðRð1Þ þ Rð2Þ þ nþ 2Þ þ nðRð1Þ þ Rð2Þ þ 2Þ þ 2Rð2ÞÞ; (3.44)

QUANTUM HALL EFFECT ON THE GRASSMANNIANS GR … PHYSICAL REVIEW D 89, 105031 (2014)

105031-11



where Rð2Þ > Rð1Þ due to the assumption p2 > p1 þ r. For
fixed Rð1Þ, Rð2Þ, and n, Landau levels are controlled by the
two integers p1 and m. Taking p1 ¼ m ¼ 0 results in the
LLL energy

ELLL ¼ 1

2Ml2
ðnðRð1Þ þ Rð2Þ þ 2Þ þ 2Rð2ÞÞ: (3.45)

We note that assuming p2 < p1 þ r flips the sign ofm, and
in Eq. (3.44), m → −m.5

It is also important to remark that for Rð1Þ ¼ Rð2Þ ¼ Rwe
have p1 ¼ p2 þ r and thus

~m∶ ¼ p1 þ r − p2

2
¼ r; (3.46)

and the energy levels are given by

E¼ 1

2Ml2

�
C2ð2p1−r;n−rþ2R−p1;rÞ−2RðRþ1Þ−n2

2

�

¼ 1

2Ml2
ð2Rþp1ð1þp1− ~mÞþðn− ~mÞð2þ2R− ~mÞÞ:

(3.47)

The energy values here are positive since p1 ≥ ~m, n ≥ ~m,
and 2R − ~m ≥ 0 by construction. The LLL energy is given
by p1 ¼ ~m ¼ 0, which is indeed the same as the one
obtained from Eq. (3.45) when R ≔ Rð1Þ ¼ Rð2Þ.
The case p1 ¼ 0 may be treated along similar lines. We

have that

m ≔
p − r
2

(3.48)

is an integer for the same reason that n is so. Let us assume
p > r so that m is positive. In this case, we can write p, q1,
x, and r in terms of n, Rð1Þ, Rð2Þ, q2 and m. Hence, we find
for the lowest -energy eigenvalues

E ¼ 1

2Ml2

�
C2ðRð2Þ − Rð1Þ þm; 2q2 þ 2Rð1Þ þ nþm;Rð2Þ − Rð1Þ −mÞ − Rð1ÞðRð1Þ þ 1Þ − Rð2ÞðRð2Þ þ 1Þ − n2

2

�

¼ 1

2Ml2
ð2q22 þ 2q2ðnþ Rð1Þ þ Rð2Þ þmþ 2Þ þ nðRð1Þ þ Rð2Þ þ 2Þ þm2 þmðRð1Þ þ Rð2Þ þ nþ 2Þ þ 2Rð2ÞÞ:

(3.49)

We note that here we do have the condition Rð2Þ > Rð1Þ
as well. In this case, q2 and m specify the Landau levels.
We take q2 ¼ m ¼ 0 in Eq. (3.49) to obtain the LLL
energy, and this yields the same result given in Eq. (3.45) as
expected.
The LLL energy for Rð2Þ < Rð1Þ can be found by

interchanging Rð1Þ and Rð2Þ in Eq. (3.45) and taking n to
−n, where now n < 0. This gives

ELLL ¼ 1

2Ml2
ð−nðRð2Þ þ Rð1Þ þ 2Þ þ 2Rð1ÞÞ: (3.50)

We do have two distinct cases to consider in the
thermodynamic limit. For a pure SUð2Þ × SUð2Þ back-
ground, n ¼ 0, Rð1Þ ≠ 0, Rð2Þ ≠ 0, both Rð1Þ and Rð2Þ

should scale in the thermodynamic limit as l2. The number
of fermions in the LLL with ν ¼ 1 is

dimðRð2Þ − Rð1Þ; 2Rð1Þ; Rð2Þ − Rð1ÞÞ ∼ 4Rð1Þ5Rð2Þ; (3.51)

and the corresponding spatial density in this limit is

ρ ∼
4Rð1Þ5Rð2Þ

π4l8ð2Rð1Þ þ 1Þð2Rð2Þ þ 1Þ ⟶
l→∞;N→∞

finite: (3.52)

For the nonzero background n ≠ 0, Rð1Þ ≠ 0, Rð2Þ ≠ 0, we
have three parameters n, Rð1Þ, and Rð2Þ. We can choose, say,
n to scale like l2 and the others to remain finite in
thermodynamic limit. For ν ¼ 1, we get

dimðRð2Þ − Rð1Þ; 2Rð1Þ þ n; Rð2Þ − Rð1ÞÞ ⟶ n4; (3.53)

and the spatial density is

ρ ∼
n4

π4l8ð2Rð1Þ þ 1Þð2Rð2Þ þ 1Þ ⟶ finite: (3.54)

IV. LANDAU PROBLEM ON Gr2ðCNÞ
We are now ready to generalize the results of the

previous section to all GrassmanniansGr2ðCNÞ. It is useful
to write down the coset realization

Gr2ðCNÞ ¼ SUðNÞ
S½UðN − 2Þ ×Uð2Þ�

∼
SUðNÞ

SUðN − 2Þ × SUð2Þ × Uð1Þ : (4.1)5The energy levels are still, of course, positive as can easily be
checked.
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The SUðNÞ Wigner D functions for g ∈ SUðNÞ,

DðP1;P2;P3;…;PN−2;PN−1Þ
LSUðN−2Þ;L;L3;LN2−1;R

SUðN−2Þ;R;R3;RN2−1
ðgÞ; (4.2)

carrying the IRR (P1; P2; P3;…; PN−2; PN−1) labeled by
N − 1 non-negative integers, may be appropriately
restricted to obtain the harmonics and local sections of
bundles overGr2ðCNÞ. Let us denote the left- and the right-
invariant vector fields on SUðNÞ by Lα and Rα

(α∶ 1;…; N2 − 1); they satisfy the Lie algebra commuta-
tion relations for SUðNÞ. In Eq. (4.2), LSUðN−2Þ and
RSUðN−2Þ stand for the suitable sets of left and right
quantum numbers, which we will not need in what follows.
The real dimension of Gr2ðCNÞ is 4N − 8, and tangents

along Gr2ðCNÞ may be parametrized by the 4N − 8
right-invariant fields, Rα, (α∶ N2 − 4N þ 7;…; N2 − 2).
Consequently, the Hamiltonian may be written as

H ¼ 1

2ml2

XN2−2

α¼N2−4Nþ7

R2
α

¼ 1

2ml2
ðCSUðNÞ

2 − CSUðN−2Þ
2 − CSUð2Þ

2 − R2
N2−1Þ: (4.3)

Here, for future use, we give the eigenvalue of CSUðNÞ
2 in the

IRR ðP1; P2; 0;…; 0; PN−2; PN−1Þ, which reads

C2ðP1; P2; 0;…; 0; PN−2; PN−1Þ

¼
�
N − 1

2N

�
P2
1 þ

�
N − 2

N

�
P2
2 þ

�
N − 2

N

�
P2
N−2

þ
�
N − 1

2N

�
P2
N−1 þ

�
N − 2

N

�
P1P2 þ

2

N
P1PN−2

þ 1

N
P1PN−1 þ

4

N
P2PN−2 þ

2

N
P2PN−1

þ
�
N − 2

N

�
PN−2PN−1 þ

�
N − 1

2

�
P1 þ ðN − 2ÞP2

þ ðN − 2ÞPN−2 þ
�
N − 1

2

�
PN−1; (4.4)

and the dimension of this representation is given in
Appendix B.
To obtain the wave functions with only a Uð1Þ back-

ground gauge field, we consider those D functions that
transform trivially under the right action of SUðN − 2Þ and
SUð2Þ and carry a right Uð1Þ charge. This means these
wave functions remain singlets under SUðN − 2Þ and

SUð2Þ with nonzero CSUðN−2Þ
2 , CSUð2Þ

2 eigenvalues and a
nonzero RN2−1 eigenvalue.
The branching SUðNÞ ⊃ SUðN − 2Þ × SUð2Þ ×Uð1Þ

may be used for this purpose. To have both SUðN − 2Þ
and SUð2Þ as singlets in the branching, we must require all
Pi except P1, P2, PN−2, and PN−1 to vanish, and also
PN−1 ¼ P1. In terms of Young tableaux, this branching can
be shown by

(4.5)

where the tableaux on the lhs represent the IRR
ðP1; P2; 0;…; 0; PN−2; P1Þ of SUðNÞ. The tableaux on
the rhs are those of SUðN − 2Þ and SUð2Þ, respectively,
and both are singlets in this case.
From Eq. (3.8), we compute the Uð1Þ charge as

n ¼ 1

2ðN − 2Þ ð2J1 − ðN − 2ÞJ2Þ

¼ PN−2 − P2: (4.6)

The relation between eigenvalues of RN2−1 and n is found
to be (see Appendix A)

RN2−1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

N

r
n: (4.7)

The energy spectrum of the Hamiltonian is

E¼ 1

2Ml2

�
CSUðNÞ
2 −

�
1−

2

N

�
n2
�

¼ 1

2Ml2

�
P2
1þ

�
2−

4

N

�
P2
2þðN−1þ2nÞP1

þ2

�
nþN−2þ 2

N

�
P2þ4P1P2þnðN−2Þ

�
; (4.8)

QUANTUM HALL EFFECT ON THE GRASSMANNIANS GR … PHYSICAL REVIEW D 89, 105031 (2014)

105031-13



where we have used Eq. (4.4) with PN−1 ¼ P1 and
PN−2 ¼ P2 þ n. The integers P1 and P2 are in fact
considered to be the Landau level indices. The LLL energy
can be obtained by setting P1 ¼ P2 ¼ 0, which is

ELLL ¼ Nn − 2n
2Ml2

: (4.9)

The corresponding wave functions may be expressed by

DðP1;P2;0;…;0;Pn−2¼P2þn;Pn−1¼P1Þ
LSUðN−2Þ;L;L3;LN2−1;0;0;0;−

ffiffiffiffiffiffi
1−2

N

p
n
ðgÞ: (4.10)

The spatial density of particles in the thermodynamic
limit is computed in a manner analogous to those for the
case of Gr2ðC4Þ. We have volðGr2ðCNÞÞ ¼

π2ðN−2Þ
ðN−2Þ!ðN−1Þ!l

4N−8 from Eq. (3.21) and in the LLL,

PN−2 ¼ n, P1 ¼ P2 ¼ PN−1 ¼ 0, with ν ¼ 1.
Correspondingly, the dimension formula (B1) for the
LLL with ν ¼ 1 reduces to

N ¼ dimð0; 0;…; n; 0Þ ¼ ðnþ N − 3Þ!ðnþ N − 4Þ!ðnþ N − 2Þ2ðnþ N − 1Þðnþ N − 3Þ
ðN þ 1Þ!ðN − 2Þ!n!ðnþ 1Þ! : (4.11)

In the thermodynamic limit (l → ∞ and N → ∞), the density of the states takes the form

ρ ¼ N
π2ðN−2Þ

ðN−2Þ!ðN−1Þ!l
4N−8

⟶
n2N−4

l4N−8 ¼
�
B
2π

�
2N−4

: (4.12)

For the case of both SUð2Þ and Uð1Þ background gauge fields, the spectrum of the Hamiltonian and the wave functions
are obtained in a similar manner. We still have to demand all Pi except P1, P2, PN−2, PN−1 to vanish but no longer impose
the condition PN−1 ¼ P1. The relevant branching of SUðNÞ is now given by the Young tableaux below:

(4.13)

where the branching rule for maximum, generic, and minimum SUð2Þ spin are given, respectively, and 0 ≤ x ≤ PN−1. We
have assumed that P1 ≥ PN−1. The SUð2Þ spin interval is then
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R ¼ P1 − PN−1

2
;…;

PN−1 þ P1

2
; (4.14)

and the Uð1Þ charge is given by

n ¼ 1

2
ðPN−1 þ 2ðPN−2 − P2Þ − P1Þ: (4.15)

By the Dirac quantization condition, n should be an integer,
so we must have that

m∶ ¼ P1 − PN−1

2
(4.16)

is an integer taking values within the interval m ¼ 0;…; P1

2

if P1 is even and m ¼ 0;…; P1−1
2

if P1 is odd. The energy
spectrum corresponding to the Hamiltonian (4.3) reads

E ¼ 1

2Ml2

�
CSUðNÞ
2 − RðRþ 1Þ −

�
1 −

2

N

�
n2
�
: (4.17)

This equation can be rewritten in terms of P2, P1, m, and n
by using Eqs. (4.17), (4.15), and (4.16):

E ¼ 1

2Ml2

��
N − 1

2N

�
P2
1 þ

�
N − 2

N

�
P2
2 þ

�
N − 2

N

�
ðn2 þm2 þ 2nmþ P2

2 þ 2nP2 þ 2mP2Þ

þ
�
N − 1

2N

�
ð4m2 þ P2

1 − 4mP1Þ þ
�
N − 2

N

�
P1P2 þ

2

N
P1ðnþmþ P2Þ −

1

N
ð2mP1 − P2

1Þ þ
4

N
P2ðnþmþ P2Þ

−
2

N
P2ð2m − P1Þ −

�
N − 2

N

�
ð2m − P1Þðnþmþ P2Þ þ

�
N − 1

2

�
P1 þ ðN − 2ÞP2 þ ðN − 2ÞPN−2

þ
�
N − 1

2

�
ð−2mþ P1Þ −

�
N − 2

N

�
n2 − RðRþ 1Þ

�
: (4.18)

Taking the maximum value of the spin R,

R ¼ PN−1 þ P1

2
¼ P1 −m; (4.19)

the lowest energy becomes

E¼ 1

2Ml2

��
N−1

2N

�
ð2R2þ2m2Þ

þN−2

N
ð2P2

2þmnþ2nP2þ2RP2þ2mP2þRnþRmÞ

þ 1

N
ð2Rnþ4RP2þ2mnþR2þm2þ2Rm

þ4P2nþ4P2mþ4P2
2Þ

þ
�
N−1

2

�
ð2RÞþðN−2Þð2P2þnþmÞ−RðRþ1Þ

�
:

(4.20)

Once again, the LLL at fixed background charges n and R
are controlled by two integers,m and P2. The LLL is found
by putting P2 ¼ m ¼ 0. This gives the energy eigenvalue

ELLL ¼ 1

2Ml2
ðnRþ ðN − 2Þðnþ RÞÞ; (4.21)

which collapses to Eq. (3.30) for N ¼ 4 as expected. More
generally, to match the formulas of this section to those for
N ¼ 4, we note that the correspondence for the IRR labels
is determined to be

ðp; q ¼ q1 þ q2; rÞ
⟶ ðP1; P2 ¼ q2; 0;…; PN−2 ¼ q1; PN−1Þ: (4.22)

For a pure SUð2Þ background n ¼ 0, R ≠ 0, R
should scale in the thermodynamic limit as Rð2Þ ∼ l2.
The number of fermions in the LLL with ν ¼ 1 is
N ¼ dimðR; 0;…; 0; RÞ, where

dimðR; 0;…; 0; RÞ

¼ 1

ðN − 1Þ!ðN − 2Þ!ðN − 3Þ!ðRþ 1Þ!R!
× ððRþ N − 3Þ!ðN − 4Þ!ðRþ N − 3Þ!
× ðRþ N − 2ÞðRþ 1Þð2Rþ N − 1ÞðN − 3Þ
× ðRþ N − 2ÞÞ;

and the corresponding spatial density is

ρ ∼
N

l4N−8ð2Rþ 1Þ ⟶
R2N−3

kl4N−8ð2Rþ 1Þ ⟶ finite:

(4.23)

For both Uð1Þ and SUð2Þ backgrounds n ≠ 0, R ≠ 0, we
can choose the scaling n ∼ l2 and keep R finite in
thermodynamic limit. The N in the LLL with ν ¼ 1 is
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N ¼ dimðR; 0;…; n; RÞ ⟶ n2N−4; (4.24)

and the spatial density reads

ρ ∼
N

l4N−8ð2Rþ 1Þ ⟶
n2N−4

kl4N−8ð2Rþ 1Þ ⟶ finite:

(4.25)

Before ending this section, let us briefly list a few of the
results of our analysis for the Landau problem onGr2ðC5Þ.
Labeling the IRR of SUð5Þ with ðp; q; r; sÞ, we find that
the energy spectrum due to only an Abelian monopole
background is

E¼ 1

2Ml2

�
CSUð5Þ
2 −

3

5
n2
�

¼ 1

2Ml2
ðp2 þ 2q2 þ 2nqþ 2qpþpnþ 4pþ 6qþ 3nÞ;

(4.26)

where we have used p ¼ s and r ¼ nþ q in CSUð5Þ
2 . The

numbers p and q play the role of Landau level indices. So
the ground-state energy is obtained by letting p ¼ q ¼ 0,
which yields

ELLL ¼ 3n
2Ml2

; (4.27)

and wave functions take the form

Dðp;q;nþq;pÞ
LSUð3Þ;L;L3;L24;0;0;0;−

ffiffi
3
5

p
n
ðgÞ: (4.28)

With reference to Eq. (B1) the dimension of the ð0; 0; n; 0Þ
representation gives the degeneracy of the LLL as follows:

dimð0; 0; n; 0Þ ¼ ðnþ 2Þ!ðnþ 1Þ!ðnþ 3Þ2ðnþ 4Þðnþ 2Þ
4!3!n!ðnþ 1Þ! :

(4.29)

Finally, the spatial density of fermions is readily computed
to be

ρ ⟶
n6

l12
¼

�
B
2π

�
6

: (4.30)

For SUð2Þ and Uð1Þ backgrounds together, the energy
spectrum reads

E ¼ 1

2Ml2

�
CSUð5Þ
2 − RðRþ 1Þ − 3

5
n2
�
; (4.31)

where SUð2Þ has the spin range

R ¼ p − s
2

;…;
sþ p
2

; (4.32)

assuming that p > s. The Uð1Þ charge now reads
n ¼ 1

2
ðsþ 2ðr − qÞ − pÞ. Setting s ¼ p − 2m, the maxi-

mal SUð2Þ charge R ¼ p −m gives the energy eigenvalues

E ¼ 1

2Ml2
ðm2 þ 2q2 þmnþ 2qnþ 2Rqþ 2mqþ Rn

þ Rmþ 3Rþ 6qþ 3nþ 3mÞ: (4.33)

Here, applying the LLL condition gives the lowest
energy as

ELLL ¼ 1

2Ml2
ðnðRþ 3Þ þ 3RÞ: (4.34)

V. LOCAL FORM OF THE WAVE FUNCTIONS
AND THE GAUGE FIELDS

In this section, we first provide the local form of the wave
functions for solutions of the Landau problem on Gr2ðC4Þ.
For this purpose, we will use the well-known Plücker
coordinates for Gr2ðC4Þ.
The Plücker coordinates forGrkðCNÞ are constructed out

of a projective embedding, the so-called Plücker embed-
ding GrkðCnÞ ↪ Pð⋀kCnÞ, which provides a one-to-one
map between the set of k-dimensional subspaces of Cn

[i.e., the Grassmannian GrkðCNÞ] and a subset of the
projective space of the kth exterior power of the vector
space Cn, where the latter is denoted as Pð⋀kCnÞ. This
subset of Pð⋀kCnÞ is a projective variety characterized by
the intersection of quadrics induced by all possible relations
between generalized Plücker coordinates. In what follows,
we focus on the Plücker embedding of Gr2ðC4Þ;
more details and general discussions can be found in
Refs. [16,35].
For Gr2ðC4Þ, this construction entails the projective

space PðC4 ∧ C4Þ≡ CP5. Introducing two sets of complex
coordinates vα, wα (α ¼ 1;…; 4), which is one set for each
C4, a fully antisymmetric basis for the exterior product
space C4 ∧ C4 would be given in the form of

Pαβ ¼
1ffiffiffi
2

p ðvαwβ − vβwαÞ: (5.1)

Pαβ may be contemplated as the homogenous coordinates
on CP5 with the identification Pαβ ∼ λPαβ, where λ ∈ Uð1Þ
and

P
4
α;β jPαβj2 ¼ 1.

The Plücker embedding of Gr2ðC4Þ in CP5 is given by
the homogeneous condition

εαβγδPαβPγδ ¼ P12P34 − P13P24 þ P14P23 ¼ 0; (5.2)
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defining the Klein quadric Q4 in CP5, which is complex
analytically equivalent to Gr2ðC4Þ. The homogeneous
equation εαβγδPαβPγδ ¼ 0 is nothing but the restriction to
a projective hypersurface of degree 2, which is the
quadric Q4.
It is possible to employ Pαβ to parametrize the columns

of g ∈ SUð4Þ in the IRR (0,1,0); we choose a parametriza-
tion of the form

g ≔

0
BBBBBB@
..
.

������������
..
.

������������
..
.

������������
..
.

������������

P�
34 P12−P�
24 P13

P�
23 P14

P�
14 P23−P�
13 P24

P�
12 P34

1
CCCCCCA

(5.3)

where the orthogonality of the columns follows from the
Plücker relation inEq. (5.2). For a shorthand notation, wewill
employ gN6 ¼ PN ≔ Pαβ, gN5 ¼ εNMP�

M ¼ εαβγδP�
γδ with

N ≡ ½αβ�, N ¼ 1;…; 6 and αβ ¼ ð12; 13; 14; 23; 24; 34Þ.
The wave functions in the Uð1Þ background gauge field,

Dð0;q1þq2;0Þ
Lð1ÞLð1Þ

3
Lð2ÞLð2Þ

3
L15;0;0;0;0;

nffiffi
2

p
ðgÞ, are the sections of the Uð1Þ

bundle over Gr2ðC4Þ, which fulfill the gauge transforma-
tion property

Dð0;q1þq2;0ÞðghÞ ¼ Dð0;q1þq2;0Þðgeiλ15θÞ
¼ Dð0;q1þq2;0ÞðgÞei nffiffi

2
p θ: (5.4)

Using Eq. (3.14) for λ15 and Eq. (5.3), this yields
immediately

Dð0;1;0ÞðgÞ ∼ Pαβ: (5.5)

We point out that the ð0; q; 0Þ IRR is the q-fold symmetric
tensor product of the (0,1,0) representation; to wit,
ð0; q; 0Þ≡Q

⊗qð0; 1; 0Þ. This can be shown by the sym-

metric tensor product ð⊗SÞ of tableaux as

(5.6)

We infer that

Dð0;q1þq2;0ÞðgÞ ∼ Pα1β1Pα2β2 � � �Pαq1βq1
P�
γ1δ1

P�
γ2δ2

� � �P�
γq2δq2

:

(5.7)

So the LLL wave functions are those with q2 ¼ 0,

Dð0;q1;0Þ
Lð1ÞLð1Þ

3
Lð2ÞLð2Þ

3
L15;0;0;0;0;

nffiffi
2

p
ðgÞ ∼ Pα1β1Pα2β2 � � �Pαq1βq1

; (5.8)

which are holomorphic in the Plücker coordinates.

Another useful point to mention here is that, although the
right-invariant vector fields on SUð4Þ cannot be easily
written down, the left-invariant vector fields can be easily
given as [33]

Lk ¼ −vjðλkÞij
∂
∂vi − wjðλkÞij

∂
∂wi

þ v�i ðλkÞij
∂
∂v�j

þ w�
i ðλkÞij

∂
∂w�

j
; (5.9)

where λk (k ¼ 1;…; 15) are the Gell-Mann matrices for
SUð4Þ. Choosing complex vectors v and w to satisfy the
orthonormality conditions

viw�
i ¼ 0; jvj2 ¼ jwj2 ¼ 1; (5.10)

and using the identity

XN2−1

k¼1

λkijλ
k
mn ¼

1

2
δinδjm −

1

2N
δijδmn; (5.11)

for N ¼ 4, the Casimir CSUð4Þ
2 may be realized as the

differential operator,

CSUð4Þ
2 ¼15

8

�
vi

∂
∂viþwi

∂
∂wi

þv�i
∂
∂v�i þw�

i
∂

∂w�
i

�

þ3

8

�
vivj

∂
∂vi

∂
∂vjþwiwj

∂
∂wi

∂
∂wj

þc:c:
�

−
2

8

�
viwj

∂
∂vi

∂
∂wj

−viw�
j
∂
∂vi

∂
∂w�

j
þc:c

�

þ1

8

�
viv�j

∂
∂vi

∂
∂v�j þwiw�

j
∂
∂wi

∂
∂w�

j
þc:c:

�

þviwj
∂
∂vj

∂
∂wi

þv�i w
�
j
∂
∂v�j

∂
∂w�

i
−

∂
∂vj

∂
∂v�j −

∂
∂wj

∂
∂w�

j
;

(5.12)

which clearly generates the eigenvalues q2

2
þ 2q when

applied to the wave functions (5.7).
The LLL with filling factor ν ¼ 1 has N ¼

dimð0; 1; 0Þ ¼ 1
12
ðnþ 1Þðnþ 2Þ2ðnþ 3Þ number of par-

ticles. Its multiparticle wave function is given in terms of
the Slater determinant as
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ΨMP ¼ 1ffiffiffiffiffiffiffi
N !

p det

0
BBBBB@

ΨΛ1
ðP1Þ � � � ΨΛN

ðP1Þ
ΨΛ1

ðP2Þ � � � ΨΛN
ðP2Þ

..

. . .
. ..

.

ΨΛ1
ðPN Þ � � � ΨΛN

ðPN Þ

1
CCCCCA

¼ 1ffiffiffiffiffiffiffi
N !

p εΛ1Λ2���ΛnΨΛ1
ðPð1ÞÞΨΛ2

ðPð2ÞÞ � � �ΨΛN
ðPðNÞÞ:

(5.13)

Here, Pi denotes the ith position fixed in the Hall fluid, and
correspondingly ΨΛj

ðPiÞ refers to the wave function of the
jth particle located at the position Pi. Now, let us calculate
the two-point correlation function in this fluid in the
presence of only a Uð1Þ background. For a one-particle
wave function in Eq. (5.5) (with n ¼ 1), our notation
transcribes as

ΨΛi
ðPiÞ≡Ψi

αβ ∼ Pi
αβ: (5.14)

The LLL wave function given in Eq. (5.8) may now be
denoted by

ΨΛi
ðPiÞ≡Ψi

Λi
∼ ðPi

αβÞn: (5.15)

The general form of the correlation function between a pair
of particles, say 1 and 2, on a manifold M is given by

Ωð1; 2Þ ¼
Z
M

jΨMPj2dμð3Þdμð4Þ � � � dμðN Þ; (5.16)

with dμðiÞ being the measure of integration on M in the
coordinates of the ith particle, and ΨMP represents
the multiparticle wave function of the Hall fluid on the
manifold M. Expanding the determinant formula (5.13)
and using some algebra, one can show that Ωð1; 2Þ can be
simplified as

Ωð1; 2Þ ¼
Z
M

jΨMPj2dμð3Þdμð4Þ � � � dμðN Þ

¼ jΨ1j2jΨ2j2 − jΨ�1
Λ Ψ2

Λj2: (5.17)

To compute Eq. (5.17) for our case, we take the normalized
coordinate chart γi∶ ¼ Pαβ

P12
, where P12 ≠ 0,

P ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jγaj2

p ð1; γ1;…; γ5ÞT ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jγaj2
p ð1; ~γÞ;

(5.18)

on the Grassmannian Gr2ðC4Þ. In this coordinate patch,
Eq. (5.15) becomes Ψi

α ∼ ðPi
αÞn. Inserting this into

Eq. (5.17) yields

Ωð1;2Þ¼ 1− jP�1
Λ P2

Λjn

¼ 1−
�

γ�1a γ2aγ
1
bγ

�2
b

1þjγ1aj2þjγ2aj2þjγ1aj2jγ2aj2
�n

¼ 1−
�
1−

j~γ1−~γ2j2
1þjγ1aj2þjγ2aj2þjγ1aj2jγ2aj2

�n
: (5.19)

Let us set ~X ¼ ~γl. In the thermodynamic limitN → ∞ and
n → ∞, Eq. (5.19) takes the form

Ωð1; 2Þ ¼ 1 − ½1 − j~X1 − ~X2j2

× ½l2 þ j~X1j2 þ j~X2j2 þ l−2j~X1j2j~X2j2�−1�n

→ 1 −
�
1 −

2B
n

j~X1 − ~X2j2
�
n

→ 1 − e−2Bj~X
1−~X2j2

¼ 1 − e−2Bð~x1−~x2Þ2e−2Bl2ðdetΓ1−detΓ2Þ2 ; (5.20)

where we have used n ¼ 2Bl2 and where

Γi ≔
�
γi2 γi1
γi4 γi3

�
: (5.21)

Note that the last line of Eq. (5.20) shows the two-point
function of the particles located at the positions ~x1, ~x2 on
Gr2ðC4Þ and is extracted from that of the particles onCP5 at

the positions ~X1, ~X2 by a restriction of these particles to the
algebraic variety determined by Xi

5 ≡ l detΓi, as expected.
It is apparent from this function that the probability of
finding two particles at the same point goes to zero. This
result indicates the incompressibility of the Hall fluid.
Turning our attention to the Uð1Þ gauge field, we may

write

A ¼ −
inffiffiffi
2

p Trðλ15ð6Þg−1dgÞ: (5.22)

With the help of Eqs. (5.3) and (3.15), one can express A in
terms of the Plücker coordinates as

A ¼ −
inffiffiffi
2

p ðλ15ð6ÞÞLMðg−1ÞMNðdgÞNL

¼ −
in
2
ð−ðg−1Þ5NðdgÞN5 þ ðg−1Þ6NðdgÞN6Þ

¼ −
in
2
ð−g�N5ðdgÞN5 þ g�N6ðdgÞN6Þ

¼ −
in
2
ð−PNdP�

N þ P�
NdPNÞ

¼ −inP�
NdPN; (5.23)

where use has been made of the notational conventions
stated below Eq. (5.3) and where we have noted the fact that

F. BALLI et al. PHYSICAL REVIEW D 89, 105031 (2014)

105031-18



dðP�
NPNÞ ¼ 0 due to Eq. (5.2). Under Uð1Þ gauge trans-

formations, A transforms to Aþ dðnθffiffi
2

p Þ, which is consistent

with the transformation of the wave functions given
in Eq. (5.4).
Let us introduce the notation ~P ≡ ðP1;…P6ÞT , where T

stands for transpose, and define a nonhomogeneous coor-

dinate chart Q≡ ~P
P1

with P1 ≠ 0 on Gr2ðC4Þ as

Q≡ ð1; γ1;…; γ5ÞT; (5.24)

subject to the Plücker relation (5.2), which, in terms of the
(affine coordinates) γi, takes the form

γ5 ¼ γ2γ3 − γ1γ4: (5.25)

Without Eq. (5.25), Q is a nonhomogenous coordinate
chart in CP5. We can express our gauge potential as

A ¼ −inP†dP

¼ −injP1j2Q†dQ − inP�
1jQj2dP1

¼ −injQj−2Q†dQ − inP�
1jP1j−2dP1

¼ −injQj−2Q†dQ − inP−1
1 dP1

¼ −in∂ lnðjQj2Þ − ind lnðP1Þ
¼ −in∂K − ind lnðP1Þ; (5.26)

where K is the CP5 Kähler potential given by

K ¼ ln jQj2 ≡ lnð1þ jγij2Þ (5.27)

and subject to the condition (5.25).
The field strength is calculated via

F ¼ dA ¼ −
inffiffiffi
2

p Trðλ15ð6Þg−1dg ∧ g−1dgÞ

¼ −indP�
N ∧ dPN: (5.28)

We note that F is an antisymmetic, gauge invariant, and
closed 2-form on Gr2ðC4Þ, and as such it is proportional to
the Kähler 2-form Ω overGr2ðC4Þ. This fact can be readily
verified using Eq. (5.26) and writing

F ¼ dA ¼ in∂∂�K ¼ nΩ; (5.29)

where ∂, ∂� are the Dolbeault operators in the coordinates
γi and γ�i , respectively, and d ¼ ∂ þ ∂�. The relation (5.29)
with Eq. (5.27) leads to the form of the field strength [35]

F ¼ −in
�
dγ�i ∧ dγi
1þ jγj2 −

γidγ�i ∧ γ�jdγj
ð1þ jγj2Þ2

�
; (5.30)

being subject to the Plücker relation (5.25). Let us associate
with each index i a dual index î in the sense that i is dual to î

if γiγ î appears in the Plücker relation. Hence, 1,4 and 2,3
are dual to one another. Expanding γ5 in Eq. (5.25) results
in the Hermitian components for the Kähler form Ω as

Ωii� ¼ iNγ

�
1þ

Y4
α¼1;α≠i;î

jγαj2þð1þjγ îj2Þ
X4

α¼1;α≠i
jγαj2

�
;

Ωij� ¼−iNγð1þjγ îj2þjγĵj2Þðγ�i γjþγ îγ
�
ĵ
Þ; i< j; j≠ î;

Ωiî� ¼−iNγ

�
γ�i γ î

�X4
α¼1

ðjγαj2− jγij2− jγ îj2
�

−
1

2
ðγ�i Þ2

Y
j≠i;î

γjγĵ−
1

2
ðγ îÞ2

Y
j≠i;î

γ�jγ
�
ĵ

�
; i< î; (5.31)

where Nγ ¼ ð1þP
5
a¼1 jγaj2Þ−2. In these formulas,

Einstein summation convention is not in use.
It is known from very general considerations [36] that the

integral of F over a noncontractable 2-surface Σ inGr2ðC4Þ
is an integral multiple of 2π:

1

2π

Z
Σ
F ¼ n: (5.32)

In the present context, this result signals an analog of the
Dirac quantization condition with n

2
identified as the

magnetic monopole charge. Therefore, we do have that
the magnetic field is B ¼ n

2l2.
A number of remarks is in order. The generalization of

our results to all higher-dimensional Grassmannians is
fairly straightforward. TakingGr2ðCNÞ, the only difference
is that now both the vector potential A and field strength F
are subject to the Plücker relations

γikγjl ¼ γijγkl − γilγkj; 1 ≤ i < k < j < l ≤ 2ðN − 2Þ;
(5.33)

in terms of the nonhomogeneous coordinates γij ≔ Pij=P12

in the patch where P12 ≠ 0. The parametrization in
Eq. (5.3) can be generalized to NðN − 1Þ=2-dimensional
fundamental representations of the SUðNÞ group by means
of these Plücker relations. Let us also note that the
Grassmannians have a nontrivial algebraic topological
structure that, for the best of our purposes here, is reflected
in their second cohomology group, which is nonzero, or
more precisely H2ðGrkðCNÞÞ ¼ Z [37]. This is the reason
why the integral of the first Chern character in Eq. (5.32) is
an integer. Similarly, one may consider the integral
of the dth ðd ¼ 2ðN − 2ÞÞ-order Chern character for the
Grassmannians Gr2ðCNÞ [38],
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1

d!ð2πÞdvolðGr2ðCNÞÞ
Z
Gr2ðCNÞ

F ∧ Ω � � � ∧ Ω ¼ n;

(5.34)

for F ¼ nΩ.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have given a formulation of the QHE on
Gr2ðCNÞ. We solved the Landau problem on Gr2ðCNÞ
using group theoretical techniques and gave the energy
spectra and the wave functions of charged particles on
Gr2ðCNÞ in the background of both Abelian and non-
Abelian magnetic monopoles. For the Abelian monopole
background, using the local description of wave functions
in terms of Plücker coordinates on Gr2ðC4Þ, we showed
that the LLL at filling factor ν ¼ 1 forms an incompressible
fluid and indicated how this result generalizes to
all Gr2ðCNÞ.
We want to make the following observations about the

QHE on Gr2ðC4Þ with Uð1Þ background. Because of
the isomorphisms Spinð6Þ ≅ SUð4Þ and Spinð4Þ ≅
SUð2Þ × SUð2Þ, the Stiefel manifold St2ðR6Þ≡ Spinð6Þ

Spinð4Þ
forms the principal Uð1Þ fibration [34]

Uð1Þ ⟶ St2ðR6Þ ⟶ Gr2ðC4Þ: (6.1)

Let us also make note of the family of fibrations
Stk−1ðRn−1Þ ⟶ StkðRnÞ ⟶ Sn−1, which for k ¼ 2 and
n ¼ 6 is

S4 ⟶ St2ðR6Þ ⟶ S5: (6.2)

Together, these facts imply that Gr2ðC4Þ has the local
structure S5×S4

Uð1Þ . We therefore propose that the QHE on S5

with the S4 fibers may be seen as a QHE onGr2ðC4Þ with a
Uð1Þ background gauge field. We expect that the S4 fibers
will be associated to a SOð5Þ gauge field background. In
fact, the formulation of the QHE on the 3-sphere [10],

S3 ¼ SUð2Þ × SUð2Þ
SUð2Þdiag

≅
Spinð4Þ
Spinð3Þ ; (6.3)

selects the constant background gauge field as the spin
connection, and in a construction generalizing this to the
QHE on S5,

S5 ¼ SOð6Þ
SOð5Þ ¼

Spinð6Þ
Spinð5Þ ; (6.4)

one should be selecting a constant SOð5Þ background
gauge field, taking it again as the spin connection. Such a
choice of the gauge field appears to be consistent with our
heuristic argument. Our observation is inspired by and

bears a resemblance to the relation between the QHE on
CP7 and S8. The former can be realized locally as S8×S7

Uð1Þ ,
while the latter forms the base of the third Hopf map
S7 ⟶ S15 ⟶ S8, and S15 is a Uð1Þ bundle over CP7 [9].
A number of future directions for further research is

foreseen. First, the aforementioned relation with the QHE
on S5 could be made more concrete by developing the latter
along the lines discussed here and adapting the approach of
Refs. [9] and [10]. It may be possible to develop Chern–
Simons-type effective field theories along the lines of
Ref. [6] to shed more light on the structure of the QHE
on Gr2ðC4Þ in particular. Formulation of the edge states
may also be investigated building upon the ideas of
Refs. [14,15]. We hope to report on the progress of any
of these topics elsewhere.
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APPENDIX A

In this short appendix, we provide a derivation of the
normalization coefficient of RN2−1 in the NðN−1Þ

2
-

dimensional IRR of SUðNÞ for N ≥ 3. Let TðDÞ
a label the

N2 − 1 generators of SUðNÞ in the defining N-dimensional
representation. Let us choose their trace normalization to be

TrðTðDÞ
a TðDÞ

b Þ ¼ 1

2
δab: (A1)

It is a well-known fact in the representation theory of Lie
groups that such a choice fixes the trace normalization of
the generators in all the IRR [39]. We can proceed to write
the trace normalization in an IRR R of SUðNÞ as

TrðTðRÞ
a TðRÞ

b Þ ¼ κab; (A2)

where κab is a rank-2 tensor invariant under SUðNÞ
transformations. Since the only rank-2 invariant SUðNÞ
tensor is a Kronecker delta, δab, we have

κab ¼ XðRÞδab; (A3)

where XðRÞ, commonly known as the Dynkin index of the
representation R of the group SUðNÞ, is given by [39]

XðRÞ ¼
dimðRÞ

dimðSUðNÞÞ C2ðRÞ: (A4)
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We have that dimðSUðNÞÞ is equal to N2 − 1 and CR2 is the

quadratic Casimir of the IRR R. For either of the NðN−1Þ
2

-
dimensional IRRs, ð0; 1; 0;…; 0; 0Þ or ð0; 0;…; 1; 0Þ of
SUðNÞ, this gives, using Eq. (4.4),

XðRÞ ¼
N − 2

N
; (A5)

and the trace formula (A2) then reads

TrðTaTbÞ ¼
N − 2

N
δab (A6)

in either of the NðN−1Þ
2

-dimensional IRRs. Our aim is
to find the coefficient of RN2−1 in these representations.
In terms of the Young diagrams, the branching of,
say, ð0; 1; 0;…; 0; 0Þ representation under SUðN − 2Þ ×
SUð2Þ × Uð1Þ gives

where the subscripts give theUð1Þ charge (3.8). Considering the dimension of each representation in this branching, we find

RN2−1 ¼ ζdiag

�
N − 4

2ðN − 2Þ ;…;
N − 4

2ðN − 2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2ðN−2Þ

;
−2

N − 2
;…;

−2
N − 2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðN−2ÞðN−3Þ
2

; 1

�
; (A8)

where ζ represents the coefficient of RN2−1 and the dimensions of the IRR in the branching (A7) are given in the
underbraces. Finally, using Eq. (A8) in Eq. (A6) gives

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 2

N

r
: (A9)

AAPPENDIX B

The dimension of the ðP1; P2; P3;…; PN−2; PN−1Þ representation may be written as

dimðP1; P2; 0;…; 0; PN−2; PN−1Þ ¼
1

j
ððPN−2 þ PN−1 þ N − 3Þ!ðPN−2 þ N − 4Þ!ðP2 þ N − 4Þ!ðP1 þ P2 þ N − 3Þ!

× ðPN−2 þ PN−1 þ P2 þ N − 2ÞðPN−1 þ 1ÞðP1 þ P2 þ PN−2 þ PN−1 þ N − 1Þ
× ðP1 þ 1ÞðPN−2 þ P2 þ N − 3ÞðP1 þ P2 þ PN−2 þ N − 2ÞÞ; (B1)

where j is

j ¼ ðN − 1Þ!ðN − 2Þ!ðN − 3Þ!ðN − 4Þ!P2!PN−2!ðPN−2 þ PN−1 þ 1Þ!ðP1 þ P2 þ 1Þ!: (B2)
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